
HAL Id: hal-02159013
https://hal.archives-ouvertes.fr/hal-02159013

Submitted on 18 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adding Automatic Parallelization to Faust
Yann Orlarey, Stéphane Letz, Dominique Fober

To cite this version:
Yann Orlarey, Stéphane Letz, Dominique Fober. Adding Automatic Parallelization to Faust. Linux
Audio Conference, 2009, Parma, Italy. �hal-02159013�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archive Ouverte en Sciences de l'Information et de la Communication

https://core.ac.uk/display/217711471?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-02159013
https://hal.archives-ouvertes.fr

Adding Automatic Parallelization to Faust

Yann Orlarey and Stephane Letz and Dominique Fober
Grame, Centre National de Creation Musicale

9 rue du Garet, BP 1185
69202 Lyon Cedex 01

France,
{orlarey, letz, fober}@grame.fr

Abstract

Faust 0.9.9.5 introduces new compilation options to do auto-
matic parallelization of code using OpenMP. This paper ex-
plains how the automatic parallelization is done and presents
some benchmarks.

Keywords

Faust, OpenMP, Parallelism

1 Introduction

Faust is a programming language for real-time signal
processing and synthesis designed from scratch to be a
compiled language. Being efficiently compiled allows
Faust to provide a viable high-level alternative to C/C++
to develop high-performance signal processing applica-
tions, libraries or audio plug-ins.

Until recently the computation code generated by the
compiler was organized quite traditionally as a single
sample processing loop. This scheme works very well
but it doesn’t take advantages of multicore architectures.
Moreover it can generate code that exceeds the autovec-
torization capabilities of current C++ compilers.

We have recently extended the compiler with two new
schemes : the vector and the parallel schemes. The vec-
tor scheme simplifies the autovectorization work of the
C++ compiler by splitting the sample processing loop
into several simpler loops. The parallel scheme analyzes
the dependencies between these loops and add OpenMP
pragmas to indicate those that can be computed in paral-
lel.

These new schemes can produce interesting performance
improvements. The goal of the paper is to present
these new compilation schemes and to provide some
benchmarks comparing their performances. The paper
is organized as follow : the next section will give a
brief overview of Faust language, The third section will
present the three code generation schemes and the last
section will introduce the benchmarks used and the re-
sults obtained.

2 Faust overview

In this section we give a brief overview of Faust with
some examples of code.

A Faust program describes a signal processor, some-
thing that transforms some input signals and produces
some output signals. The programming model used com-
bines a functional programming approach with a block-
diagram syntax. The functional programming approach
provides a natural framework for signal processing. Dig-
ital signals are modeled as discrete functions of time, and
signal processors as second order functions that operate
on them. Moreover Faust’s block-diagram composition
operators, used to combine signal processors together,
fit in the same picture as third order functions.

The Faust compiler translates Faust programs into equiv-
alent C++ programs. It uses several optimization tech-
niques in order to generate the most efficient code. The
resulting code can usually compete with, and sometimes
outperform, DSP code directly written in C/C++. It is
also self-contained and doesn’t depend on any DSP run-
time library.

Thanks to specific architecture files, a single Faust pro-
gram can be used to produce code for a variety of plat-
forms and plug-in formats. These architecture files act
as wrappers and describe the interactions with the host
audio and GUI system. Currently more than 10 architec-
tures are supported (see Table 1) and new ones can be
easily added.

alsa-gtk.cpp ALSA application + GTK
alsa-qt.cpp ALSA application + QT4
jack-gtk.cpp JACK application + GTK
jack-qt.cpp JACK application + QT4
ca-qt.cpp CoreAudio application + QT4
ladspa.cpp LADSPA plug-in
max-msp.cpp Max MSP plug-in
supercollider.cpp Supercollider plug-in
vst.cpp VST plug-in
q.cpp Q language plug-in

Table 1: Some architecture files available for Faust

In the following subsections we give a short and informal
introduction to the language through the example of a
simple noise generator. Interested readers can refer to
[1] for a more complete description.

2.1 A simple noise generator

A Faust program describes a signal processor by
combining primitive operations on signals (like
+,−, ∗, /,√, sin, cos, . . .) using an algebra of high level
composition operators [2] (see Table 2). You can think
of these composition operators as a generalization of
mathematical function composition f ◦ g.

f ∼ g recursive composition
f , g parallel composition
f : g sequential composition
f <: g split composition
f :> g merge composition

Table 2: The five high level block-diagram composition
operators used in Faust

A Faust program is organized as a set of definitions with
at least one for the keyword process (the equivalent of
main in C).

Our noise generator example noise.dsp only involves
three very simple definitions. But it also shows some
specific aspects of the language:

random = +(12345) ~ *(1103515245);
noise = random/2147483647.0;
process = noise * vslider("noise", 0, 0,

100, 0.1)/100;

The first definition describes a (pseudo) random num-
ber generator. Each new random number is computed by
multiplying the previous one by 1103515245 and adding
to the result 12345.

