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Abstract

Allopolyploidy has played a major role in plant evolution but its impact on genome diversity

and expression patterns remains to be understood. Some studies found important genomic

and transcriptomic changes in allopolyploids, whereas others detected a strong parental

legacy and more subtle changes. The allotetraploid C. bursa-pastoris originated around

100,000 years ago and one could expect the genetic polymorphism of the two subgenomes

to follow similar trajectories and their transcriptomes to start functioning together. To test

this hypothesis, we sequenced the genomes and the transcriptomes (three tissues) of allo-

tetraploid C. bursa-pastoris and its parental species, the outcrossing C. grandiflora and the

self-fertilizing C. orientalis. Comparison of the divergence in expression between subge-

nomes, on the one hand, and divergence in expression between the parental species, on

the other hand, indicated a strong parental legacy with a majority of genes exhibiting a con-

served pattern and cis-regulation. However, a large proportion of the genes that were differ-

entially expressed between the two subgenomes, were also under trans-regulation

reflecting the establishment of a new regulatory pattern. Parental dominance varied among

tissues: expression in flowers was closer to that of C. orientalis and expression in root and

leaf to that of C. grandiflora. Since deleterious mutations accumulated preferentially on the

C. orientalis subgenome, the bias in expression towards C. orientalis observed in flowers

indicates that expression changes could be adaptive and related to the selfing syndrome,

while biases in the roots and leaves towards the C. grandiflora subgenome may be reflective

of the differential genetic load.
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Author summary

Most plant species have a polyploid at some stage of their ancestry. Polyploidy, genome

doubling through either multiple copies of a single species or through genomes of differ-

ent species coming into the same nucleus, is therefore a crucial step in plant evolution.

Understanding its impact on basic biological functions is thus a matter of interest. Shep-

herd’s purse (Capsella bursa-pastoris) is a major weed that appeared about 100,000 years

ago through hybridization of two diploid species of the same genus. In the present project,

we measured genetic diversity and analyzed gene expression patterns in flowers, roots,

and leaves of C. bursa-pastoris individuals as well as in its two parental species, the out-

crossing C. grandiflora and the self-fertilizing C. orientalis. Our data shows that, after

100,000 generations of evolution, the origin of the two subgenomes can still be seen: the

genome inherited from C. grandiflora still differs from the one inherited from self-fertiliz-

ing C. orientalis. However, there are also signs that the two genomes have started to work

together and are jointly regulated, and the way expression pattern varied across the three

tissues indicates that the evolution of gene expression was adaptive.

Introduction

Polyploidy, and in particular allopolyploidy, whereby a novel species is created by the merger

of the genomes of two species, is considered to be a common mode of speciation in plants [1]

as it induces an instant reproductive isolation, the difference in chromosome number imped-

ing reproduction with the parental species. In the case of allopolyploidy, the daughter species

thus has two divergent subgenomes at inception, one inherited from each parental species.

Such an increase in genome copy number can be advantageous and could partly explain the

apparent evolutionary success of allopolyploid species ([2, 3] but see [4]). For instance, genome

doubling creates genetic redundancy, thereby increasing genetic diversity and allowing the

masking of deleterious mutations through compensation. Genome doubling and initial redun-

dancy also offer new possibilities for the evolution of genes over time: one copy can degener-

ate, both can be conserved by dosage compensation [5] or their pattern of expression can

diverge and even lead to the evolution of new functions (see [6] and references therein). Gene

redundancy also potentially allows tissue-specific expression of different gene copies [7, 8]. On

the other hand, the evolutionary success of allopolyploids can also appear paradoxical since

the birth of a new allopolyploid species will also be accompanied by numerous challenges [9–

12]. These challenges are first associated with the initial hybridization between two divergent

genomes, implying, among other things, potential changes of gene expression patterns [13].

The magnitude of gene expression changes has been reported to vary substantially across

polyploid species, from minor modifications [14, 15] to so-called “transcriptomic shock” [8].

The balance in expression pattern between the two subgenomes also seems to be highly vari-

able and ranges from the additivity of parental expression to extreme non-additivity. Several

forms of non-additivity have been widely observed, such as homeologue expression bias, when

the relative expression contributions from the two homeologues are altered, and expression

level dominance, when the total expression level of both homeologues is similar to only one of

the parental species [16, 17] (see [18] for definitions). These patterns also evolve through time.

For example, in Mimulus peregrinus the genome-wide homeologue expression bias was estab-

lished early on but also increased over successive generations [19]. However, the generality,

timing, and causes of changes in expression pattern of the two parental genomes remain

poorly known beyond a few case studies [17, 20] and may, to a large extent, depend on parental
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Erik Philip-Sörensens Stiftelse (http://www.epss.

se/) also to ML. The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pgen.1008131
https://www.vr.se/
http://www.epss.se/
http://www.epss.se/


legacy because a part of the observed differences between the two subgenomes of the allopoly-

ploid species may have already been present between the parental species [3].

Ultimately, changes in patterns of gene expression will follow from modifications in gene

expression regulation. Differences in gene expression can be due to changes in cis- and trans-
regulatory elements. Cis-regulatory elements alter allele-specific expression and are generally

located close to the gene they regulate (e.g., promoters), whereas trans-regulatory elements can

affect both alleles and can be located anywhere in the genome [21–24]. In the case of a newly

formed allopolyploid species, one would expect the two copies of a gene to be under the influ-

ence of trans-regulatory elements inherited from both parents and its expression level to first

move towards the mean expression of the two parental species. Retaining the parental pattern

of expression in each subgenome would imply that only cis-regulation takes place, or there are

forces opposing the establishment of cross trans-regulation. For instance, one could expect

purifying selection to have a larger impact on trans-acting mutations than on cis-acting ones

because the former have more pleiotropic expression than the latter. If so, the residual variants

will mostly be cis-acting ([25] but see [26]). It was also shown that a gene is often under the

influence of both trans- and cis-regulatory elements that act in opposite directions [24], lead-

ing to a cis-trans compensation that prevents overshooting optimal overall expression level.

Such compensation between cis- and trans-regulatory elements is one of the predictions of the

enhancer runaway (ER) model proposed by Fyon et al. [27]. Under the ER model, and espe-

cially in outcrossing species where heterozygotes are frequent, cis-regulatory variants facilitate

the exposure of alleles to purifying selection. If the enhancer and the gene they regulate are

linked then the up-regulating variants will hitch-hike with the allele carrying the lowest num-

ber of deleterious mutations, leading to an open-ended escalation in enhancer strength [27].

As selection on expression appears to be primarily stabilizing [24, 28, 29], at least at intermedi-

ate evolutionary timescales [30], a compensatory effect of expression in trans is predicted [27,

31]. The relative importance of cis- and trans-regulation can be examined by comparing the

relative expression in the parental species with the relative expression of homeologous genes in

the newly formed tetraploid [21, 32, 33].

Differential expression between the two genomes could result from a differential accumula-

tion of deleterious or slightly deleterious mutations between the two subgenomes or, alterna-

tively, be also related to phenotypic or adaptive changes associated to the differences between

the two parental species. If the differential expression is only due to differential accumulations

of deleterious mutations, we would expect to see the same differential expression pattern

across different tissues, whereas if differential expression is related to phenotypic or adaptive

changes then we may expect to see differences depending on the tissue considered.

Shepherd’s purse, C. bursa-pastoris, is an allotetraploid selfing species that originated some

100-300 kya from the hybridization of the ancestors of C. orientalis and C. grandiflora [15]

(Fig 1A). The two parental species are strikingly different: C. orientalis, a genetically depauper-

ate selfer, occurs across the steppes of Central Asia and Eastern Europe [34], whereas C. gran-
diflora, an obligate outcrosser with a particularly high genetic diversity, is primarily confined

to a tiny distribution range in the mountains of Northwest Greece and Albania [34] (Fig 1).

Among Capsella species, only C. bursa-pastoris has a worldwide distribution [34], some of

which might be due to extremely recent colonization events associated with human population

movements [34, 35]. In Eurasia, the native range of C. bursa-pastoris is divided into three

genetic clusters—Asia, Europe, and the Middle East (hereafter ASI, EUR and ME, respec-

tively)—with low gene flow among them and strong differentiation both at the nucleotide and

gene expression levels [35, 36]. Reconstruction of the colonization history suggested that C.
bursa-pastoris spread from the Middle East towards Europe and then expanded into Eastern

Asia. This colonization history resulted in a typical reduction of nucleotide diversity with the
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Fig 1. Evolutionary history and sampling locations of the three Capsella species used in this study. A Solid lines represent

subgenomes segregation after the hybridization between C. grandiflora (CG) and C. orientalis (CO) ancestors. C. grandiflora and C.
orientalis genetic backgrounds are marked with red and blue respectively. The ploidy levels (n) and the reproductive system are also

indicated. Dashed and dotted lines represent the comparisons used to compute the gene expression convergence index (see Material

and methods). B. CO, CG, ASI, EUR, ME, CASI correspond to C. orientalis, C. grandiflora, and four populations of C. bursa-pastoris,
Cbp, (Asia, Europe, Middle East, and Central Asia) respectively. We shifted slightly population geographical coordinates when those

overlapped to make all of them visible on the map.

https://doi.org/10.1371/journal.pgen.1008131.g001
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lowest diversity being found in the most recent Asian population [35]. It has been possible to

phase the subgenomes by assigning each genome sequence (or transcript) to a parental species

sequence [37]. In stark contrast to many other studies of allopolyploids, such as maize, cotton,

Brassica, Xenopus laevis, [38–44], the phased data suggested that the differences in deleterious

variants between the two subgenomes of C. bursa-pastoris are largely a legacy of the differences

between the two parental species and that biased fractionation, the biased loss of ancestral

genomes in an allopolyploid, is limited [15, 45].

