
This is a repository copy of A Survey of Timing Verification Techniques for Multi-Core
Real-Time Systems.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/148196/

Version: Accepted Version

Article:

Maiza, Claire, Rihani, Hamza, Rivas, Juan et al. (3 more authors) (2019) A Survey of
Timing Verification Techniques for Multi-Core Real-Time Systems. ACM Comput. Surv..
ISSN 0360-0300

https://doi.org/10.1145/3323212

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

01

A Survey of Timing Verification Techniques for Multi-Core

Real-Time Systems

CLAIRE MAIZA, Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, France

HAMZA RIHANI, Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, France

JUAN M. RIVAS, Université libre de Bruxelles, PARTS Research Centre, Belgium

JOËL GOOSSENS, Université libre de Bruxelles, PARTS Research Centre, Belgium

SEBASTIAN ALTMEYER, University of Amsterdam, Netherlands

ROBERT I. DAVIS, University of York, UK

This survey provides an overview of the scientific literature on timing verification techniques for multi-core
real-time systems. It reviews the key results in the field from its origins around 2006 to the latest research
published up to the end of 2018. The survey highlights the key issues involved in providing guarantees of
timing correctness for multi-core systems. A detailed review is provided covering four main categories: full
integration, temporal isolation, integrating interference effects into schedulability analysis, and mapping and
allocation. The survey concludes with a discussion of the advantages and disadvantages of these different
approaches, identifying open issues, key challenges, and possible directions for future research.

CCS Concepts: · Computer systems organization → Real-time system architecture; · Software and

its engineering→ Real-time schedulability; Automated static analysis;

Additional Key Words and Phrases: real-time systems, architecture, multi-core, timing analysis, schedulability

analysis, WCET, co-runner interference

ACM Reference Format:

Claire Maiza, Hamza Rihani, Juan M. Rivas, Joël Goossens, Sebastian Altmeyer, and Robert I. Davis. 2019.
A Survey of Timing Verification Techniques for Multi-Core Real-Time Systems. ACM Comput. Surv. 1, 1,
Article 01 (February 2019), 46 pages. https://doi.org/0000001.0000001

1 INTRODUCTION

Multi-core processors offer significantly higher computing performance, as well as advantages in
meeting SWaP (Size, Weight, and Power consumption) requirements compared to conventional
single-core platforms. Such architectures have the potential to provide a solution to the increasing
demands for low-cost, low-power consumption, high-performance real-time hardware platforms
that are posed by the development of autonomous systems, including self-driving cars, Unmanned
Aerial Vehicles (UAVs) or drones, and autonomous robots. While providing a number of significant
advantages, the shift to multi-core hardware raises substantial challenges in relation to guaranteeing
real-time performance through time determinism, time predictability, and composability.

Authors’ addresses: Claire Maiza, Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, Grenoble, France, claire.maiza@
univ-grenoble-alpes.fr; Hamza Rihani, Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, France, ; Juan M. Rivas,
Université libre de Bruxelles, PARTS Research Centre, Belgium, ; Joël Goossens, Université libre de Bruxelles, PARTS
Research Centre, Brussels, Belgium, joel.goossens@ulb.ac.be; Sebastian Altmeyer, University of Amsterdam, Amsterdam,
Netherlands, altmeyer@uva.nl; Robert I. Davis, University of York, York, UK, rob.davis@cs.york.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0360-0300/2019/2-ART01 $15.00
https://doi.org/0000001.0000001

ACM Comput. Surv., Vol. 1, No. 1, Article 01. Publication date: February 2019.

01:2 C. Maiza, H. Rihani, J.M. Rivas, J. Goossens, S. Altmeyer, and R.I. Davis

Real-time systems are characterised by the need to meet both functional requirements and timing
constraints, typically expressed in terms of deadlines. Many design and verification techniques
have been proposed which aim to guarantee that all timing constraints are met. In traditional
single-core systems, timing behaviour is typically verified via a two-step process. In the first timing

analysis step, the Worst-Case Execution Time (WCET) of each task is determined. The WCET is an
upper bound on the execution time of the task running in full isolation on the platform, i.e. without
preemption, interruption, or indeed any co-runners on other processing cores. This WCET bound is
then used in the second step, schedulability analysis. Schedulability analysis involves considering the
worst-case pattern of task execution, either via the mapping of tasks to time slots in a table-driven
schedule, or via the use of a scheduling policy such as Fixed Priority Preemptive Scheduling (FPPS)
or Earliest Deadline First (EDF) employed by a Real-Time Operating System (RTOS). Schedulability
analysis determines the Worst-Case Response Time (WCRT) of each task in its execution context. In
practice, this analysis needs to take account of preemptions by higher priority tasks and interrupt
handlers, scheduling overheads caused by the operation of the RTOS, and delays in accessing shared
software resources and communications. The combination of timing analysis and schedulability
analysis to verify the timing correctness of a real-time system is referred to in this survey as timing

verification1.
The clear separation between the two steps diminishes in multi-core systems where the inter-

ference on shared resources can also depend heavily on the behaviour of co-runners, i.e. tasks
executing in parallel on other cores. In multi-core platforms, a large set of hardware features may
be shared, such as the interconnect, bus2 or NoC (Network on Chip), the Last Level Cache (LLC),
and the main memory. When a task is executed in full isolation on a multi-core platform, the
behaviour of the system in terms of timing (and other non-functional properties such as power
consumption) is defined by that task alone, the same as on a single-core platform. However, when
two or more tasks are executed in parallel on different cores, the interplay between the tasks on
shared hardware resources may lead to unforeseen and unpredictable delays [32, 123, 124]. For this
reason, using the WCET of tasks executing in isolation on a multi-core platform without regard for
co-runner interference can potentially lead to WCRT values which are optimistic (i.e. incorrect) by
a large margin when considered in the context of the complete system. As an example, consider a
cache which is shared between two or more cores. Useful cache blocks that were loaded by one
task may be evicted by another task that is running in parallel on a different core. Similarly, a
request to the memory bus may be blocked by an ongoing bus request from another core. We refer
to all events that may prolong a task’s execution due to the execution of other tasks, including
additional blocking time, increased bus access times, and cache reloads, under the generic term
interference. The potential for co-runner interference greatly exacerbates both the difficulty and
the complexity of providing accurate timing verification for multi-core systems. To illustrate this,
consider the simple approach of accounting for all possible co-runner interference in the timing
analysis step. The difficulty here is that the execution context, with respect to co-runner behaviour,
is unknown. Thus worst-case assumptions need to be made to provide a WCET that is context
independent. This is possible, however, the results can be so pessimistic that they are not useful.
For example assuming the maximum possible delay for every bus access request may result in a
WCET on anm core platform that ism or more times the WCET for the task running in isolation.
Thus the guaranteed real-time performance of the multi-core platform is effectively degraded to
the same or worse than that of one of its cores.

1We note that in some of the literature the term timing analysis is used to describe the overall process of determining
whether timing constraints are met.
2In this paper, as in many of the surveyed papers, we use the term bus or memory bus to mean a local interconnect from
cores to the shared memory through an arbiter.

ACM Comput. Surv., Vol. 1, No. 1, Article 01. Publication date: February 2019.

A Survey of Timing Verification Techniques for Multi-Core Real-Time Systems 01:3

At the other extreme, attempting to account for all possible patterns and interleaving of co-runner
execution in a fully integrated approach to timing verification (combining both execution and sched-
uling considerations into a single analysis step) quickly becomes intractable due to combinatorial
explosion in the number of possible states that need to be considered. Hence, timing verification for
multi-core systems typically faces the trade-off between analysing all possible interplay between
tasks on different cores to provide a tightly bounded result, and making simplifying assumptions
to obtain an analysis that is tractable in term of its computational complexity.
A number of approaches have been proposed to deal with this problem. Approaches based on

temporal isolation seek to bound the delays experienced by tasks executing on one core, independent
of the behaviour of the tasks on the other cores. For example using Time Division Multiple Access
(TDMA) bus arbitration leads to the same delays for bus access requests irrespective of whether
or not there are any tasks running on the other cores. While this is advantageous in terms of
making it simpler to compute worst-case delays and interference, there is a trade-off. Mechanisms
that provide temporal isolation have the disadvantage that they typically do not permit efficient
resource utilisation.

Techniques that ensure temporal isolation between cores provide timing composability, meaning
that the timing behaviour of the tasks on one core may be verified without knowledge of the
behaviour of the tasks on the other cores. An alternative approach is interference analysis, char-
acterising the additional delays due to contention over shared resources. These additional delays
can then be incorporated into timing analysis or schedulability analysis. Examples of interference
analysis in single-core systems include the derivation of cache-related preemption delays and
write-back delays, which can be incorporated into schedulability analysis.

Another challenge that timing verification for multi-core systems has to tackle is the problem of
timing compositionality [53] (note this is different from timing composability). Timing composi-
tionality depends on the decomposition of the system into components for analysis purposes. For
example, the WCET of a task might be decomposed into two components, memory access time and
processing time. If the local worst-cases for each component of the decomposition can be summed
to obtain an upper bound on the overall worst-case timing behaviour, then the decomposition is
said to be timing compositional. However, in multi-core systems, this is not always the case. Timing
anomalies, such as the interaction between caches and pipelines, can mean that a local worst-case
behaviour e.g. a cache miss may not always lead to the overall worst-case. Further, domino ef-
fects [53] can amplify and reinforce the effects of interference. For example preemption effects on
a First-In First-Out (FIFO) cache can cause additional delays that are effectively unbounded with
respect to the original perturbation.
Research on timing verification for multi-core systems has received increasing attention over

the past ten years, with a number of often orthogonal and sometimes incompatible approaches
introduced. In this survey we provide an overview of the main approaches proposed and a review
of the specific methods published in the literature.

1.1 Organisation

Research into timing verification of multi-core real-time systems can be classified into four main
categories. This classification forms the basis for the four main sections of this survey. For ease of
reference we have numbered these categories below to match the section numbering, starting at 2.

2 Full Integration: Research in this category considers full information about the behaviour of
the various tasks executing on the different cores, including when they can execute and their
individual resource demands. The detailed interference due to specific co-runners executing
within specific time intervals is thus integrated into the analysis for every task. The timing

ACM Comput. Surv., Vol. 1, No. 1, Article 01. Publication date: February 2019.

01:4 C. Maiza, H. Rihani, J.M. Rivas, J. Goossens, S. Altmeyer, and R.I. Davis

analyses in this category are therefore context-dependent (i.e. the results for each task depend
on the set of co-runners).

3 Temporal Isolation: Research in this category considers either partial or full temporal isolation
achieved via software means such as phased task execution, memory bus regulation, or static
offline scheduling; or via hardware means such as a TDMA bus arbitration and memory
partitioning. The aim being to either upper bound or eliminate the interference from co-
runners that needs to be considered in the analysis. The timing analyses reviewed in this
category are therefore context-independent (i.e. the results for each task are independent of
the actual set of co-runners).

4 Integrating Interference Effects into Schedulability Analysis: Research in this category inte-
grates the effects of co-runner interference and the use of shared hardware resources into
schedulability analysis. In this case, the analysis may take into account the behaviour of the
actual co-runners, or it may rely on worst-case assumptions that are valid for any co-runner.
Thus both context-dependent and context-independent analyses are possible. For example
both are possible when considering a bus with Round-Robin arbitration.

5 Mapping and Scheduling: Research in this category considers the mapping of tasks to cores
and their feasibility in terms of both timing behaviour and memory requirements. Here,
the processor and memory load on each core, as well as the impact of interference delays,
influence the optimal placement of tasks.

Each of the main review Sections 2 to 5 starts with an overview and ends with a critique and
perspectives on the research in that specific area. A few papers overlap this broad categorisation.
In these cases, we provide a review in one section and a cross-reference to it in the other. Section 6
discusses the main advantages and disadvantages of techniques in the four main categories. It
concludes with an identification of key open questions and important directions for future research.
Supplementary material in Appendix A provides a more detailed classification of the literature
according to various characteristics and properties relating to: (i) the type of timing verification
performed; (ii) the timing model used for the analysis; (iii) the hardware properties considered; (iv)
the software properties considered.

Note, due to space limitations, we do not provide an overview of embedded multi-core architec-
tures and hardware components; rather we assume that the reader has a basic working knowledge
of these topics (see [111] for a state-of-the-art in the context of time-predictable embedded multi-
core architectures, and [115] for a discussion of more advanced Common-Off-The-Shelf (COTS)
multi-cores).

It is interesting to note how research in the different categories has progressed over time. Figure 1
illustrates the number of publications in each of the four main categories in each two year interval
from 2006/7 to 2016/17. (This figure is best viewed online in colour). A number of observations
can be drawn from Figure 1. Firstly, the research topic is little more than a decade old. Of the
119 papers reviewed3, the oldest papers [7, 120] that we classified were published in 2006. Since
2006, the research intensity in this area has increased rapidly, with around 60% of the papers
published in the last 4 years. We can also observe trends with respect to the approach taken to
timing verification. Although the number of publications aiming for a fully integrated timing and
schedulability analysis (see Section 2) remained largely constant over the past 10 years, all other
categories have received increasing attention. In particular, the vast majority of the papers on
temporal isolation (Section 3) and on mapping and scheduling (Section 5) have been published in
the last 6 years.

3Note not all of the bibliography is classified papers, some are related work.

ACM Comput. Surv., Vol. 1, No. 1, Article 01. Publication date: February 2019.

A Survey of Timing Verification Techniques for Multi-Core Real-Time Systems 01:5

2006/07 2008/09 2010/11 2012/13 2014/15 2016/17

0

5

10

15

20

25

30

35
Mapping and Scheduling

Integration into Schedulability

Temporal Isolation

Full Integration

Year

N
u

m
e

r
o

f
P

a
p

e
rs

Fig. 1. Distribution of classified papers over the past 10 years

We note that the literature covers a large number of separate research threads (within which
papers build on the same model and assumptions); however, these various threads of research are
highly divergent with the different hardware and task models used meaning that sophisticated
comparisons between different analysis results are out of reach.

1.2 Related Areas of Research and Restrictions on Scope

The scope of this survey is restricted to timing verification techniques for multi-core and many-

core platforms that specifically consider the impact of shared hardware resources. The following
areas of related research are outside of the scope of this survey: (i) works that introduce isolation
mechanisms for multi-core systems, but rely on existing analysis for timing verification (examples
include the work on the MERASA [94] and T-CREST projects [111], as well as work on shared
cache management techniques (surveyed in [46]) and cache coherence [47, 56]; (ii) works that
introduce mechanisms and analyses of the worst-case latencies for a particular component, for
example predictable DDR-DRAM memory controllers4 (comparative studies in [49, 57]), but rely
on these latencies being incorporated into existing analyses for timing verification; (iii) scheduling
and schedulability analyses for multiprocessor systems that consider only a simple abstract model
of task execution times (surveyed in [38]); (iv) multiprocessor software resource sharing protocols;
(v) timing verification techniques for many-core systems with a Network-on-Chip (NoC) (surveyed
in [59, 70]) which consider only the scheduling of the NoC, or consider that tasks on each core
execute out of local memory with the only interaction with packet flows being through a considera-
tion of release jitter; (vi) measurement-based and measurement-based probabilistic timing analysis
methods; (vii) research that focuses on timing verification of single-core systems. Further, the
survey does not cover specific research into multi-cores with GPGPUs or re-configurable hardware.

2 FULL INTEGRATION

Research in this category aims at a fully integrated analysis utilising information about both low-
level timing behaviour and high level scheduling. Thus the works discussed in this section assume
almost full knowledge of the task under analysis and those executed in parallel, often including
the exact release times of all tasks. Consequently, the results are typically only valid for the exact
scenario which is analysed. Two approaches are dominant: WCET analyses based onmodel-checking

4We note that Reduced Latency DRAM (RL-DRAM) is arguably better suited for use in real-time systems than DDR-DRAM
due to reduced variability in access latencies, as shown by Hassan [55] in 2018.

ACM Comput. Surv., Vol. 1, No. 1, Article 01. Publication date: February 2019.

01:6 C. Maiza, H. Rihani, J.M. Rivas, J. Goossens, S. Altmeyer, and R.I. Davis

and analyses based on an abstract processor state. The worst-case path (i.e. the path with the longest
execution time) is often derived via Implicit-Path Enumeration Techniques (IPET) with an Integer
Linear Programming (ILP) solver. We note that all of the works assume partitioned non-preemptive
scheduling. Further, the schedule is often assumed to be fixed with synchronous task releases and
limited or no release jitter. Below, we subdivide the literature into analyses that focus on: (i) shared
memory (i.e. cache), (i) the bus or interconnect, (iii) both the interconnect and shared memory.

2.1 Analysis of Shared Memory Only

Papers in this sub-category focus solely on the shared cache, while neglecting any interference on
the common interconnect. Cache analyses either employ a complete model of the cache state, and
thus use model checking to derive a cache hit/miss classification, or they employ an abstract cache
state with a variant of abstract interpretation.
In 2008, Yan and Zhang [128] presented a cache analysis assuming private L1 and shared L2

caches. The analysis starts with a cache analysis assuming no interference, and then accounts for
the additional L2 cache misses due to accesses from other tasks to the L2 cache. The analysis is
implemented within CHRONOS and evaluated for direct-mapped instruction caches only. In 2009
Hardy et al. [54] extended this initial work to set-associative caches, multiple levels of caches, and
an arbitrary number of competing cores. A further extension aims to reduce the cache interference
via compiler optimisations which classify memory as reused and therefore cached, or not-reused, in
which case accesses bypass the cache. Zhang and Yan [137] also presented an interference analysis
for shared L2 instruction cache. They use an extended ILP and cache conflict graphs to model all
possible interleaving of pairs of tasks with regard to cache accesses. These interleavings are more
precisely defined than in [128], but this results in a scalability issue.
A WCET analysis based on model checking was presented by Gustavsson et al. [51] in 2010.

The modelled architecture again features private L1, shared L2 caches, and a set of tasks, but no
explicitly modelled interconnect. Instead, the authors assume dedicated memory ports per core. The
core architecture is assumed to be trivial with fixed execution times per instruction and without any
timing anomalies. UPPAAL is used as the model checker and despite the strong simplifications, the
state-space explosion limits the applicability of the approach, even without modelling the program
semantics.
Also in 2010, Lv et al. [82] combined abstract interpretation and model checking to provide a

fully integrated analysis. Abstract interpretation is used to give a basic block timing model. Timed
automata are then used to model the whole program and the shared bus. The authors consider a
multi-core architecture with a local L1 cache and no code sharing between concurrent programs.
Each L1 cache miss is considered as a shared bus access. The analysed shared bus arbiters are
First-Come First-Served (FCFS) and TDMA, with the approach scaling better in the case of TDMA
due to the timing isolation provided. UPPAAL is the model checker used in the experiments.