The expression +(12345) denotes the operation of
adding 12345 to a signal. It is an example of a com-
mon technique in functional programming called par-
tial application: the binary operation + is here pro-
vided with only one of its arguments. In the same way
*(1103515245) denotes the multiplication of a signal by
1103515245.

The two resulting operations are recursively composed
using the ∼ operator. This operator connects in a feed-
back loop the output of +(12345) to the input of
*(1103515245) (with an implicit 1-sample delay)
and the output of *(1103515245) to the input of
+(12345).

The second definition transforms the random signal into
a noise signal by scaling it between -1.0 and +1.0.

Finally, the definition of process adds a simple user in-
terface to control the production of the sound. The noise
signal is multiplied by the value delivered by a slider to
control its volume.

2.2 Invoking the compiler

The role of the compiler is to translate Faust programs
into equivalent C++ programs. The key idea to generate

efficient code is not to compile the block diagram itself,
but what it computes.

Driven by the semantic rules of the language the com-
piler starts by propagating symbolic signals into the
block diagram, in order to discover how each output sig-
nal can be expressed as a function of the input signals.

These resulting signal expressions are then simplified
and normalized, and common subexpressions are fac-
torized. Finally these expressions are translated into a
self contained C++ class that implements all the required
computation.

To compile our noise generator example we use the fol-
lowing command :

$ faust noise.dsp

This command generates the following C++ code on the
standard output :

class mydsp : public dsp {
private:
int iRec0[2];
float fslider0;
public:
static void metadata(Meta* m) {
}

virtual int getNumInputs() { return 0; }
virtual int getNumOutputs() { return 1; }
static void classInit(int samplingFreq) {
}
virtual void instanceInit(int samplingFreq)
{
fSamplingFreq = samplingFreq;
for (int i=0; i<2; i++) iRec0[i] = 0;
fslider0 = 0.0f;

}
virtual void init(int samplingFreq)
{
classInit(samplingFreq);
instanceInit(samplingFreq);

}
virtual void buildUserInterface(UI* interface)
{
interface->openVerticalBox("noise");
interface->declare(&fslider0, "style"

, "knob");
interface->addVerticalSlider("noise",

&fslider0, 0.0f, 0.0f, 100.0f, 0.1f);
interface->closeBox();

}
virtual void compute (int count,

float** input,
float** output)

{
float fSlow0 = (4.656613e-12f * fslider0);
float* output0 = output[0];
for (int i=0; i<count; i++) {

iRec0[0] = 12345+1103515245*iRec0[1];
output0[i] = fSlow0*iRec0[0];
// post processing
iRec0[1] = iRec0[0];

}
}

};

The generated class contains seven methods.

Among these methods getNumInputs() and
getNumOutputs() return the number of input
and output signals required by our signal processor.
init() initializes the internal state of the signal pro-
cessor. buildUserInterface() can be seen as a
list of high level commands, independent of any toolkit,
to build the user interface. The method compute()
does the actual signal processing. It takes 3 arguments:
the number of frames to compute, the addresses of the
input buffers and the addresses of the output buffers,
and computes the output samples according to the input
samples.

2.3 Generating a full application

The faust command accepts several options to control
the generated code. Two of them are widely used. The
option -o outputfile specifies the output file to be used
instead of the standard output. The option -a architec-
turefile defines the architecture file used to wrap the gen-
erate C++ class.

For example the command faust -a
jack-qt.cpp -o noise.cpp noise.dsp
generates a full jack application using QT4.4 as a
graphic toolkit. The figure 1 is a screenshot of our noise
application running.

Figure 1: Screenshot of the noise example generated
with the jack-qt.cpp architecture

2.4 Generating a block-diagram

Another interesting option is -svg that generates one or
more SVG graphic files that represent the block-diagram
of the program as in Figure 2.

It is interesting to note the difference between the block
diagram and the generated C++ code. The block dia-
gram involves one addition, two multiplications and two
divisions. The generated C++ program only involves one
addition and two multiplications per samples. The com-
piler was able to optimize the code by factorizing and
reorganizing the operations.

As already said, the key idea here is not to compile the
block diagram itself, but what it computes.

3 Code generation

In this section we describe how the Faust compiler gener-
ates its code. We will first introduce the so called scalar
generation of code which was the only one until version

Figure 2: Graphic block-diagram of the noise generator
produced with the -svg option

0.9.9.5. Then we will present the vector generation of
code where the code is organized into several loops that
operates on vectors, and finally the parallel generation
of code where these vector loops are parallelized using
OpenMP directives.

3.1 Preliminary steps

Before reaching the stage of the C++ code generation,
the Faust compiler have to carry on several steps that we
describe briefly here.