The aim of the present study was to address questions on the evolution of gene expression

patterns of the two subgenomes of the allotetraploid shepherd’s purse C. bursa-pastoris since

they derived from the two parental species. We focused on two main questions. First, has the

relative contribution of cis- and trans-regulation been altered by polyploidization? Second,

could differential expression between the two subgenomes only results from a differential

accumulation of deleterious/slightly deleterious mutations (nearly neutral hypothesis) or is it

also related to phenotypic differences between the two parents (adaptive hypothesis)? One par-

ent is outcrossing (C. grandiflora) and has large flowers as it needs to attract pollinators while

the other parent is self-fertilizing (C. orientalis) and has tiny flowers. Hence one may expect

differential expression in flower tissues of selfing C. bursa-pastoris to be biased towards the C.
orientalis expression levels under the adaptive hypothesis whereas tissues that have not experi-

enced adaptive specialization might show an expression bias towards C. grandiflora.

To address these questions and, more generally, to characterize the expression pattern of C.
bursa-pastoris, we analyzed the genomes and the transcriptomes of three tissues (flowers,

leaves, and roots) of 16 accessions coming from different populations of the C. bursa-pastoris
natural range and compared them with those of the parental lineages C. grandiflora and C.
orientalis (four accessions each) (Fig 1). In total, 24 transcriptomes in three tissues and 24

genomes were analyzed.

One hundred thousand generations after its inception, C. bursa-pastoris does not show any

sign of a transcriptomic shock. Instead, our data revealed highly concerted changes with the

expression levels of the two subgenomes converging towards an intermediate value. This was

achieved by a balance between cis-and trans-regulation and a strong parental legacy that was

also observed for the accumulation of deleterious mutations over the two subgenomes. While

the differential accumulation of deleterious mutations between subgenomes could explain part

of the differential expression between them, there were also significant tissue-specific differ-

ences in subgenome dominance and convergence indicating that adaptive changes may also

have contributed to the evolution of the expression patterns of the two subgenomes.

Results

Population genetic structure

In order to assess the relationship of the newly obtained Central Asian samples with other pop-

ulations, we analyzed the population structure of our samples. A SNP-based PCA (670K geno-

mic SNPs without any missing data) confirmed the phylogenetic relationships between C.
grandiflora (CG), C. orientalis (CO), and C. bursa-pastoris (Cbp) described in [35–37]. The first

principal component (Dim1) explained the majority of the variance (66%) and clearly discrim-

inated CG and the CbpCg subgenome from CO and the CbpCo subgenome (Fig 2, left panel). To

investigate further population structure within C. bursa-pastoris, we then focused on genetic

variation in each subgenome (Fig 2, middle and right, respectively for CbpCg and CbpCo). In

both cases, there were three main clusters gathering accessions from Europe (EUR), Asia

(ASI), and the Middle East (ME), respectively. Accessions from Central Asia (CASI) tended to

cluster with European accessions for both subgenomes, even if they were more scattered. A

Transcriptomic convergence and genomic legacy in a polyploid
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phylogenetic analysis also confirmed that the new samples from Central Asia were most simi-

lar to the European genetic cluster and showed that they did not form a separate genetic cluster

(S1 Fig).

Global variation in gene expression reflects genetic relationships

Given that the gene expression patterns in homeologue-specific and total expression can pro-

duce different results [46], we performed a differential gene expression analyses on both the

unphased and phased data. Pairwise comparisons of a number of differentially expressed (DE)

genes between species in unphased data (16,039 genes) showed that patterns of expression var-

ied across tissues. First, the number of differentially expressed genes between parental species

was the highest in flower tissues, while leaf tissues were the least differentiated (S2 Table). Sec-

ond, in flowers, overall gene expression of C. bursa-pastoris was the closest to C. orientalis,
while in the two other tissues it was the closest to C. grandiflora (S2 Table). At the population

level, no clear pattern appeared: for instance, ME accessions were the closest to C. grandiflora
in roots, while ASI accessions were the closest to C. grandiflora in leaves and CASI accessions

in flowers (S3 Table).

Gene expression variation was then surveyed in 11,931 genes for which phased expression

of the two subgenomes was available in all populations of C. bursa-pastoris. Clustering of pop-

ulation/species mean expression values confirmed that the main difference in overall expres-

sion variation was between tissues (S2 Fig). The principal component analyses of the three

tissues separately (Fig 3) revealed that the global variation pattern in gene expression reflected

phylogenetic relationships (Fig 3 and S3 Fig). The two subgenomes of C. bursa-pastoris were

most similar to their corresponding parental genomes along the first principal component,

Dim1, i.e. expression in the CbpCg subgenome grouped with C. grandiflora, and the CbpCo sub-

genome grouped with C. orientalis. The second principal component, Dim2, reflected popula-

tion structure; here again CASI accessions grouped with EUR accessions.

Testing for homeologue-specific expression (HSE) in C. bursa-pastoris showed that on aver-

age 4,096 genes (*34%) per sample were significantly differentially expressed between the two

subgenomes (FDR< 0.05). The expression ratio between subgenomes (defined as
CbpCo

CbpCoþCbpCg
)

Fig 2. Genomic variation patterns in three Capsella species. Variation was visualized with principal component analyses based on

the SNPs of C. grandiflora (CG), C. orientalis (CO), and four populations of C. bursa-pastoris (Cbp) (Asia (ASI), Central Asia (CASI),

Europ (EUR), and Middle East (ME)). The left plot shows variation in the three species with lines connecting subgenomes of

corresponding Cbp accessions and the dash-dotted circles highlighting two subgenomes of Cbp. The middle and right plots show

only the variation within the subgenomes of C. bursa-pastoris (CbpCg and CbpCo).

https://doi.org/10.1371/journal.pgen.1008131.g002
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was on average 0.496 across all genes and 0.493 across genes with significant HSE indicating

no strong bias towards one of the subgenomes (S4 Table). The ratio in DNA reads was 0.497

and thus there was no strong mapping bias towards either subgenome. Analyses of differential

expression revealed no bias in the number of differentially expressed genes toward one subge-

nome either when comparing tissues (S5A Table, flowers and leaves being the most differenti-

ated tissues and leaves and roots the least) or Cbp populations (S5B Table, Middle East and

Asia being the most distant, except for CbpCo in flowers, while Europe and Central Asia are the

closest).

Strong parental legacy and both cis- and trans-regulatory changes

In order to investigate the total expression level changes in C. bursa-pastoris after C. grandi-
flora and C. orientalis hybridization, expression patterns of unphased data across the three spe-

cies were classified into four categories: No difference, Intermediate/Additivity, Dominance and

Transgressive (Fig 4). Up to 55-80% of the genes in C. bursa-pastoris were expressed at the

same total level as in the parental species and 5 to 10% showed levels of expression intermedi-

ate to that of parental species. The dominance of one parental species over the other was most

evident in flowers and roots. In flowers, *14% of C. bursa-pastoris genes were expressed at

the same level as in C. orientalis but differed significantly from C. grandiflora, and *8% were

expressed at the same level as in C. grandiflora but at a different level than in C. orientalis. The

opposite dominance pattern was detected in the root tissue. Finally, a transgressive expression

pattern, when expression levels in C. bursa-pastoris exceeded or were lower than the expres-

sion level of both parents, was detected in 8-16% of genes.

Gene expression in C. bursa-pastoris was further investigated by assessing the relative

importance of cis- and trans-regulatory elements. The expression ratio of the two subgenomes

was compared to the expression ratio between the two parental species (Fig 5A). For a given

gene, if its expression in the homeologous genes of C. bursa-pastoris is only regulated by cis-
regulatory changes, it should be completely explained by the divergence between the parental

species (the diagonal line in Fig 5A). On the other hand, if homeologous genes are equally

expressed in C. bursa-pastoris but not in the parental species, this means that Cbp expression is

mainly controlled by trans-regulatory elements (the horizontal line in Fig 5A) [21]. First, the

relationship between expression ratios in C. bursa-pastoris and parental species was positive

Fig 3. Transcriptomic variation patterns in three Capsella species. Variation was visualized with principal component analyses of

phased gene expression data (11,931 genes) for the three different tissues. CO, CG, ASI, EUR, ME, and CASI correspond to C.
orientalis, C. grandiflora, and four populations of C. bursa-pastoris, Cbp, (Asia, Europe, Middle East, and Central Asia), respectively.

The dash-dotted circles highlight the two different subgenomes of Cbp.

https://doi.org/10.1371/journal.pgen.1008131.g003
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and highly significant for all three tissues (p< 0.001), and the slope was intermediate between

what would be expected if there were either only cis-(β = 1) or only trans-regulatory (β = 0)

changes (β = 0.37, 0.42 and 0.46, respectively for flowers, leaves and roots). This indicates a

strong parental legacy effect in expression of the two subgenomes of C. bursa-pastoris and

Fig 4. Levels of gene expression in C. bursa-pastoris relative to its parental species. CO, CG, and Cbp correspond to C. orientalis,
C. grandiflora, and C. bursa-pastoris, respectively. The y-axis indicates the level of expression. Expression levels were considered

significantly different for the FDR< 0.05. In total, 16,032 genes were analyzed.

https://doi.org/10.1371/journal.pgen.1008131.g004
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suggests a joint effect of cis- and trans-regulation. Second, the variance of the expression ratio

between subgenomes was significantly smaller than the variance of the expression ratio

between parental genomes (Fisher’s variance test, all p< 0.001), indicating that the two subge-

nomes are closer to each other than the parental genomes are, therefore supporting a co-regu-

lation of the two subgenomes through a mixture of trans- and cis-regulation [21, 32]. Finally,

the slope of the regression between the two expression ratios was the weakest in flowers, sug-

gesting a slightly stronger trans-regulation and a higher level of constraints in this tissue than

in roots and leaves [32].