In 2016, Nagar et al. [86] presented a shared cache analysis with private L1 and shared L2 caches.
The analysis determines the global worst-case arrival pattern for all accesses to the shared cache
including the worst-case execution path. The analysis is therefore independent from the precise
task release times, but still requires precise knowledge about all tasks executing on the other cores.
The authors show that finding the worst-case interference pattern is NP-hard and thus as well
as the exact analysis an approximation with linear complexity in the cache size is proposed. The
analysis is implemented within the CHRONOS timing analyser.

2.2 Analysis of the Interconnect Only

Papers in this sub-category focus solely on the common interconnect. Interference due to shared
memory is either ignored or full isolation (spatial via cache partitioning, or temporal via TDMA) is

ACM Comput. Surv., Vol. 1, No. 1, Article 01. Publication date: February 2019.

A Survey of Timing Verification Techniques for Multi-Core Real-Time Systems 01:7

assumed. In all papers, the delay due to the interconnect is precisely estimated and integrated into
the worst-case execution time.

In 2010, Andersson et al. [8] presented an analytical method to calculate the WCET of tasks in a
multi-core including contention on the shared bus. They assume no inter-task evictions (i.e. the
shared cache is partitioned) and non-preemptive scheduling. Further, the memory arbitration is
assumed to be work-conserving. The analysis formulation is based on an upper bound on the
maximum number of bus requests from the tasks.

In 2015, Rihani et al. [103] used SAT Modulo Theory (SMT) to encode the whole execution of a
task on a platform with TDMA bus arbitration. The novelty here is the encoding of the program
semantics to gain precision in the WCET bound, taking infeasible execution paths into account.
The bus access is modelled with an offset. The SMT-solver provides an execution path with correct
semantics and WCET analysis.

In 2015, Jacobs et al. [62] proposed deriving WCET bounds for multi-core systems by integrating
the bus delay into the pipeline analysis. The authors assume a shared bus policy with bounded
blocking time (e.g. Round-Robin or TDMA). For a memory access over the shared bus, the entire
range of possible blocking delays is considered, i.e. direct access to the bus, blocked for 1 cycle, 2
cycles, etc. In the so-called co-runner insensitive analysis, this scheme is applied to all bus accesses
made by the analysed task, and assuming the entire range of blocking cycles. In the co-runner
sensitive analysis, information about potential accesses from other task is considered to reduce the
over-approximation. This assumes precise knowledge about when memory accesses of co-running
tasks may occur.
Subsequently, in 2016, Jacobs et al. [63] presented a framework for the derivation of WCET

analyses for multi-core systems. They point out that computing the WCET taking into account
all possible inter-leavings of resource accesses is computational intractable. They make the key
point that the vast majority of work assumes timing compositionality and hence first compute
a basic bound without interference effects and then add an upper bound on direct interference
effects. However, for real architectures that exhibit timing anomalies and domino effects, this is
not sufficient. The key idea in the paper is to lift system properties to an abstract level, so that
they can be applied to the abstract model of traces to identify sets of infeasible traces, thus making
the analysis less pessimistic. The framework is instantiated and used to provide bounds for the
Malardalen benchmarks for 2, 4, and 8-core platforms, with either local scratchpad or cache, and
in-order or out-of-order execution.

Research that overlaps with this sub-category but is reviewed elsewhere in this survey includes
the work of Dasari et al. [35, 36] and Kelter et al. [66–68] (see subsection 3.4).

2.3 Analysis of Shared Memory and Interconnect

Paper in this sub-category consider both the common interconnect and shared memory.
In 2008, Andrei et al. [10] presented a WCET analysis technique in conjunction with an algorithm

to build a static (offline) schedule for the tasks and the TDMA bus in multi-core systems. The
authors target a platform model where the cores have a private cache, and then through the shared
bus can access another private memory, and a global shared memory. Only the private memories are
cached. Inter-core communications are handled via the global shared memory. Additional tasks are
added to handle the copy and writes to the global shared memory (i.e. explicit communications). A
task can also produce implicit communications when a cache miss occurs, and the private memory
must be fetched (with an access to the bus). The proposed technique iteratively constructs the
schedule of tasks and incrementally defines the TDMA slot configuration, taking into account task
execution time inflation due to bus accesses.

ACM Comput. Surv., Vol. 1, No. 1, Article 01. Publication date: February 2019.

01:8 C. Maiza, H. Rihani, J.M. Rivas, J. Goossens, S. Altmeyer, and R.I. Davis

An approach for worst-case response time analysis of a multi-core system with private L1 cache
and shared L2 cache was developed by Li et al. [78] in 2009. The aim is to compute the worst-case
L2 cache interference between tasks running on the different cores accounting for their lifetimes,
i.e. the time intervals in which the tasks can be active. The model used is a synchronous one, with a
Message Sequence Chart describing the interaction and precedence relations between tasks. Tasks
are assumed to be partitioned to cores and run non-preemptively. The WCET includes the effects
of interference on the L2 cache. An iterative process is used to calculate WCRTs, task lifetimes, and
the amount of interference from overlapping execution due to tasks on the other cores.
In 2012, Dasari et al. [34] presented a method to estimate tight WCETs of tasks running on

a multi-core system in which the bus arbitration is Round-Robin, and tasks are scheduled non
preemptively under an unspecified non-work conserving policy. The work is divided into two
parts. The first part presents an algorithm to compute an upper bound of the number of memory
request by a core in any time window, considering the interference from every task at the same
time (instead of analysing tasks independently and then adding their contributions). The actual
schedule of jobs is unknown which adds pessimism to the computed worst-case ordering of jobs. A
second contribution of the paper is to use the provided upper bound on the number of requests to
enhance the classical WCET formula for systems with Round-Robin buses.
A full analysis from WCET to mapping with interference analysis was presented by Boniol

et al. [17] in 2012. This work focuses on the implementation of synchronous applications on a
multi-core platform. The architecture consists of cores with local L1 and L2 cache, a shared main
memory with shared bus and DRAM controller. The timing analysis consists of a core and memory
mapping/scheduling with slicing of the timing window. It takes into account the interference on
the shared bus and memory controller. The interference analysis is based on timed automata. This
paper also takes a holistic view on WCET and schedulability analysis, but differs from all other
papers in this category in that it focuses on the schedulability analysis directly.

In two papers in 2012 [24] and 2014 [23], Chattopadhyay et al. presented a WCET analysis that
includes interference on a shared TDMA-based Round-Robin bus and a shared L2 cache. The global
analysis is based on an ILP formulation (execution graph) of each delay from the pipeline to the
bus and cache interferences. The delays are expressed as an interval and combined through solving
the ILP. The bus analysis uses an offset model introduced by Chattopadhyay et al. [26] together
with the cache model. The earlier work [24] assumes a timing-anomaly free architecture, whereas
the later one [23] supports architectures with timing anomalies and more sophisticated cache
architectures.

In 2014, Kelter et al. [69] analysed the WCET of parallel tasks. They estimate the execution time
with a known synchronisation of the task releases. From this release cycle, an execution graph is
derived at a cycle level and the access to shared resource is evaluated depending on which task is
requesting access at that time. It is an IPET based analysis (ILP system of constraints). There are
three arbitration schemes modelled as part of the bus analysis: TDMA, Round-Robin and priority
based. The platform under analysis is a multi-core based on an Arm7 pipeline with local cache or
scratchpad, a shared bus to access shared memory. The authors mention that analysis of 8 cores
was not possible due to scalability issues.

In 2016, Perret et al. [101] studied various sources of interference on COTS many-core platforms
(similar to the Kalray MPPA-256). A realistic analysis is presented regarding the sources of inter-
ference between applications on their memory access path. The analysis focuses on local Static
Random Access Memory (SRAM) banked memory, NoC, and global Double Data Rate Synchro-
nous DRAM (DDR-SDRAM). The authors show and quantify the potential pessimism implied by
a context-independent łworst-case-everywherež calculation (i.e. with no assumptions about the
competitors for each shared resource). They then propose recommendations for building viable

ACM Comput. Surv., Vol. 1, No. 1, Article 01. Publication date: February 2019.

A Survey of Timing Verification Techniques for Multi-Core Real-Time Systems 01:9

execution models (complying to certain rules) in order to ease tight timing analysis (an extended
version of these recommendations are presented by the same authors in [102]).

2.4 Critique and Perspectives

Only 20 papers fall into the category of full integration analysis, and interestingly, these papers
were nearly all written by researchers from groups that focus on static timing analysis and have
developed their own tools (e.g. OTAWA, Heptane, CHRONOS, aiT, WCC) in the past. The scheduling
aspect on multi-core systems is largely ignored by these papers and instead the task schedule is
assumed to be known, fixed, and non-preemptive. How the schedule can be determined without
initially knowing the WCETs is not explained in any of these works. This leads to an implicit
restriction: the exact schedule including the release time at which tasks start executing must be
known or at least approximated a priori. Many approaches in this category make an even stronger
assumption in that they assume precise release times [23, 51, 63, 69, 128]. Any variation in release
times may therefore invalidate the results. Consequently, these approaches can only be used if
either: (i) the operating system enforces the scenarios as analysed, or (ii) the analysis is repeated
for all potential execution scenarios. In the first case, the system utilisation may be heavily reduced
and it may even be infeasible to enforce the precise scenarios analysed, especially on large multi-
core system with asynchronous clocks. In the second case, the number of scenarios that must be
analysed is prohibitively large, even for small task sets. This problem adds to the fundamental
drawback of these approaches: The fully integrated approaches suffer from high complexity and
thus low scalability. This is particularly the case for approaches based on model-checking, but
also affects those based on implicit path enumeration. The problem exists considering strongly
simplified processor models that only model memory or the interconnect; modelling both types
of components, let alone realistic multicore architectures further exacerbates the computational
complexity. It is debatable whether any of these approaches can be used to analyse realistically
sized task sets on non-trivial (i.e. realistic) multi-core architectures.

The need for full system knowledge also forecloses, or at least greatly complicates, common and
desirable design practices such as integration of 3rd party software and incremental verification.

3 TEMPORAL ISOLATION

Research in this category simplifies the problem of multi-core timing verification by shaping access
to the main sources of inter-core interference, mainly the shared interconnect or memory bus. The
basic idea is that by controlling access to the memory bus, contention can be avoided or bounded,
and thus becomes more predictable and easier to integrate into a timing analysis formulation. The
result is analyses that are not only easier to define, but are also less computationally demanding
and thus more scalable, particularly when compared to the full integration approaches reviewed in
the previous section. The research work in this area identifies the memory bus as the main source of

inter-core interference that must be controlled, and relies on additional complementary techniques
to manage shared cache and shared DRAM subsystems. Temporal isolation is sometimes combined
with spatial isolation to improve resource sharing and utilisation while reducing the interference.
Below, we subdivide the literature depending on how the access to the memory bus is controlled via:
(i) phased execution model, (ii) memory bandwidth regulators, (iii) offline scheduling, (iv) hardware
isolation, for example a TDMA bus.

3.1 Phased Execution Model

Research papers in this sub-category re-factor the tasks’ code to create a new equivalent task with
two types of disjoint phases: memory bound phases and computation bound phases. Each task
typically starts by executing a memory phase in which all the data and instructions needed by the

ACM Comput. Surv., Vol. 1, No. 1, Article 01. Publication date: February 2019.

01:10 C. Maiza, H. Rihani, J.M. Rivas, J. Goossens, S. Altmeyer, and R.I. Davis

task are read from main memory and stored in local private memory (e.g. cache or scratchpad).
The subsequent computation phase can then perform the actual computation of the task using
data and instructions that are readily available in the private memory, without any need to access

the interconnect or shared main memory. Optionally, some models add a further memory phase at
the end of each task to write back the updated data into the main memory. The phased execution
of tasks is typically used in conjunction with a scheduling algorithm that exploits the fact that
access to the shared main memory and bus are only going to occur during the memory phases of
the tasks. Therefore the scheduler can avoid contention in the main memory by not overlapping
memory phases in different cores. Such a schedule can be achieved for example by defining a global
scheduler with a queue just for memory phases.

An initial relevant implementation of the phased execution concept can be found in the work of
Pellizzoni et al. [97] in 2008. This paper presents a framework to schedule tasks taking into account
contention in the shared memory induced by concurrent master I/O peripheral Direct Memory
Access (DMA) transfers. The basic idea is to control when the peripherals can operate using a
special hardware called a peripheral gate. A co-scheduling algorithm is proposed that tracks actual
execution times of the tasks to determine their slack (difference to their execution budgets). These
dynamic slack times are used to open the peripheral gates, making sure that the slack times are
always non negative. Although the paper targets single core systems, its concepts can be applied to
multi-core systems.
In 2011, Pellizzoni et al. [96] expanded the above ideas to define the PRedictable Execution

Model (PREM). Under PREM, periodic tasks are decomposed into so-called predictable intervals
and compatible intervals. Compatible intervals are reserved for those sections of code that cannot
be re-factored into memory/computation phases, mainly due to the inability at compile time to
determine which memory regions are accessed. From a scheduling stand-point, compatible intervals
are treated as memory phases, since they can incur accesses to the bus. Experiments on a prototype
test-bed validate the theory. In particular, execution is highly predictable and the WCET of memory
bound tasks is significantly reduced.
Later works extend the ideas of PREM. In 2012 Yao et al. [129] proposed Memory Centric

scheduling where non-preemptive memory phases are executed in defined time slots using a high
level coarse grained TDMA schedule. The main idea behind the Memory Centric approach is
to promote the priority of tasks that are in memory phases above those that are in execution
phases. Fixed priority partitioned scheduling of tasks is assumed, and is extended to include priority
promotion for memory phases. Cache partitioning is assumed to avoid any intra-core evictions.
The TDMA memory scheduling provides isolation and thus single core equivalence. Hence the
response time analysis provided only needs to consider the tasks executing on the same core as the
task under analysis. The approach is effective when tasks have a high memory demand, but not
when the memory demand of the tasks is low.

A comparison of different algorithms to schedule tasks that follow PREM was presented by Bak
et al. [14] in 2012. The comparison is based on simulations performed on synthetic task sets, with
different combinations of TDMA and priority based schedulers for the memory and computation
phases. The authors conclude from the simulated scenarios that the best policy is to schedule
the computation phases with EDF, and the memory phases in a least-laxity-first non-preemptive
manner. The simulations confirm the benefits of the priority promotion of the memory phases over
the computation phases, as was also shown analytically by Yao et al. [129].
In 2014, Alhammad et al. [4] proposed an offline static scheduling approach leveraging PREM.

This work assumes a multi-core system with private LLC, or a partitioned shared cache. A static
schedule of the memory and computation phases is constructed such that concurrent accesses
to the shared memory are avoided. This eliminates delays due to concurrent accesses reducing

ACM Comput. Surv., Vol. 1, No. 1, Article 01. Publication date: February 2019.

A Survey of Timing Verification Techniques for Multi-Core Real-Time Systems 01:11

WCETs. Later in 2014 Alhammad et al. [3] extended PREM to global non-preemptive scheduling
(called gPREM). Under gPREM, a task can only run when no other task is executing its memory
phase and at least one processor is idle. This scheduling algorithm ensures that only one memory
phase is executed system-wide, and contrary to the memory-centric approach of Yao et al. [129],
no priority promotion of memory phases is implemented.

Also in 2014, Wasly et al. [125] proposed a mechanism to partially hide the overheads induced by
the memory phases by splitting the local double-ported memory into two partitions. The scheduling
algorithm then ensures that, while a task is executing out of one local partition, the code and
data for the next task to execute is placed in the other partition. A variation on fixed priority
non-preeemptive scheduling is assumed. The policy divides time into intervals, with scheduling
decisions only made at the start of an interval. At the start of an interval, the processor executes the
ready task that was loaded into one of the partitions before the end of the previous interval. The
interval ends once both task execution and DMA operations have completed. An upper bound worst-
case response time analysis is presented for the scheduling policy. The evaluation is performed
using a custom scratchpad controller that implements the required latency-hiding capabilities. The
paper assumes isolation at the bus level (e.g. TDMA arbitration in the memory bus). An extension
of this work for global scheduling, that does not assume isolation through TDMA was presented
by Alhammad et al. [5] in 2015. In 2016, Tabish et al. [122] also reused this work and combined it
with another set of isolation mechanisms (core private scratchpads, dedicated DMA channel using
a TDMA schedule) to obtain predictable execution of an OS on a multi-core platform.
In 2014, Kim et al. [74] presented a method to construct offline (static) schedules of Integrated

Modular Avionics (IMA) partitions for a multi-core system, with the objective of avoiding conflicts
in I//O transactions. Each application is divided into three sequential non-preemptive phases: (i)
device input, in which the input data of the device is copied into the main memory, (ii) processing of
the data, and (iii) device output, in which the generated data is copied from the main memory to the
output device. Each of these steps is executed as an IMA partition, and the I/O conflicts are avoided
by executing the I/O partitions in a dedicated I/O core, which avoids overlapping I/O partitions.
The paper presents a scalable heuristic to calculate the static schedule to meet the deadline and
precedence constraints of the partitions. A previous work was presented in 2013 by the same
authors [75] in which the I/O phases (called solo partitions in this work) can be mapped to any
core, so the concept of defining an I/O core is not used. The authors find this generalized problem
to be NP-complete, and propose two solutions. The first is solved with Constraint Programming,
and has the restriction that partitions mapped to the same core in the initial single-core system
must be mapped to the same core in the final multi-core system. The second solution relaxes this
restriction, but restricts the I/O phases to have a unitary length.

In 2015 Melani et al. [85] analytically characterised the improvements that can be achieved by a
phased execution scheme for global fixed task priority scheduling. The paper proposes the first
exact schedulability test for this model, and concludes that EDF is not optimal in this case. This
work also provides and proves correct the critical instant for phased execution and defines an exact
worst-case response time analysis for fixed priority scheduling.

TheMemory Centric scheduling approach [129] was extended to global scheduling in 2016 by Yao
et al. [130] without relying on TDMA to schedule the memory phases. This work uses the concepts
of virtual memory cores, and virtual execution cores. The idea is to limit the number of cores that
can access memory at the same time, ensuring that the memory bandwidth is not saturated and
the interference due to memory contention remains very small. A global fixed priority scheduler
is used. The priority of memory phases is promoted over that of execution phases (of all tasks).
Only themmemo highest priority ready tasks in memory phases are permitted to execute at any
given time. Other ready tasks in memory phases are blocked. Schedulability analysis is provided,

ACM Comput. Surv., Vol. 1, No. 1, Article 01. Publication date: February 2019.

01:12 C. Maiza, H. Rihani, J.M. Rivas, J. Goossens, S. Altmeyer, and R.I. Davis

which effectively assumes that the memory phases run onmmemo cores and the execution phases
on the remaining cores. Evaluation shows that the approach outperforms a baseline (considering
contention) when the slowdown of the latter due to memory contention is large.

In 2018, Pagetti et al. [93] proposed a compilation framework that extends the WCET-aware com-
piler (WCC) to also generate a mapping and a partitioned non-preemptive schedule. The execution
model considered aims at eliminating interference by splitting tasks into sub-tasks representing
data acquisition, execution, and replication phases. Moreover, the platform considered has a TDMA
bus. Considering constraints from applications and platform descriptions, the framework uses an
ILP solver to generate an off-line schedule of tasks mapped to each core.

