
HAL Id: hal-02155403
https://hal.archives-ouvertes.fr/hal-02155403

Submitted on 21 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An automatic restoration scheme for switch-based
networks

Jacques Carlier, Joël Lattmann, Jean-Luc Lutton, Dritan Nace, Thanh Son
Pham

To cite this version:
Jacques Carlier, Joël Lattmann, Jean-Luc Lutton, Dritan Nace, Thanh Son Pham. An automatic
restoration scheme for switch-based networks. Ad Hoc Networks, Elsevier, 2019, 89, pp.78-87.
�10.1016/j.adhoc.2019.02.005�. �hal-02155403�

https://hal.archives-ouvertes.fr/hal-02155403
https://hal.archives-ouvertes.fr

An automatic restoration scheme for switch-based
networks

Jacques Carlier∗, Joel Lattmann†, Jean-Luc Lutton†, Dritan Nace∗,Thanh Son Pham†∗,
∗Sorbonne université, Université de technologie de Compiègne, UMR CNRS 7253, Heudiasyc, CS 60319, 60203

Compiègne cedex
†Orange Labs, Orange Gardens, 40 - 48 avenue de la Republique, 92320 Chatillon, France

Abstract—This paper presents a fully automated distributed
resilient routing scheme for switch-based or new generation
router based networks. The failure treatment is done locally and
other nodes in the network do not need to undertake special
actions. In contrast to conventional IP routing schemes, each
node routes the traffic on the basis of the entering arc and of
the destination. The resulting constraint is that two flows to the
same destination entering in a node by a common arc have to
merge after this arc. It is shown that this is sufficient for dealing
with all single link failure situations, assuming that the network is
symmetric and two-link connected. Two heuristic approaches are
proposed to handle the corresponding dimensioning problem for
large network instances. The proposed method generalizes some
methods of literature [6], [8] and provides more cost-efficient
solutions.

I. INTRODUCTION

The Internet has been hugely successful in spreading its
services all over the world. But the more firmly it becomes im-
planted, the harder it becomes to introduce new developments.
This is the phenomenon of Internet ossification. A number of
published works have attempted to rethink the architecture
of the Internet. The context of this study is the total or
partial replacement of conventional routers by switches or new
generation routers which have extended features comparing
to the conventional ones. In the following we will focus on
switch-based networks keeping in mind that the new genera-
tion routers have the capacity to undertake the same actions
in practice. Usually the routing in some node depends only
of the destination. Networks based on switches controlled by
an external controller may represent an interesting alternative
when one deals with failure situations. With switches, we can
also take into account the entering arc under the constraint
that two flows to a same destination arriving from the same
entering arc merge after this node. Otherwise we will say there
is a conflict. A routing scheme with no routing paths in conflict
is called a free-conflict scheme and it is formally defined in
Section III. In the case of single link failure, for a given
destination, only one of the two outermost nodes of the failed
link needs to react by rerouting the disturbed traffic towards
one of its neighbors. The traffic is then routed according to
the filters programmed in each node of the network. The
proposed scheme requires a local reaction only, making its
implementation particularly easy in a distributed environment.
This local reaction helps the network to operate normally and
it can solve the problem of transient failures. We recall that a

transient failure is a failure of short duration (less than ten
minutes), while a persistent failure is longer. When it has
been determined that a failure is persistent, the controller
can recalculate the routing tables for all the nodes in the
network. In order to prevent the rerouted traffic (following
a failure) causing disturbances in another part of the network,
additional capacities are assigned to all the arcs in the network.
We first state and prove an existence theorem, ensuring that
there exists a valid rerouting algorithm for a network based on
switches if it is symmetric and biconnected. This leads to the
first rerouting algorithm. We also propose a second rerouting
algorithm which provides more flexibility in the choice of the
rerouting paths. Both algorithms permit to introduce heuristics
to deal with larger networks (please note that the problem
of capacity assignment for the problem resilient network
dimensioning in hand is NP-hard as it includes the integer
multiflow routing problem as part of it). These heuristics are
proposed and compared to previous methods introduced by Xi
and Chao [8], and Wang and Nelakuditi [6]. Numerical results
with respect to capacity assignment to a resilient switch-based
network illustrate the performance of our methods comparing
to those of literature. The paper is organized as follows.
After this introduction, section 2 reports the related works.
In section 3, we present our resilient rerouting scheme and
its theoretical properties together with a complete example.
Heuristic approaches deduced from the theoretical study are
also proposed. Section 4 is devoted to numerical results.

II. RELATED WORKS

The problem of failure resilience has been widely inves-
tigated in literature. Many works have been proposed based
on multi-protocol label switching (MPLS) [10] and devoted
to real-time systems [11]. Nevertheless, when dealing with
switch-based networks the literature is less abundant. Our
restoration scheme is pre-calculated. As a result of its pre-
calculated scheme, our protocol does not need any communi-
cation between network nodes, which guarantees a very short
recovery time. We will present the principal works studying
similar problems for IP networks and switch-based networks.

1) Rerouting in IP networks: Xi et Chao [8] propose a
method for calculating backup paths which permits to reroute
the traffic in case of link failure. The proposed scheme, called
IPFRR (IP Fast ReRoute), uses two types of port, primary
and backup ports. Normally, the node uses the primary port

2

to route the outgoing traffic. When there is a failure on the
primary port, the node will use the backup port to reroute
the traffic. Also, the node uses the backup port when the node
receives the traffic coming from its outgoing primary port. This
packet forwarding policy makes the traffic follow the reverse
routing path starting from the upper node of the failure link
until a node where it can use its backup port. We will see that
this method is similar to the first one we present in Section
III.

Another similar method is presented in Wang and Nelakuditi
[6]. It determines the next hop for traffic when the destination
and entering interface of traffic are provided. On the other
hand, it calculates the rerouting path using shortest paths with
the metrics stored in each node. We note that in symmetric
graphs, as in our study, the shortest rerouting path computed
in [6] coincides with the rerouting path in the previous method.
Consequently, this method becomes identical to the method of
Xi et Chao [8].

A number of methods have been proposed for IP fast
rerouting, in order to solve the problem of transient failure.
Nevertheless, these methods have the following limitations:

• With loop-free alternate mechanism based methods [1],
there is no guarantee that traffic can be rerouted for all
destinations. These methods can only help to reduce the
number of lost packets in an IP network.