Fig 5. Relationships between the relative expression of the C. bursa-pastoris subgenomes and the relative expression of parental

species. The figure shows expression in flower as an example. A. Top-left panel is for all transcripts (11,931). B. Transcripts

belonging to a specific category. The diagonal dashed lines indicate 100% cis-regulation divergence while the horizontal dashed lines

indicate 100% trans-regulation. The solid lines give the slopes of the linear regressions between both ratios either for all transcript

(black) or for transcript belonging to a specific category. β is the slope of the corresponding regression. For Transgressive category

(bottom right panel), dark gray corresponds to categories #7a and b, light grey is for category #7c (see Fig 6).

https://doi.org/10.1371/journal.pgen.1008131.g005
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Classification of expression patterns

As mentioned above, subgenome expression level relative to parental species expression can

help to disentangle the role of cis- and trans- components on overall gene regulation. However,

the comparison between the ratios of expression in the tetraploid and in the parents is not suf-

ficient to distinguish all possible patterns. We thus classified the expression patterns at the

equivalent developmental stage in genes from the two subgenomes and the parental species in

seven main categories by comparing the four expression levels (see Fig 6 for an example with

flower tissues). The majority of the transcripts was not differentially expressed between paren-

tal genomes and subgenomes (No difference category), ranging from *60% in flowers to

*78% in leaves (Table 1). However, the slope of the regression between relative expression of

subgenomes and parental species clearly indicated that, even if the expression levels were not

significantly different between parental species and C. bursa-pastoris subgenomes, crossed

trans-regulation tended to make the two subgenomes expression closer to each other than to

either parental species (Fig 5B “No difference” and Table 1). About 9% of genes had an Interme-
diate/Additive expression, i.e., the expression of both subgenomes being in between the expres-

sion of the two parental species. As expected this pattern was due to a combination of both cis-
and trans-regulation (β’ 0.3 − 0.4). Only 3% showed a strict legacy of parental species expres-

sion which is primarily due to cis-regulation (β’ 1). About 4% of the genes showed a Domi-
nance pattern of either CG or CO parental genetic background (i.e., both subgenome

expression are similar to that of one parental species, categories 6a and 6b, Fig 6). However,

within transcripts showing a Dominance pattern, 76% of the transcripts showed a dominance

of CO in flowers, while there were only 45% and 34% in leaf and root tissues (Table 1). The

Dominance pattern seems to be due to a dominance of transcription factors from one subge-

nome over the other (β’ 0.05 − 0.2); in favour of CO parental genetic background in flowers

and of CG parental genetic background in leaves and roots (Fig 5B and Table 1). Finally, 3% of

the genes had a Compensatory-drift profile (parental species expressions are similar but subge-

nome expressions diverge), a mere 0.4% showed a Reverse profile (each subgenome expression

is similar to the opposite parental species) and about 10% of the transcripts showed a Trans-
gressive pattern, either because of one (categories 7a and 7b) or of both subgenomes expression

(category 7c) (Fig 5B and Table 1). These last profiles are less straightforward to interpret in

terms of cis- and trans-regulation pattern as they involve more complex post-hybridization

regulation processes.

Finally, although the relative proportions of the different categories were globally conserved

across tissues (Table 1), expression patterns of individual genes were strongly tissue-specific.

In our data, only half of the genes showed the same expression pattern in all three tissues. The

most conserved category was No difference, 77%, and the least conserved one was Compensa-
tory-drift, 3%. Pairwise comparisons between tissues revealed that the number of genes for

which the expression pattern changed from one tissue to another was the largest between flow-

ers and roots tissues (42%) and the smallest between leaf and root tissues (33%).

To conclude, only about 10% of the 11,931 transcripts had a transgressive or a reverse

expression pattern. Expression patterns were poorly conserved between tissues except for the

No difference category, indicating that the evolution of expression regulation is highly tissue-

specific. Flower tissue differed the most from the two other tissues. In addition to a lower pro-

portion of differentially expressed genes, flower tissues also had the lowest proportion of

Transgressive category in the differentially expressed genes, indicating that when expression

changes occurred, they either took place within the expression range of the parental species or

they were compensated by the other subgenome (Compensatory-drift). This suggests a higher

level of constraints on gene expression in flower tissues than in leaves and roots. Moreover, in
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Fig 6. Main categories of expression variation of C. bursa-pastoris subgenomes relative to expression in parental

species. The figure shows expression in flower as an example. Each transcript was assigned to one of seven main

categories defined from the relative expression pattern of Cbp subgenomes (CbpCg and CbpCo) and parental species

(CG and CO). For each category, dashed lines correspond to single transcript relative expression to the maximal

expression of this transcript in parental genomes or subgenomes. Solid lines indicate the average expression for each

genome or subgenome. Colors discriminate alternative patterns in the same category.

https://doi.org/10.1371/journal.pgen.1008131.g006
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flowers, the CO genetic background clearly dominates over the CG background, in striking

contrast with the dominance of the CG genetic background in the other two tissues. Finally,

expression profiles are more conserved between leaves and roots than between flowers and

roots.

Expression similarity and convergence between subgenomes: Flowers differ

from roots and leaves

To understand better the joint dynamics of expression in the two subgenomes across tissues,

and to avoid a priori classifications, we defined a new similarity index, S, that measures the

similarity between mean expression level of each subgenome in each gene and the mean

expression level in the parental species for the same gene (see Material and methods § Similar-

ity and Convergence indices). This index is centered on 0, so that S< 0 means that the expres-

sion of a given transcript from a given subgenome is more similar to the expression of that

transcript in CG, and S> 0 means that its expression is closer to that of CO. For all tissues, S
indices of both subgenomes were biased towards the corresponding parental genome, i.e.

CbpCg towards CG and CbpCo towards CO (binomial test, all p< 0.001). However, the strength

of this bias differed between subgenomes and across tissues (Fig 7A). The distributions of S
values for leaf and root tissues were more spread than the distribution for flowers, meaning

that the relative expression in the two subgenomes was globally less constrained in these tissues

than in the flower tissue (S4 Fig).

As S index reflects the similarity between each subgenome expression and parental expres-

sion, the difference between S values for a given transcript (ΔS = |SCbpCo| − |SCbpCg|) can be

viewed as the overall dominance of one parental genetic background over the other (ΔS< 0

means dominance of CG and ΔS> 0 means dominance of CO). In flowers, median S values for

genes that showed significant differential expression between parental species (FDR< 0.05)

showed dominance of the CO over CG genetic background (ΔS = 0.07), while the opposite pat-

tern—i.e. dominance of CG back-ground over CO—was observed in leaves and roots (ΔS =

-0.08 and -0.14, respectively; Fig 7A). This pattern was also observed when considering all

genes, though it was less pronounced (S4 Fig). Such a dominance cannot only be due to the

Table 1. Expression variation of C. bursa-pastoris subgenomes relative to expression in parental species across different tissues. The percentage of transcripts within

each category is given for all genes or only differentially expressed genes (i.e, without No difference category). The slope of the regression of relative expression between sub-

genomes and relative expression between parental species for all genes per category is also provided (β, see Fig 5). The percentages of transcripts showing a dominance of

either CbpCg or CbpCo are given in parenthesis.

Categories Flowers Leaves Roots

Transcripts (%) Transcripts (%) Transcripts (%)

All DE only β All DE only β All DE only β

No diff. 1 60.4 - 0.24 78.4 - 0.32 67.6 - 0.32

Legacy 2 4.5 11.4 0.96 2.3 10.6 0.94 3.2 9.9 0.96

Reverse 3 0.5 1.3 -0.75 0.2 0.9 -0.78 0.4 1.2 -0.78

Intermediate 4 12.6 31.9 0.33 6.8 31.5 0.44 8.8 27.3 0.41

Comp. drift 5 3.8 9.7 1.65 1.5 6.9 1.52 2.8 8.7 1.81

Dominance 6a 1.2 3.0 (24) 0.07 1.7 7.9 (54) 0.18 2.7 8.4 (66) 0.14

6b 3.8 9.6 (76) 0.05 1.4 6.5 (45) 0.11 1.4 4.3 (34) 0.1

Transgressive 7a 5.1 12.9 - 2.1 9.7 - 4.2 13 -

7b 5.2 13.2 - 2.6 12 - 4.4 13.7 -

7c 2.8 7.1 0.45 3 13.9 0.55 4.3 13.4 0.61

Total 100 100 0.37 100 100 0.42 100 0.46

https://doi.org/10.1371/journal.pgen.1008131.t001
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genes showing strict dominance of one genetic background (Dominance category, *3-5%),

but rather indicate a more global dominance of trans-regulation of one genetic background.

Indeed, even if S indices tended to show a large legacy of parental genome expression, positive

correlations between SCg and SCo (Spearman’s ρ, all p< 0.001) confirmed that both subge-

nomes were co-regulated in the same direction (S4 Fig), towards C. orientalis in flower tissues

and towards C. grandiflora in leaf and root tissues.