3.2 Memory Bandwidth Regulators

Research papers in this sub-category consider systems where access to the memory bus is restricted.
Since memory bus accesses (e.g. LLC misses) can occur at any point in task execution, control
over access to the memory bus is achieved by implementing a memory bandwidth regulator, which
operates in a similar way to a periodic server: each core is assigned a portion of the total memory
bus bandwidth in terms of a budget, which is replenished periodically. When a core exhausts it
memory bus bandwidth, then it is idled until the start of the next period. The effect of implementing
a memory bandwidth regulator is that the interference from other competing cores can be easily
bounded. Additionally, by assigning budgets that avoid overloading the memory bus, each task runs
with a guaranteed memory bandwidth that effectively ensures that its execution is independent of
the behaviour of tasks running on the other cores. Thus timing analysis for single-core systems
can be adapted to the case of multi-core systems with memory bandwidth regulation.
In 2012, Yun et al. [135] (reviewed in Section 4.1) proposed memory regulation similar to the

behaviour of a periodic server. Subsequently, in 2013, they introduced MemGuard [136], which
provides synchronous (same period) regulation of all cores via performance counter overflow
interrupts.
In 2013, Behnam et al. [16] presented the Multi-Resource Server (MRS). These servers regulate

both the processing time and memory bandwidth. When any budget in the server is depleted,
the server is stalled until its next replenishment period. The proposed analysis is based on a
compositional framework. It performs a local analysis of the tasks within a server, and also validates
the set of servers globally. The analysis has the important simplifying assumption that memory
access delays are considered constant. This limitation was later lifted by Inam et al. [61] in 2015.
Here, a global upper bound for DRAM latencies with First-Ready FCFS (FR-FCFS) arbitration is
calculated and used, with different delays for private and shared memory banks taken into account.
The analysis considers the worst case by assuming that tasks deplete the memory budget by issuing
sequential memory requests at the beginning of the server period.
In 2014, Nowotsch et al. [90] introduced an interference-aware WCET analysis, coupled with

run-time monitoring and enforcement. The schedule is assumed to be offline (static) and time-
triggered (ARINC 653 standard). The WCET is composed of two parts: the core-local execution
time assuming privileged access to shared resources, and an upper bound on the shared resource
interference delay. This upper bound is guaranteed by the Operating System, which monitors
resource usage and prevents execution if the resource budget is going to be exceeded. This way a
limited form of temporal isolation is guaranteed. The authors describe under what circumstances a
simple summation of the interference delay and core-local execution time results in a safe upper
bound. Nowotsch et al. [89] extended their prior work [90]5 by implementing a budget (i.e. capacity)
re-claiming method. When a task exhausts its assigned capacity, the capacity usage of all the tasks

5Note that although [90] was published after [89] it contains earlier work and is cited in [89].

ACM Comput. Surv., Vol. 1, No. 1, Article 01. Publication date: February 2019.

A Survey of Timing Verification Techniques for Multi-Core Real-Time Systems 01:13

is re-evaluated to determine if the suspended task can be granted some additional capacity to
resume execution. As with the budget reclamation mechanisms implemented in Memguard [136],
this approach aims at improving the average case while still providing a worst-case guarantee.

In 2015, Yao et al. [131] presented aWCET and schedulability analysis for multi-core systems with
memory bandwidth regulators. Here, each core has a memory bandwidth budget (i.e. memory access
time allowed per period) and a replenishment period. Cache is considered private or partitioned for
each core. This work assumes a known WCET for each task running alone, and that this WCET
can be divided into computation and memory access times. The analyses presented are based
on the calculation of the stall time for the task under analysis, which can result from bandwidth
regulation or from contention from other cores. One memory access can suffer interference at most
once from each core. The stall time of the task under analysis is thus shown to be independent of
the characteristics of the other tasks, thus achieving isolation via software means. For the WCET
analysis proposed (which considers a task running alone in a core, but suffering interference
from other cores), the authors show that tighter results can be obtained if the memory bandwidth
replenishment periods of the cores are synchronised. The schedulability analysis is constructed by
creating a synthetic task that includes the effects of all task instances in the relevant response-time
analysis window. As a consequence, the WCET analysis can be applied to this synthetic task to
obtain schedulability results. We note that this work considers a single constant memory access
time. Subsequent work by Awan et al. [12] in 2018 extended the analysis from one to two memory
controllers.
In 2015, Mancuso et al. [83] presented the Single Core Equivalence (SCE) framework which

provides a means of isolation effectively exporting a set of equivalent single-core machines to the
application. SCE methods are applied to the LLC, DRAM memory bandwidth, and shared DRAM
banks. Profiling is used to determine the pages of each task’s code that have most impact on the
WCET and these pages are locked in the cache, thus avoiding any cross-core contention. The
Memguard [136] mechanism is used to regulate the memory bandwidth allocation for each core in
a given period. Thus once the capacity is reached in terms of the number of accesses, the core is
idled until the next server period. Finally, the PALLOC tool [133] is used to assign disjoint sets of
DRAM banks to applications running on different cores to exploit parallel accesses. The additional
latency due to memory regulation is integrated into response time analysis assuming that memory
bandwidth is equally distributed among the cores. Note, in contrast to the work of Yao et al. [131],
this work considers minimum and maximum memory access latencies.
Also in 2016, Pellizzoni et al. [99] presented a schedulability analysis for memory bandwidth

regulated systems with FR-FCFS memory arbitration. The analysis exploits knowledge of the
restrictions on memory requests from competing cores to produce lower delay bounds. First, it
performs a core-local analysis to determine the bandwidth requirements that a core needs to
schedule its tasks. These requirements are called the schedulability envelope, and are defined as
the memory budget required by the core, and the maximum memory budget that can be assigned
to other cores. Second, a system analysis is performed to determine if the demands of all cores can
be satisfied. The benefit is that each core can be developed independently, with no knowledge of
the tasks running on the other cores. The authors define separate analyses for systems with read
only regulation, and for systems with read/write regulation.
In 2017 Mancuso et al. [84] extended the SCE approach based on Memguard [136] by allowing

different memory bandwidth budgets for the different cores. This work shows how to derive task
WCETs as a function of the assigned memory budget, the execution time (not including memory
requests) and the number of memory requests. Schedulability analysis is then given which utilises
these WCET functions. The evaluation shows around 30% improvement in WCET compared to
assigning equal budgets to all cores.

ACM Comput. Surv., Vol. 1, No. 1, Article 01. Publication date: February 2019.

01:14 C. Maiza, H. Rihani, J.M. Rivas, J. Goossens, S. Altmeyer, and R.I. Davis

In 2017, Agrawal et al. [1] tackled the problem of scheduling ARINC 653 partitions in a multi-core
system taking into account memory contention. The computation and memory access budgets are
given at the slot level instead of the partition level. Memory budgets for each slot are selected from
a list of pre-defined budgets that depend on how many cores are active in the slot (when more
cores are active then each core is given a lower memory budget). The offline (static) schedule and
slot budget assignments are performed using an upper bound on the number of memory accesses
for each partition and a WCET for execution in isolation. The worst-case memory access pattern is
constructed by moving the memory accesses to the slots with lower memory budgets.
In 2018, Agrawal et al. [2] considered the case where the core memory bandwidth budgets can

change arbitrarily over time. The analysis is constructed as an optimisation problem that aims to
find the worst-case memory request distribution for each budget configuration. The evaluation is
performed on an ARINC 653 type system. It shows that dynamic budget assignments dominate
static budget assignments for the task sets studied. A simple heuristic is also provided to calculate
dynamic and static budget distributions.
In 2018, Awan et al. [13] extended the SCE approach considering uneven memory regulation

(assuming upper and lower bounds on the access time of a single memory transaction). The idea
being to provide inter-server isolation even for servers on the same core. The budget assignment is
obtained by solving an ILP system of constraints. The results show an improvement in terms of
schedulability over previous approaches.
In 2018, Freitag et al. [41] presented an isolation technique using performance counters. The

isolation proposed here differs from other works on memory bandwidth regulation in that one
core is given priority over all others. Real-time guarantees can therefore only be provided for this
dedicated real-time core, whereas all other cores are effectively executing tasks on a best-effort
basis. Performance counters are used to track the progress of the real-time application on the
dedicated core. As soon as the performance falls behind the statically predicted necessary progress
to finish on time, other cores are either slowed down, or halted entirely to reduce the memory
contention.

3.3 Offline Scheduling

Research papers in this sub-category use offline static scheduling techniques whereby a table
is generated that contains all the scheduling decisions for use at run-time such that concurrent
accesses to shared resources (e.g. the memory bus) are controlled.

In a series of papers [43–45] from 2013 to 2016, Giannopoulou et al. build on top of non-preemptive
Flexible Time-Triggered Scheduling (FTTS) with dynamic barriers to achieve partial isolation in a
mixed-criticality system. The initial work [43] in 2013 considers offline scheduling and task mapping
to cores, accounting for processing time and synchronous memory accesses, while ensuring co-
ordination among cores such that tasks of different criticality levels are not executed at the same
time. Simulated annealing algorithms are proposed for the task mapping and construction of the
schedule. Worst-case response time analysis accounting for synchronous memory accesses is done
via the Timed Automata and model checking methods described in [42]. Later work [44] in 2014
further develops the system design optimisation under FTTS for memory bank sharing. A simulated
annealing framework is used to map tasks to cores, and data and communication buffers to shared
memory banks. Finally a further generalisation in 2016 [45] considers scheduling and task/memory
mapping for a clustered many-core taking into account delays due to memory banks local to the
cluster and due to remote data copied from external memory. Task dependencies are supported, and
tasks are also assumed to have a minimum degraded execution requirement that must be satisfied
in all system criticality levels. Network calculus is used to bound the delays over the NoC, while

ACM Comput. Surv., Vol. 1, No. 1, Article 01. Publication date: February 2019.

A Survey of Timing Verification Techniques for Multi-Core Real-Time Systems 01:15

task mapping to cores and shared memory mapping to local memory banks is optimised using a
simulated annealing algorithm.

In 2016, Perret et al. [102] introduced an execution model that restricts the application behaviour
to ensure temporal and spatial isolation between applications and to bound theWCET. The execution
model consists of a set of rules that include spatial partitioning of the tasks, time-driven access to
the NoC, and rules to share the DDRx-SDRAM banks.

In 2015, Carle et al. [19] proposed an automatic procedure for the design and implementation of
data-flow programs on multiprocessors. Here, a task allocation algorithm is used to optimise the
end-to-end response time. Temporal isolation is enforced between tasks allocated to different time
frames, while a conservative upper-bound on the WCETs accounts for all delays due to accesses to
shared resources by tasks in the same time frame.
In 2018, Carle and Casse [18] presented a method to derive a static schedule of unmodified

binaries that minimise the execution time inflation due to inter-core interference. The standard
IPET WCET technique is used to identify which instructions in the binary code are not guaranteed
to always be hits and thus could suffer from interference. These instructions are called TIPs (Time
Interest Points). Tasks are represented by a sequence of intervals, each with a constant execution
time, separated by TIPs. A partial isolation approach is proposed. This involves building a static
schedule using ILP that minimises interference, considering a constant cost per interference. The
authors conclude that with this approach ILP is only applicable for relatively short tasks.

Research that makes use of offline (static) scheduling for the purposes of temporal isolation but
is reviewed elsewhere in this survey includes the work of Alhammad et al. [4] (see Section 3.1) and
Becker et al. [15] (see Section 5.1).

3.4 Hardware Isolation

Research papers in this sub-category focus on WCET analysis in the context of hardware isolation
mechanisms where interference either does not depend on the co-runners, or can be bounded
independent of the behaviour of the co-runners. A TDMA or Round-Robin bus arbiter is the
most popular way to ensure such hardware isolation, other approaches use memory partitioning /
optimisation.

In 2007, Rosen et al. [105] proposed an approach that integrates system level static cyclic schedul-
ing and WCET analysis. The main focus is on optimising the periodic schedule table of TDMA slots
that give each core access to the bus, with the aim of minimising the latest termination time of a set
of tasks represented by a task graph. A system level offline (static) schedule of tasks (executing on
all cores) is constructed using a list scheduling approach. At each step, corresponding to the start
of a task, the next segment of the bus schedule (up to the next completion of a task) is optimised
according to a cost function which considers the WCETs of the currently active tasks and an
estimate based on the conflict-free WCET of their successors. (Note the WCETs of the active tasks
are dependent on the bus schedule and are recomputed for the different bus schedules examined as
part of this optimisation step). Each WCET computation uses an ILP system that encodes accesses
and the availability of the bus.

In a paper in 2011 [66] and the extension to it in 2014 [67], Kelter et al. presented WCET analysis
in the context of multi-core systems with local instruction and data scratchpads connected via a
shared TDMA bus to a global shared memory. The analysis takes the precise time offset between task
execution and TDMA slots into account to bound the delay each memory access may suffer while
waiting for the next TDMA slot. The analysis operates at the level of basic-blocks and formulates
an offset graph that captures the dependencies between different memory accesses (i.e. the impact
that delays to an earlier access can have on the timing of subsequent accesses). The offset graph is

ACM Comput. Surv., Vol. 1, No. 1, Article 01. Publication date: February 2019.

01:16 C. Maiza, H. Rihani, J.M. Rivas, J. Goossens, S. Altmeyer, and R.I. Davis

used to encode the timing dependencies into an ILP system of constraints, and thus determine the
WCET.

In 2011, Yoon et al. [132] introduced a WCET estimation depending on cache partitioning and bus
configuration. The solving of a Mixed Integer Linear Programming (MILP) system of constraints
leads to a WCET estimation and cache and bus configuration. The WCET estimation is separated
into a local WCET estimation that does not depend on other cores or tasks, and an interference
delay. For the bus, a configurable Round-Robin scheme is used where each core has an upper bound
on the delay and different łroundsž are defined. For the cache, the notion of banks and columns are
used to partition.

In 2013, Kelter et al. [68] derived formulae for the bounds on the worst-case bus access delay for
four bus arbitration policies: Round-Robin, TDMA, priority division, and priority-based arbitration.
They also compared the worst-case and average-case performance of these schemes. Building on this
earlier work, in 2014 Kelter et al. [65] investigated two techniques to reduce WCETs in partitioned
multi-core systems. First, they use a genetic algorithm to optimise the bus schedule (i.e. the number
of slots and their length, assigned to each core) for a set of bus arbitration policies, including
Round-Robin, TDMA, and priority-based. Second, they explore reordering instructions within basic
blocks to better match the bus schedule. (The WCET bounds for each bus arbitration policy are
estimated using the formulae from [68]). Overall, an improvement of up to 33% is observed. This
technique also allows a trade-off between average-case and worst-case execution time.

A framework for memory contention analysis was introduced by Dasari et al. [35] in 2015. The
focus of this work is on the shared resource access delay, with an upper bound on the number of
accesses assumed to be provided for each task. (In the paper, this upper-bound is obtained from
measurements, with regions of task execution used for a more fine-grained analysis). The shared
bus arbiter is modelled by considering the earliest and latest available communication slots for the
task under analysis. Mathematical models of the most widely used bus arbiters are provided. This
work was extended by Dasari et al. [36] in 2016, considering cache partitioning to provide better
isolation and hence obtain more precise timing bounds. The aim of the work is then to compute the
WCETs of the tasks (executing concurrently) assuming specific bus policies, both work-conserving
and non-work-conserving (e.g. TDMA), and fixed priority partitioned scheduling.
In 2016, Valsan et al. [123, 124] showed that partitioning the shared cache in COTS multi-

core processors that use non-blocking caches is not enough to ensure predicable execution time
behaviour. (Non-blocking caches allow hits to still be served from the cache, while waiting for a
miss to be served from main memory). The authors showed for three different COTS multi-core
architectures that even when the global (LLC) cache is partitioned between cores, co-runners
can cause up to a 21-fold increase in execution times compared with running alone. This is due
to contention over Miss Status Holding Registers (MSHR). A combined hardware and software
solution is presented which controls the memory level parallelism of each core and eliminates
contention over MSHRs.
In 2017 Oehlert et al. [92] proposed an ILP formulation for WCET estimation and a Genetic

Algorithm for selecting code to place in local scratchpad memory so as to reduce the WCET. This
work is in the context of TDMA bus arbitration. In particular, the stall delays due to the TDMA
cycle influence the optimal scratchpad allocation. The bus-aware approach that the authors propose
is evaluated against a similar bus-unaware approach. For a dual-core, the new ILP method gives 23%
lower WCET estimates on average, while the genetic algorithm resulted in higher WCETs. These
results were more pronounced for more cores dues to the longer bus stall times.

Research that overlaps with this sub-category but is reviewed elsewhere in this survey includes
the work of Lv et al. [82] (see Section 2.1), Rihani et al. [103] (see Section 2.2), Andrei et al. [10] (see

ACM Comput. Surv., Vol. 1, No. 1, Article 01. Publication date: February 2019.

A Survey of Timing Verification Techniques for Multi-Core Real-Time Systems 01:17

Section 2.3), Suhendra et al. [121] and Chattopadhyay et al. [25] (see Section 4.2), and Schranzhofer
et al. [112] (see Section 4.1).

3.5 Critique and Perspectives

Research in this category relies on mechanisms that shape access to shared hardware resources,
particularly the interconnect/memory bus, reducing or preferably eliminating contention. This
shaping makes the system more predictable and greatly simplifies the analysis needed for timing
verification. There are however a number of trade offs.

Research in the first sub-category makes use of the phased execution model which only allows a
limited number of memory phases at the same time, usually only one, thus providing temporal
isolation. Here the trade-offs include: (i) the code overheads added by the memory phases, (ii) the
delays until the scheduler grants each memory phase access to the bus.
Research in the second sub-category makes use of memory bandwidth regulators. The main

trade-off of this approach is that regulation effectively slows down task execution. With each task
running as if the memory bus was always just below its saturation point, even when other cores
are idle. This leads, in many cases, to not fully utilising the computing resources of the platform.
Research in the third sub-category makes use of offline scheduling to shape accesses and hence

provide temporal isolation. As with single core systems, a lack of flexibility is the main trade-off
for the high degree of predictability afforded by offline schedules. The system configuration may
need to be completely re-computed for every change in the tasks.
Research in the fourth sub-category makes use of hardware isolation to shape accesses. The

difficulty here is that hardware isolation techniques necessarily require specific hardware designs
to be employed. Often hardware isolation, for example via a TDMA bus, comes at a cost in terms of
using non-work conserving protocols that compromise the effective bandwidth that can be used.
As a result such techniques are rarely employed in COTS multi-core systems. Partial isolation using
arbitration policies such as Round-Robin means that interference can be bounded independent
of the co-runners; however, typically the analysis is more pessimistic since a worst-case delay is
assumed on every access.
In conclusion, the research described in this section shows that while techniques based on the

concept of temporal isolation can lead to more predictable access to shared hardware resources
and consequently simpler analysis for timing verification, the main trade-off is in not fully taking
advantage of the system computing resources (i.e compromising throughput and average case
performance). An open question is whether temporal isolation techniques and their analyses can
be improved to allow better utilisation of the available hardware resources. The work of Hebbache
et al. [58] in 2018 on dynamic bus arbitration schemes based on TDMA is an example of research
in this direction. The approach proposed provides utilisation similar to that of work-conserving
policies, while preserving the guarantees of TDMA in the worst-case.