• Not-via addressing [2] and tunneling [3] mechanisms
require the encapsulation and decapsulation of packets,
while in multiple routing configurations mechanism [4],
the packets need to carry configuration information. In the
same line, Segment Routing (SR) paradigm [23] can be
directly applied to the MPLS architecture with no change
to the forwarding plane. A segment is encoded as an
MPLS label. An ordered list of segments is encoded as a
stack of labels. The segments are processed following the
labels in the top of the stack and they are consecutively
popped from it upon completion. All these methods are
different to our approach because they propose modifiy-
ing the packet header.

Finally, some works dealing with multicast trees can be
useful in treating IP transient failures. First, a method is
proposed in [7] to create simultaneously two routing trees not
sharing arcs between them, which are named B (Blue) and R
(Red). In this method, after removing any edge in the graph,
the source s remains connected to all vertices through B and/or
R. We notice that reversing the solution of [7] can provide a
routing scheme which may handle any single link failure. We
can see an example of this method in Fig. (1a). The two routing
trees are described by the bold arcs and the bold dotted arcs.
However, this doesn’t work when the nominal routing tree is
fixed, which is the case in our study. This is explained in
the Fig. (1b). When the nominal routing tree covers all the
directed arcs to destination d, we cannot construct the two
routing trees by using [7]. Recently, in the same spirit as above,
Chiesa et al. [20] generalize this idea in k-connected networks.
They conjecture that for any k-connected graph, basic failover
routing can be resilient to any k-1 failures. In [21] the authors
propose a similar approach to our first algorithm described

d

a

b

c

g h

i

e

f

(a) An example inspired from [7], where two separated
routing trees allow for resilient routing in case of single
link failures.

d

a

b

c

g h

i

e

f

(b) An example showing that when a nominal routing
tree is given in the network there may be not possible
to build a separate routing tree by using [7].

Fig. 1: An example of network illustrating the problem of
existence of two simultaneously routing trees.

in the following. It uses a precomputed next-hop in case of
failure. It uses also tags in the packets to help the rerouting.
In contrast to the above works, our model gives flexibility
to choose the next hop and does not require modifying the
packet headers. Also, our proposal works for the case when the
nominal routing is fixed from the network manager. Finally,
a computational method is given to compute a minimal link-
cost network resilient to any single link failure while ensuring
100% traffic satisfaction.

From above we can state that two main points need to be
addressed: first, proposing a generic routing scheme dealing
with single link failures which works when a nominal routing
scheme is given, and second, ensuring more flexibility in the
choice of alternative routing paths. We will answer to these
points in the next section.

3

2) Rerouting in networks using switches: In this section,
we cite several works about failure resilience that are applied
to switch-based networks. Some of these works are applied
to specific types of networks as CDN (Content Delivery
Network). They call for the use of multi-controllers or master-
slave controller structures ensuring failure resilience when a
controller fails, [14], [16], [19]. With respect to SDN (Software
Defined Network), as remarked also in [22], we notice that
OpenFlow is the main method dealing with resilience issues. In
such networks, when a switch detects a link failure, it notifies
it to the controller for taking the required action. All this
may delay the restoration time. Then, the alternative methods
proposed in the literature as [9], [15], [18] and others quoted
in [22] allow reducing considerably the restoration time but
they require header packet modification, which makes the main
difference with our proposal.

In order to have an autonomous restoration system in
switch-based network, we need to propose a method which
is pre-calculated and which does not need to modify the
packets. Our approach presented in next section satisfies
the above conditions. It helps to reroute the traffic without
intervention of the controller. The methods of [8] and [6] can
also be applied to switch-based networks. However they do not
perform so efficiently when solving the corresponding network
dimensioning problem.

III. THEORETICAL STUDY

In this section we detail our scheme for routing and
rerouting in case of non-simultaneous single link failures. The
considered network is modelled using a graph G = (V, E),
directed and symmetric (i.e., each link includes the two
opposite arcs), composed of a set of n nodes V and a set of m
links E . For any destination in the network the traffic is routed
to the destination through a tree, called nominal routing tree.
This tree is constructed using specific criteria; for instance, it
might be the shortest path tree. In our study we assume that the
nominal routing tree is given. In the case of failure of an arc
or link (both arcs composing the link are then concerned), the
upstream extremity node will deviate the disturbed traffic to
one of its neighbours. From this moment, any node traversed
by the disturbed traffic will route it according to a free-conflict
routing scheme. The notion of free-conflict routing is formally
defined as follows:

Definition 1. A routing scheme is said free-conflict if any
two routing paths to the same destination sharing an arc are
identical from this arc to the destination.

In Figure 2, we report a free-conflict scheme. It can be
noticed that all alternative paths to the same destination that
are not in conflict (see above), can be embedded in a free-
conflict scheme. Hence, there exist two free-conflict paths to
destination G coming from A. Then, this situation can be
represented at node A by two different inputs for destination
G, one comes from input 1 and goes through output 2 and
the other comes from input 4 and continues through output
3. Then, given a precomputed failure resilient free-conflict
routing scheme, a rerouting procedure works as follows:

Fig. 2: A free conflict routing scheme

• In case of a (link) failure the upstream node initiates
the rerouting procedure by deviating the traffic to some
destinations to one of its neighbours. Such information
relevant to failures of links is assumed known from each
corresponding upstream node for any destination in the
network.

• Other nodes in the network don’t need to take any specific
action. They will forward the traffic according to their
routing tables. For any couple (input, destination) it finds
the appropriate output and sends the traffic through it.

Nevertheless, the problem of existence of a valid rout-
ing/rerouting scheme, i.e. without conflict, for all possible non-
simultaneous link failures and destinations is not straightfor-
ward.

A. Existence of a restoration scheme

In this section we study the question of whether there
exists a rerouting solution without conflicts. We shall make
the following assumptions:
• the graph is assumed to be directed with arcs in both

directions for each link of the network;
• there exist at least two disjoint-arc paths between any two

nodes of the graph;
• for each destination the nominal routing scheme follows

a fixed tree;
• only one link failure can occur at a time.

Our goal is to achieve a fully free-conflict routing scheme
handling both nominal and failure situations. This routing
scheme is composed of a nominal routing scheme realized by
a routing tree for each destination merged with the restoration
scheme in such a way that there is no conflict with respect
to filters. One can notice that routing for both nominal and
failure situations is done with respect to a given destination l
and there is no interaction between routing schemes for distinct
destinations. This suggests restricting the study of existence of
free-conflict scheme to the case of a fixed destination without
loss of generality. The same can be reproduced for any other
destination and merging them leads to a free-conflict scheme
as well.

Theorem 1. For single link failures perturbing the nominal
routing tree there exists a rerouting scheme without conflict
for any destination l.

