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Abstract

Faust is a Block-Diagram language for sound
signal processing and synthesis. It implements a
new algebraic representation of block-diagrams and
adopts a functional model of semantics instead of
a data flow model [12]. Based on these elements, a
compiler able to translate DSP block diagram spec-
ification into C code is briefly presented. The code
produced proves to be efficient and can compete
with a hand written code.

The optimization process is even pushed further:
the C code produced can be automatically vector-
ized to address Altivec extension for PowerPC ( [7]
) and SSE and SSE2 extensions for Intel architec-
ture ( [4] ).

A method is proposed to determine whether or
not a Faust expression can be vectorized by cross-
ing a type information ( synthesized during an up-
ward run-around in the syntactic tree to be com-
piled ) and a conteztual information ( inherited dur-
ing a downward run-around in the syntactic tree ).
Thanks to this method, we are able to find expres-
sions that can be vectorized inside recursive expres-
sions that are not supposed to be vectorizable.

The quality of the code produced by Faust is
evaluated. On one hand, scalar code produced
by Faust is compared to vector code produced by
Faust, on the other hand, scalar and vector code
are compared to code optimized by hand.

In the end, we briefly present code transforma-
tions to vectorize the expressions classed as non-
vectorizable by the previous method so that even
better performances can be achieved in the future.

1 The compilation process:
from block-diagrams to effi-
cient C code

Before going into the details of automatic vec-
torization, the compilation of a Faust program is
briefly presented so that internal representation of
signals can be understood.

1.1 Block diagram representation

A graphical specification of a Faust’s block dia-
gram is directly equivalent to its textual represen-
tation ( see [12] for detailed explanations ). During
the parsing of the source code, an internal block
diagram representation can thus be directly built.

The block diagram algebra makes it easy then to
analyse formally this internal representation. The
analysis is lead through the evaluation of the block
diagram. Evaluation consists especially in the ap-
plication of abstractions ( abstractions being the
equivalent of functions in the lambda-calculus vo-
cabulary ). Abstractions in our case are block dia-
grams with variable inputs. A larger block diagram
is obtained from the evaluation since each function
is replaced with its body with the right arguments
applied to it. Yet the resulting block diagram is
now a construction of elementary blocks of the lan-
guage.

At this point, the correctness of the source code
is ensured both on lexical and syntactical points of
view.



1.2 Propagation of signals in the
block-diagram

Thanks to lambda-calculus, we have built, from
a functionnal description of the program, a single
block diagram standing for the complete treatment
with n inputs and m outputs.

The goal of a treatment is to produce m signals
standing for audio outputs. The C code to produce
is therefore the computation of these m outputs.
Consequently, we need now an internal representa-
tion in terms of signals to generate coding.

A list of n input signals is taken and propagated
into the block diagram. A list of m output signals
is obtained as a result. The propagation process
builds internal trees standing for each signals. The
leafs of these trees are the audio inputs, the con-
trol inputs ( linked to the graphical interface of the
application to produce ), and the numerical con-
stants. The nodes are the operations or the basic
block that needs arguments ( such as the data ta-
bles or the external functions ).

This process builds hence a list of m trees or
signals describing the computations to be done for
each output of the system. Common subtrees are
naturally shared within this process.

1.3 Type of signals

A signal is modeled by a discrete function of time
that gives for each instant of time the value that is
associated with it. We could base the whole system
on this definition, but in an actual implementation,
for ease of efficiency and calculation optimisation,
it is beneficial to refine this definition.

A typing system is thus proposed to annotate
each node of the trees standing for the signals to
output. Three characteristics are taken into ac-
count:

1. the nature of the signal: integer or real.

2. the variability of the signal: constant or evolv-
ing in time. Among signals evolving in time,
low frequency signals that can be considered
constant, for the duration of the computation
of one block of samples, are distinguished from
high frequency signals that evolve inside a
block of samples.