4 INTEGRATING INTERFERENCE EFFECTS INTO SCHEDULABILITY ANALYSIS

Research in this category aims to account for additional delays that impact task execution due to
the arbitration policies used to access shared resources and the contention caused by co-running
tasks on other cores. It does so by integrating these delays into schedulability analysis. Typically,
the WCET for each task running in isolation (i.e. without contention for resources) is used as a
baseline, with the effects of contention included as additional terms in the response time analysis or
other schedulability test formulation. Many works consider a single shared resource such as the
interconnect or memory bus, shared cache, or DRAM, while other papers integrate the effects of
contention across multiple shared resources. Below we subdivide the literature depending on the

ACM Comput. Surv., Vol. 1, No. 1, Article 01. Publication date: February 2019.

01:18 C. Maiza, H. Rihani, J.M. Rivas, J. Goossens, S. Altmeyer, and R.I. Davis

interference considered: (i) interference contending for the memory bus, (ii) interference contending
for memory (cache, scratchpads, or DRAM), (iii) interference contending for multiple resources.

4.1 Interference Contending for the Memory Bus

Research papers in this sub-category focus mainly on analysing contention on the memory bus
and how the effects of this can be integrated into schedulability analysis.

In a series of papers [107–110] from 2008 to 2011, Schliecker et al. considered the effect of resource
accesses delays, due to co-runner contention, on the response times of tasks. The state-of-the-art
for this thread of research is captured in the final paper [107], which generalises the approach
to arbitrary shared resources with work-conserving arbitration policies. Schliecker et al. [107]
use arrival curves to model the number of resource accesses from each task, using a minimum
separation between accesses and a maximum number of accesses per job. This is extended to
multiple tasks running on a single core. For each task, its WCRT is computed based on the task’s
baseline WCET (assuming no resource access delays), preemptions due to higher priority tasks on
the same core, and delays due to accesses by the task itself, higher priority tasks on the same core,
and also accesses due to tasks on other cores in the same time window. The overall framework uses
an outer fixed point iteration to handle the dependencies between the WCRTs of tasks on different
cores. The evaluation examines the performance of different types of interconnect, including a
cross-bar, a FCFS bus, and a FCFS bus that supports two accesses in parallel. It shows that the
proposed approach is much less pessimistic than assuming the worst-case delay for every bus
access that a task makes.
Schranzhofer et al. published a series of three papers [112–114] during 2010 and 2011 based

on the superblock model. In this model each task is represented by a sequence of superblocks,
which may have branches and loops within them. The task set is assumed to be periodic and all
execution on a core is assumed to be described by a sequence of superblocks (i.e. an offline static
cyclic schedule). The first paper [112] considers TDMA bus arbitration. The second paper [113]
provides worst-case completion time analysis for the superblocks and hence a schedulability test.
It covers three models: (i) arbitrary memory accesses anywhere in the superblocks, (ii) dedicated
phases where accesses only occur at the start and end of each superblock, and (iii) a hybrid where
most accesses are in the acquisition and replication phases, but some accesses can take place in the
intervening execution phase. The conclusion is that the dedicated model improves schedulability
due to less contention. The third paper [114] extends the approach to an adaptive bus arbiter
with both static and dynamic segments. The method uses a dynamic programming technique to
compute the minimum amount of execution of a superblock which must have taken place to reach
a particular frame in the arbitration schedule, considering the interference due to requests from
tasks executing on other cores. The task WCRTs are then computed from this information.
In 2010, Pellizzoni et al. [98] also considered the superblock model. They assume that the

maximum number of memory accesses made by an individual task (or by a set of tasks) in a
given time interval can be upper bounded by an arrival curve. They derive arrival curves for both
un-buffered accesses from a task which stalls waiting on the request and buffered accesses from
DMA. A dynamic programming technique is then used to compute the maximum interference
on the memory requests of a given task, and hence the worst-case delays due to memory bus
interference under Round-Robin, fixed priority, or TDMA bus arbitration.

In 2012, Giannopoulou et al. [42] proposed a state-based response time analysis based on Timed
Automata for multi-core systems using the superblock model. They model superblocks, static
schedulers for the cores, and resource arbiters as Timed Automata with analysis provided via model
checking. To improve scalability, each core is analysed separately, with interference from other
cores abstracted via arrival curves.

ACM Comput. Surv., Vol. 1, No. 1, Article 01. Publication date: February 2019.

A Survey of Timing Verification Techniques for Multi-Core Real-Time Systems 01:19

Lampka et al. [77] published another paper using the superblock model in 2014. The approach in
this paper relies on model checking and abstract interpretation combined with Real-Time Calculus.
The aim here is to provide an upper-bound on the worst-case response time of concurrent tasks
considering contention on shared memory. The authors first propose a method based on timed
automata to precisely model the applications, the scheduler, shared resource accesses, and the
arbitration policy used in the shared memory bus. Arbitration policies considered are Round-Robin,
FCFS, and TDMA. The scalability of WCRT analysis is enhanced by abstracting the concurrent
accesses to the shared resource with arrival curves from Real-Time Calculus.
In 2011, Dasari et al. [33] presented a response time analysis for partitioned tasks scheduled

using fixed priority non-preemptive scheduling on a multi-core with a shared memory bus, which
utilises a work-conserving arbitration policy. The bus contention from each task is modelled via
a request function that returns the maximum number of bus requests that can be made by the
task in a given time interval. The request function is computed by examining all paths through
the code of the task and determining the pattern of accesses. Alternatively, it can be estimated via
measurements using performance counters. The request function is integrated into schedulability
analysis as an additional term in the WCRT equations. Since the request function for each task
depends on the task’s WCRT, an outer fixed point iteration is made over all tasks, until all response
times converge to fixed values or a deadline is exceeded.

In 2012, Yun et al. [135] proposed a software method to control resource contention on a shared
memory bus on COTS multi-cores. This work assumes a dedicated core which executes all critical
real-time tasks. Contention due to tasks running on other cores is then limited by memory throttling.
The idea is to set a budget ofQ bus requests in any period P . If this budget is exceeded, as checked via
performance counters, then the tasks on the non-critical core(s) are suspended until the period ends.
The budget may be applied statically to individual cores or dynamically to a group of non-critical
cores. The authors show how to incorporate an extra interference term into standard response time
analysis to account for the interference from other cores. This term is limited via the parameters
of the memory throttling. The evaluation shows that the dynamic approach is more effective and
provides the non-critical cores with better performance, as they are throttled for less time.

4.2 Interference Contending for Memory

Research papers in this sub-category focus mainly on analysing contention over shared cache,
while other works consider scratchpad memories and DRAM.

An allocation algorithm for placing instructions into local scratchpads and shared memory
to reduce the WCET in multi-core systems was proposed by Suhendra et al. [121] in 2010. This
algorithm also calculates scratchpad re-loading points to leverage the memory requirements of
tasks with disjoint lifetimes. Each task can only access its own local scratchpad, and the latency of
any access to memory (scratchpad or main memory) is considered bounded by a constant. This
work also includes a response time analysis that takes into account the scratchpad allocation.

In 2011, Chattopadhyay et al. [25] presented an algorithm to allocate (at compile time) data
variables into scratchpad and global shared memory in order to minimize the WCRT of the tasks.
They provide a response time analysis that considers a scratchpad allocation, assuming an architec-
ture where each core has a local scratchpad, and all scratchpads can be joined to form a virtual
scratchpad space accessible by any core. The proposed allocation takes into account the delays to
access the shared memory via a TDMA bus.

In 2009, Guan et al. [48] presented a cache-aware global fixed priority non-preemptive scheduling
policy for multi-core systems with a shared L2 cache which can be partitioned at the level of cache
blocks. When a core is idle, the policy selects the highest priority ready task to execute; however, the
task only runs if sufficient L2 cache blocks are available, hence the policy is not work-conserving.

ACM Comput. Surv., Vol. 1, No. 1, Article 01. Publication date: February 2019.

01:20 C. Maiza, H. Rihani, J.M. Rivas, J. Goossens, S. Altmeyer, and R.I. Davis

The authors note that allowing lower priority tasks requiring fewer blocks to run ahead of higher
priority tasks (i.e. making the policy work-conserving) could result in unbounded blocking. They
present two schedulability tests for the policy, one which uses a Linear Programming formulation,
and a second which uses a closed form approximation. Evaluation shows that the second test has
good performance, similar to the first.

In 2012, Liang et al. [79] presented a worst-case response time analysis for concurrent programs
running on a multi-core system with a shared instruction cache. They assume that communication
between the tasks is based on message passing, with the structure of concurrent programs captured
via graphs of message sequence charts. The analysis derived obtains lower WCRTs than previous
shared-cache analysis methods. The authors also show the benefits of cache locking, which improves
the task WCRTs through a reduction in the number of conflicts.

In 2017, Zhang et al. [138] integrated analysis of cache-related preemption delays into schedula-
bility analysis for global EDF scheduling. The main extension over prior work (for single processor
systems) is recognising that in anm-core system, them tasks with the shortest deadlines will not
be preempted. The evaluation shows that taking this into account results in a modest improvement
in schedulability. We note that a single shared cache is assumed for all cores; however, there is
no consideration of the cache interference that would inevitably occur due to tasks executing in
parallel on different cores and sharing the same cache.
In 2017, Xiao et al. [126] considered interference on shared caches in a multi-core system with

local L1 caches, and a shared L2 cache. The task model assumes non-preemptive fixed priority
scheduling on each core and a static partitioning of tasks to cores. This results in only inter-
core interference on the shared cache (the processor bus is ignored). The authors propose an ILP
formulation to bound the interference per task within its execution window. This interference
is then included in the WCRT analysis, with the bound iteratively refined until a fixed-point is
reached.

In a paper in 2014 [71] and the extension to it in 2016 [72], Kim et al. provided detailed analysis
of memory interference due to contention for banked DRAM in COTS multi-core systems. The
analysis takes account of the scheduling of DRAM access, different latencies due to closed/open
rows (row hit, row conflict), and the FR-FCFS policy used by the DRAM controller. The model used
assumes DRAM bank partitioning, with tasks allocated to the same core sharing the same bank
partition. The analysis considers both inter-bank and intra-bank interference. Two approaches are
taken to bounding the memory interference delay: request-driven, which uses only the parameters
of the DRAM and processor, and job-driven, which uses only the parameters of the contending
jobs, i.e. the number of memory requests. The interference delays are integrated into response time
analysis for fixed priority preemptive scheduling. A task allocation algorithm is presented that aims
to group memory intensive tasks together on the same core using the same DRAM bank partition,
which substantially reduces contention. The evaluation shows that in the case of memory-intensive
tasks there are large increases in response times if banks are shared. The proposed allocation
algorithm is thus shown to be far more effective than prior works that perform allocation without
considering memory requests.

In 2015, Yun et al. [134] identified that the work of Kim et al. [71] could be optimistic for modern
COTS multi-core processors due to not considering that the same core can generate multiple
outstanding memory requests. The authors propose a new interference analysis that takes into
account multiple requests. The analysis also considers separate buffers for read and write requests.
It is assumed that both the LLC and DRAM memory are partitioned. The experiments show that
the analysis produces safe upper-bounds on the interference; however, they also highlight how
COTS processors can induce pathological arrival patterns that greatly affect the worst-case delays.

ACM Comput. Surv., Vol. 1, No. 1, Article 01. Publication date: February 2019.

A Survey of Timing Verification Techniques for Multi-Core Real-Time Systems 01:21

Research that overlaps with this category but is reviewed elsewhere in this survey includes the
work of Kafshdooz et al. [64] (see Section 5.1).

4.3 Interference Contending for Multiple Resources

Research papers in this sub-category provide analysis which covers interference due to contention
for a number of different resources.

In 2015, Altmeyer et al. [6] introduced a Multi-core Response Time Analysis (MRTA) framework
for explicit interference analysis. This framework combines the resource demands that tasks place on
difference types of resources, e.g. the CPU, cache, memory bus, DRAM etc. and how these demands
are satisfied by the resource supply provided by those hardware components. The work was extended
by Davis et al. [37] in 2017. The framework is instantiated for cold / warmed-up caches, static and
dynamic scratchpads, a variety of memory bus arbitration policies, including: Round-Robin, FIFO,
Fixed-Priority, Processor-Priority, and TDMA, and accounts for DRAM refreshes. The sporadic
task model is used as a basis, extended to include RTOS context switch behaviour and interrupt
handlers, and shared software resources. The analysis assumes partitioned fixed priority preemptive
scheduling. The evaluation covers different types of local memory, and a comparison between
predictable, isolation, and reference architectures. This shows that a predictable architecture
with scratchpads and a fixed priority bus, can substantially outperform an equivalent isolation
architecture with partitioned caches and a TDMA bus, in terms of guaranteed real-time performance.
The analysis results are also compared to those obtained via simulation. The evaluation indicates
that the memory bus is typically the main bottleneck, and that fixed priority arbitration on the bus
is more effective than other policies.
Rihani et al. [104] built upon the MRTA framework [6, 37] in 2016, extending the approach

to consider mono-rate task graphs describing Synchronous Data-Flow applications, and taking
account of the times at which particular tasks can run. They also tailor the analysis to the behaviour
of the hardware resources of the Kalray MPPA-256 many-core processor, in particular the complex
multi-level bus-arbitration policies used. The authors propose a method to compute an offline
(static) schedule for the tasks that is feasible, accounting for the interference on shared resources.
Starting from a given mapping of tasks to cores, and an execution order for each task that provides
initial release dates, the analysis computes task response times taking into account the shared
bus arbitration policy, and the interference from co-runners. The evaluation shows that the use of
memory banks, and a consideration of the time at which other tasks can run are both important in
achieving effective real-time performance guarantees.

In 2016, Huang et al. [60] presented an approach to schedulability analysis for partitioned multi-
core systems using fixed priority preemptive scheduling, assuming contention for a shared resource.
This analysis is based on recognising a symmetry between processing and resource access. A task
can be viewed as executing and then suspending execution while it accesses the shared resource,
or as accessing the resource and suspending access while it executes on the processor. The authors
extend the standard sporadic task model with information about the amount of time for shared
resource accesses and the maximum number of access segments. The analysis given compares
well / improves upon the schedulability results obtained via the analysis of Altmeyer et al. [6]. It
also provides performance only a little worse than the exact analysis for the phased-execution task
model given by Melani et al. [85].

Cheng et al. [27], in 2017, built upon the analysis presented by Huang [60] extending it to systems
with multiple memory banks which can be accessed independently and have a non-preemptive
fixed priority arbitration policy. They assume that the total number of memory accesses and also the
number of segments of consecutive accesses are known for each task. The authors observe that it is
better to map all accesses from a single task to the same memory bank, since this reduces blocking,

ACM Comput. Surv., Vol. 1, No. 1, Article 01. Publication date: February 2019.

01:22 C. Maiza, H. Rihani, J.M. Rivas, J. Goossens, S. Altmeyer, and R.I. Davis

and to also spread out the tasks among banks to reduce interference on accesses. The authors prove
speedup and memory augmentation bounds for the task and bank allocation algorithms and the
schedulability test that they propose. The evaluation considers a system similar to an island of
the Kalray MPPA 256, with 8 cores and 8 memory banks. It shows that the proposed allocation
algorithm significantly improves on the approach of Kim et al. [72] (see Section 4.2).
In 2016, Choi et al. [31] considered shared resource contention on a multi-core processor, with

tasks that have dependencies (precedence relationships). Partitioned fixed priority preemptive or
non-preemptive scheduling is assumed. The key idea is to model the maximum resource demand
accounting for the separation between tasks and how they are clustered together and so execute in a
particular order on specific cores. The resource demand function is then incorporated into response
time analysis forming a nested iteration. Analysis of task clustering uses separation information
based on the earliest and latest start and finish times for jobs and their precedence constraints
to determine a fixed execution order for clusters of tasks. The evaluation shows that considering
dependencies in this way has a useful impact in improving schedulability by reducing the resource
demand in a given time window.
In 2018, Andersson et al. [9] presented a sufficient schedulability test with pseudo-polynomial

complexity for partitioned fixed-priority preemptive scheduling on multi-core systems. Here,
concurrent tasks are assumed to have co-runner-dependent execution times due to the effect of
contention on shared resources. The system model proposed relies on a set of parameters, such
as execution times, that can be obtained through static analysis or measurement-based methods.
The evaluation of the approach is performed on a real-world multi-core by randomly generating
tasksets and comparing the results of the schedulability test with measured execution times.

Also in 2018, Farshchi et al. [40] presented a memory design including RTOS-support for multi-
core architectures to provide bounded memory access times. To this end, a memory management
unit (MMU) is designed to ensure hardware-based isolation of the shared cache, and a DRAM
controller to provide dedicated access to the DRAM banks. The bounded memory access times
are then exploited in a response-time analysis, assuming fixed-priority preemptive scheduling.
The starting point for the analysis is the tasks’ WCETs in isolation, and the number of memory
accesses per task. The main focus of this work is on the hardware design, but it also provides a
response-time analysis to showcase how the hardware-based isolation can be exploited.

In 2018, Saidi and Syring [106] used arrival curves to model memory access interference at three
levels: (i) local scratchpad memory, (ii) DRAM, and (iii) DMA, for a many-core architecture with
local interconnect to banked memory and an external main memory. The set of models (memory
access, DRAM and DMA latency bounds, bank and rank interference) are used to estimate a global
response time. The main novelties are the model of the data locality captured by extended event
streams, and the memory access granularity and interleaving. The authors show that their approach
leads to a precise worst-case response time bound.
Research that integrates interference across a number of shared resources into schedulability

analysis but is reviewed elsewhere in this survey includes the work of Boniol et al. [17] (see
Section 2.3), Mancuso et al. [83, 84] and Yao et al. [131] (see Section 3.2), and Skalistis et al. [116, 117]
(see Section 5.3).

4.4 Critique and Perspectives

The state-of-the-art is reflected in the papers on explicit interference analysis, which is a highly
extensible approach that can be tailored to cater for different types of resources, different arbitration
policies, and different ways of scheduling tasks. The main advantage of the approach stems from
the fact that it models interference by considering the total demand on each resource over a time
window which equates to the response time of the task under analysis. This leads to much less

ACM Comput. Surv., Vol. 1, No. 1, Article 01. Publication date: February 2019.