Proof. Let A be the routing tree to the destination l. l is
therefore the sink of A. Let (p1, q1) be an arc of A subject

4

A1

i

p1v

j

q1

l

Fig. 3: Proof illustration of Theorem 1: in case of failure of
arc (p1, q1), the rerouting of traffic originated from v is done
by backtracking on the routing tree from p1, until jumping out
of A1 through arc (bridge) (i, j).

to failure. We assume that this arc fails and we must find a
rerouting scheme without conflict. We remark that (q1, p1)
does not belong to A. This is clear as for a given destination
only one of the two arcs (directions) can be part of the routing
tree. Hence, this means that both link and arc failures have the
same impact on traffic lost for a given destination and we can
restrict ourselves to arc failures. Without loss of generality,
we consider in this proof the problem of the failure of the
arc (p1, q1). p1 is the sink of a sub-tree A1 whose nodes are
denoted as red (i.e., in the Figure 3 nodes v, p1 and i are part
of tree A1). The other vertices in the tree are colored in blue.
Without loss of generality we assume that all vertices are part
of the tree A (|A| = n) and this is true for any destination l.

We know that there are at least two disjoint paths in the
initial graph going from p1 to l. Given the assumption of two-
link connectivity the upper part that includes p1, but does not
include the vertex l, must contain at least two outgoing arcs.
Therefore there are at least two arcs going out of A1 (Figure
3). Since one of these arcs is (p1, q1), there exists a path µ
from p1 that visits the vertices of A1, and connects a vertex
of A1, which is red, to a blue vertex. So there is at least one
arc (i, j) (we call this arc a bridge) of µ connecting the red
vertices to the blue vertices (Figure 3). We associate with this
arc a rerouting path for the failed arc. Let v be a red vertex of
A1 which is affected by the failure. Traffic to destination l and
coming from v goes first to p1, then it follows the reverse path
on the nominal routing tree (it is assumed above that arcs in
opposite directions are present for each link) from p1 to i. It
uses bridge (i, j), then from j to destination l follows the path
on the nominal routing tree. According to the above choice of
the rerouting path, traffic coming from different sources in
A to destination l associated with the breakdown of (p1, q1)
necessarily follows rerouting paths without conflict.

We now consider the r − 1 failures of arcs of the tree and
choose the corresponding bridges (i, j). We number the arcs
of the tree by decreasing order as we approach the sink l, and

Ar

As
is

pr qr

ps

qs i1

p1

j1

q1

l

js

Fig. 4: Recurrence Hypothesis - Case 1. We assume that failure
of link (pr, qr) creates sub-tree Ar which is included in sub-
tree As for some s < r. We assume also that bridge (is, js)
used in case of failure of (ps, qs) is such that node is is
included in Ar. Then, the rerouting path used in case of failure
of (pr, qr) is required to use bridge (is, js).

consequently choose the arcs subject to failure in successive
order of increasing numbers. Let (pr, qr) be one of the arcs
subject to failure under consideration, and let us suppose that
we have chosen arcs (i1, j1), (i2, j2) . . . (ir−1, jr−1) as bridges
for constructing the rerouting paths with respect to previously
examined failures. pr is the sink of tree Ar. We consider two
cases. The first case is when we have chosen for an arc (ps, qs),
with s strictly smaller than r, a bridge (is, js) whose extremity
is is in the tree Ar and the other extremity js outside of the
tree As. Clearly in this case the tree Ar is contained within
As (Figure 4). Indeed for any s < r we have either Ar ⊂
As (the path from pr to destination l goes through ps) either
Ar ∩ As = ∅. We therefore choose arc (is, js) as bridge for
the tree Ar. Note that there exists at most one bridge with this
property. This can be deduced from the inclusion property of
trees. Indeed, having two such arcs (is, js) and (it, jt), with
respect to failures (ps, qs) and (pt, qt) with s < t < r, means
that (is, js) is also a bridge for At and it should have been
chosen instead of (it, jt). In the case when As∩Ar = ∅, there
is no rerouting arc with the above property. Then, we choose
any arc (ir, jr) (Figure 5) that connects Ar to its complement.

We need to show that the rerouting has no conflict. We
demonstrate this by recurrence on the number of rerouted arcs.
We consider that we have already rerouted r − 1 arcs in the
tree. By the recurrence hypothesis, we assume that there is
no conflict for the first r − 1 reroutings. We verify that the
r-th rerouting path built as above also has no conflict with the
first r − 1 reroutings. Regarding the rerouting in the outside
part of the tree Ar, that is to say the part that is in common
with the nominal routing, there is no conflict by construction.
Even if it uses the same arc with some previous rerouting
path, in this part it will follow the same rerouting path as far

5

Ar

As
is

pr

ir jr

qr

ps

qs i1

p1

j1

q1

l

js

Fig. 5: Recurrence Hypothesis - Case 2. The bridge (ir, jr)
used in this case is not used as a bridge for any s < r. The
rerouting path in case of failure of (pr, qr) will backtrack from
pr until ir, take bridge (ir, jr) and join l through the nominal
routing tree.

as destination l, and so it is without conflict. We must also
check that there is no conflict for the part where it goes in the
opposite direction in the routing tree, which means verifying
that there is no conflict in the two cases considered above. In
the first case, where an arc (is, js) has been chosen in the tree
Ar, clearly no conflict is present in that part of the tree because
Ar will use the same arcs until is and continue with the same
bridge (is, js) between its red part and its blue part. In the
second case, the part that ascends the tree can have nothing in
common with the other rerouting arcs, since this would imply
the existence of (is, js)! Therefore, there is no conflict in this
case either. We can conclude that the property remains true to
the order r, and we have therefore demonstrated by recurrence
the absence of conflict.

In the following we will present an example illustrating the
above method. All the traffic having D as destination can be
expressed as a directed tree which converges to destination D
(Figure 6a). When the link (S,D) fails, the routing tree will be
divided into two parts: the red part, and the blue part (Figure
6b). All the traffic to destination D that transit via node S can
no longer use the link (S,D), and will instead be rerouted
by the path (S, T, U, V,K,D) that was pre-calculated by our
restoration scheme (Figure 6c). This alternative path connects
the red part to the blue part and it will not interfere with the
nominal routing. In this scheme, in case of failure of the link
(S,D), node S is advertised of the failure and it will take the
necessary action to restore the traffic through an alternative
rerouting path while the other nodes will operate normally as
programmed. We can see that the traffic towards destination D
over the arc (T, S) is rerouted over the arc (S, T), but this will
not cause any looping problem because of the configuration of
filters. When the node T receives traffic coming from U and

knows that the destination is D, T will transfer the traffic to
node S. In the case of (S,D) link failure, node S will send
back the traffic through the reverse routing path (the network
is assumed directed with arcs in both directions for each link)
to T . Knowing that traffic is coming from S and is heading
towards D, T will transfer this traffic to U , which in its turn
will transfer it to V . Then, the traffic will be transferred from
V to K and on to destination D following the nominal routing
tree for destination D. Therefore, there is no looping problem
and the traffic is rerouted without causing any conflict.