3.1.1 Parsing source files

The first one is to recursively parse all the source
files involved. Each source file contains a set of def-
initions and possibly some import directives for other
source files. The result of this phase is a list of
definitions : [(name1 = definition1), (name2 =
definition2), . . .]. This list is actually a set, as redefi-
nitions of symbols are not allowed.

3.1.2 Evaluating block-diagrams

Among the names defined there must be process, the ana-
log of main in C/C++. This definition has to be evaluated
as Faust allows algorithmic block-diagram definitions.

For example the algorithmic definition :

Listing 1: example of algorithmic definition
foo(n) = *(10+n);
process = par(i,3, foo(i));

will be translated in a flat block-diagram description that
contains only primitive blocks:

process = (_,10:*),(_,11:*),(_,12:*);

This description is said to be in normal form.

3.1.3 Discovering the mathematical equations

Faust doesn’t compile a block-diagram directly. It uses a
phase of symbolic propagation to first discover its math-
ematical semantic (what it computes). The principle is
to propagate symbolic signals through the inputs of the
block-diagram in order to get, at the other end, the math-
ematical equation of each output signal.

These equations are then normalized so that different
block-diagrams, but computing mathematically equiva-
lent signals, result in the same output equations.

Here is a very simple example where the input signal is
divided by 2 and then delayed by 10 samples:

process = /(2) : @(10);

This is equivalent to having the input signal first multi-
plied by 2, then delayed by 7 samples, then divided by 4
and then delayed by 3 samples.

process = *(2) : @(7) : /(4): @(3);

Both lead to the following signal equation :

Y (t) = 0.5 ∗X(t− 10)

Faust applies several rules to simplify and normalize out-
put signal equations. For example one of theses rules
says that it is better to multiply a signal by a constant af-
ter a delay than before. It gives the compiler more oppor-
tunities to share and reuse the same delay line. Another
rule says that two consecutive delays can be combined
into a single one.

3.1.4 Typing the mathematical equations

The next phase is to assign types to the resulting signal
equations. This will not only help the compiler to de-
tect errors but also to generate the most efficient code.
Several aspects are considered :

1. the nature of the signal : integer of float.

2. interval of values of the signal : the minimum and
maximum values that a signal can take

3. the computation time of the signal: the signal can be
computed at compilation time, at initialization time
or at execution time.

4. the speed of the signal : constant signals are com-
puted only once, low speed user interface signals
are computed once for every block of samples, high
speed audio signals are computed every samples.

5. parallelism of the signal : true if the samples of
the signal can be computed in parallel, false when
the signal have recursive dependencies requiring its
samples to be computed sequentially.

3.1.5 Occurrence analysis

The role of this last preparation phase is to an-
alyze in which context each subexpression is
used and to discover common subexpressions.
If an expensive common subexpression is dis-
covered, an assignment to a cache variable
float fTemp = <common subexpression code>;

is generated, and the cache variable fTemp is used in
its enclosing expressions. Otherwise the subexpression
code is used in-lined.

The occurrence analysis proceeds by a top-down visit of
the signal expression. The first time a subexpression is
visited, it is annotated with a counter. The next time, the
counter will be increased and its visit skipped.

Subexpressions with several occurrences are candidates
to be cached in variables. However in some circum-
stances expressions with a single occurrence need also to
be cached if they occur in a faster context. For example a
constant expression occurring in a low speed user inter-
face expression or a user interface expression occurring
in a high speed audio expression will generally required
to be cached.

It is only after this phase that the generation of the C++
code can start.

3.2 Scalar Code generation

The generation of the C++ code is made by populating a
klass object (representing a C++ class), with strings rep-
resenting C++ declarations and lines of code. In scalar
mode these lines of code are organized in a single sam-
ple computation loop, while they can be splitted in sev-
eral loops with the new vector and parallel schemes.

The code generation relies basically on two functions: a
translation function [[]] that translate a signal expression
into a string of C++ code, and a cache function C() that
checks if a variable is needed.

We don’t have the space to go in too much details but
here is the translation rule for the addition of two signal
expressions :

[[E1]]→ S1
[[E2]]→ S2

[[E1 + E2]]→ C(′′(S1 + S2)′′)

It says that to compile the addition of two signals we
compile each of these signals and concat the resulting
strings with a + sign in between. The string obtained is
passed to the cache function that will check if the expres-
sion is shared or not.

Let say that the string passed to the cache func-
tion C() is (input0[i] + input1[i]). If the ex-
pression is shared, the cache function will allo-
cate a fresh variable name fTemp0, add the line of
code float fTemp0 = (input0[i] + input1[i]); to
the klass object and return fTemp0 as a string to be

used when compiling enclosing expressions. If the ex-
pression is not shared it will simply return the string
(input0[i] + input1[i]) unmodified.