3. the computability of a signal: deferred timing
( not depending on real-time inputs of the sys-
tem and that can thus be pre-computed ) or
real-time ( depending on real-time inputs of
the system ). Among deferred timing signals,
one can distinguish the signals that can be
computed at compilation time and the signals
that will be computed at the initialisation of
the program.

4. the vectorability of the signal: vector or scalar.
We focus on the vectorization process from
part 2. Part 4 details the rules that determine
if a signal is of the vector type or of the scalar

type.

On one hand typing rules aim at checking the
validity of expressions and on the other hand at de-
termining certain properties so that more efficient
coding can be produced.

1.4 Optimization based on the tree
representation

Thanks to the computability property, one can
detect computation that can be done at compila-
tion time so that the corresponding subtrees can be
directly replaced by their result in the tree repre-
sentation.

Some arithmetic simplifications can also be per-
formed on trees. Among them, operation involving
neutral elements or identity elements are simplified.

Sharing of common subexpressions is performed
especially in the case of recursive expressions.

1.5 Code generation

Coding is produced during an in-depth wander-
ing in the tree representing the signals. A C++
object is produced to stand for the treatments de-
scribed in the Faust language. Each node of the
tree being annotated with a type, the code genera-
tion can be more specific:

1. The nature of a signal allows the determination
of the C type to be affected to the production,
that is 32 bits signed integer or 32 bits floating
point number.

2. The property of wvariability of a signal deter-
mines where in the class to produce its corre-
sponding coding:



o if a signal is constant, then it can be pro-
duced directly in the expression that uses
it for direct addressing rather than using
a temporary variable;

o if a signal is constant at the buffer level,
then it is produced out of the loop per-
forming the treatment;

e if it varies for each sample, it is produced
inside the loop.

3. The computability of a signal determines when
to compute a signal:

e if a signal is computable at compilation
time, then the resulting signal is simpli-
fied in the tree representation;

e if it is computable at initialisation time,
then it is produced at the initialisation of
the program and never again;

e if it is computable at execution time, then
it depends on the system’s real-time in-
puts and will be produced before the loop
if it depends on control inputs or inside
the loop if it depends on audio inputs.

4. The vectorability of a signal combined with the
context of an expression determine if wvector
code can be produced.

We focus now on the vectorization process.

2 Vectorization: fundamentals

2.1 Definition

A vector can be defined as an ordered list of
scalar values ( an array can therefore be consid-
ered as a vector ). A vector instruction applies
uniformly the same operation on a set of data.

Vec A
Vec B

+ o+ o+ o+ 4+

vaw@c}s

Figure 1: Vector addition

Since in a vector algorithm, parallelism comes
from simultaneous operations across a set of data
rather than from multiple threads, these algorithms
are called data-parallel algorithms and we talk
about data-parallel programming. An SIMD ar-
chitecture ( Single Instruction Multiple Data ) is
adapted to that kind of programming. A vectoriz-
ing compiler transforms a sequential ( or scalar )
code into a data-parallel code using vector instruc-
tions of an SIMD architecture.

2.2 The vectorizing process in Faust

Faust handles signals. The domain S of sig-
nals can be defined as the set of functions of time
s: N — R We will write s(¢t) the value of s at time
t. Faust terms denote signal processors, functions
transforming n-uples of input signals into m-uples
of output signals. The domain P of signal proces-
sors is the set of functions p : S — S™ (where
n,m € N) from n-uples of input signals to m-uples
of output signals.

Let’s consider for simplicity’s sake a signal pro-
cessor transforming a single input signal into a sin-
gle output signal ( f:S! — St).

where s and s €S

fs) =+ (1)

To lighten the writing, we will write fi(s;) — s}
the processing at instant ¢ ( fy : R > R ).

The vectorization process transforms the proces-
sor f : S' — S! into a processor fv : SV — SV
where N is the vector size. fv computes N ele-
ments at a time and requires therefore N times less
iterations.