D

S

T

U V

G

K

X

Y

(a) A nominal routing tree to destination
D.

D

S

T

U V

G

K

X

Y

(b) A Failure in link SD disconnecting
the nominal routing tree in the red part
on the left and the blue part on the right.

D

S

T

U V

G

K

X

Y

(c) The traffic is rerouted from the red
part to blue part via alternative paths
using bridges like (U, V).

Fig. 6: An example of rerouting scheme with Algorithm 1.

B. Algorithm 1

The method employed to build rerouting paths ensuring the
existence proof for Theorem 1 stated above is formalized in
Algorithm 1 as follows:

With respect to the above example (Fig. (6c), running
Algorithm 1 will give D = qr, S = pr, U = i, V = j. Hence,
path µ1

r = {S → T → U} and µ3
r = {V → K → D} and

bridge {U → V }.

6

Algorithm 1:
Input: a directed, symmetric two-link connected

network; a routing tree A, |A| = n, destination l
which is the sink of the reverse tree A;

Output: a free-conflict routing scheme;
1 Number the arcs of the routing tree such that their

number decreases in value as we approach the sink l:
r ∈ {1...n− 1}. Failures are considered in this order;

2 for (r = 1 to n− 1) do
3 Let (pr, qr) be an arc of the tree and Ar the sub-tree

of sink pr;
4 Compute a bridge (i, j) connecting Ar to A−Ar.

This bridge is chosen so that there is no conflict
with µ1, µ2, . . . , µr−1;

5 Compute the path µ1
r from pr to i, following the

inverse path of the nominal routing tree;
6 Set the rerouting path of (pr, qr) as :

µr = µ1
r + (i, j) + µ3

r where µ3
r is the path of the

routing tree going from j to l;

C. Algorithm 2

The main drawback of Algorithm 1 is its lack of flexibility.
Given the rerouting path, the only degree of freedom that it can
offer is the choice of the bridge. Furthermore, the free-conflict
constraint doesn’t permit any alternative for the third part of
the path. Hence, the only possible variation is in its first part.
We show that under some assumption it is always possible
to build the first part of the path in a more general way (not
only following the inverse path of the nominal routing path).
Nevertheless, the free-conflict constraint reduces at a certain
point this choice as shown in the algorithm 2. In algorithm 2,
we initialise a rerouting path which traverses only the nodes
in the red part of the routing tree and does not use any arc
in the red part of the routing tree (Figure 7). Then, this path
follows the nominal routing tree in the blue part. Next, we
look if this rerouting path has any conflict with rerouting ones
get previously. In case of conflict, we modify this rerouting
path by merging with those in conflict. At the end of this
algorithm, we remove any directed cycle in the rerouting path
to ensure the elementarity of this path. With respect to the
example presented in Figure 6, one can apply Algorithm 2 by
taking D = qr, S = pr, Q = i,K = j. Hence, path µ1

r =
{S → T → G} and µ3

r = {K → D} as shown in figure 7.
We have stated and proved the Theorem 2 to validate the

above algorithm. We shall make the same assumptions as
before: the graph is assumed to be oriented symmetric; there
are at least two disjoint-arc paths between any two nodes of
the graph; only one link failure can occur at a time.

Theorem 2. The rerouting paths computed sequentially by
algorithm 2 are elementary and without conflict.

Proof. Let A be the routing tree to the destination l. l is
therefore the sink of A. Let (pk, qk) be an arc of A. At
first, we will explain how to build a rerouting path for the
failure of arc (pk, qk). Next, we will modify this rerouting
path appropriately in an iterative scheme. We assume that

Algorithm 2:
Input: a bidirected, symmetric two-link connected

network; a routing tree A, |A| = n, destination l
which is the sink of the reverse tree A;

Output: a free-conflict routing scheme;
1 Number the arcs of the routing tree such that their

number decreases in value as we approach the sink l:
r ∈ {1...n− 1}. Failures are considered in this order;

2 for (r = 1 to n− 1) do
3 (Path initialization:)
4 Let (pr, qr) an arc of the tree and Ar the subtree of

sink pr;
5 Compute a bridge (i, j) of Ar where Ar is the

subtree of sink pr;
6 Compute a path µ1

r from pr to i, traversing only
nodes of Ar and not borrowing arcs of Ar;

7 Set the rerouting path of (pr, qr) as :
µr = µ1

r + (i, j) + µ3
r where µ3

r is the path of the
routing tree going from j to l;

8 (Conflict avoidance:)
9 if µr is in conflict with one of µ1, µ2, . . . , µr−1 then

10 Denote µk the first rerouting path in conflict with
µr;

11 Let (a, b) be the first arc in common;
12 Let denote with µ5

r and µ5
k respectively the

sub-paths of µr and µk from b to l. These
sub-paths bifurcate.

13 Set µ4
r as the sub-path of µr from pr to b;

14 Set the rerouting path µr = µ4
r + µ5

k;

15 Ensuring path elementarity:
16 if (µr is not elementary) then
17 Remove the cycle included in µr;

D

S

T

U V

G

K

X

Y

Fig. 7: Rerouting scheme - Algorithm 2: with respect to the
example presented in figure 6, one can apply Algorithm 2 by
taking D = qr, S = pr, Q = i,K = j. Hence, path µ1

r =
{S → T → G} and µ3

r = {K → D}.

7

the link corresponding to this arc fails and we must find a
rerouting scheme without conflict. pk is the sink of a sub-tree
Ak whose nodes are colored in red. The other nodes in the
tree are colored in blue. Without loss of generality we assume
that all nodes belong to the tree A and this is true for any
destination l. We will also show that the constructed rerouting
path is elementary.

We know that there are at least two disjoint paths in the
initial graph going from pk to l. Given the assumption of two-
link connectivity, the upper part that includes pk, and does not
include the vertex l must contain at least two outgoing arcs.
Therefore there are at least two arcs going out of Ak (Figure
8). Since one of these arcs is (pk, qk), there exists a path µk

from pk that visits the vertices of Ak, and connects a vertex
of Ak, which is red, to a blue vertex. So there is at least one
arc (i, j) of µ connecting the Red vertices to the Blue vertices
(Figure 8). This arc is a bridge of Ak. We associate with this
arc an elementary rerouting path for the failed arc. Let v be
a red vertex of Ak which is affected by the failure. Then, the
traffic to destination l and coming from v goes first to pk, then
it follows a rerouting path to destination l. This rerouting path
is composed by 3 parts: a path µ1

k from pk to vertex i, a path
µ2
k that contains only the bridge (i, j) and a path µ3

k from j
to destination l follows the original

Ak

i

pkv

j

qk

l

Fig. 8: Path initialisation - Algorithm 2: the rerouting path is
composed of three parts: a path joining pk to i, arc (i, j) and
the nominal routing path from j to l.