Finally, since subgenomes expression tended to converge, we defined a convergence index

to measure the strength of the convergence of each subgenome expression toward the other (C
index, see Material and methods § Similarity and Convergence indices). Indeed, a closer

expression between subgenomes than between parental species can be due to a change in

expression of both subgenomes toward an intermediate expression level or to a change in

expression of only one subgenome toward the expression level of the other. In all tissues, most

convergence indices were positive (Fig 7B and S5 Fig), indicating that the difference in gene

expression between subgenomes was generally lower than the difference between parental spe-

cies; also, the larger the difference in expression between parental species, the stronger the con-

vergence between subgenomes, CCbp (Spearman’s ρ = 0.63, ρ = 0.74, ρ = 0.66, respectively for

flowers, leaves and roots; all p< 0.001). One could expect that the expression patterns of

homeologous genes were inherently more correlated because the RNA was extracted from the

exact same pool of cells in C. bursa-pastoris while it was obviously not the case for the parental

species. However, the way the analysis was carried out has likely attenuated this effect. First,

the convergence index was computed from the average expression of each subgenome across

all Cbp accessions, thereby partly breaking such an association. Second, to evaluate the

strength of such a potential bias, we also estimated the C indices for subgenomes coming either

from the same individuals or from different individuals S6 Fig. Although the convergence

indices computed from the same individuals were stronger (closer to one) than the ones com-

puted from different individuals, the overall pattern did not change: namely, the vast majority

of the convergence indices are positive indicating that the subgenome expression levels

Fig 7. Similarity and convergence indices for differentially expressed genes between subgenomes of C. bursa-pastoris. A. For

each tissue and each subgenome, the median of similarity indices for each subgenome (SCo and SCg) are presented as well as the

difference between the two indices (ΔS) that indicates the dominance of one parental genetic background. Grey dotted lines (S = 0)

indicate level of no bias. B. The proportion of transcripts showing convergence (Ci> 0) is reported for the whole genome (green plus

signs) or each subgenome (CbpCo, CbpCg). The significance of difference between the subgenome convergence indices is also

depicted (binomial test,���, p< 0.001). The number of differentially expressed genes considered for each tissue are indicated with N.

https://doi.org/10.1371/journal.pgen.1008131.g007
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converged. Although the overall degree of convergence was the same in the three tissues, the

amount of convergence was not the same between the two subgenomes. In flowers, CbpCg

expression tended to shift more towards CbpCo expression than the converse, while the oppo-

site was true in the two other tissues (Fig 7B). This explains the dominance patterns observed

through the S indices and confirms the role of unbalanced trans-regulation in the present

system.

Genes showing converging expression patterns are enriched for specific

functions

Regardless of the tissue considered, the expression profiles did not correspond to specific phys-

ical clusters along the genome with transcripts belonging to a given profile being spread across

the genome: for each scaffold and each category, the average distance (bp) between two tran-

scripts randomly sampled within a given category was not significantly different than that of

two transcripts randomly sampled in different categories (Wilcoxon-Mann-Whitney’s test, all

p> 0.05, S7 Fig). This suggests that the differential expression is not driven by large-scale epi-

genetic changes along chromosomes.

Gene ontology analyses revealed that the different expression profile categories (Fig 6) were

enriched for different molecular functions (MF, average overlap between categories: 8.9, 9.0

and 8.6% for flowers, leaves and roots tissues, respectively, S6A Table) and biological processes

(BP, average overlap, 5.4, 4.2 and 6.0%, S6B Table), though neither MF nor BP of a given cate-

gory tended to cluster into specific networks. At the tissue level, the different expression profile

categories were enriched for different MF and BP with a small average overlap between tissues

(MF, 5.3% and BP, 4.8%, S7A and S7B Table), highlighting the specificity of expression regula-

tion in different tissues.

We showed above that the main difference in expression between tissues was in the conver-

gence of the two subgenomes: in flowers, CbpCg expression pattern converged toward that of

CbpCo, while for the two other tissues convergence was in the opposite direction (CbpCo toward

CbpCg). We tested whether the transcripts showing a convergence of CbpCg toward CbpCo

(hereafter, ConvCo genes) or a convergence of CbpCo toward CbpCg (hereafter, ConvCg genes)

were enriched for different molecular functions and biological processes. The two gene sets,

ConvCo or ConvCg genes, were indeed enriched for GO terms belonging to different clusters

(S8 Fig). For instance, in flower tissues, ConvCo genes are enriched for biological processes

involved in the transition between vegetative and reproductive phases, the dormancy of floral

meristems and male meiosis, while ConvCg genes were enriched for cell redox homeostasis and

related biological processes (S8 and S9 Figs). As expected, underlying molecular functions also

tended to group into distinct clusters corresponding to different functional networks (S8 and

S9 Figs). There was also an enrichment for similar biological processes (e.g., drug transport in

flowers, sucrose and carbohydrate metabolisms in leaves and roots) or molecular functions (e.

g, RNA, nucleotide and GTP binding or MF related to transporter activity, S8 and S9 Figs)

indicating some concerted changes of gene expression between the two subgenomes.

Deleterious mutations accumulate preferentially on the C. orientalis
subgenome and are associated with the level of expression

Among the 11 million genomic sites segregating across the five genomes, about 3 million

alleles were specific to the Capsella species, and 669,675 of these species-specific alleles were

annotated for tolerated (TOL) and deleterious mutations (DEL) by SIFT4G with the A. thali-
ana database, and 432,354 of them were annotated with the C. rubella database.

Transcriptomic convergence and genomic legacy in a polyploid

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008131 May 13, 2019 14 / 30

https://doi.org/10.1371/journal.pgen.1008131


The estimated proportion of deleterious mutations among species and among the four pop-

ulations of C. bursa-pastoris were similar independently of whether A. thaliana or C. rubella
was used for SIFT4G annotation (Fig 8A and S10A Fig). Despite a lower number of accessions,

the same pattern as in [37] was observed: i) the C. grandiflora genome had a lower proportion

of deleterious mutations than C. orientalis or either subgenome of C. bursa-pastoris ii) within

C. bursa-pastoris, the CbpCg subgenome always had a lower proportion of deleterious muta-

tions than the CbpCo subgenome of the same population and iii) among the C. bursa-pastoris
populations, both subgenomes of the Asian population had a higher proportion of deleterious

mutations than the corresponding subgenomes in the other three populations, indicating a

higher rate of mutation accumulation in this population. The proportion of deleterious muta-

tions of the newly added CASI population was most similar to that of the EUR population with

a larger variance of the proportion of deleterious mutations carried by CbpCg subgenome of

CASI accessions (Fig 8A).

We then assessed the distribution of deleterious mutations between the two subgenomes of

C. bursa-pastoris to test whether they accumulated (i) more in one gene copy than in the other

at the homeologue level, as would be expected under a pseudogenization process, (ii) more in

one subgenome than in the other as expected if one subgenome predominates (see Material

and methods § Difference between species and subgenomes in deleterious mutations). Muta-

tion accumulation pattern between the two subgenomes was thus investigated by estimating

the mutation accumulation bias towards CbpCg, b, and the overdispersion parameter φ; a large

value of φ indicates that mutations tend to accumulate preferentially in one of the two homeo-

logous genes. b was positive for synonymous (SYN) mutations indicating a mapping bias

towards CbpCg. b was also positive for DEL mutations in all accessions (S11 Fig), but much

smaller than for SYN (bDEL< bSYN, Fig 8B). This indicates a general bias towards more DEL
mutations in the CbpCo subgenome, despite the mapping bias toward CG. The same pattern

Fig 8. Variation in deleterious mutations in the two subgenomes of C. bursa-pastoris. A. Proportion of deleterious mutations in

the subgenomes and in the parental species. CO, CG, ASI, EUR, ME, CASI correspond to C. orientalis, C. grandiflora, and four

populations of C. bursa-pastoris, respectively. The two subgenomes are indicated with Co and Cg. Functional effects were annotated

with the C. rubella SIFT database (the annotation with A. thaliana SIFT database is in the S10 Fig). B. Maximum likelihood estimates

of parameters of the distribution of deleterious mutations on CbpCg genes. Each box represents the estimates for one accession, with

1000 bootstrap replicates. The estimates are presented as the difference between the estimated parameter for deleterious mutations,

DEL, and the estimated parameter for synonymous mutations, SYN (Δb = bDEL − bSYN, Δφ = φDEL − φSYN). Notches represent

the median and the 95% confidence interval. The left axis refers to Δb (green boxes), and the right axis refers to Δφ (blue boxes). The

estimated parameters (b and φ) for DEL and SYN are shown separately in S11 Fig.

https://doi.org/10.1371/journal.pgen.1008131.g008
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was observed for φ (φDEL< φSYN, Fig 8B and S11 Fig). Hence, contrary to what is expected

under a scenario of pseudogenization, the distribution of deleterious mutations was less over-

dispersed than expected at random, suggesting that the accumulation of too many deleterious

mutations per gene is prevented; a mechanism that might contribute to the maintenance of

both homeologue copies. However, it should be noted that more silenced genes were observed

in CbpCo than in CbpCg (S12 Fig).

Finally, the relationship between the number of deleterious mutations and the homeologue

expressions was investigated by comparing, for each transcript, the difference in number of

deleterious mutations (dDEL ¼ DELCbpCg
� DELCbpCo

) and the homeologue expression bias

(e ¼ CbpijCo
CbpijCoþCbpijCg

). The categories where deleterious mutations and expression bias varied in the

same direction (i.e., dDEL> 0 and e> 0 or dDEL and e< 0) were over-represented (Fisher’s

exact test, all p< 0.001, S8 Table). This means that the homeologue copy carrying the highest

number of deleterious mutations tends to show the lowest expression level. No such associa-

tion was found when considering transcripts carrying only synonymous mutations (Fisher’s

exact test, p = 0.57, 0.74 and 0.27 for flowers, leaves and roots tissues, respectively), confirming

that the association between deleterious mutations and expression level was not the result of a

mapping or annotation bias toward one of the two subgenomes (S8 Table).