A Survey of Timing Verification Techniques for Multi-Core Real-Time Systems 01:23

pessimistic WCRTs than summing the worst-case resource delays over short time intervals, for
example on a per access basis.
Many of the works which integrate the effects of contention over resources into schedulability

analysis, suffer from an apparent circularity problem. The response times of tasks depend on
the amount of resource contention, which in turn depends on the time interval considered (i.e.
the response time of the task under analysis). This problem can however be solved via a nested
fixed point iteration. Although this means that the analysis has pseudo-polynomial computational
complexity, it is typically still feasible for practical sized systems. We note that explicit interference
analysis is agnostic to the issues of timing composability. When used to analyse systems that
provide some form of hardware or software isolation (for example a TDMA bus), then it does
not require information about the resource demands of tasks on other cores. In contrast, with
for example a Round-Robin bus, both time-composable and more precise non-time-composable
analyses are possible.

Integrating the effects of contention into schedulability analysis has a significant advantage over
integration into timing analysis; it can take into account the scheduling context. For example the
set of potentially co-running tasks, the number of resource access requests that can occur within
the response time of the task under analysis, and information about the pattern of requests can all
potentially be integrated into the analysis, making it more precise.
Many of the research works in this area effectively consider serialised access to resources, and

so do not take advantage of the overlap between processor and resource usage that often occurs in
practice. For example, much of the literature assumes an atomic transaction bus, while many COTS
multi-cores have a split-transaction bus. Parallelism (non-blocking caches, multi-bank DRAM, and
memory controllers) is an important aspect of modern hardware, yet it is ignored by most of the
analysis techniques surveyed. This current drawback represents a key opportunity to improve this
form of analysis in the future.

5 MAPPING AND SCHEDULING

Research in this category concerns mapping and scheduling techniques. Mapping is the procedure
to assign, at design time, tasks to processors (i.e. partition the task set) and often also data to a
part of the memory (e.g. scratchpads). The mapping problem is as complex as the bin-packing
problem which is an NP-Hard problem. Consequently if P , NP then the problem cannot be
solved exactly/optimally in polynomial time. Scheduling concerns the run time ordering and
management of the assigned tasks. By construction the scheduling of each core can be considered
to be independent thanks to the partitioning. Most of the papers reviewed define an optimisation

criterion to express the efficiency of the solution. Different methods are considered to find an
optimal solution, or to solve the problem sub-optimally using heuristics. Below we subdivide the
literature depending on the main optimisation method used since papers often propose both exact
and heuristic solutions: (i) ILP and MILP, (ii) Constraint Programming and Dynamic Programming,
(iii) bin-packing, and (iv) Genetic Algorithms.

5.1 ILP and MILP

An integer linear programming (ILP) problem is a mathematical optimisation problem in which
some or all of the variables are restricted to integers. The objective function (the function to
optimise) and the constraints (other than the integer constraints) are linear.
In 2006, Suhendra et al. [120] presented an integrated algorithm to build an offline (static)

schedule and map tasks in a theoretical multi-core system with scratch-pad memories. The solution
is formulated as an ILP problem. It makes the simplifying assumption that access costs to global
off-chip memory and remote scratchpad memories are constant. The approach calculates an optimal

ACM Comput. Surv., Vol. 1, No. 1, Article 01. Publication date: February 2019.

01:24 C. Maiza, H. Rihani, J.M. Rivas, J. Goossens, S. Altmeyer, and R.I. Davis

partitioning and allocation of data to the scratchpads. The optimisation criterion is to minimise the
initiation intervals of task graphs run under pipelined scheduling (i.e. a new instance of the task
graph is initiated before the previous one has finished).
In 2012 [80] and a subsequent extension in 2015, Liu and Zhang [81] provided a WCET analy-

sis/optimisation for multi-core systems with scratchpad memories, either as local memories, global
memory or both. They focus solely on how to divide the scratchpad memory among the tasks
in order to minimise the WCETs. This is done using an ILP-based partitioning algorithm, which
assigns data objects to the shared scratchpad memories. Note the time to load/store data to other
levels of memory is assumed to be statically bounded (i.e. the effect of the interconnect is ignored).

In 2013, Ding et al. [39] presented an ILP based optimization algorithm to perform task-to-core
mappings aiming to minimize the WCRT of tasks by taking into account both the interference in
the shared cache and a proper load balancing. They target applications modelled as a task graph
and non preemptive scheduling.
In 2014, Kim et al. [76] described a scratchpad management technique for software managed

multi-cores (SMM). SMMs have a scratchpad for each execution core. These cores can only directly
access code from their scratchpad. Thus functions must be loaded into regions of the scratchpad
before they can execute. Themapping of functions to regions of the scratchpad has an impact on the
average-case and worst-case execution time of the program. The authors present two WCET-aware
mapping techniques. The first technique can find the optimal mapping solution for WCET and is
based on ILP. Because the number of function-to-region mapping choices grows exponentially with
the number of functions in the program, this technique does not scale to large programs. Thus,
they also present a polynomial-time heuristic that is scalable, but sub-optimal.
The trade-off between cache partitioning and cache sharing of the LLC for mixed-criticality

systems was examined by Chisholm et al. [30] in 2015. The execution time bounds for the different
criticality-levels are derived via measurements. The effect of cache partitioning/sharing are then
added to these bounds depending on the size of the allocated partition. The paper presents a Linear
Programming (LP) based optimisation of the LLC organisation to improve schedulability.

In 2015, Kafshdooz et al. [64] introduced a way to allow re-use of allocated Scratchpad Memory
(SPM) space, whereby one task can release memory such that another task can allocate it. SPM
allocation and task scheduling and mapping are formulated as an optimisation problem that is
solved at design time. Twomethods are proposed: (i) optimal solution with preciseWCET estimation
using ILP for small systems (2 cores) (ii) near-optimal solution using heuristics for larger systems
(4 cores).

In 2016, Becker et al. [15] presented an approach to time-triggered scheduling for automotive
łrunnablesž on a many-core platform (similar to the Kalyray MPPA 256). Bank privatisation is used
to avoid contention between memory accesses from different cores (each core has a private bank).
Runnables are assumed to have read-execute-write phases. The mapping executes each runnable
non-preemptively, and ensures that accesses to the shared bank made in read and write phases do
not overlap, thus avoiding contention on that shared memory. The mapping problem is formulated
as an ILP. A Memory Centric Heuristic is also proposed and compared with a default Core Centric
Heuristic, the former is significantly more effective, it is also much faster than the ILP for large
systems representative of automotive applications.
If some decision variables are not discrete the problem is known as a mixed-integer linear

programming problem (MILP) two recent contributions considered that method.
In 2016, Chisholm et al. [29] studied theMC2 framework which uses hardware management to

provide isolation between tasks of different critically levels running on different cores. In particular,
it allocates regions of LLC using way-locking and page colouring, and also partitions the DRAM
banks. This work builds upon that framework, adding a consideration of shared data. Shared data

ACM Comput. Surv., Vol. 1, No. 1, Article 01. Publication date: February 2019.

A Survey of Timing Verification Techniques for Multi-Core Real-Time Systems 01:25

is problematic, since it cuts across the isolation approach used. Three options are explored for
lessening the impact of data sharing: (i) lock the shared buffer in the LLC, (ii) bypass the LLC so
that the shared buffer is always accessed from memory, (iii) assign the tasks that share the buffer
to the same core, so that accesses are effectively serialised and the buffer can then be cached. The
MILP used in mapping tasks and regions of the LLC and DRAM in theMC2 framework is extended
to include sizing of the amount of shared buffers locked in the LLC (the most effective method).

An integrated task scheduling and cache locking/partitioning approach was presented by Zheng
et al. [139] in 2017. The processor consists ofm homogeneous cores with local L1 caches and a
shared L2 cache. Effects of the shared bus are ignored. The aim of this work is to schedule sporadic
tasks with given release times and deadlines to them-cores while simultaneously partitioning the
L1 and L2 cache taking into account the task interference. Partitioning here means that each task is
given a share of the cache in which it locks its cache content. The cache locking and partitioning
is therefore dynamic. The scheduling algorithm aims to avoid preemption; if a task is executed
non-preemptively it can use the entire L1-cache. The optimisation criterion is the number of
preemptions. The results show that the multi-core cache locking and scheduling algorithm can
improve over a simple extension of a single-core based cache-locking approach in terms of task
response times.

5.2 Constraint Programming and Dynamic Programming

Constraint programming is a programming paradigm based on relations between variables. The
program deduces the solution to the problem based on these relations (the constraints). Dynamic
programming a mathematical optimisation method, which can be used to reduce a complicated
problem by breaking it down into simpler sub-problems in a recursive manner.
In 2016, Cheng et al. [28] considered the same model as Chang et al. [21] (see Section 5.3).

They show that minimising the maximum core utilisation is NP-hard, and further that there is
no polynomial time approximation algorithm (unless P=NP). They also show that minimising the
maximum system utilisation (max of memory utilisation of a local memory and core utilisation)
with no constraints on these values is also NP-hard. The authors propose a solution to the latter
problem which achieves a lower bound approximation when the memory allocation is given. This
solution is based on a method of optimal memory allocation to balance the memory and core
utilisation of the tasks using dynamic programming. A greedy worst-fit algorithm is then used to
allocate the tasks to cores. Evaluation shows that the proposed algorithm is effective and that the
total local memory need only be 10–20% of the overall global memory requirement to achieve good
performance.

The problem of mapping large applications on the Kalray MPPA platform so as to satisfy timing
requirements while guaranteeing spatial and temporal isolation between applications was addressed
by Perret et al. [100] in 2016. The properties to be guaranteed are: spatial partitioning inside compute
clusters; isolated accesses to the NoC; offline pre-defined static buffers; and isolated accesses to the
DDR-SRAM bank. The mapping problem is formulated using constraint programming (specifically
the notion of conditional time-intervals), which is more scalable that existing ILP formulations of
the problem. The aim of this work is to help application designers provide valid budgets for each
application in terms of required processing, communication and memory resources. Note that this
allocation approach is used in other work by Perret et al. [102] summarised in Section 3.3.

In two papers in 2016 [116] and 2017 [117] Skalistis et al. presented an interference based WCET
analysis for data flow applications running on many-core platforms. The system is defined by a
Unified System Model that includes a mapping of tasks to clusters, and adds communicating tasks
that handle inter-cluster communications. From this model an initial WCET is obtained including
an over-estimation of the inter-cluster and intra-cluster interference, which is used to perform an

ACM Comput. Surv., Vol. 1, No. 1, Article 01. Publication date: February 2019.

01:26 C. Maiza, H. Rihani, J.M. Rivas, J. Goossens, S. Altmeyer, and R.I. Davis

initial mapping of tasks to resources, and a calculation of an offline (static) schedule using SMT
solvers. An iterative method is then used that tightens the initial WCET estimation by eliminating
impossible interference (i.e. from tasks that do not overlap in time and/or space). The schedule is
recalculated making sure no new interference is added.

Research that overlaps with this category but is reviewed elsewhere in this survey includes the
work of Kim et al. [74] (see Section 3.1).

5.3 Bin-Packing

The task partitioning problem is a form of Bin-Packing problem: k objects of different sizes must be
packed into a finite number of bins of capacity B in a way that minimises the number of bins used.
In our context, objects correspond to tasks and bins correspond to processor cores. The problem is
known to be strongly NP-Complete. Many heuristics have been developed, e.g. next-fit, best-fit,
worst-fit etc. which are fast, but often yield sub-optimal solutions.

In 2006, Anderson et al. [7] considered identical multiprocessors with 2 levels of cache (L1 local,
L2 global). The aim being to reduce L2 cache misses. The main idea is to group the various tasks
(named megatasks) such that the tasks of the same megatask can be co-scheduled, i.e. the data does
not exceed the L2 cache size. The paper proposes a hierarchical Pfair-based scheduler for tasks and
megatasks. The evaluation shows that L2 cache misses are significantly reduced.
In 2011, Paolieri et al. [95] introduced an algorithm to allocate tasks to shared memories and

cores. The allocation is in two steps: first, the algorithm pre-allocates tasks to cores assuming a
"non-interfering" WCET; Second, the execution time is updated with interference costs. The aim is
to minimise the resources assigned to the hard real-time tasks. The interference cost is estimated
and stored in a matrix that is used to determine the interference delay depending on which cores
the tasks are allocated to. The interference analysis takes into account the shared bus (Round-Robin)
and a memory controller (DDR2-SDRAM). The cache memories (L1 and L2) are partitioned through
bankization.

In 2012, Chang et al. [22] considered the problem of mapping tasks to identical multiprocessors
with heterogeneous shared memory of two types: a fast scratchpad-like memory, and a slow DRAM
like memory. The authors propose a two step method. First, two algorithms (dynamic programming
and a faster greedy approach) are used to satisfy the memory requirements of the tasks for each
memory type such that the maximum task utilisation is minimised. The WCET of the tasks are
calculated using the tool aiT. Second, the tasks are ordered according to their utilisations in a non
increasing manner, and then sequentially assigned to the lowest utilisation processor.
Later in 2015, Chang et al. [21] studied the problem of task allocation on an island or cluster

based multi-core system, with each cluster having fast local memory, which can be partitioned
between tasks running on the cores of the cluster. The authors present algorithms aimed at solving
two problems: (i) task allocation to cores when the number of local memory blocks each task uses
is also part of the allocation problem, (ii) when the number of local memory blocks required by
each task is fixed. A large scale case study shows that typically relatively small local memories
(in comparison to the total memory usage of the tasks) are sufficient to substantially improve
schedulability. Further, when the designer is free to allocate the number of memory blocks for each
task much more efficient solutions can be found.

In 2013, Kim et al. [73] presented an approach to cache management for multi-core systems. Their
approach consists of three components: (i) cache reservation that ensures exclusive use of a number
of partitions of the shared cache for each core, thus eliminating inter-core cache interference; (ii)
cache sharing that enables tasks on the same core to share cache partitions (if necessary); and (iii)
cache-aware task allocation that utilises the other two components to find an efficient allocation that
ensures task schedulability. The authors show how the cache warm-up delays and cache-related

ACM Comput. Surv., Vol. 1, No. 1, Article 01. Publication date: February 2019.

A Survey of Timing Verification Techniques for Multi-Core Real-Time Systems 01:27

preemption delays for their scheme can be integrated into response time analysis, assuming fixed
priority preemptive scheduling of a subset of the tasks on each core. The cache-aware allocation
algorithm sorts the tasks in order of decreasing utilisation, and employs a Best-Fit approach to
allocation. The overall approach is software-based, using page colouring, thus it is applicable to
COTS multi-cores.
In two papers in 2013 [88] and 2015 [87] Nikolic et al. study NoC-based many-core platforms.

They consider the latencies of memory operations and propose two methods to obtain the upper-
bound on the worst-case memory traffic delays of individual applications. The main contribution
is a formulation of the problem of mapping on many-core platforms under the limited migrative
model where tasks can only execute on a subset of cores. The authors propose a method which
consists of three stages. In the initial phase all high-priority applications are mapped, and are not
be subject to changes in later phases. During the feasibility phase, all low-priority applications are
mapped, with the primary objective being to derive a feasible solution where all the applications
are mapped. Lastly, during the optimisation phase the feasible solution is improved.
In 2016, Xu et al. [127] presented a cache-aware global fixed priority preemptive scheduling

algorithm for multi-core systems called gFPca. Only shared cache is considered, and it is assumed
to be partitioned. Under gFPca, tasks are scheduled according to their priorities and the number of
cache partitions they require, with cache partitions assigned to jobs at run-time. A formal analysis is
provided, including the delays produced due to reloading the cache contents after each preemption.

Research that overlaps with this category but is reviewed elsewhere in this survey includes the
work of Andrei et al. [10] (see Section 2.3), Alhammad et al. [3, 4] (see Section 3.1), Agrawal et
al. [1] (see Section 3.2), Giannopoulou et al. [43–45], Carle et al. [19] (see Section 3.3), and Cheng et
al. [27] (see Section 4.3)

5.4 Genetic Algorithms

Genetic algorithms are a method of solving optimisation problems inspired by the process of natural
selection.
In 2018, Still et al. [119] considered the problem of mapping tasks with their communication

requirements to cores connected via a NoC. The authors note that all prior work on such mappings
ignore the constraint that the tasks need to fit in the core’s local memory. They explore three
memory models for the requirements of tasks: (i) receiving only, (ii) sending and receiving, (iii)
sending and receiving and code. A Multi-Objective Genetic Algorithm is used to perform the
mapping. The authors note that convergence is somewhat slower with the additional memory
constraint, but the method is still effective.

5.5 Critique and Perspectives

The mapping and scheduling techniques reviewed in this section effectively target a more compli-
cated problem than the pure timing verification approaches reviewed in the other sections: They
combine the problem of the timing verification with the search for an optimal or a feasible mapping
or scheduling solution so that the timing requirements can be met. For the approaches described
in the other sections, the mapping and scheduling is typically assumed to be fixed a priori. In
other words, these approaches often leave the question open, where the mapping comes from,
or if the mapping is chosen reasonably. The mapping and scheduling techniques, on the other
hand, typically resort to a more abstract view of the multi-core system. Often, only a single shared
component, like the memory or the communication bus is modelled, and the interference on all
other components is assumed to be subsumed into the task’s execution time bound. Other mapping
approaches resort to a highly abstract model of interference. In these cases it is often questionable,
how reliable or precise the estimates are, on which the mapping and scheduling decisions are made.

ACM Comput. Surv., Vol. 1, No. 1, Article 01. Publication date: February 2019.

01:28 C. Maiza, H. Rihani, J.M. Rivas, J. Goossens, S. Altmeyer, and R.I. Davis

A notable exception is the work of Anderson et al. [7], which provides measurements to show
that the computed mapping indeed improves the system performance; however, showing that no
deadline misses can occur is not the aim of this work.
Despite the high level of abstraction employed in most of the surveyed techniques, scalability

remains an issue. The mapping and scheduling problems formulated in this category are often
NP-hard in the number of tasks and/or cores, so approximation techniques are necessary for
many-core architectures and also in some cases for multi-core systems.

Themapping and scheduling techniques complement the timing verification techniques presented
in the earlier sections, answering the question about how to map and schedule tasks on the cores.
However, due to the abstract view taken of the system, they do not as yet provide a satisfying
stand-alone solution to the overall allocation and timing verification problem. This is an area which
merits further research.

6 OBSERVATIONS DISCUSSION AND CONCLUSIONS

In this section, we discuss the advantages and disadvantages of the main approaches used and their
potential in providing a high level of guaranteed real-time performance. Finally, we conclude by
identifying key open questions and important directions for future research.

6.1 Discussion

The present is a time of transition and transformation, with major industrial sectors such as
automotive and aerospace moving cautiously forwards from using single-core processors to using
multi-core processors in their deployed systems. These efforts are however being severely hampered
by the difficulties in applying the techniques used in the analysis of past single-core systems to
the rapidly evolving hardware platforms of the future. This problem is so serious that it has led
to the practice of disabling all but one core severely undermining the advantages of using high
performance multi-core platforms.