We explain first how to modify the rerouting paths to avoid
any conflict. We number the arcs of the tree so that their
numbers decrease in value as we approach the sink l, and
consequently choose the rerouting paths in successive order
of increasing numbers. For the first failed arc (p1, q1), we
construct the rerouting path µ1 like above, so µ1 is elementary
by construction. We consider that we have already computed
the rerouting paths for the first r− 1 arcs in the tree (r ≥ 2).
By the recurrence hypothesis, there is no conflict for the first
r− 1 reroutings and these paths are elementary. We construct
now the r-th rerouting so that it has no conflict with the first
r − 1 reroutings and that it is elementary. Let (pr, qr) be the
arc under consideration. pr is the sink of tree Ar. Now we

Ar

Ak
b

pr

a

qr

pk

qk

lµ5
r

µ5
k

Fig. 9: Conflict avoidance - Algorithm 2: there is a conflict
when traffic rerouted from pk and the one rerouted from pr
go through arc (a, b) and bifurcate next. The rerouting path
associated with failure of arc (pr, qr) is then composed of
sub-path of µr from pr to b and µ5

k.

initialize µr as explained above. There are two cases to be
considered with this new path. In the first case, µr has no
conflict with the paths µ1, µ2 . . . µr−1 chosen before. We have
nothing to do with µr in this case. In the second case, there
is a conflict, so there is an existing rerouting path that has an
arc in common with µr. Let (a, b) be the first arc in common
between µr and the other rerouting paths and µk, (k < r) be
the first rerouting path among them having this property.

Notice first that there are only two possibilities for subtrees
Ak and Ar; either Ar ⊂ Ak (the arc (pk, qk) is included in
the nominal routing path from pr to l), either Ar and Ak are
disjoint. In the last case (a, b) is included in µ3

k and µ3
r and

the rerouting paths are necessarily without conflict. In fact,
the two rerouting paths will follow the original routing tree to
destination l so there will be no conflict between them and the
path is elementary. Consider now the case Ar ⊂ Ak. If (a, b)
doesn’t belong to µ1

k, then the same reasoning as above applies
and the rerouting path is elementary and without conflict.

Let consider the case when (a, b) belongs to µ1
k. This

implies that (a, b) doesn’t belong to µ3
r . We define then µ4

r the
part of µr from pr to arc (a, b) and µ5

r the rest of µr from b to
destination l. In the same way, we define µ4

k and µ5
k. If there is

no vertex in common between µ4
r and µ5

k, we reconstruct then
the new path µ′r by concatenating µ4

r and µ5
k. We use this new

path to reroute the traffic for the failure (pr, qr) (Figure 9).
This path is without conflict from definition of (a, b) as the first
arc in common with other rerouting paths. This path does not
borrow the failed arc (pr, qr) because Ar ⊂ Ak and the path
µk is supposed not to borrow any arc of Ak. In case when there
is a vertex in common in µ4

r and µ5
k, let m be the first one for

example, we construct a new path µ′r that uses µ4
r from pr to m

8

and uses µ5
k starting from the vertex m to destination l. Clearly,

there is no vertex in common between the part of µ4
r and µ5

k

used by the new path µ′r. So, µ′r is elementary. We notice that
this rerouting path uses the bridge of rerouting path µk. We can
show also that this contraction will yield to no conflict. In fact,
we only need to consider if there is a conflict for the arc of this
new path µr which has m as the end vertex, we suppose this
arc is (n,m). Let suppose, by absurdity, that µr has conflict
with another rerouting path at this arc (n,m), which means
(n,m) is the arc in common between µr and another rerouting
path. This is in contradiction with the hypothesis that (a, b) is
the first arc in common with other rerouting paths. Then, we
can conclude that this contraction of µr is without conflict.
We have therefore demonstrated by recurrence the absence
of conflict and the property of elementarity of the rerouting
paths. Finally, the path does not borrow the failed arc (qr, pr)
because it is elementary.

Difference between our method and the related works

We have presented the method of Xi et Chao and of
Nelakuditi et al. in the related works section. Now that our
method has been presented, we explain the difference between
our method and this method. It has some similarity with our
first method. The method of Xi et Chao chooses the first bridge
that is available. Consequently, their method has no flexibility
concerning the bridge choice. The method of Nelakuditi et al.
is the particular case of our second method where the shortest
paths are chosen. Consequently, it is identical to Xi et Chao
method. Their limitation will be seen clearly in the numerical
results presented in the section below. Concerning other works
in relation with SDN, we notice that they require modifying
the packet headers which is not our case.

IV. NUMERICAL RESULTS

Let us note first that the routing scheme proposed in this
study requires the single path routing of traffic demands
both in the nominal situation and in situations of failure. An
additional difficulty for this strategy comes from the conflict
avoidance constraint. All this makes modelling and solving
using an arc-path flow formulation extremely hard. We
have therefore opted for an adapted variant of the arc-node
formulation that is better suited to expressing this type of
constraints. At this stage, the mathematical formulation
concerns only the spare-capacity assignment problem, (that is
computing the minimum capacities to be added for recovery
needs, the routing being given). The full model, given in
the appendix, deals with link failure situations, node failure
situations can be handled in a similar way.

Given the above algorithms we have built two heuristic
approaches to solve the dimensionning problem. The main
idea behind the heuristics is to compute the minimum capacity
added to each arc such that the traffic routing and failure
rerouting can be done simultaneously. To do this we have
examined all destinations following a decreasing order of the
amount of traffic transported to each destination. Of course,
these approaches give non optimal results. Then in order

Network Nodes Links Demands
Test 7 9 42

Polska 12 18 66
Atlanta 15 22 210

Nobel-Germany 17 26 121
France 25 45 300
India35 35 80 595
Pioro40 40 89 780

Germany50 50 88 662

TABLE I: Network instances.

Network
Instance Exact Method Heuristic 1 Heuristic 2 Xi and Chao

Test 62 66 68 69
Polska 19110 21449 21949 25093
Atlanta 308171 333480 343969 330745
Nobel-

Germany 1862 1980 1940 2744
France OM 261529 260451 416670
India35 OM 7874 7784 11689
Pioro40 OM 289168 279046 431332

Germany50 OM 7339 7453 9847

TABLE II: Network cost.

