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This paper outlines a numerical model for determining the dynamic and thermal performances of a rarefied fluid flowing in
a microduct with elliptical cross-section. A slip flow is considered, in laminar steady state condition, in fully developed forced
convection, with Knudsen number in the range 0.001−0.1, in H1 boundary conditions. The velocity and temperature distributions
are determined in the elliptic cross-section, for different values of both aspect ratio γ and Knudsen number, resorting to the
Comsol Multiphysics software, to solve the momentum and energy equations. The friction factors (or Poiseuille numbers) and
the convective heat transfer coefficients (or Nusselt numbers) are calculated and presented in graphs and tables. The numerical
solution is validated resorting to data available in literature for continuum flow in elliptic cross-sections (Kn = 0) and for slip flow
in circular ducts (γ = 1). A further benchmark is carried out for the velocity profile for slip flow in elliptical cross-sections, thanks
to a recent analytical solution obtained using elliptic cylinder coordinates and the separation of variables method. The Poiseuille
and Nusselt numbers for elliptic cross-sections are discussed. The results may be used to predict pressure drop and heat transfer
performance in metallic microducts with elliptic cross-section, produced by microfabrication for microelectromechanical systems
(MEMS).

1. Introduction

Fluid flow in microchannels has emerged as an important
research area. This has been motivated by their various
applications such as medical and biomedical use, computer
chips, and chemical separations. The advent of microelectro-
mechanical systems (MEMS) has opened up a new research
area where noncontinuum behavior is significant.

An important effect associated with gas flows in micro-
channels, where the typical length scales are measured in
microns, is the rarefaction effect. The Knudsen number is
a measure of the degree of rarefaction, which is defined as
the ratio of the mean free path to the appropriate length
scale of the flow. For Knudsen numbers in the range 10−3 ≤
Kn ≤ 10−1, deviations from continuum behavior arise near
the walls where, in a thin layer, molecular collisions with the
walls dominate over intermolecular collisions. This is proved
by many experimental works published in the last decades
[1–4]. Liu et al. [5] proved that the solution to the Navier
Stokes equation, linked to slip flow boundary conditions,
shows good agreement with the experimental data.

In the literature, there are several analytical, numerical,
and experimental works that deal with the slip flow through
microchannels characterized by different geometrical cross-
sections as reported in the recent edition of Handbook of
Microfluidic and Nanofluidics [6].

Kennard [7] studied internal flows with slip in the
circular tube and parallel-plate channel. Sreekanth [8]
experimentally investigated slip flow through long circular
microtubes and proposed a second-order slip boundary
condition according to the pressure distribution along the
microtube. The effects of the Reynolds number and the
Knudsen number on the hydrodynamic development lengths
in circular and parallel plate ducts was investigated by Barber
and Emerson [9].

Ebert and Sparrow [10] performed an analysis to deter-
mine the velocity and pressure drop characteristics of slip
flow in rectangular and annular ducts. They found that the
effect of slip is to flatten the velocity distribution relative
to that of a continuum flow and that the compressibility
increases the pressure drop through an increase in the viscous
shear rather than through an increase in the momentum
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flux. Recently, their solution has been re-examined by
Duan and Muzychka [11] in order to investigate slip flow
in noncircular microchannels. They developed a simple
model for predicting the friction factor-Reynolds product
in noncircular microchannels for slip flow. The proposed
model took advantage of the selection of a more appropriate
characteristic length scale (square root of flow area) to
develop a simple model. The accuracy of the developed
model was found to be within 10%, with most data for
practical configurations within 5%.

Slip flow in rectangular microchannel was also inves-
tigated by Morini et al. [12–14]. They presented the 2D
velocity distribution of steady-state, hydrodynamically devel-
oped, laminar slip flow, for Newtonian fluids in rectangular
ducts [12]. They also pointed out the roles of the Knudsen
number and the cross-section aspect ratio in the friction
factor reduction due to the rarefaction [13]. They found that
for rectangular microchannels with a small aspect ratio the
decrease of the friction factor with the Knudsen number is
larger. In other words, the rarefaction effects appear to be
higher in microchannels with smaller aspect ratios.