To illustrate this, lets take two simple examples. The first
one convert a stereo signal into a mono signal by adding
the two input signals :

process = +;

In this case (input0[i] + input1[i]) is not shared and
the generated C++ code is the following :

virtual void compute (int count,
float** input,
float** output)

{
float* input0 = input[0];
float* input1 = input[1];
float* output0 = output[0];
for (int i=0; i<count; i++) {
output0[i] = (input0[i] + input1[i]);

}
}

But when the sum of the two input signals is duplicated
on two output signals as in :

process = + <: _,_;

then (input0[i] + input1[i]) will be cached in a tem-
porary variable :

virtual void compute (int count,
float** input,
float** output)

{
float* input0 = input[0];
float* input1 = input[1];
float* output0 = output[0];
float* output1 = output[1];
for (int i=0; i<count; i++) {
float fTemp0 = (input0[i] + input1[i]);
output0[i] = fTemp0;
output1[i] = fTemp0;

}
}

3.3 Vector Code generation

Modern C++ compiler are able to do autovectorization,
that is to use SIMD instructions to speedup the code.
These instructions can typically operate in parallel on
short vectors of 4 simple precision floating point num-
bers thus leading to a theoretical speedup of x4. Au-
tovectorization of C/C+ programs is a difficult task. Cur-
rent compilers are very sensitive to the way the code is
arranged. In particular too complex loops can prevent
autovectorization. The goal of the new vector code gen-
eration is to rearrange the C++ code in a way that fa-
cilitates the autovectorization job of the C++ compiler.
Instead of generating a single sample computation loop,
it splits the computation into several simpler loops that
communicates by vectors.

The vector code generation is activated by passing the
--vectorize (or -vec) option to the Faust compiler. Two
additional options are available : --vec-size <n> con-
trols the size of the vector (by default 32 samples) and
--loop-variant 0/1 gives some additional control on
the loops.

To illustrate the difference between scalar code and vec-
tor code, let’s take the computation of the RMS (Root
Mean Square) value of a signal. Here is the Faust code
that computes the Root Mean Square of a sliding window
of 1000 samples :

// Root Mean Square of n consecutive samples
RMS(n) = square : mean(n) : sqrt ;

// Square of a signal
square(x) = x * x ;

// Mean of n consecutive samples of a signal
// (uses fixpoint to avoid the accumulation of
// rounding errors)
mean(n) = float2fix : integrate(n) :

fix2float : /(n);

// Sliding sum of n consecutive samples
integrate(n,x) = x - x@n : +~_ ;

// Convertion between float and fix point
float2fix(x) = int(x*(1<<20));
fix2float(x) = float(x)/(1<<20);

// Root Mean Square of 1000 consecutive samples
process = RMS(1000) ;

The compute() method generated in scalar mode is the
following :

virtual void compute (int count,
float** input,
float** output)

{
float* input0 = input[0];
float* output0 = output[0];
for (int i=0; i<count; i++) {
float fTemp0 = input0[i];
int iTemp1 = int(1048576*fTemp0*fTemp0);
iVec0[IOTA&1023] = iTemp1;
iRec0[0] = ((iVec0[IOTA&1023] + iRec0[1])

- iVec0[(IOTA-1000)&1023]);
output0[i] = sqrtf(9.536744e-10f *

float(iRec0[0]));
// post processing
iRec0[1] = iRec0[0];
IOTA = IOTA+1;

}
}

The -vec option leads to the following reorganization of
the code :

virtual void compute (int fullcount,
float** input,
float** output)

{
int iRec0_tmp[32+4];
int* iRec0 = &iRec0_tmp[4];
for (int index=0; index<fullcount; index+=32)
{
int count = min (32, fullcount-index);

float* input0 = &input[0][index];
float* output0 = &output[0][index];
for (int i=0; i<4; i++)

iRec0_tmp[i]=iRec0_perm[i];
// SECTION : 1
for (int i=0; i<count; i++) {

iYec0[(iYec0_idx+i)&2047] =
int(1048576*input0[i]*input0[i]);

}
// SECTION : 2
for (int i=0; i<count; i++) {

iRec0[i] = ((iYec0[i] + iRec0[i-1]) -
iYec0[(iYec0_idx+i-1000)&2047]);

}
// SECTION : 3
for (int i=0; i<count; i++) {

output0[i] = sqrtf((9.536744e-10f *
float(iRec0[i])));

}
// SECTION : 4
iYec0_idx = (iYec0_idx+count)&2047;
for (int i=0; i<4; i++)

iRec0_perm[i]=iRec0_tmp[count+i];
}

}

While the second version of the code is more complex
it turn out to be much easier to vectorize efficiently by
the C++ compiler. Using Intel icc 11.0, with the ex-
act same compilation options : -O3 -xHost -ftz
-fno-alias -fp-model fast=2, the scalar ver-
sion leads to a throughput performance of 129.144 MB/s,
while the vector version achieves 359.548 MB/s, a
speedup of x2.8 !

scalar code generator

vector code generator
(loop separation)

parallel code generator
(OpenMP directives)

Figure 3: Faust’s stack of code generators

The vector code generation is built on top of the scalar
code generation (see figure 3). Every time an expression
needs to be compiled, the compiler checks to see if it
needs to be in a separate loop or not. It applies some
simple rules for that. Expressions that are shared (and
are complex enough) are good candidates to be compiled
in a separate loop, as well as recursive expressions and
expressions used in delay lines.