Network Instance Exact-method without Exact method
"free-conflict constraints"

Test 0.83 0.96
Polska 0.87 0.9
Atlanta 1.06 1.08

Nobel-Germany 1.08 1.16

TABLE III: Evaluating the additional cost due to requiring
free-conflict constraints.

to assess the performance of both heuristics we have also
written and run a MIP (Mixed Integer Program) model for
the dimensioning problem (the detailed formulation is given
i Appendix). We ran our program on IBM ILOG OPL IDEA
using IBM ILOG CPLEX 12.1.0. The calculations were per-
formed on a virtual machine with the following configuration:
Quad Core 1.8GHz, 8.00 Go RAM, 12Mb cache.

In order to evaluate the effectiveness of the above heuristics,
we tested them on 8 network instances presented in Table I.
Table II gives the numerical results obtained with the exact
model, two heuristics and the method of Xi and Chao [8].
Notation OM (Out of Memory) stands for cases when the
program stops without reaching a solution because of memory
overflow. We can remark from this table that the results for
both heuristics are close to those obtained with the MIP model
(the gap is between 6% and 12%). We notice that Heuristic 2
performs generally better than Heuristic 1 for large instances
(except for the last one). Heuristic 1 finally performs quite
well given its simplicity. Borrowing arcs of the inverse path
results to be a good strategy as such arcs will be taken by all
rerouting paths used for failures in the same routing path. We
have discussed the similarity of our method and the method
of Xi et Chao [8] in previous sections, so now we compare
our method with this method. We recall that the rerouting path
always borrows the first bridge in [8] and when two rerouting
paths have the same node in common, they will fusion until
they reach the destination. Obviously, their method is more
rigid than our methods and it did not take into account capacity

9

optimization. We can see from the numerical results that our
methods perform better than [8] except for Atlanta network.
Nevertheless, the difference between the two solutions for
the Atlanta network remains small (around 1%), while our
methods perform much better for all other instances. There is
no clear reason why such behavior happens for the Atlanta
network. Still, we are comparing here between heuristics, the
stability of the results is not guaranteed, so no firm conclusions
can be drawn from a single instance while the tendency is clear
in favor of our proposed algorithms. What is encouraging is
that it performs much better with gaps going from 25% to
37% for the last (5) larger network instances.

The second serie of tests is concerned with specificity of the
model which stands mainly in forcing the rerouting to satisfy
the free conflict cosntraint, which makes the main difference
with the conventional single path rerouting. Hence, we have
tested the impact of this constraint in terms of link capacity
cost. Table III has 4 columns: the network instance, the ratio
capacity of exact method without "free-conflict constraints",
the ratio capacity of our mathematical model. The ratio ca-
pacity column describes the ratio between the added capacity
and the installed routing capacity. The tests were run on the
above networks and the routing was considered to be fixed.
We used the shortest paths to fix nominal routing for our
method. We can see from the results that the cost of the free-
conflict constraints is not highly expensive for our network
dimensioning, while it leads to a very simplified rerouting
scheme in terms of management cost.

V. CONCLUSION

We have presented a rerouting approach that can handle
link failures in a network of switches. The proposed method
is based on the local reaction of nodes at the extremities of the
failed link, while the other nodes do not need to know or take
any particular action. This makes implementation particularly
easy. We have proved that there exists a restoration scheme
without conflict in the network and have also enhanced this
resilient routing scheme. Then we have provided a mathe-
matical model capable of calculating the rerouting scheme
and optimizing the sum of additional capacities. Moreover,
we have proposed the heuristics which permit to solve this
issue for larger instances. Our method can be extended for
single node failure issues in switch-based network but not
for multi-link failures [5]. Future work is needed to extend
computational methods for single node failure problem and
evaluate them. It could be interesting to study the influence of
network topology for single link failure problem.

APPENDIX

We propose below an integer linear porgramming formula-
tion of the problem.
Parameters:
• Arc: set of arcs of the graph.
• E: set of links.
• V: set of nodes.
• Triple: all triples (i, k, j), where i, k, j are nodes of the

graph and (i, k) and (k, j) are two adjacent arcs, i being
different from j.

• 0: a fictitious node used to divert traffic in case of failure.
We introduce the fictitious node 0 that will be used for
all failures. For a given failure (v, l), the traffic to l will
be rerouted along a single path from 0 to l and starting
with the arc (0, v).

• T l
v: total traffic to l that passes through the node v, v

being the node that detects the failure. In fact, the failure
is characterized by a source v and a destination l. This is
because the nominal routing is done through a tree, and
we need to reroute only the nominal traffic passing via
this tree. Hence, for a destination l, each node in the tree
is concerned with only one (failure) arc in the tree, and
this node is necessarily the origin of the failed arc.

• Al: set of arcs of the routing tree to the destination l.
• redlv: sub-tree of tree Al with sink v. Recall that in

the case of failure the tree is divided into two parts:
the isolated part, i.e. the red part, and the blue part.
The alternative path will reroute traffic from the node
initiating the rerouting in the red part to the destination
in the blue part.

• bluelv: Al − redlv .
• αlv

ab: a binary coefficient equal to 1 if the arc (a, b)
belongs to the nominal routing path from v to l excluding
the failed arc (v, w).

Decision variables:
• ylvikj : A binary variable that indicates whether the alter-

native path coming from v and going to destination l
contains arcs (i, k) and (k, j), where node v is the node
that detects the failure.

• xlikj : A binary variable taking the value 1 if there exists
a failure whose alternative path to destination l contains
arcs (i, k) and (k, j). In other words, this variable takes
the value 1 if there exists v that ylvikj is equal to 1.

• rab: additional capacity assigned to the arc (a, b).
• N(k): set of nodes which are neighbours of node k.

Given the above the mathematical model follows:
The objective function which minimizes the sum of additional
capacity allocated to each arc, follows:

min
∑

(a,b)∈Arc

rab (1)

(1) will allow us to evaluate the ratio between the additional
capacity and the installed capacity.

a) Flow and rerouting constraints: The constraints in
this paragraph are the constraints of rerouting. They will be
able to construct a rerouting path from the node fictive 0 to
destination l (Figure 10).∑

vv1 6∈Al, v1∈N(v)

ylv0vv1 = 1, v ∈ V, l ∈ V (2)

Constraints (2) implie that there exists exactly one arc coming
out of v to be used for the rerouting of the disturbed traffic
from v to l. As we describe above, all the traffic will be
rerouted by only one path. This path begins by the fictive
node 0, then it uses the node v which is the node that detects
the failure and has to reroute the traffic (Figure 10). These
constraints allow to control the number of outgoing arcs from

10

wv

v1

0

i1

i k

j

j1

l

Fig. 10: Model illustration: there is a fictive node 0 associated
with arc failure (v, w). Then the path will go through v to
v1, . . . , l..

the node v. If arc (v, v1) is not in the nominal routing tree to
destination l, this arc is not the failed one. This ensures that
the rerouting path doesn’t pass by the failed arc.