Yu and Ameel [15] studied slip flow heat transfer
in microchannels and found that heat transfer increases,
decreases, or remains unchanged, compared to nonslip flow
conditions, depending on two dimensionless variables that
include effects of rarefaction and fluid/wall interaction.

Aubert and Colin [16] studied slip flow in rectangular
microchannels using the second-order boundary conditions
proposed by Deissler. In a later study, Colin et al. [17]
presented experimental results for nitrogen and helium flows
in a series of silicon rectangular microchannels. The authors
proposed that the second-order slip flow model is valid for
Knudsen numbers up to about 0.25.

Applying the integral transform method, Ghodoossi and
Eǧrican [18] studied convective heat transfer in a rectangular
microchannel under slip flow and H1 boundary condition.
They found that rarefaction has a decreasing effect on heat
transfer for most engineering microchannel applications,
with any aspect ratios.

Renksizbulut et al. [19] examined the effects of rarefac-
tion for simultaneously developing 3D laminar, constant-
property flows in rectangular microchannels and for Kn ≤
0.1. They found that slip velocities are significantly reduced
in the corner regions as the flow develops along the channel
due to weaker velocity gradients. For the range of Reynolds
numbers considered in their study, entrance lengths are only
marginally influenced by rarefaction effects, but they display
a highly nonlinear dependence on the channel aspect ratios.

The effects of rarefaction and aspect ratio on thermal
character of flow in rectangular microchannels were also
investigated by Kuddusi et al. [20, 21]. They analyzed eight
different thermal boundary conditions. Their results show
that the highest heat transfer is achieved in the microchannel
with two heated long walls and two adiabatic short walls (2L
version). The decreasing effect of rarefaction on heat transfer
in microchannels, for all the thermal versions, is established.
The higher the rarefaction, the lower the heat transfer.
Their numerical results also show that heat transfer for the
eight thermal versions may increase, decrease, or remain

unchanged with aspect ratio. In particular, heat transfer
decreases for 1L, 2L, and 3L versions, increases for 1S, 2S,
and 3S versions, and it remains approximately unchanged for
4 and 2C versions with increasing aspect ratio.

Slip flow in trapezoidal duct was deeply investigated by
Morini et al. [13] and by Kuddusi et al. [22, 23]. Morini
carried out a work that deals with the analysis of fully
developed laminar liquid flow through silicon microchan-
nels with trapezoidal and double-trapezoidal cross-sections.
He found that for the trapezoidal and double-trapezoidal
microchannels, the influence of the aspect ratio on the
friction factor is strong only if the aspect ratio is less than
0.5.

Kuddusi and Çetegen [22] found that the friction factor
decreases if rarefaction and/or aspect ratio increase. He also
found that at low rarefactions the very high heat transfer
rate at the entrance diminishes rapidly as the thermally
developing flow approaches fully developed flow. At high
rarefactions, heat transfer rate does not exhibit considerable
changes along the microchannel, no matter the flow is
thermally developing or not. They also explored the effects of
viscous dissipation. They found that heat transfer decreases
with rarefaction for common applications (Br < 0.005), while
increases with rarefaction at high Brinkman numbers (Br
> 0.005). They also observed a decreasing effect of viscous
dissipation on heat transfer (up to 60% at high Brinkman
numbers).

Only recently a new interest has been devoted to the
elliptical cross-section, produced by mechanical fabrication
in metallic microducts for practical applications in MEMS
(Mechanical Electro Mechanical Systems). An analytical
approach, concerning only the dynamic problem and the
friction factor for slip flow in elliptical cross-sections, has
been presented by Duan and Muzychka [24], using elliptic
cylinder coordinates and the separation of variable method.
The velocity distribution is given as a series of trigonometric
and hyperbolic functions of the spatial coordinates, with
coefficients obtained by means of a Fourier expansion. The
accuracy of the proposed simple model was found to be
within 3 percent of exact values.