Discussion

The events accompanying the birth of a polyploid species have often been described in rather

dramatic terms, with expressions such as “transcriptomic shock” or “massive genome-wide

transcriptomic response” often used (e.g. [8, 47, 48]). The early and formative years of a young

polyploid might indeed be eventful, but what happens afterward may well be less dramatic,

especially for tetraploid species with a disomic inheritance such as shepherd’s purse. In the

present study, we compared some of the genomic and transcriptomic changes that occurred

between C. bursa-pastoris and its two parental species C. grandiflora and C. orientalis. Overall,

the emerging picture is one of an orderly and rather conservative transition towards a new

“normal” state. A conservative transition, because after around 100,000 generations we can

still detect a significant parental legacy effect on both the number of deleterious mutations

accumulated and gene expression patterns. And an orderly one too, since the emerging pattern

of expression involves a balance between cis- and trans-regulatory changes suggesting the

emergence of coordinated functioning of the two subgenomes. This general impression of a

non-stochastic transition process to polyploidy [49] is reinforced by the variation in patterns

of gene expression across the three tissues: as one would expect, the expression of both subge-

nomes in selfing C. bursa-pastoris was biased towards the selfing parent C. orientalis in flower,

whereas in leaf expression of the two subgenomes were mostly similar, and in roots expression

was biased towards C. grandiflora. This expression bias towards the C. orientalis subgenome in

flowers despite a higher accumulation of deleterious mutations in this subgenome suggests

that the evolution of gene expression is not entirely random.

Demography and expression: A limited effect of introgression?

Previous studies have stressed the importance of population structure and demographic his-

tory in genomic and transcriptomic studies of C. bursa-pastoris [36, 37]; [37], for instance,

showed a significant admixture between C. orientalis and Asian populations of C. bursa-pas-
toris. In the present study, we indeed showed that the overall gene expression pattern reflected

the main phylogenetic relationships. Each subgenome was the closest to the parental species

from which it was inherited and populations from close geographic areas tended to cluster
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together, except for Central Asian accessions (CASI), which clustered with European ones

even though they were geographically closer to the Asian or Middle-East ones. Most likely

these samples were recently introduced to Central Asia, as it was suggested for C. bursa-pas-
toris accessions with European ancestry inhabiting the Russian Far East [35].

When comparing the number of differentially expressed genes between C. bursa-pastoris
and parental species, no specific trend was detected and Asian accessions were not the closest

to C. orientalis as one would have expected because of introgression. In leaf and roots tissues,

ASI was even closer to C. grandiflora than to C. orientalis. This can be explained by the fact

that the vast majority of the genes (up to 80%) did not show any difference in expression (thus

hiding a more subtle signal). Assessing the influence of introgression on expression pattern

would require a more thorough investigation, for instance by focusing on genes for which

introgression was actually characterized.

Transition to polyploidy: Compensatory cis-trans effects, and stabilizing

selection

As mentioned above, in the case of a newly formed allopolyploid species one would expect the

two homoeologous copies of a gene to be under the influence of trans-regulatory elements

inherited from both parents and its expression level to first move towards the mean expression

of the two parental species. However, different forces could lead to an excess of divergence in

subgenome expression compared to what would be expected under a pure drift model. Poly-

ploidy creates a large redundancy in gene function that should free one of the copies from

purifying selection. Generally, the copy carrying more deleterious mutations is expected to

degenerate, biasing the expression pattern toward one of the two parental species, even if sub-

or neo-functionalization can still occur but to a much lower extent. This ought to be particu-

larly true for C. bursa-pastoris as one of its parental species, C. orientalis, is a selfer that has

accumulated more deleterious mutations than the other parent, the outcrossing C. grandiflora
[37]. This process will be reinforced by the enhancer runways process [27], that should

strengthen cis-acting elements from the CbpCg subgenome as the CbpCg subgenome has higher

heterozygosity and lower genetic load than the CbpCo subgenome.

In our study, however, we did not observe any “transcriptomic shock” (as for instance in,

[8, 47]) neither major homeologue expression remodeling and/or subgenome expression

asymmetry (as in e.g. [18]). In contrast, our study, like some others before it [16, 49–52],

instead suggests overall conservation of the expression pattern in polyploids and hybrids. And

even if a “transcriptomic shock” did take place during the formation of the tetraploid, expres-

sion changes have stabilized since then. Some 100,000 years later parental legacy on subge-

nome expression is still detectable and the two subgenomes’ expression patterns are still closer

to each other than that of parental species, clearly indicating that none of the subgenomes has

degenerated; as expected, however, the CbpCo subgenome carries more silenced genes and a

higher proportion of deleterious mutations than CbpCg.

Most of the genes were under both cis- and trans-acting elements; the No difference and

Intermediate expression categories represented up to 70-80% of genes depending on the tissue

considered, a percentage similar to that observed in F1 hybrids between A. thaliana and A.are-
nosa [52]. Only a small fraction (5 to 10%) of genes showed either almost pure cis- (Legacy cat-

egory) or trans-regulation (Dominance category). While the former can be explained by the

absence of crossed trans-regulation, the latter could be due to the dominance of transcription

factor of one subgenome over the other; though, in both cases, post-hybridization mutations

affecting either cis- or trans-acting elements or both could have evolved. The remaining frac-

tion (up to 15%, Reverse, Compensatory-drift and Transgressive) showed a more complex
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pattern that is hard to assign to a simple factor but could be in part due to new intertwined cis-
and trans-regulations across subgenomes. It should be noted that such patterns can naturally

emerge after hybridization as a byproduct of stabilizing selection on diverging optima [53] for

Transgressive profiles, on the overall amount of protein produced for Compensatory-drift pro-

file, and on the intermediate level of expression for Reverse profile, without invoking additional

specific processes. To address further this question, it would be interesting to compare auto-

and allopolyploids to tease apart the effects of hybridization and genome doubling.

Even though this does not, in any way, alter the conclusion above, we also would like to

note here that the classification of overall expression patterns in different categories used in

Fig 6 and Table 1 is somewhat arbitrary as some expression patterns are ambiguous and could

have been classified in different categories. It should also be pointed out that these classifica-

tions were dependent on the chosen False Discovery Rate (FDR). As a control, we reproduced

the analysis based on unphased data of Cbp expression, with FDR< 0.01 and 0.1 (S9 Table). It

indicated that the number of genes within the different categories can vary substantially with

the different FDR level (mainly because of variation in No difference category), however, the

main patterns were not altered. Moreover, the main pattern of variation we described was a

change in dominance between tissue that is obviously not affected by the bias described before.

In part to overcome the limitations inherent to any a priori classification, we developed the

expression similarity and convergence indices, S and C, that confirmed our conclusions.

Level of expression dominance varies across tissues and functions

Allopolyploid species are often examined for unequal expression between homeologous genes

because of their hybrid nature but other aspects of gene expression have been less extensively

studied. For example, there might be no difference in the relative expression of subgenomes

(balanced homeologue expression), but the total amount of transcripts can vary and reflect the

dominance of the level of expression of one of the parents [18]. C. bursa-pastoris exhibits

rather balanced homeologue expression, but the summed expression of the two homeologues

shows differentiation across tissues with the dominance of C. orientalis expression level in

flowers, and C. grandiflora level in leaves and roots. The genes with significant expression bias

between subgenomes also show strong dominance of CbpCo expression over CbpCg in flower.

However, a positive correlation between the expression deviation indices of the two subge-

nomes indicates that this dominance is not primarily caused by up-regulation or down-regula-

tion of one parental copy, but rather unidirectional regulation of homeologous genes as it has

been observed, for instance, in cotton and coffee [2, 32, 54]. This convergence could be possi-

ble because of the low divergence between the subgenomes of C. bursa-pastoris and, hence, the

absence of barriers for trans-acting regulation of homeologous genes.

An intuitive explanation of this bias in flower tissues could be that this simply reflects the

fact that both C. orientalis and C. bursa-pastoris are selfing species with tiny flowers, in contrast

to C. grandiflora, an outcrossing species that has large flowers. A way to test this hypothesis

would be to compare C. orientalis with both C. grandiflora and C. rubella for the genes impli-

cated in the bias towards C. orientalis using root tissues as a control. In contrast, in the non-

reproductive leaf and root tissues, expression is biased towards the genome of the outcrossing

C. grandiflora. Although this interpretation needs further validation, it stands against the geno-

mic shock pattern that implies a disruption of expression patterns.

Finally, although the bias of expression observed between homeologous genes is not strongly

shifted towards either subgenome, it is not random either: one subgenome can dominate over

the other for a given function or pathway in a given tissue, suggesting constrained evolution in

gene expression regulation at a tissue/function level. In many cases, it is not straightforward to
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explain why a particular subgenome dominates for a particular function, and this could simply

be the result of coincidence in neutral evolution of gene regulation networks. In other cases

such as flower tissues, however, the observed dominance makes biological sense.

Both subgenomes of C. bursa-pastoris are maintained, but they are not equal

Redundancy of polyploid genomes often assumes evolution of non-functionalization of dupli-

cated genes [55–57] or even of a whole subgenome [38, 44, 58]. When one gene copy of a

duplicated gene starts to degenerate, the purifying selection on that copy becomes weaker and

the deleterious mutations accumulate further, while the other copy of the gene remains func-

tional and under purifying selection. If non-functionalization is prevalent, deleterious muta-

tions are expected to be more unevenly distributed between the homeologous genes and even

between the two subgenomes. We indeed observed more deleterious load in the CbpCo subge-

nome with the absolute load comparison and with the estimated parameter b indicating its

degeneration. However, the dispersion for deleterious mutations indicated that they tend to be

more evenly distributed between the homeologous genes than expected at random. This sug-

gests that CbpCo genes cannot degenerate further after a certain amount of genetic load is accu-

mulated. Thus, although the amount of accumulated genetic load differs between subgenomes

of C. bursa-pastoris, both subgenomes are maintained and there is no large-scale non-functio-

nalization at the gene and subgenome levels.