The problem is that the hardware platforms used for real-time systems are transforming. Firstly,
there is no longer a single type of resource that needs to be considered in verifying worst-case
timing behaviour, but rather multiple resource types (processors, co-processors and Graphical
Processing Units (GPUs), memory hierarchies including data and instruction cache and scratchpads,
inter-connects and networks, and I/O devices etc). Secondly, for valid commercial reasons of
reduced cost, increased average-case performance and energy efficiency, the vast majority of COTS
hardware platforms share resources between multiple cores. For example, the LLC, memory bus
and DRAM are typically shared between a set of cores to realise Symmetric Multi-Processing
(SMP), which is specifically targeted to optimise the average case. On the other hand, since different
application tasks run in parallel on different cores, this gives rise to contention over the shared
resources and hence the possibility for co-runner interference that can be difficult to predict. This
greatly exacerbates both the difficulty and the complexity of providing accurate timing verification.
In the subsections below, we discuss the potential for the main analysis approaches surveyed to
solve this problem.

6.1.1 Full Isolation and the Traditional Two Step Approach. The traditional two-step approach to
timing verification for single-core systems (i.e. timing analysis followed by schedulability analysis)
can be used to a certain extent for multi-core systems. For example, timing analysis developed
for single-core systems can be used to provide WCET information for tasks executing in isolation

on a multi-core. It can also be used to bound WCETs when shared resource accesses are subject
to delays which can be tightly bounded in a context-independent manner, as is the case with
a TDMA bus. The problem here is that such full isolation limits the available bandwidth even

ACM Comput. Surv., Vol. 1, No. 1, Article 01. Publication date: February 2019.

A Survey of Timing Verification Techniques for Multi-Core Real-Time Systems 01:29

when other cores are not using the resource. Effectively the resource is no longer shared, it is
divided. This is heavily detrimental to average-case performance and power consumption, which is
why non-work-conserving protocols such as TDMA are rarely if ever used in COTS multi-core
processors, even though TDMA is favoured in many research papers. While arbitration protocols
such as Round-Robin can result in better average-case behaviour in practice, two-step analysis
must rely on worst-case context-independent assumptions and can therefore only provide heavily
degraded guarantees in this case.
In our view, the traditional two-step approach breaks down when applied to complex COTS

multi-core systems, due to excessive pessimism. It may, however, remain applicable for some
specialised high-integrity systems reliant on special purpose multi-core hardware that has been
specifically designed to provide full temporal isolation. In such systems the trade-off in performance
is worthwhile to ease predictability. Such temporal isolation also fully supports timing composition,
as it facilitates the timing verification of an application on one core independent of the applications
running on the other cores.

6.1.2 Full Integration. At the opposite extreme to the traditional two-step approach and full
isolation are the approaches based on full integration. Such approaches attempt to account for
all possible patterns of interleaving of co-runner execution by combining both timing analysis
and schedulability analysis of all resources into a single step. Fully integrated approaches thus
require detailed information about all co-runners and their precise release times, which must be
enforced by the operating system. While full integration offers the promise of precise analysis,
these approaches suffer from serious problems of complexity, due to an exponential explosion in
the number of states examined. As a result, they are unlikely to scale to advanced real-time systems
built on COTS multi-core hardware platforms. The need for full details of all co-runners is also at
odds with the use of 3rd party software and design practices such as incremental verification. A
fully integrated approach is also problematic when considering applications of different criticality,
since the guaranteed performance of a high-criticality application on one core may be reliant on
the behaviour of low-criticality applications on other cores. This dependency would require all
applications to be developed to the standard required by the highest criticality application, which
is both impractical and prohibitively expensive.
Over the past 10 years, there have been relatively few papers published on fully integrated

analysis, with a downward trend in terms of the proportion of the overall research in the area
surveyed over recent years. This could be an indication that the fully integration approach has
entered the diminishing returns stage while the research community has identified other more
practical and promising avenues of research.

6.1.3 Partial Isolation and Limited Interference. As indicated above, fully integrated analysis of
multi-core systems where applications access multiple shared resources as well as the processing
cores faces potentially insurmountable problems of complexity and scalability. As a consequence,
many research works take a divide and conquer approach, breaking the analysis problem down
into a number of simpler ones. This is achieved by either assuming context-independent upper
bounds for delays on resource accesses, or by enforcing either complete or partial isolation from
the effects of co-runner contention. When the hardware architecture does not provide the means
for such isolation, then it can be obtained through software techniques by controlling the time
or frequency at which shared resource accesses can be made from each core. This can be done
via phased execution models (separating and scheduling memory access and processing phases),
memory bandwidth regulation (limiting the number of co-runner resource accesses), and via offline
(static) scheduling (separating when different tasks run on different cores). We note that more than
half of the papers studied consider some form of partial isolation and limited interference.

ACM Comput. Surv., Vol. 1, No. 1, Article 01. Publication date: February 2019.

01:30 C. Maiza, H. Rihani, J.M. Rivas, J. Goossens, S. Altmeyer, and R.I. Davis

Partial isolation techniques provide more predictable access to shared hardware resources and
consequently simpler analysis for timing verification (compared to full integration approaches).
The main trade-off is that the isolation mechanisms used still compromise average-case perfor-
mance and energy consumption, with the software techniques also adding overheads. Worthwhile
gains in guaranteed performance can however be obtained compared to full isolation approaches.
Further, by controlling the bandwidth or timing of shared resource accesses, co-runner interference
can be bounded independently of the actual behaviour of the co-runners, thus supporting time
composability. An open question with temporal isolation techniques is whether the techniques and
their analyses can be improved to allow better utilisation of the available computation resources.

6.1.4 Integrating Interference into Schedulability Analysis. Integrating the effects of co-runner
interference into the timing analysis of a task has the disadvantage that the delays included typically
have to assume the worst-case context-independent values, which can be highly pessimistic. In
reality, the worst-cases delays may occur only rarely on some very specific accesses, but cannot
possibly occur on every access. An alternative approach is to integrate the effects of co-runner
contention over shared resources into schedulability analysis. This has two key advantages. First,
interference from co-runners can be modelled by considering the total resource demand over the
response time of each task, which typically leads to much less pessimistic analysis than assuming the
worst-case delays for every individual resource access. Second, the analysis can take into account
the scheduling context, i.e. the specific set of possible co-runners and the resource accesses that
they can make. We note here that both time-composable and more precise non-time composable
analyses are possible. An open problem identified in the literature is about how to take into
account the overlaps in accesses to different resources (e.g. processing cores, interconnect, and
memory). Integration of co-runner interference into schedulability analysis is a promising approach
to reducing the pessimism in timing verification of multi-core systems. Research in this area is
exhibiting an increasing trend with a large number of papers published over the past 4 years.

6.1.5 The Hypothesis of Timing Compositionality. The idea of timing compositionality depends
on the decomposition of the system into components for analysis purposes. For example, the
WCET of a task might be decomposed into the memory access time and the processing time. If the
local worst-cases for each of these components can be summed to obtain an upper bound on the
overall worst-case timing behaviour, then the the decomposition is said to be timing compositional.
The papers reviewed in this survey (particularly those that integrate interference effects into
schedulability analysis) typically assume, either explicitly or implicitly, a timing compositional
architecture, free of any timing anomalies or domino effects [53]. This is a strong hypothesis, since
as far as we know, there is currently no proof that any existing COTS multi-core hardware platform
has this property. Research presented by Hahn et al. [52] in 2016 introduced a method to bound the
effects of timing anomalies, opening the door to potentially using current COTS platforms as if
they were timing compositional. Such techniques are necessary to validate the approaches that
rely on the timing compositionability of the underlying hardware, since they would otherwise not
be applicable to real-world systems.

6.2 Conclusions

In the future (2020 onward), real-time systems will involve multiple, concurrent, complex appli-
cations with a variety of different criticality levels, executing on advanced hardware platforms.
These hardware platforms will consist of multiple cores, perhaps interconnected in small clusters
or islands that are themselves connected to other clusters. The cores will be a mix of different
types with different performance characteristics, able to execute at different speeds with different
levels of energy consumption. The cores will also share many different types of hardware resources,

ACM Comput. Surv., Vol. 1, No. 1, Article 01. Publication date: February 2019.

A Survey of Timing Verification Techniques for Multi-Core Real-Time Systems 01:31

including memory hierarchies that are composed of multiple levels of cache or scratchpads, and
main memory that is composed of multiple banks that can be accessed in parallel, as well as a
variety of different I/O and communications devices. Such systems will need to be robust, resilient
to faults, adaptable and flexible to changes in their environment and operating conditions. For
instance, they will be able to reconfigure in the event of failure or damage to components, and in
the more extreme situations, they will gracefully degrade.
In our opinion, we have reached a point where it is arguably no longer possible to deliver

mass-market future-proof real-time systems relying only on static approaches (e.g. static resource
allocation, bandwidth provision). Instead, the real-time requirements of such systems could be
guaranteed via the use of a collection of dynamic run-time strategies that mitigate interference,
underpinned by off-line analysis techniques that guarantee real-time performance. These strategies
include dynamic resource allocation and bandwidth regulation, dynamic reconfiguration and
re-scheduling; adaptive and anytime algorithms that tailor execution demands to the available
resources; and control over core processing speeds. The key idea being that a supervisory system
could closely monitor performance, and if it detects that an application could potentially violate its
timing constraints then take appropriate steps, via the use of control mechanisms and policies, to
ensure that such a timing violation cannot occur. During operation of the system, these dynamic
mechanisms would be sufficient to ensure that no timing violation can occur with strong guarantees
provided via offline analysis. Such a dynamic approach could also provide substantial improvements
in average-case performance and energy consumption over approaches based on isolation while
also supporting timing composition.
Before this future can be realised in a reliable, cost-effective and energy-efficient way, the

following long term open questions must be addressed:

(1) How to characterise, in a precise way, application resource demands and platform resource
supplies;

(2) How to detect that an application may be heading for a timing violation, and what policies and
control mechanisms to apply as a guaranteed preventive step to ensure timing correctness;

(3) How to provide explicit, integrated interference analysis that delivers holistic timing verifi-
cation for complex, adaptive real-time systems, accounting for the regulation and counter-
measures applied by the supervisory system;

(4) How to ensure that the developed systems are robust to small changes in resources, and
resilient to larger ones, thus providing graceful degradation;

(5) How to ensure extensibility for new applications, upgrades and modifications;
(6) How to optimise hardware platform configurations so that worst-case performance can be

guaranteed, with minimal if any reduction in average-case performance.
(7) How to analyse systems with heterogeneous cores (e.g. FPGA, GPU) and speeds;
(8) How to leverage variable processing speeds to provide guaranteed timing behaviour while

also minimising energy consumption and heat dissipation on realistic multi-core platforms;
(9) How to provide timing verification for multi-core systems where global or semi-partition

scheduling and task migration is supported;
(10) How to provide timing verification for many-core platforms that do not rely on isolation

techniques.

For high-integrity systems built on advanced multi-core or many-core architectures, compliance
with standards, and/or certification is typically required. The approach taken in the guidance issued
in the Position Paper CAST32-A Multi-core Processors [20], for the avionics domain, focuses on
łRobust Resource and Time Partitioningž and hence approaches based on isolation or at least partial
isolation. Similarly, in the automotive domain, the ISO26262 standard [91] focuses on łFreedom

ACM Comput. Surv., Vol. 1, No. 1, Article 01. Publication date: February 2019.

01:32 C. Maiza, H. Rihani, J.M. Rivas, J. Goossens, S. Altmeyer, and R.I. Davis

From Interferencež in the temporal domain. A final open question is how the relevant standards and
certification requirements can adapt to enable the deployment of the complex multi- and many-core
systems envisaged at the start of this section. Here, it is clear that a co-evolution of both techniques
and certification standards / guidelines is needed.
To conclude, in this survey we recognise that there is intense interest in the real-time research

community to embrace and exploit the potential benefits of multi-core systems. Although significant
progress have been made during the last decade, there are still many important unanswered
questions and open issues that need to be fully resolved.

ACKNOWLEDGMENTS

The authors would like to thank Sophie Quinton for the interesting discussions that were the origin
of this paper and Leandro Indrusiak for interesting discussions on the state-of-the-art research on
analysis of NoCs. The research that went into writing this paper was funded in part by the ESPRC
grant MCCps (EP/P003664/1), the Innovate UK grant SECT-AIR (113099), and by the Wallonia
Region (Belgium) BEWARE grant PARTITA (1610375). EPSRC Research Data Management: No new
primary data was created during this study

REFERENCES

[1] A. Agrawal, G. Fohler, J. Freitag, J. Nowotsch, S. Uhrig, and M. Paulitsch. 2017. Contention-Aware Dynamic Memory
Bandwidth Isolation With Predictability in COTS Multicores : An Avionics Case Study. Proceedings of the Euromicro

Conference on Real-Time Systems (ECRTS) 2 (2017), 1–2.
[2] A. Agrawal, R. Mancuso, R. Pellizzoni, and G. Fohler. 2018. Analysis of Dynamic Memory Bandwidth Regulation in

Multi-core Real-Time Systems. In Proceedings of the IEEE Real-Time Systems Symposium (RTSS). 230–241.
[3] A. Alhammad and R. Pellizzoni. 2014. Schedulability analysis of global memory-predictable scheduling. In Proceedings

of the IEEE & ACM International Conference on Embedded Software (EMSOFT). 1–10.
[4] A. Alhammad and R. Pellizzoni. 2014. Time-predictable execution of multithreaded applications on multicore systems.

In Proceedings of the Conference on Design, Automation and Test in Europe (DATE). 1–6.
[5] A. Alhammad, S. Wasly, and R. Pellizzoni. 2015. Memory efficient global scheduling of real-time tasks. In Proceedings

of the IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS). 285–296.
[6] S. Altmeyer, R. I Davis, L. Indrusiak, C. Maiza, V. Nelis, and J. Reineke. 2015. A Generic and Compositional Framework

for Multicore Response Time Analysis. In Proceedings of the International Conference on Real-Time Networks and Systems

(RTNS). 129–138.
[7] J. H. Anderson, J. M. Calandrino, and U. C. Devi. 2006. Real-Time Scheduling on Multicore Platforms. In Proceedings of

the IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS). 179–190.
[8] B. Andersson, A. Easwaran, and J. Lee. 2010. Finding an Upper Bound on the Increase in Execution Time Due to

Contention on the Memory Bus in COTS-based Multicore Systems. SIGBED Rev. 7, 1, Article 4 (Jan. 2010), 4 pages.
[9] B. Andersson, H. Kim, D. de Niz, M. Klein, R. Rajkumar, and J. Lehoczky. 2018. Schedulability Analysis of Tasks with

Corunner-Dependent Execution Times. ACM Transactions on Embedded Computing Systems 17, 3 (2018), 71:1–71:29.
[10] A. Andrei, P. Eles, Z. Peng, and J. Rosen. 2008. Predictable Implementation of Real-Time Applications on Multiprocessor

Systems-on-Chip. In 21st International Conference on VLSI Design (VLSID 2008). 103–110.
[11] M.A. Awan, P.F. Souto, K. Bletsas, B. Akesson, and E. Tovar. 2018. Mixed-criticality Scheduling with Memory Bandwidth

Regulation. In Proceedings of the Conference on Design, Automation and Test in Europe (DATE).
[12] M.A. Awan, P.F. Souto, K. Bletsas, B. Akesson, and E. Tovar. 2018. Worst-case Stall Analysis for Multicore Architectures

with Two Memory Controllers. In Proceedings of the Euromicro Conference on Real-Time Systems (ECRTS). 2:1–2:22.
[13] M. A. Awan, P. F. Souto, B. Akesson, K. Bletsas, and E. Tovar. 2018. Uneven memory regulation for scheduling IMA

applications on multi-core platforms. Real-Time Systems (16 Nov 2018).
[14] S. Bak, G. Yao, R. Pellizzoni, and M. Caccamo. 2012. Memory-Aware Scheduling of Multicore Task Sets for Real-Time

Systems. In Proceedings of the IEEE International Conference on Embedded and Real-Time Computing Systems and

Applications (RTCSA). 300–309.
[15] M. Becker, D. Dasari, B. Nicolic, B. Åkesson, V. Nélis, and T. Nolte. 2016. Contention-Free Execution of Automotive

Applications on a Clustered Many-Core Platform. In Proceedings of the Euromicro Conference on Real-Time Systems

(ECRTS). 14–24.
[16] M. Behnam, R. Inam, T. Nolte, and M. Sjödin. 2013. Multi-core Composability in the Face of Memory-bus Contention.

SIGBED Rev. 10, 3 (Oct. 2013), 35–42.

ACM Comput. Surv., Vol. 1, No. 1, Article 01. Publication date: February 2019.

A Survey of Timing Verification Techniques for Multi-Core Real-Time Systems 01:33

[17] F. Boniol, H. Cassé, E. Noulard, and C. Pagetti. 2012. Deterministic Execution Model on COTS Hardware. In Architecture

of Computing Systems ś ARCS 2012. 98–110.
[18] T. Carle and H. Cassé. 2018. Reducing Timing Interferences in Real-Time Applications Running on Multicore

Architectures. In Proceedings of the Workshop on Worst-Case Execution Time Analysis (WCET), Vol. 63. 3:1–3:12.
[19] T. Carle, D. Potop-Butucaru, Y. Sorel, and D. Lesens. 2015. From Dataflow Specification to Multiprocessor Partitioned

Time-triggered Real-time Implementation. Leibniz Transactions on Embedded Systems (LITES) 2, 2 (2015), 01:1Ð-01:30.
[20] Certification Authorities Software Team (CAST). 2016. Position Paper CAST-32A Multi-core Processors. Technical

Report.
[21] CW. Chang, JJ. Chen, TW. Kuo, and H. Falk. 2015. Real-Time Task Scheduling on Island-Based Multi-Core Platforms.

IEEE Transactions on Parallel and Distributed Systems 26, 2 (Feb 2015), 538–550.
[22] C. W. Chang, J. J. Chen, W. Munawar, T. W. Kuo, and H. Falk. 2012. Partitioned scheduling for real-time tasks on

multiprocessor embedded systems with programmable shared srams. In Proceedings of the tenth ACM international

conference on Embedded software. ACM, 153–162.
[23] S. Chattopadhyay, L.K. Chong, A. Roychoudhury, T. Kelter, P. Marwedel, and H. Falk. 2014. A unified WCET analysis

framework for multicore platforms. ACM Transactions on Embedded Computing Systems (TECS) 13, 4s (2014), 124.
[24] S. Chattopadhyay, C. L. Kee, A. Roychoudhury, T. Kelter, P. Marwedel, and H. Falk. 2012. A Unified WCET Analysis

Framework for Multi-core Platforms. In Proceedings of the IEEE Real-Time and Embedded Technology and Applications

Symposium (RTAS). 99–108.
[25] S. Chattopadhyay and A. Roychoudhury. 2011. Static Bus Schedule Aware Scratchpad Allocation in Multiprocessors.