St s}

(2)

v eeN—1 : —

!
St4+N—1 St+N-—1

The transformation of f into fv is obvious for
basic operations ( such as additions or multiplica-
tions ) that do not involve any data dependence. A
data dependence between two sections of a program
indicates that those two sections of code must be
run in the order indicated by the dependence ( see
[5] ). This prevent the sections from running in
parallel because the results may be different from
those of the serial code. This is essentially the case



of recursive definition. Various more or less com-
plex technics exist to vectorize recurrent equations
(‘see [8], [1], [11] ...). As of now, a simple strategy
is choosen: in the case of a fragment including a
data dependence, the code is unrolled a number of
times equal to the length of the vector so that it
simulates a vector operation.

Let’s consider the following recursive processor (
f:S2—St):

fi(st,8,_1) = s, where s, =0 for t<0 (3)

By unrolling it N times, we obtain:

ft(staséfl) — 8115
fe+1(St41,51) = S

(4)

feen—1(stan—1,81 n_2) = Sipnoa

For a recursive equation, we will produce scalar
code corresponding to equation (4). Yet, for a bet-
ter analogy with equation (2), equation (4) can be
rewritten as:

fi(s1,81-1) - 84
ft2+1 (8¢4158t 1) - St41

(5)

. ...
Jixn_1(8t4n-1,8; 1) — Siyn_1

where f? = f;_1 o f; stands for the composition
of functions f;.

We have thus a function furec that simulates a
vector function of the type of equation (2):

St s}

forecy sy N_1 : > ot -
St-1 ,
St4+N-—1
(6)

!
St+N—-1

2.3 Recognition of vectorizable code
fragments

We have to deal on the one hand with vector-
izable expressions that do not involve any data
dependence and on the other hand with non-
vectorizable expressions for which we need to sim-
ulate a vector operation. Consequently, we need a

method to separate vectorizable expressions from
non-vectorizable ones.

To determine whether an expression is vectoriz-
able, we cross a type information of the considered
expression and a context information in which the
expression appears. We assume two possible con-
texts: wector context when a subexpression is in-
cluded inside an expression vectorized and scalar
context when a subexpression is included inside
an expression that is unrolled. In the same way,
we assume two possible types: wvector type for a
vectorizable expression and scalar type for a non-
vectorizable one.

The context in which an expression appears is
determined, or inherited, during a downward run-
around of the tree-expression to be compiled. It is
a function of the context of including expressions
and the type of the expression considered.

The type of an expression is determined, or syn-
thesized, under certain rules and from the type of
the sub-expressions it is composed of ( typing dur-
ing an upward wandering of the tree-expression to
be compiled ). That type depends on the very na-
ture of the object to type ( the type is intrinsic to
the object in simple cases ).

The crossing of these two informations allows
distinction between vectorizable fragment and non
vectorizable ones.

3 Determination of the con-
text

The context is determined during the code gen-
eration. Depending on the context, either vector or
unrolled scalar codes will be produced.

The context is a priori vectorial as we want to
produce vector results. The in depth wandering of
the tree to be compiled is initialised with the vector
context.

The context evolves at each node according to
the following rules:

- if the context is vectorial and the considered
expression is of the vector type, then the con-
text stays vectorial ( vector code is produced
for this expression );

- if the context is vectorial and the considered



expression is of the scalar type, then the con-
text becomes scalar ( scalar code is produced
for this expression and the intermediate results
of each unrolled iteration build a vector inter-
face towards the including expression );

- if the context is scalar and the expression is of
the scalar type, then the context stays scalar (
scalar code is produced for this expression );

- if the context is scalar and the expression is of
the vector type, the context becomes vectorial
( vector code is produced for this expression
and each result of the vector feeds the corre-
sponding iteration of the including scalar ex-
pression ).