In order to analyze flow behavior through microchannel
characterized by different cross-section, compact models
have been proposed more recently [25–28]. These models use
principles of scaling analysis, appropriate selection of char-
acteristic length scales, asymptotic analysis, and nonlinear
superposition of asymptotes. A benefit of this new approach
is that a significant reduction in the use of graphical and
tabulated data arises. Further, because many complex shapes
have no analytical solution or numerical data, the models
presented in the Handbook of Microfluidic and Nanofluidics
[6] act to fill this void and will yield good results in these
cases.

To the best of the authors’ knowledge, the thermal
analysis of slip flow in microchannels of elliptic cross-section
is not yet tackled in literature.

The present work is aimed at giving a contribution
to the analysis of slip flow through elliptic microchannel,
presenting a comprehensive numerical analysis of fully
developed flow, in steady state laminar condition under H1
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boundary condition. The influence of the aspect ratio and
the rarefaction effects on the friction factors (or Poiseuille
numbers) and heat transfer coefficients (or Nusselt numbers)
is investigated.

2. Mathematical Model

Let us consider a gas flowing in a duct with elliptical cross-
section, with aspect ratio γ ≤ 1 defined as the ratio between
minor and major semiaxis.

A Cartesian coordinate system x, y, z is introduced; the
origin is at the centre of the ellipse, and z is horizontal and
perpendicular to the channel cross section. The following
hypotheses are assumed:

(i) the gas is Newtonian with constant physical proper-
ties,

(ii) the walls are rigid and nonporous,

(iii) the flow is forced, in slip flow condition, laminar,
hydrodynamically and thermally fully developed,

(iv) the Mach number is low and compressibility effects
are negligible,

(v) viscous dissipation, radiative heat transfer, elec-
trostatic interactions, internal heat generation are
absent,

(vi) an axial uniform linear heat flux is transferred by
the wall at the gas, with isothermal perimeter of the
cross-section (H1 boundary condition).

This last hypothesis implies the following balance energy
equation between two sections at z and z + dz of the
microduct:

∂Tb
∂z

= q

ρcWA
. (1)

The hypothesis of fully developed flow implies

∂Tb
∂z

= ∂Tw
∂z

= ∂T

∂z
. (2)

Hence, the fluid and wall temperatures present a linear
variation along the axis z. According to the proposed
hypotheses, the classical Navier Stoke and energy equations
are

−∂p
∂z

+ μ

(
∂2u

∂x2
+
∂2u

∂y2

)
= 0,

q

A

u

W
= λ

(
∂2T

∂x2
+
∂2T

∂y2

)
.

(3)

The following dimensionless independent variables are
introduced

ξ = x

a
, ψ = y

a
, ζ = z

a
(4)

together with the dimensionless dependent functions:

p∗ = − a2

μW

∂p

∂z
, U = u

W
, θ = λ(T − Tw)

q
. (5)

Introducing the dimensionless variables and functions in
(3), the dimensionless Navier Stokes and energy equations
are

p∗ +
∂2U

∂ξ2
+
∂2U

∂ψ2
= 0,

∂2θ

∂ξ2
+
∂2θ

∂ψ2
= 1
πγ

U.

(6)

The first-order slip flow boundary conditions for the di-
mensionless velocity and temperature at the wall (perimeter
of the ellipse) are

Us = 2− σv
σv

Kn
Dh

a

(
∂U

∂n

)
w
= βvKn

Dh

a

(
∂U

∂n

)
, (7)

θj = 2− σT
σT

2 k
k + 1

Kn
Pr

Dh

a

(
∂θ

∂n

)
= βtKn

Dh

a

(
∂θ

∂n

)
. (8)

The Equations (6), linked to the boundary condition
(7) and (8), can be solved resorting to the software Comsol
Multiphysics 4.2a, a package for engineering applications
solving coupled systems of partial differential equations with
a finite element analysis. The software package solves the
problem in the elliptic domain, with −1 < ξ < 1 and −γ <
ψ < γ.