SIGPLAN Not. 46, 5 (April 2011), 11–20.
[26] S. Chattopadhyay, A. Roychoudhury, and T. Mitra. 2010. Modeling Shared Cache and Bus in Multi-cores for Timing

Analysis. In Proceedings of the 13th International Workshop on Software and Compilers for Embedded Systems (SCOPES

’10). ACM, 6:1Ð-6:10.
[27] SW. Cheng, JJ. Chen, J. Reineke, and TW. Kuo. 2017. Memory Bank Partitioning for Fixed-Priority Tasks in a Multi-core

System. In Proceedings of the IEEE Real-Time Systems Symposium (RTSS). 209–219.
[28] S. W. Cheng, C. W. Chang, J. J. Chen, T. W. Kuo, and P. C. Hsiu. 2016. Many-Core Real-Time Task Scheduling with

Scratchpad Memory. IEEE Transactions on Parallel and Distributed Systems 27, 10 (Oct 2016), 2953–2966.
[29] M. Chisholm, N. Kim, B. C Ward, N. Otterness, J.H. Anderson, and F.D. Smith. 2016. Reconciling the tension between

hardware isolation and data sharing in mixed-criticality, multicore systems. In Proceedings of the IEEE Real-Time

Systems Symposium (RTSS). IEEE, 57–68.
[30] M. Chisholm, B. C. Ward, N. Kim, and J. H. Anderson. 2015. Cache Sharing and Isolation Tradeoffs in Multicore

Mixed-Criticality Systems. In Proceedings of the IEEE Real-Time Systems Symposium (RTSS). 305–316.
[31] J. Choi, D. Kang, and S. Ha. 2016. Conservative modeling of shared resource contention for dependent tasks in

partitioned multi-core systems. In Proceedings of the Conference on Design, Automation and Test in Europe (DATE).
181–186.

[32] D. Dasari, B. Akesson, V. Nelis, M. A. Awan, and S. M. Petters. 2013. Identifying the sources of unpredictability in
COTS-based multicore systems. In Proceedings of the IEEE International Symposium on Industrial Embedded Systems

(SIES). 39–48.
[33] D. Dasari, B. Andersson, V. Nelis, S. M. Petters, A. Easwaran, and J. Lee. 2011. Response Time Analysis of COTS-Based

Multicores Considering the Contention on the Shared Memory Bus. In International Conference on Trust, Security and

Privacy in Computing and Communications. 1068–1075.
[34] D. Dasari and V. Nelis. 2012. An Analysis of the Impact of Bus Contention on the WCET in Multicores. In Proceedings

of the IEEE International Conference on High Performance Computing and Communication. IEEE Computer Society,
Washington, DC, USA, 1450–1457.

[35] D. Dasari, V. Nelis, and B. Akesson. 2015. A framework for memory contention analysis in multi-core platforms.
Real-Time Systems (2015), 1–51.

[36] D. Dasari, V. Nelis, and Benny Akesson. 2016. A framework for memory contention analysis in multi-core platforms.
Real-Time Systems 52, 3 (01 May 2016), 272–322.

[37] R. I Davis, S. Altmeyer, L. S Indrusiak, C. Maiza, V. Nelis, and J. Reineke. 2017. An extensible framework for multicore
response time analysis. Real-Time Systems (2017).

[38] R. I. Davis and A. Burns. 2011. A Survey of Hard Real-time Scheduling for Multiprocessor Systems. ACM Comput.

Surv. 43, 4, Article 35 (Oct. 2011), 44 pages.
[39] H. Ding, Y. Liang, and T. Mitra. 2013. Shared cache aware task mapping for WCRT minimization. In 2013 18th Asia and

South Pacific Design Automation Conference (ASP-DAC). 735–740.
[40] F. Farshchi, P. K. Valsan, R. Mancuso, and H. Yun. 2018. Deterministic Memory Abstraction and Supporting Multicore

System Architecture. In Proceedings of the Euromicro Conference on Real-Time Systems (ECRTS). 1:1–1:25.

ACM Comput. Surv., Vol. 1, No. 1, Article 01. Publication date: February 2019.

01:34 C. Maiza, H. Rihani, J.M. Rivas, J. Goossens, S. Altmeyer, and R.I. Davis

[41] J. Freitag, S. Uhrig, and T. Ungerer. 2018. Virtual Timing Isolation for Mixed-Criticality Systems. In Proceedings of the

Euromicro Conference on Real-Time Systems (ECRTS), Vol. 106. 13:1–13:23.
[42] G. Giannopoulou, K. Lampka, N. Stoimenov, and L. Thiele. 2012. Timed model checking with abstractions: Towards

worst-case response time analysis in resource-sharing manycore systems. In Proceedings of the tenth ACM international

conference on Embedded software. ACM, 63–72.
[43] G. Giannopoulou, N. Stoimenov, P. Huang, and L. Thiele. 2013. Scheduling of mixed-criticality applications on resource-

sharing multicore systems. In Proceedings of the IEEE & ACM International Conference on Embedded Software (EMSOFT).
1–15.

[44] G. Giannopoulou, N. Stoimenov, P. Huang, and L. Thiele. 2014. Mapping mixed-criticality applications on multi-core
architectures. In Proceedings of the Conference on Design, Automation and Test in Europe (DATE). 1–6.

[45] G. Giannopoulou, N. Stoimenov, P. Huang, L. Thiele, and B.D. de Dinechin. 2016. Mixed-criticality scheduling on
cluster-based manycores with shared communication and storage resources. Real-Time Systems 52, 4 (2016), 399–449.

[46] G. Gracioli, A. Alhammad, R. Mancuso, A. A. Fröhlich, and R. Pellizzoni. 2015. A Survey on Cache Management
Mechanisms for Real-Time Embedded Systems. ACM Comput. Surv. 48, 2, Article 32 (Nov. 2015), 36 pages.

[47] G. Gracioli and A. A. FrÃűhlich. 2014. On the Influence of Shared Memory Contention in Real-Time Multicore
Applications. In Brazilian Symposium on Computing Systems Engineering. 25–30.

[48] N. Guan, M. Stigge, W. Yi, and G. Yu. 2009. Cache-aware Scheduling and Analysis for Multicores. In Proceedings of the

IEEE & ACM International Conference on Embedded Software (EMSOFT). 245–254.
[49] D. Guo, M. Hassan, R. Pellizzoni, and H. Patel. 2018. A Comparative Study of Predictable DRAM Controllers. ACM

Transactions on Embedded Computing Systems 17, 2, Article 53 (Feb. 2018), 23 pages.
[50] Z. Guo, Y. Zhang, L. Wang, and Z. Zhang. 2017. Work-in-Progress: Cache-Aware Partitioned EDF Scheduling for

Multi-core Real-Time Systems. In Proceedings of the IEEE Real-Time Systems Symposium (RTSS). 384–386.
[51] A. Gustavsson, A. Ermedahl, B. Lisper, and P. Pettersson. 2010. Towards WCET Analysis of Multicore Architectures

Using UPPAAL. In Proceedings of the Workshop on Worst-Case Execution Time Analysis (WCET). 101–112.
[52] S. Hahn, M. Jacobs, and J. Reineke. 2016. Enabling Compositionality for Multicore Timing Analysis. In Proceedings of

the International Conference on Real-Time Networks and Systems (RTNS). 299–308.
[53] S. Hahn, J. Reineke, and R. Wilhelm. 2013. Towards Compositionality in Execution Time Analysis – Definition and

Challenges. In Proceedings of the Workshop on Compositional Theory and Technology for Real-Time Embedded Systems

(CRTS).
[54] D. Hardy, T. Piquet, and I. Puaut. 2009. Using Bypass to Tighten WCET Estimates for Multi-Core Processors with

Shared Instruction Caches. In Proceedings of the IEEE Real-Time Systems Symposium (RTSS). 68–77.
[55] M. Hassan. 2018. On the Off-Chip Memory Latency of Real-Time Systems: Is DDR DRAM Really the Best Option?. In

Proceedings of the IEEE Real-Time Systems Symposium (RTSS). 495–505.
[56] M. Hassan, A. M. Kaushik, and H. Patel. 2017. Predictable Cache Coherence for Multi-core Real-Time Systems. In

Proceedings of the IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS). 235–246.
[57] M. Hassan and R. Pellizzoni. 2018. Bounding DRAM Interference in COTS Heterogeneous MPSoCs for Mixed Criticality

Systems. In Proceedings of the IEEE & ACM International Conference on Embedded Software (EMSOFT).
[58] F. Hebbache, M. Jan, F. Brandner, and L. Pautet. 2018. Shedding the Shackles of Time-Division Multiplexing. In

Proceedings of the IEEE Real-Time Systems Symposium (RTSS). 456–468.
[59] S. Hesham, J. Rettkowski, D. Goehringer, and M. A. Abd El Ghany. 2017. Survey on Real-Time Networks-on-Chip.

IEEE Transactions on Parallel and Distributed Systems 28, 5 (May 2017), 1500–1517.
[60] W.H. Huang, J.J. Chen, and J. Reineke. 2016. MIRROR: Symmetric Timing Analysis for Real-Time Tasks on Multicore

Platforms with Shared Resources. In Proceedings of the Design Automation Conference (DAC). 1–6.
[61] R. Inam, M. Behnam, T. Nolte, and M. Sjödin. 2015. Compositional analysis for the Multi-Resource Server. In Proceedings

of the IEEE Conference on Emerging Technologies Factory Automation (ETFA). 1–10.
[62] M. Jacobs, S. Hahn, and S. Hack. 2015. WCET analysis for multi-core processors with shared buses and event-driven

bus arbitration. In Proceedings of the International Conference on Real-Time Networks and Systems (RTNS). 193–202.
[63] M. Jacobs, S. Hahn, and S. Hack. 2016. A framework for the derivation of WCET analyses for multi-core processors. In

Proceedings of the Euromicro Conference on Real-Time Systems (ECRTS). 141–151.
[64] M.M. Kafshdooz and A. Ejlali. 2015. Dynamic Shared SPM Reuse for Real-Time Multicore Embedded Systems. ACM

Trans. Archit. Code Optim. 12, 2, Article 12 (May 2015), 25 pages.
[65] T. Kelter, H. Borghorst, and P. Marwedel. 2014. WCET-aware scheduling optimizations for multi-core real-time systems.

In Proceedings International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS

XIV). 67–74.
[66] T. Kelter, H. Falk, P. Marwedel, S. Chattopadhyay, and A. Roychoudhury. 2011. Bus-Aware Multicore WCET Analysis

through TDMA Offset Bounds. In Proceedings of the Euromicro Conference on Real-Time Systems (ECRTS). 3–12.

ACM Comput. Surv., Vol. 1, No. 1, Article 01. Publication date: February 2019.

A Survey of Timing Verification Techniques for Multi-Core Real-Time Systems 01:35

[67] T. Kelter, H. Falk, P. Marwedel, S. Chattopadhyay, and A. Roychoudhury. 2014. Static Analysis of Multi-core TDMA
Resource Arbitration Delays. Real-Time Systems 50, 2 (2014), 185–229.

[68] T. Kelter, T. Harde, P. Marwedel, and H. Falk. 2013. Evaluation of resource arbitration methods for multi-core real-time
systems. In Proceedings of the Workshop on Worst-Case Execution Time Analysis (WCET), Vol. 30. 1–10.

[69] T. Kelter and P. Marwedel. 2015. Parallelism Analysis: Precise WCET Values for Complex Multi-Core Systems. In
Formal Techniques for Safety-Critical Systems. 142–158.

[70] A.E. Kiasari, A. Jantsch, and Z. Lu. 2013. Mathematical Formalisms for Performance Evaluation of Networks-on-chip.
ACM Comput. Surv. 45, 3, Article 38 (July 2013), 41 pages.

[71] H. Kim, D. De Niz, B. Andersson, M. Klein, O. Mutlu, and R. Rajkumar. 2014. Bounding memory interference delay
in COTS-based multi-core systems. In Proceedings of the IEEE Real-Time and Embedded Technology and Applications

Symposium (RTAS). 145–154.
[72] H. Kim, D. De Niz, B. Andersson, M. Klein, O. Mutlu, and R. Rajkumar. 2016. Bounding and Reducing Memory

Interference in COTS-based Multi-core Systems. Real-Time Systems 52, 3 (May 2016), 356–395.
[73] H. Kim, A. Kandhalu, and R. Rajkumar. 2013. A Coordinated Approach for Practical OS-Level Cache Management in

Multi-core Real-Time Systems. In Proceedings of the Euromicro Conference on Real-Time Systems (ECRTS). 80–89.
[74] JE. Kim, MK. Yoon, R. Bradford, and L. Sha. 2014. Integrated Modular Avionics (IMA) partition scheduling with

conflict-free I/O for multicore avionics systems. Proceedings - International Computer Software and Applications

Conference (2014), 321–331.
[75] JE. Kim, MK. Yoon, S. Im, R. Bradford, and L. Sha. 2013. Optimized scheduling of multi-IMA partitions with exclusive

region for synchronized real-time multi-core systems. In Proceedings of the Conference on Design, Automation and Test

in Europe (DATE). 970–975.
[76] Y. Kim, D. Broman, J. Cai, and A. Shrivastaval. 2014. WCET-aware dynamic code management on scratchpads

for Software-Managed Multicores. In Proceedings of the IEEE Real-Time and Embedded Technology and Applications

Symposium (RTAS). 179–188.
[77] K. Lampka, G. Giannopoulou, R. Pellizzoni, Z. Wu, and N. Stoimenov. 2014. A formal approach to the WCRT analysis of

multicore systems with memory contention under phase-structured task sets. Real-Time Systems 50, 5 (2014), 736–773.
[78] Y. Li, V. Suhendra, Y. Liang, T. Mitra, and A. Roychoudhury. 2009. Timing Analysis of Concurrent Programs Running

on Shared Cache Multi-Cores. In Proceedings of the IEEE Real-Time Systems Symposium (RTSS). 57–67.
[79] Y. Liang, H. Ding, T. Mitra, A. Roychoudhury, Y. Li, and V. Suhendra. 2012. Timing analysis of concurrent programs

running on shared cache multi-cores. Real-Time Systems 48, 6 (2012), 638–680.
[80] Y. Liu and W. Zhang. 2012. Exploiting multi-level scratchpad memories for time-predictable multicore computing. In

2012 IEEE 30th International Conference on Computer Design (ICCD). 61–66.
[81] Y. Liu and W. Zhang. 2015. Scratchpad Memory Architectures and Allocation Algorithms for Hard Real-Time Multicore

Processors. JCSE 9 (2015).
[82] M. Lv, W. Yi, N. Guan, and G. Yu. 2010. Combining Abstract Interpretation with Model Checking for Timing Analysis of

Multicore Software. In Proceedings of the IEEE Real-Time Systems Symposium (RTSS). IEEE Computer Society, 339–349.
[83] R. Mancuso, R. Pellizzoni, M. Caccamo, L. Sha, and H. Yun. 2015. WCET (m) estimation in multi-core systems using

single core equivalence. In Proceedings of the Euromicro Conference on Real-Time Systems (ECRTS). IEEE, 174–183.
[84] R. Mancuso, R. Pellizzoni, N. Tokcan, and M. Caccamo. 2017. WCET Derivation Under Single Core Equivalence With

Explicit Memory Budget Assignment. In Proceedings of the Euromicro Conference on Real-Time Systems (ECRTS).
[85] A. Melani, M. Bertogna, V. Bonifaci, A. Marchetti-Spaccamela, and G. Buttazzo. 2015. Memory-Processor Co-Scheduling

in Fixed Priority Systems. In Proceedings of the International Conference on Real-Time Networks and Systems (RTNS).
87–96.

[86] K. Nagar and Y. N. Srikant. 2016. Fast and Precise Worst-Case Interference Placement for Shared Cache Analysis. ACM
Transactions on Embedded Computing Systems 15, 3 (mar 2016), 1–26.

[87] B. Nikolic and S.M. Petters. 2015. Real-time application mapping for many-cores using a limited migrative model.
Real-Time Systems 51, 3 (01 Jun 2015), 314–357.

[88] B. Nikolic, P. M. Yomsi, and S. M. Petters. 2013. Worst-case memory traffic analysis for many-cores using a limited
migrative model. In Proceedings of the IEEE International Conference on Embedded and Real-Time Computing Systems

and Applications (RTCSA). 42–51.
[89] J. Nowotsch and M. Paulitsch. 2013. Quality of Service Capabilities for Hard Real-time Applications on Multi-core

Processors. Proceedings of the International Conference on Real-Time Networks and Systems (RTNS) (2013), 151–160.
[90] J. Nowotsch, M. Paulitsch, D. Bühler, H. Theiling, S. Wegener, and M. Schmidt. 2014. Multi-core interference-sensitive

WCET analysis leveraging runtime resource capacity enforcement. In Proceedings of the Euromicro Conference on

Real-Time Systems (ECRTS). 109–118.
[91] nternational Organization for Standardization. 2011. ISO 26262 Road Vehicles Functional Safety. Technical Report.

ACM Comput. Surv., Vol. 1, No. 1, Article 01. Publication date: February 2019.

01:36 C. Maiza, H. Rihani, J.M. Rivas, J. Goossens, S. Altmeyer, and R.I. Davis

[92] D. Oehlert, A. Luppold, and H. Falk. 2017. Bus-Aware Static Instruction SPM Allocation for Multicore Hard Real-Time
Systems. In Proceedings of the Euromicro Conference on Real-Time Systems (ECRTS).

[93] C. Pagetti, J. Forget, H. Falk, D. Oehlert, and A. Luppold. 2018. Automated generation of time-predictable executables
on multicore. In Proceedings of the International Conference on Real-Time Networks and Systems (RTNS). ACM, 104–113.

[94] M. Paolieri, J. Mische, S. Metzlaff, M. Gerdes, E. Quiñones, S. Uhrig, T. Ungerer, and F. J. Cazorla. 2013. A Hard Real-time
Capable Multi-core SMT Processor. ACM Trans. Embed. Comput. Syst. 12, 3 (2013), 79:1Ð-79:26.

[95] M. Paolieri, E. QuiÃśones, F. J. Cazorla, R. I. Davis, and M. Valero. 2011. IA3: An Interference Aware Allocation
Algorithm for Multicore Hard Real-Time Systems. In Proceedings of the IEEE Real-Time and Embedded Technology and

Applications Symposium (RTAS). 280–290.
[96] R Pellizzoni, E Betti, S Bak, G Yao, J Criswell, M Caccamo, and R Kegley. 2011. A Predictable Execution Model for

COTS-Based Embedded Systems. In Proceedings of the IEEE Real-Time and Embedded Technology and Applications

Symposium (RTAS). 269–279.
[97] R. Pellizzoni, B. D. Bui, M. Caccamo, and L. Sha. 2008. Coscheduling of CPU and I/O Transactions in COTS-Based

Embedded Systems. In Proceedings of the IEEE Real-Time Systems Symposium (RTSS). 221–231.
[98] R. Pellizzoni, A. Schranzhofer, J-J. Chen, M. Caccamo, and L. Thiele. 2010. Worst case delay analysis for memory

interference in multicore systems. In Proceedings of the Conference on Design, Automation and Test in Europe (DATE).
741–746.