One might expect the differences between homeologues in accumulation of deleterious

mutations would lead to bias in gene expression. For example, Arabidopsis suecica, like C.
bursa-pastoris, is an allopolyploid species with parents characterized by different mating sys-

tems: the outcrossing Arabidopsis arenosa, and the selfing Arabidopsis thaliana [59]. Chang

et al. [60] observed a bias in expression in favor of the A. arenosa subgenome and, among

other hypotheses, suggested that this bias could be due to the fact that mildly deleterious alleles

are not purged as efficiently from the A. thaliana subgenome as from the A. arenosa subge-

nome. In C. bursa-pastoris, the CbpCo subgenome had a higher proportion of deleterious muta-

tions than the CbpCg subgenome, but there was no strong bias in expression between

subgenomes. However, when we paired the amount of derived deleterious mutations with the

expression level of each gene and compared homeologous genes, we found that there was a sig-

nificant association between deleterious mutation bias and expression bias (S8 Table). The

homeologous gene with more deleterious mutations tends to have a lower expression level

than the other one. Moreover, we also found that there are more silenced genes in CbpCo,

which is the subgenome with a higher proportion of deleterious mutations. These results are

in accordance with the hypothesis that the bias in expression is linked to the accumulation of

deleterious mutations. Yet, it is worth noting that the expression bias may not necessarily be

the result of the biased distribution of deleterious mutations. The homeologue expression bias

could also be the cause of the observed deleterious mutation bias, especially considering that

we have only investigated the deleterious mutations in coding regions. Purifying selection on

the homeologue with lower expression can be weaker [61], therefore it is less efficient in elimi-

nating deleterious mutations. At any rate, the fact that we have a relative dominance of expres-

sion of CbpCo in flowers and of CbpCg in other tissues, despite CbpCo subgenome having a

higher proportion of deleterious mutations than CbpCg, suggests that parental legacy and func-

tional constraints may also play a major role.

Conclusion

In 1929, George Shull, one of the most prominent geneticists of his time [62], wrote: “It is con-

sidered a matter of fundamental significance that the increase in a number of chromosomes in
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the bursa-pastoris group is correlated with greater variability, greater adaptability, greater

vigor, and greater hardiness”. In the present study, the merging of the two parental genomes

was not accompanied by major disruptions of the transcriptome. Instead, there was a strong

parental legacy and the emergence of a shift in the subgenome expression pattern towards a

new “equilibrium” state reflecting the composite nature of the new species. Hence, being a

selfer like its C. orientalis parent, there was a shift in flower tissues of the expression pattern of

the C. grandiflora subgenome towards that of C. orientalis. Similarly, it seems also possible that

the dominance of the C. grandiflora inherited subgenome in roots and leaves contributed to

the high competitive ability of C. bursa-pastoris, which was similar to that of C. grandiflora but

much higher than that of C. orientalis and C. rubella, its two self-fertilizing congeners [63, 64].

It therefore seems that the present study, together with those more focused on fitness of C.
bursa-pastoris [63, 64] contributed to better understanding of the causes of the correlation

pointed out almost 100 years ago by Shull.

Material and methods

Samples, sequencing and data preparation

We obtained the whole genome and RNA-Seq data from flower, leaf and root tissues of (i) 16

accessions of C. bursa-pastoris coming from already characterized populations from Europe

(EU), the Middle East (ME) and Eastern Asia (ASI) [35] and from hitherto unstudied Central

Asian populations (CASI) and (ii) four accessions each of C. grandiflora and C. orientalis (Fig

1). The genomic data included both published and newly sequenced genomes (S1 Table). For

newly sequenced genomes, DNA was extracted from leaves with the Qiagen DNeasy Plant

Mini Kit, libraries were prepared using the TruSeq Nano DNA kit, and 150-bp paired-end

reads were sequenced on Illumina HiSeqX platform (SciLife, Stockholm, Sweden). All 72

RNA-Seq libraries (24 accessions × three tissues) were sequenced in this study. For RNA

sequencing, seeds were surface-sterilized and germinated as described in [36]. Seedlings were

then transplanted into pots (10 × 10 × 10cm) filled with soil seven days after germination and

cultivated in one growth chamber (22˚C, 16:8h light/dark period, light intensity 150 μmol/m2/

s). Seven days after the onset of flowering, we collected flower buds, leaves, and roots of visually

similar developmental stage. Tissues were snap-frozen in liquid nitrogen, and stored at -80˚C

before extraction following manufacturer protocol (Plant Total RNA Kit (Spectrum) for flower

buds and leaves, and RNeasy Plant Mini Kit (Qiagen) for roots). RNA sequencing libraries

were prepared using the TruSeq stranded mRNA library preparation kit including polyA selec-

tion and sequenced for 125-bp paired-end reads on Illumina HiSeq 2500 platform (SciLife,

Stockholm, Sweden). Sequencing of new samples yielded an average library size of 57 million

reads for DNA sequencing and 59 million reads for RNA-Seq.

DNA and RNA-Seq reads were mapped to the C. rubella reference genome [65] with

Stampy v1.0.22 [66]. To account for the divergence from the reference genome, the substitu-

tion rate was set to 0.025 for C. bursa-pastoris, 0.02 for C. grandiflora, and 0.04 for C. orientalis.
On average, 85%, 90% and 85% of the DNA reads were successfully mapped for the corre-

sponding three species and 98% in all species for RNA mapping. This yielded an average cov-

erage of 51x and 52x for DNA and RNA data, respectively. Genotyping of DNA and RNA-Seq

alignments were performed using HaplotypeCaller from the Genome Analysis Tool Kit

(GATK) v3.5 [67] as described in [37]. The subgenomes of C. bursa-pastoris were phased with

HapCUT version 0.7 [68] following the procedure by [37]. The quality of this phasing proce-

dure was ascertained by comparing the phased subgenomes with the subgenome assembly

obtained by [45]. The unphased expression data was generated for non-overlapping feature

positions (option: -m union) using the htseq-count program from HTSeq v0.6.1 [69]. To
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compare the expression between the two subgenomes of C. bursa-pastoris, homeologue-spe-

cific counting of alleles was performed using ASEReadCounter from GATK and phased

according to the phased genomic data. We analyzed only the counts of SNPs that showed no

strong deviation from the 0.5 mapping ratio in DNA data defined with a statistical model

developed by [70]. To correct for potential bias in homeologue count data due to the uneven

density of SNPs and/or uneven coverage along the gene, we scaled the homeologue expression

counts using the unphased data and the allelic ratio from the phased data.

Population structure

Principal component analyses were performed using the ade4 R package [71]. A neighbor-

joining phylogenetic tree was reconstructed from the absolute genetic distance in genomic

SNPs with the ape R package [72]. A hierarchical distance clustering with bootstrap support

was perfromed in the pvclust R package, [73].

Gene expression analyses

Differential gene expression analyses were carried out in edgeR [74]. The TMM normalization

for different library sizes [74] was used for differential gene expression analyses, while for all

other analyses, we used the count per million (CPM) normalization (one was added to every

gene count to bypass log-transformation of zero expression). Phased counts were normalized

by the mean library size of the two subgenomes
CbpCoþCbpCg

2

� �
and only genes showing no strong

mapping bias were retained (see below). For both datasets (unphased or phased), only genes

with at least one sample having a non-zero expression in every population/species were kept.

Differences between the two subgenomes (homeologue-specific expression) were assessed

with the integration of the information from both RNA and DNA data to exclude highly biased

SNPs and to account for the noise in read counts due to statistical variability. The data were

analyzed using the three-stage hierarchical Bayesian model for allelic read counts developed by

[70]. The model was implemented using Markov chain Monte Carlo (MCMC) with 200,000

iterations with burn-in of 20,000 and thinning interval of 100. Each analysis was run three

times to assess convergence. The significance of homeologue-specific expression (HSE) was

defined from a Bayesian analog of the false discovery rate (FDR< 0.05).

Expression patterns in C. bursa-pastoris and its parental species were classified into catego-

ries based on significant and non-significant differential expression defined with edgeR [74].

We considered the four genomes/subgenomes (CG, CO, Cbpcg, and Cbpco) and three possibili-

ties for each of the six pairwise comparisons (significantly over, under or equally expressed,

FDR< 0.05), and grouped the resulting combinations into seven main categories: No differ-
ence, Intermediate, Legacy, Reverse, Dominance, Compensatory drift, and Transgressive (see the

Results for categories description). We also performed similar analysis for the unphased total

C. bursa-pastoris expression (thus considering only three pairwise comparisons) by classifying

the expression patterns into four major categories: 1) no differential expression, when no signif-

icant differences are detected in any of the three pairwise comparisons, 2) intermediate, when

the expression of C. bursa-pastoris (Cbp) is intermediate between C. grandiflora (CG) and C.
orientalis (CO), 3) dominance of one of the parents over the other, when the mean expression

of C. bursa-pastoris is equal to only one parental species and the two parents are significantly

different, and finally 4) transgressive, when the mean expression of C. bursa-pastoris is outside

the range of expression of both parents and statistically significantly different from the parental

species with the closer level of expression.
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Similarity and convergence indices

To quantify the similarity between each subgenome expression level and the expression level

in the parental species, we developed a similarity index (S). For each transcript i and each sub-

genome j 2 {CbpCg, CbpCo}, S was computed as the subgenome relative expression deviation

from the mean expression level in the parental species, mi ¼ ðEiCO
þ EiCG

Þ=2:

Sij ¼
Eij � mi

mi
;

Where (Eij) is the average expression of a given transcript i in a given genetic background j
(CO or CG for parental species, and CbpCg or CbpCo for subgenomes of C. bursa-pastoris). This

index is centered on 0 and oriented (i.e, Sij ¼
Eij � mi
mi
� � 1 when EiCG

> EiCO
), so that if Sij< 0 or

Sij> 0, the expression of a given transcript in a given subgenome is more similar to the expres-

sion of that transcript in CG or CO, respectively. The difference between the absolute values of

the indices values for CbpCg and CbpCo, DSi
¼ jSiCbpCoj � jSiCbpCg j was used as a measure of dom-

inance of one of the parental genetic background.

Finally, for each gene that was differentially expressed between the two parental species, a

convergence index, C, was computed from the absolute difference in expression for:

• subgenomes: Δsub = |EiCg − EiCo|

• parental species: Δpar = |EiCG − EiCO|

• each subgenome and the opposite parental species:

ΔCg = |EiCg − EiCO| and ΔCo = |EiCo − EiCG|.