The possible cases are sumed up in the following
table:

Scalar Vector

context context
Context becomes

Scalar Scalar scalar +
type production Scalar production

Context becomes
Vector vectorial + Vector
type | Vector production production

Some simplifications are added to these rules.
For example in a scalar context, for a numerical
constant taking part in any operation, we produce
a constant scalar rather than a constant vector in
which we would use only one element ( knowing
that a numerical constant is always of the vector
type because it does not prevent the vectorization
).

As a matter of fact, these typing and change of
context rules are essentially used to determine vec-
torizable expressions inside scalar expressions.

4 Typing rules for the vectora-
bility

Typing indicates if an expression is potentially
vectorizable. A vector type is a necessary condition
to vectorization but whether or not the expression
will be vectorized depends on the context.

Each rule indicates how to compute the type of
an expression depending on the type of its subex-
pressions. Rules are presented under the form of
an environment I'; F S; ( placed above a horizon-
tal line ) and a judgement T' F < placed below.
The environment I' indicates a lexical context of
an expression and is used for the typing of recur-
sive expressions. It remembers the types associ-
ated with the identifiers of recursive groups includ-
ing this expression ( this is the notation of simply
typed lambda-calculus, see [2] ).

4.1 Relations of inclusion between

types

If one consider types as sets, then, saying that
type t1 is more specific than type t2 ( in that ¢
would have particularities that ¢ does not have )
is equivalent to saying that ¢; is a subset of ¢ :
t1 Cty .

Let V be the vector type and S the scalar type.

Because a fragment of vector code can be written
as a fragment of scalar code unrolled a number of
times equal to the size of the vector, the relation
Y C S is true.

4.2 Rules related to primitive sig-
nals

Numerical constants and real-time inputs of the
system ( that is audio inputs and control inputs )
are vectorizable.

4.2.1 Constants

Numerical constants are vectorizable beceause
there are known for every iteration.

neR
Skn:Vy

n €z
Skn:Vy

(7)



4.2.2 Inputs

Audio inputs are vectorizable because the au-
dio flow to be computed is cut and processed by a
buffer of a given size. Therefore the samples for a
complete buffer including the sample at the instant
t are known when the result of the instant ¢ is being
computed.

_ 8
I'F input, : V ®
Control inputs are also vectorizable because they

are updated for each buffer treated ( therefore they
are constant at the buffer level ).

I'kectrl; : V )

4.3 Rules related to the operations
on the signals

The type of an operation is the union of the type
of its arguments.

F"Slttl

ks, itm
Thp:ty x---xt, =1t Vi, t; C t
TFp(si-sm): Uig ti
In the case of Faust, some particular cases of this
general rule are especially used for:

(10)

- arithmetic operations with two arguments, this
leads to:

F}‘Slltl F"Sz:tz
Tk (81 *82) : (tl Utz)

(11)

- the mem() primitive of Faust which is a one
sample delay of a signal ( mem(z;) = ;1 ):

'ks:t

't mem(s):t (12)

The external C functions follow the general rule.
In the particular case of functions without argu-
ments such as random() in C, vectorization is al-
ways possible:

TF0 Y 1

4.4 Rules related to groups of mutu-
ally recursive signals

A term ( which is equivalent in lambda-calculus
to an abstraction of a function ) standing for a re-
cursive group is of the vector type if it is closed,
that is if does not contain any free variable. In the
other case it is of the scalar type. This result is true
in Faust where the only variables that can be free
in a term are the references to recursive definitions.

FV(/'“L.'(Sh" 7Sn)) =9
Tk pz.(sy, -,8n):V

(14)

FV(pz.(s1,--,8n)) £ S
Pk px.(s1,-+,8,): S

(15)

where F'V (M) denotes the set of free variables in
M.

For example, let ux and py be two recursive
groups. In the following term:

N$-(31;"',My-A;"',5n) (16)

where x occurs in A.

x occurs in A which is the body of the expres-
sion uy.A. The variable z is free in the term py.A,
therefore uy is of the scalar of type. On the other
hand, px is of the vector type because it is closed.