The result is a directed graph in which each node is a
computation loop. This graph is stored in the klass object
and a topological sort is applied to it before printing the
code.

3.4 Parallel Code generation

The parallel code generation is activated by passing the
--openMP (or -omp) option to the Faust compiler. It im-
plies the -vec options as the parallel code generation is
built on top of the vector code generation by inserting
appropriate OpenMP directives in the C++ code.

3.4.1 The OpenMP API

#
p
rag

m
a

 o
m

p p
arallel

m
aster thread

fork

fork

join

join

#p
rag

m
a

 om
p para

lle
l

Figure 4: OpenMP is based on a fork-join model

OpenMP (http://wwww.openmp.org) is a well estab-
lished API that is used to explicitly define direct multi-
threaded, shared memory parallelism. It is based on a
fork-join model of parallelism (see figure 4). Parallel re-
gions are delimited by using the #pragma omp parallel

construct. At the entrance of a parallel region a team of
parallel threads is activated. The code within a parallel
region is executed by each thread of the parallel team un-
til the end of the region.

#pragma omp parallel
{
// the code here is executed simultaneously by
// every thread of the parallel team
...

}

In order not to have every thread doing redundantly

the exact same work, OpemMP provides specific work-
sharing directives. For example #pragma omp sections

allows to break the work into separate, discrete sections.
Each section being executed by one thread :

#pragma omp parallel
{

#pragma omp sections
{
#pragma omp section
{

// job 1
}
#pragma omp section
{

// job 2
}
...

}

...
}

3.4.2 Adding OpenMP directives

As already said the parallel code generation is built on
top of the vector code generation. The graph of loops
produced by the vector code generator is topologically
sorted in order to detect the loops that can be computed
in parallel. The first set L0 contains the loops that don’t
depend of any other loops, the set L1 contains the loops
that only depend of loops of L0, etc..

As all the loops of a given set Ln can be computed in
parallel, the compiler will generate a sections construct
with a section for each loop.

#pragma omp sections
{
#pragma omp section
for (...) {

// Loop 1
}
#pragma omp section
for (...) {

// Loop 2
}
...

}

If a given set constains only one loop, then the compiler
checks to see if the loop can be parallelized (no recursive
dependencies) or not. If it can be parallelized, it gener-
ates :

#pragma omp for
for (...) {
// Loop code
}

otherwise it generates a single construct so that only one
thread will execute the loop :

#pragma omp single
for (...) {
// Loop code
}

3.4.3 Example of parallel code

To illustrate how Faust utilises the OpenMP directives,
here is a very simple example, two 1-pole filters in paral-
lel connected to an adder (see figure 5 the corresponding
block-diagram) :

filter(c) = *(1-c) : + ~ *(c);
process = filter(0.9), filter(0.9) : +;

Figure 5: two filters in parallel connected to an adder

The corresponding compute() method obtained using the
-omp option is the following :

virtual void compute (int fullcount,
float** input,
float** output)

{
float fRec0_tmp[32+4];
float fRec1_tmp[32+4];
float* fRec0 = &fRec0_tmp[4];
float* fRec1 = &fRec1_tmp[4];
#pragma omp parallel firstprivate(fRec0,fRec1)
{
for (int index = 0; index < fullcount;

index += 32)
{

int count = min (32, fullcount-index);
float* input0 = &input[0][index];
float* input1 = &input[1][index];
float* output0 = &output[0][index];
#pragma omp single
{
for (int i=0; i<4; i++)

fRec0_tmp[i]=fRec0_perm[i];
for (int i=0; i<4; i++)

fRec1_tmp[i]=fRec1_perm[i];
}
// SECTION : 1
#pragma omp sections
{
#pragma omp section
for (int i=0; i<count; i++) {

fRec0[i] = ((0.1f * input1[i])
+ (0.9f * fRec0[i-1]));

}
#pragma omp section
for (int i=0; i<count; i++) {

fRec1[i] = ((0.1f * input0[i])
+ (0.9f * fRec1[i-1]));

}
}
// SECTION : 2
#pragma omp for
for (int i=0; i<count; i++) {

output0[i] = (fRec1[i] + fRec0[i]);
}
// SECTION : 3
#pragma omp single
{

for (int i=0; i<4; i++)
fRec0_perm[i]=fRec0_tmp[count+i];

for (int i=0; i<4; i++)
fRec1_perm[i]=fRec1_tmp[count+i];

}
}

}
}

This code appeals for some comments :

1. The parallel construct #pragma omp parallel is
the fundamental construct that starts parallel exe-
cution. The number of parallel threads is generally
the number of CPU cores but it can be controlled in
several ways.