These differences correspond to the phylogenetic distances (Fig 1A). In principle, if the reg-

ulation of gene expression in CbpCg is independent of the regulation of gene expression in

CbpCo, then the overall Δsub, Δpar, ΔCg and ΔCo are expected to be equal. To compare these

quantities, for each transcript i, we used a convergence index (Ci):

Ci ¼
Dpar � Dx

maxðDpar;DxÞ
;

So, CCbpCg
measures the expression convergence of CbpCg toward CbpCo, CCbpCo

measures the

expression convergence of CbpCo toward CbpCg, and CCbp measures the overall subgenomes

convergence within Cbp. Δx stands for either ΔCo, ΔCg or Δsub, respectively. Ci thus ranges from

-1 to 1, with positive values indicating more similar expression between the subgenomes of C.
bursa-pastoris than between parental species, and negative values indicating increased differ-

ences between subgenomes; the closer Ci to 0, the more similar are the expression patterns to

parental species.

Gene ontology enrichment test

Gene ontology (GO) enrichment tests were performed using the topGO R package [75]. The

GO term annotation was downloaded from PlantRegMap (http://plantregmap.cbi.pku.edu.cn)

and we used a custom background list of genes that included only the expressed genes for

which phasing was possible in the relevant tissue. Fisher’s exact-test procedure (weight algo-

rithm) was performed to assess the enrichment (p< 0.05) for either molecular functions (MF)

or biological processes (BP). Finally, the REViGO software [76] was used to remove GO terms

redundancy and to cluster remaining terms in a two-dimensional space derived by applying
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multidimensional scaling to a matrix of the GO terms semantic similarities. Cytoscape v3.6.1

was used to visualize GO terms networks [77].

Difference between species and subgenomes in deleterious mutations

Mutations were classified into tolerated and deleterious (DEL) using SIFT4G [78]. We used C.
rubella [37] and Arabidopsis thaliana (TAIR10.22) SIFT4G reference databases. This helps avoid

reference bias towards C.rubella away from calling mutations to be deleterious in the C. grandi-
flora homeologue. We considered only the mutations that accumulated after speciation of C.
bursa-pastoris and identified mutations specific to C. grandiflora, C. orientalis, the two subge-

nomes of C. bursa-pastoris, and Neslia paniculata that was used as an outgroup here. All estimates

were relative to the total number of SIFT4G annotated sites to minimize the bias associated with

variation in missing data as in [37]. Only the European and Middle Eastern populations were

used in further analysis of the distribution of deleterious mutations, in order to exclude the effect

of gene flow between C. orientalis and the Asian population of C. bursa-pastoris [37].

We assessed the distribution of deleterious mutations between the two subgenomes of C.
bursa-pastoris to test whether they accumulated (i) more in one gene copy than in the other at

the homeologue level, as would be expected under a pseudogenization process, (ii) more in

one subgenome than in the other as expected if one subgenome predominates. Under the null

hypothesis (random accumulation without subgenome bias) the distribution of deleterious

mutations between the two subgenomes should follow a binomial distribution with mean 1/2.

Under the first hypothesis, the distribution should be more dispersed with the same mean,

which can be modeled by a Beta-binomial distribution. Under the second hypothesis, the

mean should differ from 1/2. However, over-dispersion and bias can also occur because of

missing data and sampling error, we thus used synonymous mutations (SYN) to control for

this and built the correct null distribution. To do so, we developed a maximum likelihood

method implemented in R [79] as follows. First, we identified a most likely probability distri-

bution model by fitting four models to the SYN dataset, where nSYN is the sum of SYN muta-

tions occurring on both homeologous genes and kSYN is the number of SYN mutations

occurring on CbpCg genes. The four models are:

• M1: kSYN* B(nSYN, 0.5), a binomial distribution with no bias between CbpCg and CbpCo,

• M2: kSYN* B(nSYN, 0.5 + b), a binomial distribution with bias,

• M3: kSYN* BB(nSYN, 0, φ), a beta-binomial distribution with no bias,

• M4: kSYN* BB(nSYN, b, φ), a beta-binomial distribution with bias.

For convenience, the beta-binomial distribution:

k � BBðn; a; bÞ

was re-parameterized as:

k � BBðn; b;φÞ;

where b ¼ a

aþb
� 0:5 and φ ¼ 1

aþb
[80, 81]. In this way, the parameter b was a measure of the

bias towards the CbpCg genes, and φ was a measure of the variance of the probability that a

mutation is found within the CbpCg homeologues, and can be interpreted as an index of over-

dispersion. A large value of φ indicates that mutations tend to accumulate preferentially in one

of the two homeologous genes, and a small value of φ indicates that mutations are more evenly

distributed between them. We calculated the likelihood of each model and chose the best-fit-

ting model with a hierarchical likelihood ratio test (hLRTs). After choosing the beta-binomial
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distribution with bias as the most likely null distribution, we estimated the parameters b and φ.

We introduced a new set of models to test for the specific features of the distribution of delete-

rious mutations:

kSYN � BBðnSYN; bSYN;φSYNÞ;

kDEL � BBðnDEL; bSYN;φSYNÞ:

The null model assumes that both parameters b and φ are the same for the SYN and DEL
datasets, while the alternative models allow the DEL dataset to have different parameters from

the SYN dataset: only bDEL, only φDEL, or both bDEL and φDEL were allowed to vary. We cal-

culated the likelihood of each model, chose the best fitting model with hierarchical likelihood

ratio tests (hLRTs) and estimated the parameters of the selected model. Bootstrap estimates of

confidence intervals were estimated with 1000 bootstrap replicates.

Relationship between deleterious mutations and gene expression

The SIFT4G annotation of the C. rubella database was used to match the gene IDs of the muta-

tion and expression data. For each tissue, the relationship between the bias in the number of

deleterious mutations between subgenomes and the bias in homeologue expression was inves-

tigated by calculating, for gene i in accession j, the difference (dij) in the number of deleterious

mutations (DEL) between homeologous gene pairs:

dij ¼ DELijCg
� DELijCo

:

The expression ratio between the homeologues of genes with significant HSE was used as a

measure of homeologue expression bias:

eij ¼
CbpijCo

CbpijCo
þ CbpijCg

Genes were further classified into four categories according to the deleterious mutations

bias, d, and homeologue expression bias, e:

1. d> 0 and e> 0.5;

2. d> 0 and e< 0.5;

3. d< 0 and e> 0.5;

4. d< 0 and e< 0.5.

Genes with no bias in the distribution of deleterious mutation (d = 0) or no significant HSE

(FDR< 0.05) were removed from the analysis. Fisher’s exact test was then used to test for inde-

pendence between the difference in the number of deleterious mutations (d) and homeologue

expression bias (e). As a control, the whole analysis was reproduced with dij computed from

the number of synonymous mutations in genes with no DEL mutations. In addition, we also

compared the number of silenced genes (genes with zero expression values) of each subge-

nome of C. bursa-pastoris, to check if there was a relationship between genetic load and

silenced genes.

Data access

SRA numbers of the previously published samples are listed in S1 Table. New sequences of the

DNA and RNA samples are avaliable under the project PRJNA533007 at NCBI and their SRA
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numbers are also provided in S1 Table. Phased and unphased genomic and expression data are

deposited to the Open Science Framework Repository (DOI 10.17605/OSF.IO/G6H57) [82].

Supporting information

S1 Fig. Neighbor-joining tree of the genomic data of three Capsella species.

(PDF)

S2 Fig. Distance clustering dendrogram of gene expression data for different populations.

(PDF)

S3 Fig. Distance clustering dendrogram of gene expression data of separate samples.

(PDF)

S4 Fig. Distribution of the similarity index for each subgenome of C. bursa-pastoris.
(PDF)

S5 Fig. Subgenomes convergence in C. bursa-pastoris given differentiation from parental

expression.

(PDF)

S6 Fig. Convergence indices estimated for C. bursa-pastoris subgenomes coming from the

same and from different individuals.

(PDF)

S7 Fig. Expression profile regarding genome position.

(PDF)

S8 Fig. Two-dimensional semantic space representation of significantly enriched GO cate-

gories in genes showing convergence in expression.

(PDF)

S9 Fig. Network shared names of enriched biological processes (A, B and C) or molecular

functions (D, E and F) GO term for genes showing convergence in expression between sub-

genomes in flowers (A and D), leaves (B and E) or roots tissues (C and F).

(PDF)

S10 Fig. Proportion of deleterious mutations in the two subgenomes of C. bursa-pastoris
and the genomes of its parental species.

(PDF)

S11 Fig. Maximum likelihood estimated parameters of the distribution of deleterious

mutations on CbpCg genes.

(PDF)

S12 Fig. The difference in the number of silenced genes between subgenomes of C. bursa-
pastoris.
(PDF)

S1 Table. Samples information.

(PDF)

S2 Table. Differential gene expression between three Capsella species in three tissues.

(PDF)

S3 Table. Differential gene expression between Capsella species/population in three tissues.

(PDF)

Transcriptomic convergence and genomic legacy in a polyploid

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008131 May 13, 2019 25 / 30

https://doi.org/10.17605/OSF.IO/G6H57
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008131.s001
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008131.s002
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008131.s003
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008131.s004
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008131.s005
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008131.s006
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008131.s007
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008131.s008
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008131.s009
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008131.s010
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008131.s011
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008131.s012
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008131.s013
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008131.s014
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008131.s015
https://doi.org/10.1371/journal.pgen.1008131


S4 Table. Expression ratio between the two subgenomes of C. bursa-pastoris across popula-

tions in three tissues.

(PDF)

S5 Table. Differentially expressed genes between tissues (A) and populations within tissues

(B) for each C. bursa-pastoris subgenomes.