One can interpret this result through syntactic
trees: a subtree is vectorizable in a recursive tree if
there is no path from the recursive definition to the
recursive reference passing through the considered
subtree.

The projection operator 7; allows to select one
of the components of a group of mutually recursive
signals.

Dk pz.(s1, - ,8,) : (t1,+,tn)(0 < i < m)
Pt mi(pe.(s1,-+,80)) i &

(17)

The term z; is a reference, inside the definition of
a recursive group of label x, to the i-th component
of that group. A reference is inevitably scalar to
reference the state of the recursive variable at the
correct iteration.

F,x:(tl,---,tn)l—xi:s (18)



4.5 Rules related to to data arrays

One needs an index signal for reading an array
and another for writing so that the desired element
can be accessed. This signal is a priori indepen-
dant from the table and follows the typing rules
of any other signal. In the case of an index signal
function of the content of the array that it is index-
ing, the type of the index will be scalar as it will
be necesseraly included in a recursive loop.

In the case of a read-only table, the reading can
therefore be vectorized depending on the type of
its index ( the read-only table can also be seen as
a one argument function, the argument being the
index signal, see rule 10 ).

T'Findex : t
T F Greadoniy(index) : t

(19)

The case of read-write tables is more complex.
Writing before reading ( or reading before writing
) implies a data-dependence that prevents paral-
lelization. N writings followed by N readings in a
table is not equivalent to N writings and readings.
If a reading and a writing can occur at the same
storage location in different iterations then a data
dependence exists within the loop. The easiest way
to bypass this issue is to unroll the corresponding
code so that a vector operation is simulated. This
technic is all the more justified as the vector in-
struction sets of both SSE, SSE2 and Altivec tech-
nologies only propose vectorized reading or writing
for consecutive elements. Therefore, to access any
location of a table, we need to use scalar instruc-
tions.

Because reading and writing operations need to
be unroll, the operation of writing in a table is
typed as scalar. Yet the the signal s being writ-
ten can still be of the vector type.

'tk index : t;
T'ks:ty

I'F areadwrite (aneﬂf) =s5:8

(20)

On the other hand, the reading is not necessarily
typed as scalar. In fact, the type associated with
the reading is the union of the types of the index
and of the signal s to be written in the table ( just
like rule 10 ).

I'Findex : t;
T'kFs:t

I'F areqdwrite (mdem) t1 Uts

(21)

5 Other possible optimizations

We have seen that some expressions can’t be vec-
torized and in that case they are unrolled so that
the rhythm of treatment is preserved ( N results per
iteration, IV being the size of the considered vectors
). Some other strategies can be used to vectorize
the code left as scalar by the previous method and
will soon be implemented in our compiler.

5.1 Naturally parallel blocks

The syntax of Faust contains a parallel compo-
sition ( A, B means that the block diagrams A and
B execute in parallel ). In the case of several par-
allel block-diagrams that can’t be vectorized inde-
pendently, we can vectorize together each unrolled
iterations of A and B.

For example let f be the processor of A and g
the processor of B ( with the notations of 2.2 ):

fi(az,a;_1) = a; where a, =0 for t<0
ge(be, by ) = b, where b,=0 for t<0
(22)

Unrolling N times and making appear the paral-
lellisable treatments leads us to:

ft(ataa;ffl) - Ay
9¢(be, b;_1) - b}
fir1(aiq1,a}) - afe+1
gt+1(bgy1,b}) - b1
(23)
fran—1(aen—1,01 n_9) — @y
gerN-1(beyN-1,b  N_2) = Dy

We can then find vector operations to share be-
tween blocks A and B, that is between processors
f and g. This strategy is optimal when f and g
do the same computations ( for example band-pass
filters in parallel ) as every operations can then be



vectorized. The best results are obtained when the
number of parallel blocks is equal to the size of the
vector used.