2. variables external to the parallel region are shared
by default. The firstprivate(fRec0,fRec1)

clause indicates that each thread should have its pri-
vate copy of fRec0 and fRec1. The reason is that ac-
cessing shared variables requires an indirection and
is very inefficient compared to private copies.

3. The top level loop for (int index = 0;...)...

is executed by all threads simultaneously. The sub-
sequent work-sharing directives inside the loop will
indicate how the work must be shared between the
threads.

4. Please note that an implied barrier exists at the end
of each work-sharing region. All threads must have
executed the barrier before any of them can con-
tinue.

5. The work-sharing directive #pragma omp single

indicates that this first section will be executed by
only one thread (any of them).

6. The work-sharing directive #pragma omp sections

indicates that each corresponding
#pragma omp section, here our two filters,
will be executed in parallel.

7. The loop construct #pragma omp for specifies that
the iterations of the associated loop will be executed
in parallel. The iterations of the loop are distributed
across the parallel threads. For example if we have
two threads the first one can compute indices be-
tween 0 and count/2 and the other between count/2
and count.

8. Finally #pragma omp single in section 3 indicates
that this last section will be executed by only one
thread (any of them).

4 Benchmarks

To compare the performances of these three types of code
generation in a realistic situation we have implemented a
special alsa-gtk-bench.cpp architecture file that measures
the duration of the compute() method. Here is a fragment
of this architecture file:

while(running) {
audio.read();
STARTMESURE
DSP.compute(audio.buffering(),

audio.inputSoftChannels(),
audio.outputSoftChannels()
);

STOPMESURE
audio.write();
running = mesure <= (KMESURE + KSKIP);

}

The methodology is the following. The duration of the
compute method is measured by reading the TSC (Time
Stamp Counter) register. A total of 128+2048 measures
are made by run. The first 128 measures are considered
a warm-up period and are skipped. The median value of
the following 2048 measures is computed. This median
value, expressed in processors cycles, is first converted in
a duration, and then in number of bytes produced per sec-
ond considering the audio buffer size (in our test 2048)
and the number of output channels.

This throughput performance is a good indicator. The
memory bandwidth is a strong limiting factor for today’s
processors, and it has to be shared among the processors.
In other words, on a SMP machine a realtime audio pro-
gram can never go faster than the memory bandwidth.
And if a sequential program already utilises all the avail-
able memory bandwidth, there is no room for improve-
ment. In this case a parallel version can only perform
worth.

4.1 Machines and compilers used

In order to compare the scalar code generation with the
new vector and parallel code generation we have com-
piled with Faust 0.9.9.5b2 a series of test in three differ-
ent versions. The following commands were used :

- scal : faust -a alsa-gtk-bench.cpp
test.dsp -o test.cpp

- vec : faust -a alsa-gtk-bench.cpp
-vec -vs 3968 test.dsp -o test.cpp

- par : faust -a alsa-gtk-bench.cpp
-omp -vs 3968 test.dsp -o test.cpp

We have also used two different C++ compilers, GNU
GCC and Intel ICC :

- GCC version 4.3.2 with options : -O3
-march=native -mfpmath=sse
-msse -msse2 -msse3 -ffast-math

-ftree-vectorize. (-fopenmp added for
OpenMP).

- ICC version 11.0.074 with options : -O3 -xHost
-ftz -fno-alias -fp-model fast=2.
(-openmp is added for OpenMP).

All the tests were run on three different machines :

- vaio : a Sony Vaio SZ3VP laptop, with an Intel
T7400 dual core processor at 2167 MHz, 2GB of
Ram, running an Ubuntu 7.10 distribution with a
2.6.22-15-generic kernel.

- xps : a Dell XPS machine with an Intel Q9300 quad
core processor at 2500 MHz, 4GB of Ram, run-
ning an Ubuntu 8.10 distribution with a 2.6.22-15-
generic kernel.

- macpro : an Apple Macpro with two Intel Xeon
X5365 quad core processors at 3000 MHz, 2GB of
Ram, running an Ubuntu 8.10 distribution with a
2.6.27-12-generic kernel

4.2 Benchmark: copy1.dsp

The goal of this first test is to measure the memory band-
width. We use a very simple Faust program copy1.dsp
that simply copies the input signal to the output signal:

process = _;

The results we have obtained are summarized figure 6.
The horizontal axes corresponds to the three faust com-
pilation schemes : scalar , vector and parallel, combined
with the two C++ compilers : gcc and icc. The vertical
axes is the throughput : how many bytes of samples each
tested program is able to produce per second (higher val-
ues are the better).