If the velocity distribution and temperature are known,
the main physical parameters can be deduced. As usual [29],
the Poiseuille number is defined as

Po = τDh

μW
=
(−((P)/A)

(
∂p/∂z

))
Dh

μW
= D2

h

4a2
p∗. (9)

The bulk temperature and the Nusselt number are

Tb =
∫∫

UT

πγ
dξdψ, Nu = hDh

λ
= Dh

P|Tb| . (10)

A benchmark can be offered by the analytical solution
of the same problem in circular geometry. The well-known
solution for slip flow in circular channel under H1 boundary
condition, for the velocity distribution, the radial component
of temperature and Nusselt number are, respectively:

U = 2
1 + 8βvKn

(
1 + 4βvKn− r∗2

)
,

θr = 1
2π
(
1 + 8βvKn

)

×
(
r∗4

4
− (1 + 4βvKn

)
r∗

2
+ 2βtKn

(
1 + 8βvKn

)

+4βvKn +
3
4

)

Nu = hD

λ

= qD

λ(Tb − Tw)
= 48

11

(
1 + 8βvKn

)2

A
,

(11)

where A denotes 1 + (128/11)βvKn(1 + 3βvKn) + (48/11)
βtKn(1 + 8βvKn)2.
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Table 1: Poiseuille numbers for elliptical ducts.

γ Analytical solution [24] Present paper Discrepancy

Kn = 0.001

0.25 9.025 9.033 0.10%

0.50 8.337 8.340 0.04%

0.75 8.015 8.020 0.07%

1.00 7.937 7.934 −0.03%

Kn = 0.01

0.25 8.249 8.306 0.69%

0.50 7.718 7.739 0.27%

0.75 7.467 7.478 0.15%

1.00 7.407 7.408 0.01%

Kn = 0.05

0.25 5.969 6.125 2.61%

0.50 5.803 5.861 0.99%

0.75 5.729 5.744 0.26%

1.00 5.714 5.713 −0.02%

Kn = 0.1

0.25 4.437 4.611 3.94%

0.50 4.430 4.503 1.66%

0.75 4.437 4.459 0.49%

1.00 4.444 4.445 0.00%

3. Results and Discussion

The governing equations, together with their boundary
conditions, were implemented in Comsol MultiphysicsTM,
and they were solved resorting to the parallel sparse direct
linear solver MUMPS (multifrontal massively parallel sparse
direct Solver), with a relative tolerance set to 1e − 06.

In order to validate the numerical model, the analytical
solution proposed by Duan and Muzychka [24] is used as a
benchmark. Figure 1 shows the excellent agreement between
the numerical results and the analytical ones for aspect ratio
set to 0.5; the RMS difference is about 2%. Table 1 shows the
comparison between the numerical values of the Poiseuille
number and the analytical ones. The numerical results are
obtained assuming, for sake of simplicity, σv = σT = 1, so
that there is no difference between the Knudsen number and
the modified Knudsen number Kn∗ = (2 − σv)/σv, used in
literature by many authors. Moreover the following physical
parameters for the gas are chosen, as usual, Pr = 0.71 and
k = 1.4.

To analyze the sensitivity of the numerical results to
the mesh size, five different types of grid configurations are
tested. The first four featured a uniform mesh, while the last
one was nonuniform, with an enhanced refinement near the
wall. The maximum discrepancy, observed in the maximum
velocity (calculated in the five different configurations), is
less than 2%.

As expected, the nonuniform mesh has the best per-
formance in terms of accuracy. Taking this into account,
and considering the small computational effort to run each
simulation regardless of the mesh type, the nonuniform
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Figure 1: Velocity profiles in elliptic channel for γ = 0.5.
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Figure 2: Velocity profiles in circular channel (γ = 1).

configuration is chosen. The adopted mesh is characterized
by 13552 triangular elements.

For aspect ratio value set to 1, the numerical results are
also compared with analytical values for circular microchan-
nels obtained by (11). Both for velocity field and temperature
field, numerical values are in perfect agreement with the
analytical ones, as shown in Figures 2 and 3. The RMS
differences are less than 0.001% for the velocity profiles and
about 0.001% for the temperature distributions.