5.2 Succession of non vectorizable
blocks

Let’s now consider a succession of non-
vectorizable blocks, for example block A followed
by block B, f and g standing for the corresponding
recursive processors:

where a; =0 for ¢t<0
where b, =0 for t<0
(24)
Notice that a}, output of f;, feeds g;. Again, the
treatments are unrolled N times.

filas,a;_1) = ay
ge(ag, by_1) = by

fi(at, ai_y) - a
gt(at, b_1) - f
frv1(ati1, ap) = Ay

(25)
! ! !
g+ N—2(at N_os b§+N—3) - brlf+N—2
fren-1(ateN-1,04 8 _2) = Gy
1 ! !
gt+N-1 (at+N—17 bt+N—2) = byN_1

Here vector operations to share between f and g
can also be found ( for iteration ¢ of g and ¢t — 1 of
f ). If a number of blocks in serial greater than or
equal to the size of the considered vector is found,
then the whole width of the vector can be used.

5.3 Vectorizable motifs in a non-
vectorizable expression

Another approach is possible. Let’s consider a
non-vectorizable expression for which the code is
unrolled. In this expression, we may find subex-
pressions that share identical operations with dif-
ferent arguments not bound together. The idea is
to built vector operations from these independent
subtrees that have the same structure but not the
same leaves.

Let’s consider for example a numeric filter with
N zeros and M poles. Its input-output relation is:

N M
Un= D GiTn_i+ ¥ biyn_;
i=0 j=1

The recursive part ( Z]Ail bjyn—; ) is a priori
not vectorizable. Yet it makes use of repetitive op-
erations: M multiplications and M — 1 additions
( or M multiplication-accumulations ). A horizon-
tal vectorization can be produced and consists in
performing the repetitive multiplication and accu-
mulation in parallel until the point where there is
no more parallelisation to be found. The scheme of
operations for M = 8 is shown in figure 2.

(26)

Lyad [yod [yod [yon | [y05) | ya6) | yo7) | yas) |
X X X X X X X X
Lo [ oo o [0 | [0 [ [ b0 | s ]
+
Y@y | y20by|  y(@-3)bs|  y(o-d)by
+ y(n-5).bs | + y(n-6).bg | + y(n-7).b; | + y(n-8).bg
e e

+ +
+
Figure 2: Horizontal vectorization

In this example, there are still 3 scalar additions
to compute but if a transposed structure is used for
the filter ( see part 5.4 ), it is possible to avoid any
scalar operations.

5.4 Block diagram simplification

Optimizations based on the equivalence between
2 block-diagrams are possible. One block-diagram
may present a lower cost of implementation. For
example, a typical equivalence exists between the
direct form I structure ( figure 3 ) and the direct
form II structure of a filter ( figure 4 ) [9].

Since linear and time invariant systems are com-
mutative, we may reverse the order of the direct
form I and implement block A after block B. Then
it is obvious that the delay elements can be shared.
A canonical form with respect to delay is obtained.



Figure 3: Filter: direct form I ( 2 zeros, 2 poles)

b, i)

Figure 4: Filter: direct form II ( 2 zeros, 2 poles)

An equivalence can then be found with the trans-
posed structure ( figure 5 ).

e
£

Figure 5: Filter: transposed form ( 2 zeros, 2 poles)

This equivalence can be proved by an approach
based on signal flow-graphs and Mason’s theorem
[10] ( knowing that there is a direct transforma-
tion from block-diagram to signal flow-graph ). The
transposition theorem states that inverting the di-
rection of the branches and inverting input and
ouput of the signal flow-graph does not change the
system. The signal flow-graphs give a graphical
representation of the equations that rule the anal-
ysed system. The system can then be simplified as
a graph rather than with its corresponding equa-
tions. This transposed implementation requires the
same operations as the direct form II. Yet, if the
multiply-accumulate operation can be used as a sin-

gle instruction, the cost of implementation is low-
ered. Indeed, the direct form IT needs 2 multipli-
cations, 1 addition and 3 multiply-accumulations
while the tranposed structure needs only 1 multi-
plication and 4 multiply-accumulations.

