QAGU FALL MEETING

H43M-1146. COMPLEXITIES OF FLOW AND TRANSPORT IN POROUS MEDIA ACROSS DIVERSE DISCIPLINES |

San Francisco | 15-19 December 2014

PROPAGATION OF GRAVITY CURRENTS OF NON-NEWTONIAN POWER-LAW FLUIDS IN POROUS MEDIA

Vittorio Di Federico 2, Sandro Longo ®, Valentina Ciriello 2, Luca Chiapponi®

2 Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali (DICAM), Universita di Bologna, Viale Risorgimento, 2, 40136 Bologna Italy.

b Dipartimento di Ingegneria Civile, Ambiente Territorio e Architettura (DICATeA), Universita di Parma, Parco Area delle Scienze, 181/A, 43124 Parma, Italy.

e-mail: vittorio.difederico@unibo.it

. . (OIN

ABSTRACT Radial currents in homogeneous : por TIRTErONT TART Tt AR T 1T D 4
A comprehensive analytical and experimental framework is presented to or Vertica"y graded media f?{/,./ 4 £ 3H,
describe gravity-driven motions of rheologically complex fluids through . . . - B ”_l ——"_ 3 o 2
porous media. These phenomena are relevant in geophysical, Power-law permeability variation along the vertical  (z) = ,(z/x, ) Tl ™™ et wii e id el 1 5
environmental, industrial and biological applications. Problem parameters: : 0| » il - !
The fluid is characterized by an Ostwald-DeWaele constitutive equation with n flow behavior index ’ e il A jeal LR Lt LA 0
behaviour index n. The flow is driven by the release of fluid at the origin of o permeability variation Tmpervioa boiom 10° 10 10° 10 0 10 20 30 40 50 60
an infinite porous domain. In order to represent several possible spreading o rate of growth of current volume o ] T T
scenarios, we consider: i) different domain geometries: plane, radial, and (@S| ILIIE SEs e | @) (b) 16 ——T——T— (N4 == — I:f‘tﬁt"z"c(:)Iifn’::’se;:;‘z"‘::f'g:;:efx'ar'fi’:tsi::r:f‘;::r""t"e‘)"sti:i";’:‘""72'()"2";;;2; spsz,s
channelized, with the channel shape parameterized by f, ii) instantaneous Self-similar variable and solution form, horizontal current Syringe pump I~ e gff?t;:?::‘ E iy I 11=1.0::3:5%; Ap=124121% kg-m?; Q,=0.888+1.0% s gt $=0.3741.0%; 0=1.63
or continuous injection, depending on the time exponent of the volume of s R n Video camera H 15 min T e “,‘,"' - 4.3%; ky=9.51-109+4.8% m?
fluid in the current, ¢; iii) horizontal or inclined impermeable boundaries. n=F" 3 N =77(RN) g=— ’ 12T S 0fin ?25.; ®) 10
Systematic heterogeneity along the streamwise and/or transverse direction T My ditNaii 1.0 —l\ 2 Hmn 8 x d"“ 8 —
; o S [ 08 : S gk
is added to the conceptualization upon considering a power-law H(R,T) :Fl&nss TF3‘I’(§) F :F.(n,w,a),izl,...,S S o8 2. ] ; o / e
permeability variation governed by two additional parameters » and . ! ! Vi ] ol "._h | 0.6 % ¥ B _ § 6
Scalings for current length and thickness are derived in self similar form Solution is g by ODE: tical soluti -0 ical @+0 Gl “ 1 &‘0-. d o =
coupling the modified Darcy’s law accounting for the fluid rheology with the oltion s given by » analytical solution ¢=0, numerical & # i 04 - R | T & e N s ¢ g
mass balance equation. The speed, thickness, and aspect ratio of the d ¥ n AV i 02 L i ] 02 —(}f ¥ 2E
current are studied as a function of model parameters; several different — | ¢phi [——J ~F{——+FLY=0 ‘{‘(1):0 2 0 PR R NN Tl TV 0~ N O S 0
critical values of « emerge and govern the type of dependency, as well as dg dg g 0 02 04 06 08 10 12 0 02 04 06 08 1.0 12 14 00 02 04 _06 08 10

the tendency of the current to accelerate or decelerate and become thicker
or thinner at a given point. The asymptotic validity of the solutions is limited
to certain ranges of model parameters.

Experimental validation is performed under constant volume, constant and
variable flux regimes in tanks/channels filled with transparent glass beads
of uniform or variable diameter, using shear-thinning suspensions and
Newtonian mixtures. The experimental results for the length and profile of
the current agree well with the self-similar solutions at intermediate and late
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Currents in porous channels
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(a) Experimental setup; (b) Glass tank; (c)
Stratification of glass beads, ® = 1.63

(a) Position of current front; (b) Experimental vs. theoretical shape function at
different times, test #19; (c) Experimental vs. theoretical shape function, all tests.
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Test #13: (a) Experimental/theoretical shape function vs. similarity variable and 95%
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confidence limits (b) Coefficient of variation of front position, m=0.60+3:5% Pa-s,
n=0.33+3:5%; Ap=117521% kg-m?; Q;=0.4010.5% ml-s'; a=1; $=0.3711.0%; »=1.63t
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« Darcy law for flow in p.m.
u Darcy velocity
p pressure
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k, ¢ permeability, porosity A= A(¢, m, ”) =

8(n+l)/2 n n ¢(n71)/2
2 (3n + 1] m

» Motion driven by density difference Ap between heavy intruding fluid
and light fluid saturating the medium and gravity and channel slope

« Sharp interface

« Current height is thin compared to length and porous medium thickness

* Negligible surface tension effects

« Under previous assumptions, vertical velocities in the intruding fluid are
neglected, the pressure within is hydrostatic, ambient fluid is taken to be
at rest; the height of the intrusion is to be determined as h(x,)

« Current volume introduced at the system boundary oct®

(a = 0 constant volume, « = 1 constant flux injection)

« Zero height at the front x,, (), ry ()

Radial geometry
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Channel of constant cross section

a rate of growth of current volume

Self-similar variable and solution form, horizontal channels
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Solution is given by ODE; analytical solution a=0, numerical a #0
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For inclined channels, a numerical solution in self-similar form is obtained

when the product between the channel inclination and the slope of the
free-surface is much smaller than unity.
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(a) Experimental setup; (b) Gravity current for a=1, =1, n=0.75

DISCUSSION AND FUTURE WORK
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Position of current front for a triangular cross section, horizontal channel : (a) constant
volume flux (a = 1); (b) constant volume (a = 0); Experimental vs. theoretical shape
function at different times for: (c) test #34 (a = 1); (d) test #29 (a=0)
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Position of current front for inclined semi-circular and triangular channels,
constant volume flux (z=1) : (a) 3.2 deg; (b) 5.2 deg
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Experimental vs. theoretical current profile in an inclined (3.2 deg)
triangular channel test #38 (a=1)
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