Table 2 shows the comparison between the numerical
values of the Nusselt number and the analytical ones,
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Figure 3: Temperature profiles in circular channel (γ = 1).
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Figure 4: Dimensionless velocity in the cross-section.

Table 2: Nusselt numbers for circular ducts (γ = 1).

Nu (H1)

Kn Analytical solution Present paper Discrepancy

0.001 4.351 4.345 0.14%

0.010 4.230 4.221 0.21%

0.050 3.609 3.604 0.14%

0.100 2.928 2.922 0.20%

emphasizing a high accuracy of the numerical solution, with
a discrepancy never greater than 0.21%.

After having tested the reliability and accuracy of the
results obtained by the numerical procedure, a general
analysis can be proposed and discussed. To cover the most
common situations in which elliptical microducts are used,
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Figure 5: Velocity profiles for Kn = 0.01.

the investigation is carried out assuming the aspect ratio γ =
0.25, 0.50, 0.75, and 1.00, and Knudsen number Kn = 0.001,
0.01, 0.05, and 0.1.

Figure 4 presents the spatial distribution of the dimen-
sionless velocity, for γ = 0.25 and Kn = 0.1, in a quarter
of the ellipse (for symmetry reasons); it can be seen that U
never goes to 0 because of the slip at the boundary.

The dimensionless velocity profiles are shown in
Figure 5, versus the shorter axis of the ellipse, for different
values of the aspect ratio.

The numerical results let to state that the continuum flow
results (Kn = 0) are extremely close to the results referred
to Kn = 0.001. The dimensionless maximum velocity at the
centre of the ellipse is determined by the correlation Umax =
26.473Kn∗

2 − 6.954Kn∗ + 2.000, it does not depend on the
aspect ratio of the elliptical cross-section, and for continuum
flow it assumes the well-known value of 2. The slip velocity
at the wall increases with the Knudsen number; it is higher in
ψ = ±γ, due to the higher velocity gradient, as stated in (7).

The Poiseuille number is depicted in Figure 6; it is
a monotonically slightly decreasing function of γ, and
decreases when the Knudsen number increases. These con-
siderations confirm that the gas rarefaction reduces the
friction between the gas and the walls, and microchannels
with a small aspect ratio have higher friction factors. The
reliability of the numerical solution is again proved by the
fact that the Poiseuille numbers are almost identical to the
analytical results obtained by the analytical solution available
in [24].

The spatial distribution of the dimensionless fluid tem-
perature is shown in Figure 7; the wall has the maximum
temperature (being q < 0), the minimum temperature is
at the centre. Of course, in the more flattened region of the
ellipse the temperature is higher.

The dimensionless fluid temperature as a function of the
shorter axis ψ is depicted in Figure 8, for Kn = 0.01 and for
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Figure 7: Dimensionless temperature in the cross-section for γ =
0.25.

different values of aspect ratio. As the eccentricity increases
(i.e., γ decreases), the minimum temperature strongly
increases, while the temperature jump slightly decrease.

Figure 9 shows the dimensionless temperature profile
with γ = 0.5 along the shorter axis ψ, the temperature jump
significantly increases with the Knudsen number.

Figure 10 represents the dimensionless bulk temperature
profile, it decreases with both aspect ratio and Knudsen
number; the circular cross-section is characterized by the
lower bulk temperature.

In Figure 11 the effect of both aspect ratio and Knudsen
number on the Nusselt number is shown.

The Nusselt number has a curious and unexpected trend.
While it strongly decreases monotonically with increasing

0 0.2 0.4 0.6 0.8 1
−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

θ

γ = 0.25
γ = 0.5

γ = 0.75

γ = 1

ψ

Figure 8: Temperature profiles for Kn = 0.01.
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Figure 9: Temperature profiles for γ = 0.5.