To avoid the problems of looping and conflict, the alterna-
tive path should not contain any arc of nominal routing in the
red part of the network.

Constraints (3):

ylvikj = 0, l ∈ V, v ∈ V, i ∈ redlv,
(i, k) ∈ Al, (i, k, j) ∈ Triple

(3)

ensure that this condition holds. Indeed, when the rerouting
path uses one arc of the nominal routing tree, it has to
continue to use the arcs of the nominal routing tree until it
reaches the destination l. If this arc is in the red part of the
network, the rerouting path will follow the nominal routing
tree to the failed arc. This will cause the looping problem
and the traffic will not be rerouted to the destination. We add
the following constraint to avoid this problem:

∑
i∈V,j∈V |(i,k,j)∈Triple

ylvikj ≤ 1, l ∈ V, v ∈ V, k ∈ V (4)

Constraints (4) ensure that there will be no looping in the
network, since the alternative path can transit once at the most
via any given node.

We will introduce then the flow constraints that ensure the
continuity of the alternative path.∑

i1∈N(i)

ylvi1ik =
∑

j∈N(k)

ylvikj , l ∈ V,

(i, k) ∈ Arc, i 6= 0 , i 6= v, k ∈ V \{l}
(5)

∑
j∈N(k)

ylvvkj = ylv0vk, l ∈ V, v ∈ V, (v, k) ∈ Arc (6)

ylvkjj1 − y
lv
ikj ≥ 0, j ∈ bluelv\{l},

(j, j1) ∈ Al, (k, j) ∈ Al,∀l ∈ V,∀(i, k, j) ∈ Triple
(7)

Constraints (5) are the flow conservation constraints. With
respect to the traffic passing by arc (i, k), all traffic entering
node i equals the total traffic leaving node k (Figure 10). For
the node v, the entering traffic is supposed to come from the
fictive node 0. We therefore have a flow constraint (6) for this
case. In the blue part, if the path uses an arc of the initial
routing, it must continue to destination l, and we thus have
constraints (7).

Next, we need to guarantee that the rerouting path reaches
destination l. ∑

(i, k, l)∈Triple

ylvikl = 1, l ∈ V, v ∈ V (8)

Constraints (8) ensure that there is a single rerouting path that
will reach the destination l. These constraints consequently
ensure the single path routing requirement.

Given the complexity of the above LP formulation, we
believe that it will be useful to briefly discuss the validity
of the model. We recall first that the traffic to be rerouted
is characterized by the couple (l, v). We list below all the
requirements that a rerouting path from v to l must satisfy:

1) The path does not use the nominal routing when it goes
through the red sub-tree of the network.

2) If the path uses an arc of the nominal routing when it is
in the blue sub-tree of the network, it must continue to
use the nominal routing until it reaches the destination
l.

3) It is an elementary path.

Clearly, constraint (3) ensures the first requirement and con-
straint (7) ensures the second. The third requirement comes
first from constraints (2) and (8) specifying constraints for the
origin (v) and the destination (l), secondly from constraints
(4) that ensure the elementarity of the path, and finally from
the Kirchoff constraints.

b) Avoiding conflict constraints: After the construction
of the rerouting paths, we have to assure that these rerouting
paths have no conflict between them.

∑
v∈V

ylvikj ≥ xlikj ≥
∑

v∈V y
lv
ikj

|V |
,

(i, k, j) ∈ Triple, l ∈ V
(9)

∑
j∈neighbor of k

xlikj ≤ 1, (i, k) ∈ Arc, l ∈ V (10)

xlikj ∈ {0, 1},∀(i, k, j) ∈ Triple, ∀l ∈ V (11)

ylvikj ∈ {0, 1},∀(i, k, j) ∈ Triple, ∀l ∈ V,∀v ∈ V (12)

Constraints (9), (10), (11), (12) ensure the absence of conflict.
The constraints (11), (12) express that the variables xlikj
and ylvikj are binary. Constraint (9) expresses the fact that
xlikj = 1 ⇔ There exists v : ylvikj = 1. Indeed, if xlikj = 1,
it is obvious that there exists a v such that yikj = 1, because∑

v y
lv
ikj ≥ xlikj . And vice-versa, if there exists v : ylvikj = 1,

then
∑

v y
lv
ikj ≥ 1 and consequently

∑
v
ylv
ikj

|V | ≥ 1
|V | . We can

11

deduce that xlikj ≥ 1
|V | . Because xlikj ∈ {0, 1}, we have

xlikj = 1.
Next, the constraint of absence of conflict can be expressed

by (10):∑
j∈N(k) x

l
ikj ≤ 1, because if we use arc (i, k) for the

alternative path, we need only to use at most one arc (k, j).
Indeed, when two rerouting paths use the same entering arc
(i, k), the constraint ensures that it could use at most one
outgoing arc (k, j), which means there is no conflict.

c) Capacity constraints: In this paragraph, we present
the constraints that concern the capacity added to the arc for
any link failure (v, w) in tree Al.:∑

l∈V |(v,w)∈Al

∑
i∈N(k), i 6=j

ylvikj .T
l
v

+
∑

l∈V |(w,v)∈Al

∑
i∈N(k), i 6=j

ylwikj .T
l
w ≤ rkj

+
∑

l∈V |(v,w)∈Al

αlv
kj .T

l
v +

∑
l∈V |(w,v)∈Al

αlw
kj .T

l
w,

(k, j) ∈ Arc, k 6= v, k 6= w, (v, w) ∈ E

(13)

∑
l∈V |(v,w)∈Al

ylv0vj .T
l
v ≤ rvj +

∑
l∈V |(v,w)∈Al

αlv
vj .T

l
v,

(v, j) ∈ Arc, j 6= w, (v, w) ∈ E
(14)

∑
l∈V |(w,v)∈Al

ylw0wj .T
l
w ≤ rwj +

∑
l∈V |(w,v)∈Al

αlw
wj .T

l
w,

(w, j) ∈ Arc, j 6= v, (v, w) ∈ E
(15)

For each failure of link (v, w), constraints (13) consider
rerouted paths for both arcs (v, w) and (w, v), and only trees
that contain the arc failure are involved. They also take into
account the released bandwidth on the initial routing paths.
Indeed, the first term of the left part of the constraint (13)
signifies the capacity of traffic rerouted by the failure of arc
(v, w) that passes by arc (k, j) and the second one signifies
the capacity of traffic rerouted by the failure of arc (w, v). In
addition, the first term of the right part of the constraint (13)
signifies the capacity added to arc (k, j) while the second one
and third one signifies the capacity released for arc (k, j) if
this arc is on the nominal routing paths for the failure of arc
(v, w) and (w, v) correspondingly. In brief, this constraint
gives us the bound of the capacity added to arc (k, j). (14)
and (15) are special cases of (13) for the nodes that detect the
failure, that is v and w.