6 Performance evaluation

In the following tests, scalar and vectorized ver-
sions of Faust programs are produced and the
generated code is compiled with GCC ( with
the command line g++ -msse -03 on PC and
g++ -faltivec -03 on PowerPC ). Notice that the
tests presented here only involve floating point vec-
tor operations as GCC does not support SSE2 in-
trinsics when this article is being written ( SSE2 in-
trinsics are supported from the 3.3 release of GCC
).

The evaluation consists in comparing the speed
of execution of the programs in both scalar and
vector mode. The ratio of the scalar time and the
vector time gives an evaluation of the acceleration
brought by automatic vectorization on a given ar-
chitecture. The execution times are mesured with
Imbench [6]. Time needed to treat 100 times blocks
of 1024 32 bits floating point samples ( one such
block per input of the system ) is mesured. The
treatment for the 1024 samples inputs is divided
into smaller loops that treat 16,32,64,128,256,512
or 1024 samples.

The results are presented for an Athlon 1.5 GHz
with 512 Mo of RAM and a PowerPC G4 1,0 GHz
with 512 Mo of RAM ( both of these machines are
biprocessors but the tests were not compiled to ben-
efit from this particularity ).

6.1 8 tracks mixing

This program takes 8 audio inputs ( that means
8 blocks of 1024 floating point numbers in our case
), multiplies each input by a gain fixed by a cursor
and sums the 8 tracks ( appendix A ). The code is
fully vectorizable.

Accelerations around 2 for PC architecture and
around 4.5 on PowerPC architecture are obtained.
This can be explained by the fact that the Altivec
unit of PowerPC has 4 times more vector registers
than the SSE unit of PC. Thus on the PowerPC
a lot of intermediate results and all vector con-
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stants can be kept in registers minimizing mem-
ory traffic. The SSE unit having only 8 such reg-
isters need to store more intermediate results for
a mixing of 8 tracks. Besides, Altivec proposes
multiplication-accumulation in a single instruction
for floating point numbers which fits perfectly for
mixing ( whereas SSE and SSE2 have no such in-
structions ). Furthermore, acceleration seems all
the more important on PowerPC because the scalar
floating point unit is quite slow compared to the
vector unit ( the PC architecture is more homoge-
neous ).

6.2 Matrix multiplication

This program takes 3 audio inputs ( three blocks
of 1024 floating point numbers ) considered as a
vector ( we should say a matrix 3 x 1 to avoid any
confusion ) and multiplies it by a 3 x 3 matrix to
produce 3 outputs ( each element of the resulting
3 x 1 matrix, see appendix B). This code is fully
vectorizable.

An acceleration around 1.75 on PC and around
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7 on PowerPC is obtained for the same reason as
stated in the previous example. It is interesting to
notice that scalar code is more than 3 times slower
on the PowerPC ( while the the PC clock is only
1.5 faster ) but that the vector code is faster on the
PowerPC surpassing its slower clock.

6.3 IIR Filter

A numeric filter with N zeros and M poles has
an input-output relation of the following form ( [9]

):

N M
Yn = Z QiTn—; + Z bjyn—j (27)
i=0 j=1

This program implements an Infinite Impulse Re-
sponse ( ITR ) filter with 10 zeros and 11 poles. Two
implementations in Faust are proposed:

- a direct-form I implementation ( appendix C.1
) which is the direct implementation of the pre-
vious input-output relation;



- a transposed implementation ( appendix C.2
) which uses an optimization that we plan to
use for Faust ( see part 5.4 ).

With the proposed Faust implementations, one
can build a filter of any size by using the right
number of elementary cells. Furthermore, this im-
plementation can represent various kind of filters (
finite impulse response filter if all the b; are equal
to 0, purely recursive filter if all the a; are equal to
0 and all multiplication by 0 will be removed en-
suring the optimal code is produced, in the case of
a finite impulse response filter, the resulting code
is thus completely vectorized ).