It is interesting to note how catastrophic are the perfor-
mances of the parallel versions. The scalar and vector
versions are quite similar with a little advantage to the
scalar version. The code generated by icc performs bet-
ter. The memory bandwidth of the Macpro is disappoint-
ing specially considering that it has to be shared by 8
cores.

How stable are these measures ? Figure 7 compares
the performances of copy1 (compiled with icc) on the
Macpro on 5 different runs. As we can see the stability
is reasonably good.

4.3 Benchmark: freeverb.dsp

The second test is freeverb.dsp, a Faust implementation
of the Freeverb (the source can be found in the Faust dis-
tribution).

The results are given figure 8. Here gcc gives very good
results in scalar code and outperforms icc in 2 of the 3
cases. But the performances of gcc are still very poor on
vector and parallel code.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

gcc.scal gcc.vec gcc.par icc.scal icc.vec icc.par

T
ro

ug
hp

ut
 M

B
/s

Compilation option

VAIO
XPS
MAC

Figure 6: Copy1.dsp benchmark

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 0.5 1 1.5 2 2.5 3 3.5 4

T
ro

ug
hp

ut
 M

B
/s

Run

scal
vec
par

Figure 7: Stability of measures (copy1 on macpro, icc
version)

Despite the fact that freeverb has a limited amount of
parallelism, icc gives quite convincing results with a rea-
sonable speedup on vector and parallel code on the Vaio
and the XPS machines. It is also interesting to note that
on parallel version the 8 3GHz cores of the macpro were
slower than 4 2.5Ghz cores of the XPS !

4.4 Benchmark: karplus32.dsp

Karplus32.dsp is a generalized version of Karplus-
Strong algorithm with 32 slightly detuned strings in par-
allel (the source can be found in the Faust distribution).
Figure 9 gives the results. Again excellent performances

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

gcc.scal gcc.vec gcc.par icc.scal icc.vec icc.par

T
ro

ug
hp

ut
 M

B
/s

Compilation option

VAIO
XPS
MAC

Figure 8: Freeverb.dsp benchmark

of gcc in scalar mode. Good progression of the perfor-
mances in vector mode as well as in parallel mode for
icc.

 0

 10

 20

 30

 40

 50

 60

 70

 80

gcc.scal gcc.vec gcc.par icc.scal icc.vec icc.par

T
ro

ug
hp

ut
 M

B
/s

Compilation option

VAIO
XPS
MAC

Figure 9: Karplus32.dsp benchmark

4.5 Benchmark: mixer.dsp

This is the implementation of a simple 8 channels mixer.
Each channel has a mute button, a volume control in dB,
a vumeter and a stereo pan control. The mixer has also a
volume control of the stereo output.

import("music.lib");

smooth(c) = *(1-c) : +~*(c);

vol = *(vslider("fader", 0, -60, 4, 0.1)
: db2linear : smooth(0.99));

mute = *(1 - checkbox("mute"));

vumeter(x) = attach(x, env(x) :
vbargraph("",0,1))

with {
env = abs:min(0.99):max ~ -(1.0/SR);
};

pan = _ <: *(sqrt(1-c)), *(sqrt(c))
with {

c = (nentry("pan",0,-8,8,1)-8)/-16 :
smooth(0.99);

};

voice(v) = vgroup("voice %v",
mute :
hgroup("", vol : vumeter) :
pan);

stereo = hgroup("stereo out", vol, vol);

process = hgroup("mixer",
par(i,8,voice(i)) :> stereo);

The results of figure 10 show a real benefit for the vector-
ized version with a speedup exceeding x2 on the 3 ma-
chines. There is also a positive impact of the paralleliza-
tion even if more limited. As usual gcc delivers good
scalar code but poor results on vectorized and OpenMP
code.

 0

 20

 40

 60

 80

 100

 120

gcc.scal gcc.vec gcc.par icc.scal icc.vec icc.par

T
ro

ug
hp

ut
 M

B
/s

Compilation option

VAIO
XPS
MAC

Figure 10: mixer.dsp benchmark

4.6 Benchmark: fdelay8.dsp

This test implements an 8-channels fractional delay.
Each channel has a volume control in dB as well as a de-
lay control in fractions of samples. The interpolation is
based on a fifth-order Lagrange interpolation from Julius
Smith’s Faust filter library.

import("filter.lib");

line(i) = vgroup("line %i",fdelay5(128,d):*(g))
with{ g = vslider("gain (dB)",-60,-60,4,0.1)

: db2linear : smooth(0.995);
d = nentry("delay (samp)",10,10,128,0.1)
: smooth(0.995);

};

process = hgroup("", par(i, 8, line(i)));