(PDF)

S6 Table. Overlap between expression profiles in gene ontology term enrichment for bio-

logical processes (A) and molecular functions (B).

(PDF)

S7 Table. Overlap between tissue in expression profiles gene ontology term enrichment for

biological processes (A) and molecular functions (B).

(PDF)

S8 Table. Contingency table of number of genes per category based on deleterious muta-

tion and homelogue expression bias.

(PDF)

S9 Table. Gene expression levels in C. bursa-pastoris and its parental species with different

FDR thresholds.

(PDF)

Acknowledgments

We thank Karl Holm, Kerstin Dalman, and Kerstin Jeppsson for help in the lab. Most of the

analyses were carried out at Uppsala Multidisciplinary Center for Advanced Computational

Science (UPPMAX) under the project b2016212.

Author Contributions

Conceptualization: Dmytro Kryvokhyzha, Sylvain Glémin, Martin Lascoux.
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51. Göbel U, Arce AL, He F, Rico A, Schmitz G, de Meaux J. Robustness of Transposable Element Regula-

tion but No Genomic Shock Observed in Interspecific Arabidopsis Hybrids. Genome biology and evolu-

tion. 2018; 10(6):1403–1415. https://doi.org/10.1093/gbe/evy095 PMID: 29788048

52. Shi X, Ng DWK, Zhang C, Comai L, Ye W, Chen ZJ. Cis- and trans-regulatory divergence between pro-

genitor species determines gene-expression novelty in Arabidopsis allopolyploids. Nature communica-

tions. 2012; 3:950. https://doi.org/10.1038/ncomms1954 PMID: 22805557

53. Chevin LM, Decorzent G, Lenormand T. Niche dimensionality and the genetics of ecological speciation.

Evolution; international journal of organic evolution. 2014; 68(5):1244–1256. https://doi.org/10.1111/

evo.12346

54. Rambani A, Page JT, Udall JA. Polyploidy and the petal transcriptome of Gossypium. BMC Plant Biol.

2014; 14(1):3. https://doi.org/10.1186/1471-2229-14-3 PMID: 24393201

55. Sankoff D, Zheng C, Zhu Q. The collapse of gene complement following whole genome duplication.

BMC genomics. 2010; 11(1):313. https://doi.org/10.1186/1471-2164-11-313 PMID: 20482863

56. Force A, Lynch M, Pickett FB, Amores A, Yan Yl, Postlethwait J. Preservation of duplicate genes by

complementary, degenerative mutations. Genetics. 1999; 151(4):1531–1545. PMID: 10101175

57. Lynch M, Conery JS. The evolutionary fate and consequences of duplicate genes. Science. 2000; 290

(5494):1151–1155. https://doi.org/10.1126/science.290.5494.1151 PMID: 11073452

58. Marcet-Houben M, Gabaldón T. Beyond the whole-genome duplication: phylogenetic evidence for an

ancient interspecies hybridization in the baker’s yeast lineage. PLoS biology. 2015; 13(8):e1002220.

https://doi.org/10.1371/journal.pbio.1002220 PMID: 26252497

59. Novikova PY, Tsuchimatsu T, Simon S, Nizhynska V, Voronin V, Burns R, et al. Genome Sequencing

Reveals the Origin of the Allotetraploid Arabidopsis suecica. Mol Ecol Evol. 2017; 34(4):957–968.

60. Chang PL, Dilkes BP, McMahon M, Comai L, Nuzhdin SV. Homoeolog-specific retention and use in

allotetraploid Arabidopsis suecica depends on parent of origin and network partners. Genome Biol.

2010; 11(12):R125. https://doi.org/10.1186/gb-2010-11-12-r125 PMID: 21182768

61. Schnable JC, Springer NM, Freeling M. Differentiation of the maize subgenomes by genome domi-

nance and both ancient and ongoing gene loss. Proceedings of the National Academy of Sciences of

Transcriptomic convergence and genomic legacy in a polyploid

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008131 May 13, 2019 29 / 30

https://doi.org/10.1073/pnas.0630618100
https://doi.org/10.1038/ncomms4930
https://doi.org/10.1038/ncomms4930
http://www.ncbi.nlm.nih.gov/pubmed/24852848
https://doi.org/10.1126/science.1253435
https://doi.org/10.1126/science.1253435
http://www.ncbi.nlm.nih.gov/pubmed/25146293
https://doi.org/10.1038/ng.919
http://www.ncbi.nlm.nih.gov/pubmed/21873998
https://doi.org/10.1038/nature19840
http://www.ncbi.nlm.nih.gov/pubmed/27762356
https://doi.org/10.1111/tpj.13563
https://doi.org/10.1111/tpj.13563
http://www.ncbi.nlm.nih.gov/pubmed/28387959
https://doi.org/10.1111/nph.15299
https://doi.org/10.1111/nph.15299
https://doi.org/10.1016/j.cub.2006.06.071
http://www.ncbi.nlm.nih.gov/pubmed/16920628
https://doi.org/10.1093/nar/gkt1376
http://www.ncbi.nlm.nih.gov/pubmed/24423873
https://doi.org/10.1126/science.1250091
https://doi.org/10.1126/science.1250091
http://www.ncbi.nlm.nih.gov/pubmed/25035498
https://doi.org/10.1093/gbe/evy095
http://www.ncbi.nlm.nih.gov/pubmed/29788048
https://doi.org/10.1038/ncomms1954
http://www.ncbi.nlm.nih.gov/pubmed/22805557
https://doi.org/10.1111/evo.12346
https://doi.org/10.1111/evo.12346
https://doi.org/10.1186/1471-2229-14-3
http://www.ncbi.nlm.nih.gov/pubmed/24393201
https://doi.org/10.1186/1471-2164-11-313
http://www.ncbi.nlm.nih.gov/pubmed/20482863
http://www.ncbi.nlm.nih.gov/pubmed/10101175
https://doi.org/10.1126/science.290.5494.1151
http://www.ncbi.nlm.nih.gov/pubmed/11073452
https://doi.org/10.1371/journal.pbio.1002220
http://www.ncbi.nlm.nih.gov/pubmed/26252497
https://doi.org/10.1186/gb-2010-11-12-r125
http://www.ncbi.nlm.nih.gov/pubmed/21182768
https://doi.org/10.1371/journal.pgen.1008131


the United States of America. 2011; 108(10):4069–4074. https://doi.org/10.1073/pnas.1101368108

PMID: 21368132

62. Shull GH. Species hybridizations among old and new species of shepherd’s purse. Proc Int Congr Pl

Sci. 1929; 1:837–888.
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76. Supek F, Bošnjak M, Škunca N, Šmuc T. REVIGO summarizes and visualizes long lists of gene ontol-

ogy terms. PloS one. 2011; 6(7):e21800. https://doi.org/10.1371/journal.pone.0021800 PMID:

21789182

77. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environ-

ment for integrated models of biomolecular interaction networks. Genome research. 2003; 13

(11):2498–2504. https://doi.org/10.1101/gr.1239303 PMID: 14597658

78. Vaser R, Adusumalli S, Leng SN, Sikic M, Ng PC. SIFT missense predictions for genomes. Nature Prot.

2016; 11(1):1–9. https://doi.org/10.1038/nprot.2015.123

79. Team RC, et al. R: A language and environment for statistical computing; 2013.

80. Skellam J. A probability distribution derived from the binomial distribution by regarding the probability of

success as variable between the sets of trials. J Royal Stat Soc B (Methodol). 1948; 10(2):257–261.

81. Hughes G, USA LMP, 1993. Using the beta-binomial distribution to describe aggregated patterns of dis-

ease incidence. Phytopathology. 1993; 83:759–763. https://doi.org/10.1094/Phyto-83-759

82. Kryvokhyzha D. Towards the new normal: Transcriptomic convergence and genomic legacy of the two

subgenomes of an allopolyploid weed (Capsella bursa-pastoris)—DATA; 2019. Available from: osf.io/

g6h57.

Transcriptomic convergence and genomic legacy in a polyploid

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008131 May 13, 2019 30 / 30

https://doi.org/10.1073/pnas.1101368108
http://www.ncbi.nlm.nih.gov/pubmed/21368132
https://doi.org/10.1093/aob/mcy014
https://doi.org/10.1093/aob/mcy014
http://www.ncbi.nlm.nih.gov/pubmed/29471370
https://doi.org/10.1038/ng.2669
http://www.ncbi.nlm.nih.gov/pubmed/23749190
https://doi.org/10.1101/gr.111120.110
http://www.ncbi.nlm.nih.gov/pubmed/20980556
https://doi.org/10.1101/gr.107524.110
http://www.ncbi.nlm.nih.gov/pubmed/20644199
https://doi.org/10.1093/bioinformatics/btn298
http://www.ncbi.nlm.nih.gov/pubmed/18689818
https://doi.org/10.1093/bioinformatics/btu638
http://www.ncbi.nlm.nih.gov/pubmed/25260700
https://doi.org/10.1101/gr.119784.110
http://www.ncbi.nlm.nih.gov/pubmed/21873452
https://doi.org/10.18637/jss.v022.i04
https://doi.org/10.1093/bioinformatics/btg412
http://www.ncbi.nlm.nih.gov/pubmed/14734327
https://doi.org/10.1093/bioinformatics/btl117
http://www.ncbi.nlm.nih.gov/pubmed/16595560
https://doi.org/10.1186/gb-2010-11-3-r25
http://www.ncbi.nlm.nih.gov/pubmed/20196867
https://doi.org/10.1371/journal.pone.0021800
http://www.ncbi.nlm.nih.gov/pubmed/21789182
https://doi.org/10.1101/gr.1239303
http://www.ncbi.nlm.nih.gov/pubmed/14597658
https://doi.org/10.1038/nprot.2015.123
https://doi.org/10.1094/Phyto-83-759
https://doi.org/10.1371/journal.pgen.1008131