Knudsen numbers, it shows a contradictory behaviour
against the aspect ratio. For low Knudsen numbers, the Nus-
selt number slightly decreases with increasing of the aspect
ratio, for Kn around 0.05 it remains almost unchanged, for
Kn > 0.05 it increases very slightly with the aspect ratio.
Thus the thermal performances are very sensitive to the
Knudsen number in slip flow regime, while the aspect ratio
plays a minor role in elliptical geometry. For high Knudsen
numbers, the effect of the aspect ratio is almost negligible,
while for small Knudsen number the eccentricity of the cross-
section increases the thermal exchange.



Advances in Mechanical Engineering 7

0 0.2 0.4 0.6 0.8 1
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

γ

θ b

Kn = 0.001
Kn = 0.01

Kn = 0.05

Kn = 0.1

Figure 10: Dimensionless bulk temperature versus γ for different
Knudsen number.

0.2
0.4

0.6
0.8

1

0
0.02

0.04
0.06

0.08
0.1

2.5

3

3.5

4

4.5

5

γ

Kn

N
u

Figure 11: Nusselt numbers versus γ for different Knudsen
numbers.

Table 3: Polynomial coefficients in (12).

Kn c0 c1 c2 c3

0.001 5.4009 −2.5820 2.0133 −0.4737

0.010 5.0227 −2.0795 1.7532 −0.4754

0.050 3.7255 −0.4552 0.5932 −0.2594

0.100 2.7468 0.4250 −0.3128 0.0630

A simple parabolic form can be proposed to represent
Nusselt number as a function of Knudsen number and aspect
ratio:

Nu =
3∑
i=0

ciγ
i, (12)

where the values of the constants ci are listed in Table 3.

In conclusion, the numerical solution presented in
this paper allows obtaining fluid velocity and temperature
distributions (consequently friction factors and heat transfer
coefficients), for slip flow in elliptical microducts with
Knudsen numbers in the range 0-0.1 and aspect ratios in the
range 0.25–1, in H1 boundary conditions (constant axial flux
and isothermal wetted perimeter in each cross-section). To
reduce friction losses in microducts, it is convenient to have
slip flow with high Knudsen numbers and cross-sections
with high aspect ratios (tending to the circular cross-section);
on the contrary, the thermal exchange is enhanced for
small Knudsen numbers (with minor relevance of the aspect
ratio).

Nomenclature

A: Cross-section area, m2

a: Semimajor axis of the ellipse, m
b: Semiminor axis of the ellipse, m
c: Specific heat at constant pressure, J/kg K
cv: Specific heat at constant volume, J/kg K
Dh: Hydraulic diameter of the channel, m
h: Convective heat transfer coefficient W/m2 K
k: Ratio of specific heats, c/cv
Kn: Knudsen number, λ/D
Kn∗: Modified Knudsen number, βv Kn
n: Dimensionless normal coordinate at the internal

walls of the ellipse
Nu: Nusselt number, hDh/λ
p: Fluid pressure, Pa
p∗: Dimensionless fluid pressure
P: Perimeter of the elliptical cross-section, m
Po: Poiseuille number
Pr: Prandtl number
r∗: Dimensionless radius
q: Constant linear heat flux, W/m
T : Fluid temperature, K
u: Fluid velocity, m/s
U : Dimensionless fluid velocity
W : Average velocity, m/s
x, y, z: Cartesian coordinates, m.

Greek Symbols

βt: Coefficient, (2− σt) · 2 · k/[σt · Pr · (K + 1)]
βv: Coefficient, (2− σv)/σv
γ: Aspect ratio, b/a
θ: Dimenpsionless fluid temperature
λ: Fluid thermal conductivity, W/(mK)
λmfp: Mean free path of the fluid particles, m
μ: Fluid dynamic viscosity, Pa s
ξ, ψ, ζ : Dimensionless Cartesian coordinates
ρ: Fluid density, kg/m3

σT : Thermal accomodation coefficient
σv: Momentum accomodation coefficient
τ: Average wall shear stress, Pa.
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Subscripts

b: Bulk
j: Jump at the wall
s: Slip at the wall
w: Wall.
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