By way of example, we include on these graphs
speed results obtained for the same filter with In-
tel’s implementations ( C source code of these im-
plementations can be found in [3] ):

- a basic implementation with a delay line;

- an optimized implementation with unrolled
coding and a circular buffer ( notice that these
optimizations depend on the & priori knowl-
edge of the size of the filter ).

For the G4 graph, results for a Faust code fully
vectorized are also added: it was actually vector-
ized by hand but it implements the future auto-
matic optimizations that we plan to add to the
Faust compiler ( see part 5 ). Results of this ver-
sion of the code for the PC were left off the graph
as it does not accelerate significantly compared to
the classic vectorized version.
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The vectorized versions are not really faster than
their scalar versions on PC because this filter is not
very vectorizable ( for the moment ). On PowerPC
on the contrary, we observe a significant acceler-
ation because of the slowness of scalar code com-
pared to vectorized code. It is interesting to no-
tice that because of the proportion of scalar code
even in vectorized version, the PC is faster than the
PowerPC.

Compared to Intel’s implementations, we see
that all Faust versions are at least two times faster
than a naive code. We see that Faust code can
compete with a code optimized by hand and on
PowerPC ( because of the relative slowness of scalar
code ), Faust can really be faster. The optimized
Faust version that minimizes the number of addi-
tions and memory cells proves to be quite fast (
faster than Intel’s implementation even in scalar
mode ).

The fully vectorized ( by hand for the moment )
version proves to be very efficient and confirms that
we have to go further into the automatic vector-
ization process. This fully vectorized version does
not bring a noticeable acceleration on PC nor goes
slower so the efforts that have to be made to op-
timize for PowerPC architecture can also be ap-
plied to PC without slowing down. Furthermore,
improvment of the vector unit on PC architecture
can be expected for the future. Some other opti-
mizations for PC architecture that have not been
tried yet may further improve the results obtained
with vectorization.



7 Conclusion

We have presented the compilation of Faust’s
code and its automatic vectorization.

We have proposed a typing system and a rules
system to separate vectorizable expressions from
non-vectorizable ones in Faust. We have briefly
presented technics to make vectorization possible
in code fragments that are not vectorizable.

In the case of fully vectorizable programs, the
vectorized code generated by Faust is 1.5 to 2.5
times faster than its scalar homologue for PC and
2.5 to 11.5 faster for PowerPC. In the case of ap-
plications more difficult to vectorize, vectorization
as it stands now does not improve a lot the perfor-
mances. Yet, tests using the coming improvements
of Faust give accelerations with a factor from 5 to
10 on PowerPC.

The code produced by Faust in both scalar and
vector modes proves to be competitive with code
optimized by hand.
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C Faust: 10th order IIR filter

C.1 Direct-Form I

cellule(x,cel) = _ <:

_,mem :

*(x) ,cel;

tencell (x0,x1,x2,x3,x4,x5,x6,x7,x8,x9) =

A = tencell(a0,al,a2,a3,a4,ab,a6,a7,a8,a9);
tencell (b0,b1,b2,b3,b4,b5,b6,b7,bs,b9) ;

o5}
1]

process =

cellule(x0,
cellule(x1,
cellule(x2,
cellule(x3,
cellule(x4,
cellule(x5,
cellule(x6,
cellule(x7,
cellule(x8,
cellule(x9,!))))))

A : + 7 B;

C.2 Transposed form

cellule(cel,a,b) = cel,_,_

process = _

)))) +>_;

: mem,*(b),*(a)

s (L, )+

: cellule(
cellule(
cellule(
cellule(
cellule(
cellule(
cellule(
cellule(
cellule(

((x(09) ,*(a9))+>_),

a8,b8),
a7,b7),
a6,bb),
a5,b5),
ad,bd),
a3,b3),
a2,b2),
al,bl),
a0,b0) ;

-3