REFERENCES

[1] RFC 5286, Basic Specification for IP Fast Reroute: Loop-Free Alternates,
http://tools.ietf.org/html/rfc5286, 2008.

[2] Internet-Draft, IP Fast Reroute Using Not-via Addresses,
https://tools.ietf.org/html/draft-ietf-rtgwg-ipfrr-notvia-addresses-11,2013.

[3] Ho, K.-H., Wang, N., Pavlou, G., Botsiaris, C., Optimizing Post-Failure
Network Performance for IP Fast Reroute using Tunnels, QShine’08, Proc.
of the 5th International ICST Conference on Heterogeneous Networking
for Quality, Reliability, Security and Robustness, Hong Kong, 2008.

[4] Kvalbein, A., Hansen, A., Cicic, T., Gjessing, S., Lysne, O., Fast IP
Network Recovery using Multiple Routing Configurations, INFOCOM
2006, pp. 1-15, April, 2006.

[5] Pham, T.S., PhD Thesis, Autonomous management of quality of service
in virtual networks, University of Technology of Compiegne, Nov. 2014.

[6] Wang, J., Nelakuditi, S., IP Fast Reroute with Failure Inferencing,
Proceedings of the 2007 SIGCOMM workshop on Internet network man-
agement, pp. 268-273, ACM New York, USA, 2007.

[7] Medard, M., Finn, S.G., Barry, R.A., Gallager, R.G., Redundant trees
for preplanned recovery in arbitrary vertex-redundant or edge-redundant
graphs, IEEE/ACM Trans. on Networking, vol. 7, issue 5, pp. 641-652,
Oct, 1999.

[8] Xi, K., Chao, J., IP Fast Rerouting for single-link/node failure recov-
ery, BROADNETS 2007, Fourth International Conference on Broadband
Communications, Networks and Systems, pp. 142-151, Raleigh, NC, USA,
Sept, 2007.

[9] Kamamura, S., Shimazaki, D., Hiramatsu, A., Nakazato, H., Autonomous
IP Fast Rerouting with Compressed Backup Flow Entries Using OpenFlow,
IEICE TRANSACTIONS on Information and Systems, Vol.E96-D, No.2,
pp.184-192, February, 2013.

[10] Stern, T.E., Bala, K., Multiwavelength Optical Networks: A Layered
Approach, Addison-Wesley Longman Publishing Co., Inc. Boston, MA,
USA, 1999.

[11] Zheng, Q., Shin, K.G., Fault-tolerant real-time communication in dis-
tributed computing systems, IEEE Trans. Parallel Distrib. Syst, vol. 9, issue
5, pp. 470-480, May 1998.

[12] Yang, H., Zhang,J., Zhao, Y., Li,H.,Huang,S.,Ji,Y.,Han,J., Lin,Y.,Lee,Y.,
Cross stratum resilience for OpenFlow-enabled data center interconnection
with Flexi-Grid optical networks, Optical Switching and Networking, pp.
72-82, Volume 11, Part A, January 2014.

[13] Raeisi, B. and Giorgetti, A., Software-based fast failure recovery in load
balanced SDN-based datacenter networks,6th International Conference
on Information Communication and Management (ICICM), pp. 95-99,
Hatfield, 2016.

[14] Chen, X., Zhao, B., Ma, S., Chen, C., Hu, D., Zhou, W., and Zhu,
Z., Leveraging master-slave OpenFlow controller arrangement to improve
control plane resiliency in SD-EONs, Opt. Express 23, Issue 6,pp. 7550-
7558, 2015.

[15] Capone, A., Cascone, C., Nguyen, A. Q.T., and Sanso, B., Detour
Planning for Fast and Reliable Failure Recovery in SDN with OpenState,
DRCN 2015, Kansas City, March 2015.

[16] Mijiddorj, D., Tarigan, I.D.F., Kim, D.-S. Fast-Failover Mechanisms
using Parenthood Distribution Controllers, KICS Summer Conference
2016,pp.212-213, Jeju Island, South Korea,June 2016.

[17] Chu, C. Y. ,Xi, K., Luo, M. and Chao, H. J.,Congestion-aware single link
failure recovery in hybrid SDN networks, IEEE Conference on Computer
Communications (INFOCOM), pp. 1086-1094, Kowloon, 2015.

[18] Borokhovich, M., Schiff, L. and Schmid, S., Provable data plane con-
nectivity with local fast failover: introducing openflow graph algorithms,
The third workshop on Hot topics in software defined networking (HotSDN
’14). ACM,pp. 121-126, New York, USA,2014.

[19] Katta, N., Zhang, H., Freedman, M. and Rexford, J.,Ravana: controller
fault-tolerance in software-defined networking, The 1st ACM SIGCOMM
Symposium on Software Defined Networking Research (SOSR ’15). ACM,
New York, USA, 2015.

[20] Chiesa, M., Nikolaevskiy, I., Mitrovic, S., Gurtov, A., Madry, A.,
Schapira, M., and Shenker, S., On the Resiliency of Static Forwarding
Tables. IEEE/ACM Trans. Netw. 25, 2, 1133-1146, April 2017.

[21] Holterbach, Th., Vissicchio, S., Dainotti, A., and Vanbever, L., SWIFT:
Predictive Fast Reroute. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication (SIGCOMM ’17). pp. 460-
473, ACM, New York, NY, USA, 2017.

[22] Kreutz, D., Ramos, F. M. V., Verissimo, P. E., Rothenberg, C. E., Azodol-
molky, S., and Uhlig, S., Software-Defined Networking: A Comprehensive
Survey, in Proceedings of the IEEE, vol. 103, no. 1, pp. 14-76, Jan. 2015.

[23] C. Filsfils, S. Previdi, L. Ginsberg, B. Decraene, S. Litkowski, R. Shakir.,
Segment Routing Architecture. Request for Comments: 8402, July 2018,
https://www.rfc-editor.org/authors/rfc8402.txt.