The results are presented figure 11. The Macpro exhibits
a good speedup of x2.5 for its parallel version. The par-
allel speedup for the XPS machine is more limited and
there is no speedup at all on the Vaio.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

gcc.scal gcc.vec gcc.par icc.scal icc.vec icc.par

T
ro

ug
hp

ut
 M

B
/s

Compilation option

VAIO
XPS
MAC

Figure 11: fdelay8.dsp benchmark

4.7 Benchmark: rms.dsp

The Faust source of rms.dsp was presented section 3.3.
It is a purely sequential algorithm therefore the perfor-
mances of the parallel versions are very bad. But, as in-
dicates figure 12, the vectorisation gives a real boost to
the performances, particularly on the vaio.

4.8 Benchmark: rms8.dsp

This test computes the RMS value on 8 channels in par-
allel. The Faust code is :

process = par(i,8,component("rms.dsp")) ;

We have obviously a good amount of parallelism here
that icc is able to exploit as indicated by the results figure
13. Compared to the scalar performances, the parallel
version exhibits a speedup of nearly x3 on the Mac, while
the speedup for the XPS exceed x2.5. But the record is
for the Vaio with a speedup of x2.2 !

 0

 100

 200

 300

 400

 500

 600

 700

 800

gcc.scal gcc.vec gcc.par icc.scal icc.vec icc.par

T
ro

ug
hp

ut
 M

B
/s

Compilation option

VAIO
XPS
MAC

Figure 12: rms.dsp benchmark

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

gcc.scal gcc.vec gcc.par icc.scal icc.vec icc.par

T
ro

ug
hp

ut
 M

B
/s

Compilation option

VAIO
XPS
MAC

Figure 13: rms8.dsp benchmark

5 Conclusion

We have presented two new compilation schemes re-
cently introduced in the Faust compiler. The vector
scheme simplifies the autovectorization work of the C++
compiler by splitting the sample processing loop into
several simpler loops. The parallel scheme analyzes
the dependencies between these loops and add OpenMP
pragmas to indicate those that can be computed in paral-
lel.

Figure 14 shows the speedup obtained with the vector-
ized code. With a good autovectorizing C++ compiler
like Intel icc 11.0 we can obtain very significants im-

 0

 0.5

 1

 1.5

 2

 2.5

 3

copy1 fverb karp32 mixer fdelay8 rms rms8

S
pe

ed
up

Test

VAIO
XPS
MAC

1

Figure 14: Speedup ratio between vector and scalar code
(using icc)

provements in many cases. On the contrary gcc 4.3.2
was not able to generate SIMD instructions, leading to
a degradation of the performances. We therefore highly
recommend icc to compile vectorized code. That is a pity
considering the excellent results of gcc on scalar code.

Following the so called Amdahl’s law, the speedup ob-
tained with the parallelized code is highly dependent of
the quantity of parallelism available (see figure 15. On
purely parallel programs like fdelay8 and rms8 a speedup
exceeding x2.5 was observed on the mac. This is a lit-
tle bit disappointing for a 8-cores machine, but in phase
with its relatively limited memory bandwidth. Here too
we recommend icc to compile OpenMP applications.

Obviously all these results are dependent of many
choices and settings, in particular compiler’s options.
The options we have retained were the best we could
find, but the parameters space is huge and we have only
explored a little part of it. It may be the case that the gcc
results could be improved by changing the settings. This
would be a good news and the authors are interested by
any suggestions on that point.

There is also a lot of possible improvements in the code
generated by Faust. While it is easy to discover all the
potential parallelism of a Faust program 1, generating ef-
ficient OpenMP programs is much more difficult due to
the overheads introduced and the additional pressure on
the shared memory.

The tradeoff between parallelism and overhead + mem-
ory pressure is something that we will have to improve
in future versions. It will be also interesting to explore
the possibilities of GPGPU and their high-level program-

1parallel programming is probably the chance of functional pro-
gramming languages compared to imperative languages

 0

 0.5

 1

 1.5

 2

 2.5

 3

copy1 fverb karp32 mixer fdelay8 rms rms8

S
pe

ed
up

Test

VAIO
XPS
MAC

1

Figure 15: Speedup ratio between parallel and scalar
code (using icc)

ming languages as an alternative to C++ and OpenMP.

Resources
1. http://openmp.org/

2. http://faust.grame.fr

3. http://www.intel.com/cd/software/products/asmo-
na/eng/277618.htm

References
[1] Yann Orlarey, Dominique Fober, and Stephane Letz.

Syntactical and semantical aspects of faust. Soft
Computing, 8(9):623–632, 2004.

[2] Y. Orlarey, D. Fober, and S. Letz. An algebra for
block diagram languages. In ICMA, editor, Proceed-
ings of International Computer Music Conference,
pages 542–547, 2002.