[99] R. Pellizzoni and H. Yun. 2016. Memory Servers for Multicore Systems. In Proceedings of the IEEE Real-Time and

Embedded Technology and Applications Symposium (RTAS). 1–12.
[100] Q. Perret, P. Maurère, E. Noulard, C. Pagetti, P. Sainrat, and B. Triquet. 2016. Mapping Hard Real-time Applications

on Many-core Processors. In Proceedings of the International Conference on Real-Time Networks and Systems (RTNS).
235–244.

[101] Q. Perret, P. Maurere, E. Noulard, C. Pagetti, P. Sainrat, and B. Triquet. 2016. Predictable composition of memory
accesses on many-core processors. In 8th European Congress on Embedded Real Time Software and Systems (ERTS 2016).

[102] Q. Perret, P. Maurere, E. Noulard, C. Pagetti, P. Sainrat, and B. Triquet. 2016. Temporal Isolation of Hard Real-Time
Applications on Many-Core Processors. In Proceedings of the IEEE Real-Time and Embedded Technology and Applications

Symposium (RTAS). 1–11.
[103] H. Rihani, M. Moy, C. Maiza, and S. Altmeyer. 2015. WCET analysis in shared resources real-time systems with

TDMA buses. In Proceedings of the International Conference on Real-Time Networks and Systems (RTNS). ACM, 183–192.
[104] H. Rihani, M. Moy, C. Maiza, R.I. Davis, and S. Altmeyer. 2016. Response Time Analysis of Synchronous Data Flow

Programs on a Many-Core Processor. In Proceedings of the International Conference on Real-Time Networks and Systems

(RTNS). 67–76.
[105] J. Rosèn, A. Andrei, P. Eles, and Z. Peng. 2007. Bus Access Optimization for Predictable Implementation of Real-Time

Applications on Multiprocessor Systems-on-Chip. In Proceedings of the IEEE Real-Time Systems Symposium (RTSS).
[106] S. Saidi and A. Syring. 2018. Exploiting Locality for the Performance Analysis of Shared Memory Systems in MPSoCs.

In Proceedings of the IEEE Real-Time Systems Symposium (RTSS). 350–360.
[107] S. Schliecker and R. Ernst. 2011. Real-time Performance Analysis of Multiprocessor Systems with Shared Memory.

ACM Transactions on Embedded Computing Systems 10, 2, Article 22 (Jan. 2011), 27 pages.
[108] S. Schliecker, M. Negrean, and R. Ernst. 2010. Bounding the Shared Resource Load for the Performance Analysis of

Multiprocessor Systems. In Proceedings of the Design Automation Conference (DAC). 759–764.
[109] S. Schliecker, M. Negrean, G. Nicolescu, P. Paulin, and R. Ernst. 2008. Reliable Performance Analysis of a Multicore

Multithreaded System-on-chip. In Proceedings of the 6th IEEE/ACM/IFIP International Conference on Hardware/Software

Codesign and System Synthesis. 161–166.
[110] S. Schliecker, J. Rox, M. Negrean, K. Richter, M. Jersak, and R. Ernst. 2009. System Level Performance Analysis for

Real-Time Automotive Multicore and Network Architectures. IEEE Trans. on CAD of Integrated Circuits and Systems

28, 7 (2009), 979–992.
[111] M. Schoeberl, S. Abbaspour, B. Akesson, N. Audsley, R. Capasso, J. Garside, K. Goossens, S. Goossens, S. Hansen, R.

Heckmann, S. Hepp, B. Huber, A. Jordan, E. Kasapaki, J. Knoop, Y. Li, D. Prokesch, W. Puffitsch, P. Puschner, A. Rocha,
C. Silva, J. Sparsù, and A. Tocchi. 2015. T-CREST: Time-predictable multi-core architecture for embedded systems.
Journal of Systems Architecture 61, 9 (2015), 449–471.

[112] A. Schranzhofer, JJ. Chen, and L. Thiele. 2010. Timing Analysis for TDMA Arbitration in Resource Sharing Systems.
In Proceedings of the IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS). 215–224.

[113] A. Schranzhofer, R. Pellizzoni, J. J. Chen, L. Thiele, and M. Caccamo. 2010. Worst-case response time analysis of
resource access models in multi-core systems. In Proceedings of the Design Automation Conference (DAC). 332–337.

[114] A. Schranzhofer, R. Pellizzoni, J.-J. Chen, L. Thiele, and M. Caccamo. 2011. Timing Analysis for Resource Access
Interference on Adaptive Resource Arbiters. In Proceedings of the IEEE Real-Time and Embedded Technology and

Applications Symposium (RTAS). 213–222.

ACM Comput. Surv., Vol. 1, No. 1, Article 01. Publication date: February 2019.

A Survey of Timing Verification Techniques for Multi-Core Real-Time Systems 01:37

[115] J. P. Shen and M. H. Lipasti. 2013. Modern Processor Design: Fundamentals of Superscalar Processors. Waveland Press.
[116] S. Skalistis and A. Simalatsar. 2016. Worst-Case Execution Time Analysis for Many-Core Architectures with NoC. In

International Conference on Formal Modeling and Analysis of Timed Systems. 211–227.
[117] S. Skalistis and A. Simalatsar. 2017. Near-optimal deployment of dataflow applications on many-core platforms with

real-time guarantees. In Proceedings of the Conference on Design, Automation and Test in Europe (DATE). 752–757.
[118] P. Souto, P. B. Sousa, R. I. Davis, K. Bletsas, and E. Tovar. 2015. Overhead-Aware Schedulability Evaluation of

Semi-Partitioned Real-Time Schedulers. In Proceedings of the IEEE International Conference on Embedded and Real-Time

Computing Systems and Applications (RTCSA). 110–121.
[119] L. R. Still and L. S. Indrusiak. 2018. Memory-Aware Genetic Algorithms for Task Mapping on Hard Real-Time

Networks-on-Chip. In Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP).
[120] V. Suhendra, C. Raghavan, and T. Mitra. 2006. Integrated Scratchpad Memory Optimization and Task Scheduling

for MPSoC Architectures. In Proceedings of the International Conference on Compilers, Architecture and Synthesis for

Embedded Systems. ACM, New York, NY, USA, 401–410.
[121] V. Suhendra, A. Roychoudhury, and T. Mitra. 2010. Scratchpad Allocation for Concurrent Embedded Software. ACM

Trans. Program. Lang. Syst. 32, 4, Article 13 (April 2010), 47 pages.
[122] R. Tabish, R. Mancuso, S. Wasly, A. Alhammad, S. S Phatak, and R. Pellizzoni. 2016. A Real-Time Scratchpad-centric

OS for Multi-core Embedded Systems. In Proceedings of the IEEE Real-Time and Embedded Technology and Applications

Symposium (RTAS).
[123] P. K. Valsan, H. Yun, and F. Farshchi. 2016. Taming Non-Blocking Caches to Improve Isolation in Multicore Real-Time

Systems. In Proceedings of the IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS). 1–12.
[124] P. K. Valsan, H. Yun, and F. Farshchi. 2017. Addressing isolation challenges of non-blocking caches for multicore

real-time systems. Real-Time Systems 53, 5 (2017), 673–708.
[125] S. Wasly and R. Pellizzoni. 2014. Hiding Memory Latency Using Fixed Priority Scheduling. In Proceedings of the IEEE

Real-Time and Embedded Technology and Applications Symposium (RTAS). 75–86.
[126] J. Xiao, S. Altmeyer, and A. Pimentel. 2017. Schedulability Analysis of Non-preemptive Real-Time Scheduling for

Multicore Processors with Shared Caches. In Proceedings of the IEEE Real-Time Systems Symposium (RTSS). 199–208.
[127] M. Xu, L.T.X. Phan, HY. Choi, and I. Lee. 2016. Analysis and implementation of global preemptive fixed-priority sched-

uling with dynamic cache allocation. In Proceedings of the IEEE Real-Time and Embedded Technology and Applications

Symposium (RTAS). 1–12.
[128] J. Yan andW. Zhang. 2008. WCETAnalysis forMulti-Core Processors with Shared L2 Instruction Caches. In Proceedings

of the IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS). 80–89.
[129] G. Yao, R. Pellizzoni, S. Bak, E. Betti, and M. Caccamo. 2012. Memory-centric scheduling for multicore hard real-time

systems. Real-Time Systems 48, 6 (nov 2012), 681–715.
[130] G. Yao, R. Pellizzoni, S. Bak, H. Yun, and M. Caccamo. 2016. Global Real-Time Memory-Centric Scheduling for

Multicore Systems. IEEE Transactions on Computers 65, 9 (sep 2016), 2739–2751.
[131] G. Yao, H. Yun, Z.P. Wu, R. Pellizzoni, M. Caccamo, and L. Sha. 2016. Schedulability Analysis for Memory Bandwidth

Regulated Multicore Real-Time Systems. IEEE Transactions on Computers 65, 2 (feb 2016), 601–614.
[132] M. K. Yoon, J. E. Kim, and L. Sha. 2011. Optimizing Tunable WCET with Shared Resource Allocation and Arbitration

in Hard Real-Time Multicore Systems. In Proceedings of the IEEE Real-Time Systems Symposium (RTSS). 227–238.
[133] H. Yun, R. Mancuso, Z. P. Wu, and R. Pellizzoni. 2014. PALLOC: DRAM bank-aware memory allocator for performance

isolation on multicore platforms. In Proceedings of the IEEE Real-Time and Embedded Technology and Applications

Symposium (RTAS). 155–166.
[134] H. Yun, R. Pellizzoni, and P.K. Valsan. 2015. Parallelism-aware memory interference delay analysis for cots multicore

systems. In Proceedings of the Euromicro Conference on Real-Time Systems (ECRTS). IEEE, 184–195.
[135] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. 2012. Memory Access Control in Multiprocessor for Real-Time

Systems with Mixed Criticality. In Proceedings of the Euromicro Conference on Real-Time Systems (ECRTS). 299–308.
[136] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. 2013. MemGuard: Memory bandwidth reservation system for

efficient performance isolation in multi-core platforms. Proceedings of the IEEE Real-Time and Embedded Technology

and Applications Symposium (RTAS), 55–64.
[137] W. Zhang and J. Yan. 2009. Accurately Estimating Worst-Case Execution Time for Multi-core Processors with Shared

Direct-Mapped Instruction Caches. In Proceedings of the IEEE International Conference on Embedded and Real-Time

Computing Systems and Applications (RTCSA). 455–463.
[138] Y. Zhang, Z. Guo, L. Wang, H. Xiong, and Z. Zhang. 2017. Integrating Cache-Related Preemption Delay into GEDF

Analysis for Multiprocessor Scheduling with On-chip Cache. In IEEE Trustcom/BigDataSE/ICESS. 815–822.
[139] W. Zheng, H. Wu, and C. Nie. 2017. Integrating task scheduling and cache locking for multicore real-time embedded

systems. In Proceedings of the ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded

Systems. 71–80.

ACM Comput. Surv., Vol. 1, No. 1, Article 01. Publication date: February 2019.

01:38 C. Maiza, H. Rihani, J.M. Rivas, J. Goossens, S. Altmeyer, and R.I. Davis

SUPPLEMENTARY MATERIAL

A DETAILED CLASSIFICATION

In this supplementary section, we present a detailed classification of existing approaches to timing
verification for multi-core systems. The criteria used are grouped into four categories:

A.1 Type of timing verification performed;
A.2 Timing model used for the analysis.
A.3 Hardware properties (relevant to multi-core timing verification);
A.4 Software properties (that can make the analysis more efficient or more precise);

Typographical convention. In the descriptions below and in the classification table that follows,
we assume that criteria, and consequently column names in the table, are written in a bold font,
while values inside a column are underlined.

A.1 Type of Timing Verification Performed

We distinguish between papers that provide different forms of analysis, focusing on interference,
WCET, scheduling, and mapping. Note, some papers cover more than one of these four types of
analysis.

I -Interference Analysis. Identifies papers which characterise the interference that a task may
experience when it is not executed in isolation. For example, quantifying extra delays due to the
use of a bus with an arbitration policy such as Round-Robin, TDMA or FIFO. Interference analysis
depends strongly on the hardware characteristics described in Section A.3.

W -WCET Analysis. Identifies papers which aim to provide WCET bounds for a set of tasks
executing on the target platform. This analysis may consider the task running in isolation (i.e.
software or hardware isolation), or it may take into account (partially or completely) different types
of interference.

S-Scheduling and schedulability Analysis. Identifies papers that study a scheduling problem,
that is, given a task set and the platform characteristics, they study if the tasks meet their timing
constraints when executed under a particular scheduling algorithm.

M-Mapping Analysis. Identifies papers that define a strategy to allocate tasks to the various
cores. The workload must be spread over the hardware platform feasibly so that timing constraints,
memory constraints, and any affinity requirements are met. Note, we include in this category work
on both static mapping, and dynamic re-configuration which may change the mapping at runtime
from one allocation to another.

A.2 Timing Model Used for the Analysis

Different timing models can be used for the same type of analysis. More detailed models can yield
more precise results, but are more difficult to handle. We identify the types of interference delays
that are explicitly dealt with. There are two explanations for a type of delay that is not explicitly
part of a timing model: (i) such delays are guaranteed to be zero due to some system property, for
example task migrations may not be permitted and so there are no task migration delays; (ii) the
delays are assumed to be included within the WCET time bound provided for the task.

E-Execution Time bound. Unless they are computed by the analysis, the timing model always
assumes that task WCET bounds are provided.

ACM Comput. Surv., Vol. 1, No. 1, Article 01. Publication date: February 2019.

A Survey of Timing Verification Techniques for Multi-Core Real-Time Systems 01:39

γ -Cache-related preemption delay. Such delays are relevant in preemptive systems with cache
memory.

Mi-Migration delay. Migration delays exist whenever the execution of a task may be suspended
on one core and resumed on another.

ID-Interference delay. Covers other forms of interference that a task may suffer due to other
tasks executing on the multi-core platform. This includes the blocking time due to accesses to
shared resources, but not cache-related preemption or migration delays. This interference delay
depends on the type of multi-core hardware considered (see Section A.3).

A.3 Hardware Properties

The timing verification techniques applied to a multi-core system must be compatible with key
aspects of the hardware architecture.
Relevant properties, used in our classification, are detailed below.

A.3.1 Architecture. Multi-core architectures can be very diverse. Here, we identify platform
properties and the number of cores as being key aspects relevant to timing verification.

Pt-Platform properties. Identify aspects of the architecture which have a strong influence on
timing verification. Platforms may be Predictable (P), Many-core (M), Heterogeneous (H), Common-
Off-The-Shelf (C) as described below. Papers where the platform is unclassified in this category
consider only specific aspects of some generic (possibly hypothetical) multi-core. (We note that
the set of platform properties are not orthogonal, for example the Kalray MPPA-256 is a COTS
many-core platform).

Predictable (P) platforms are designed to reduce non-determinism with respect to timing in cores
(pipelines), local memories (for example cache replacement policies), interconnections (buses and
arbitration policies) and shared memory (e.g. memory controllers). Such platforms avoid sources of
timing anomalies and domino effects. All components are timing composable, meaning that the
interaction between the cores and the shared memory remains predictable even during contention.
This can be combined with hardware isolation employing mechanisms for spatial isolation (for
example using partitioned memory) or temporal isolation (for example TDMA arbitration policies).

Many-core (M) platforms are programmed differently from platforms with a smaller number of
cores and may offer more options for isolation. Typically, on such platforms, the interconnect is a
Network-on-Chip (NoC) and the protocols used in the NoC are predictable such that communication
delays can be bounded. Many-core platforms are becoming popular with the emergence of industrial
platforms targeting real-time systems (such as the Kalray MPPA-256).
Heterogeneous (H) platforms are either composed of otherwise identical cores with different

processing speeds (known as uniform platforms) or composed of different kinds of cores, where jobs
have different execution times on the different cores with no specific mathematical relations. In
this kind of platform, some jobs can have restrictions or affinities, meaning that they are allowed to
run only on a subset of the available cores. The execution time of a task depends on which type of
core it is assigned to. Analysis of such systems needs to take into account these different execution
times.

Common-Off-The-Shelf (C) platforms typically, but not always, have unknown or unpredictable
timing behaviour. The objective of this criterion is to give an indication of the applicability of
existing techniques to currently available platforms.

#C-Number of cores. We only consider works dealing with systems that have multiple cores.
Even so, design choices and analysis techniques that have been validated on a system with a small

ACM Comput. Surv., Vol. 1, No. 1, Article 01. Publication date: February 2019.

01:40 C. Maiza, H. Rihani, J.M. Rivas, J. Goossens, S. Altmeyer, and R.I. Davis

number of cores (typically 2 or 4 cores) may not be applicable to systems with a larger number
of cores. For this reason, we use the notation 2+ to identify papers that focus on systems with
two cores and claim a generalisation to more cores. The notation 1+ applies to papers focuing on
systems with full isolation, such that each core may be analysed independently from the rest of
the system. Papers that provide analysis which is applicable to an arbitrary number of cores are
denoted by N (note in this case, partial isolation may also be used).

A.3.2 Memory. Different types of memories with different access times may be used in a multi-
core architecture. Examples include caches, scratchpads and main memory. Memory that may be
shared between multiple cores is referred to as global memory, while memory that is private to
a single core is referred to as local memory. For example, in a multi-core system each core may
have access to a private L1 cache, a Last Level Cache (LLC) that is shared between all cores, and
finally main memory that is also accessible to all cores. In this case, the L1 cache is local, while
the LLC and main memory are forms of global memory. Local as well as global memories may be
banked6. Banked memory is mainly used to reduce the interference from concurrent accesses by
other cores; however, it can also be used for a local memory to reduce the interference between
tasks. Each memory bank has its own arbiter. Thus, accesses to addresses in different banks do not
interfere with one another. This hardware configuration offers a form of spatial isolation that can
be exploited at the application level to reduce interference (i.e. to provide at least partial temporal
isolation).

#L-Memory levels. There may be more than one level of local memory and more than one level of
global memory. A larger number of levels typically provides the potential for higher performance,
but also increases the complexity of the analysis.

LM-Local memory. Accesses to a local memory do not suffer from delays due to concurrent
accesses by other cores. The classification table indicates the type of local memory that is used,
as follows: cache (C), scratchpad memory (S), or no local memory(N). Further, banked memory is
indicated by (BM).

GM-Global memory. Shared memories are typically significantly larger than local memories;
however, accesses to global memories may suffer from interference. Global memories may be of
the types listed above for local memories (C, S, N, or BM) If no type is given, the global memory is
unbanked main memory.

A.3.3 Interconnection. Indicates how the cores and the memories are linked together.

IC-Interconnect. The interconnect may be a bus (B), a Network-on-Chip (NoC), or unspecified.

A.4 Software Properties

Software properties can be used to limit the complexity involved in the timing verification of
multi-core systems or to improve its precision. Such properties can be guaranteed by the software
design, obtained through static analysis or enforced at run time by the operating system. Here, we
identify the most relevant ones in our classification.

Pr -Precedence graph or synchronous data-flow. For some applications it is possible to know where
the data comes from and thus which tasks may share data. This can be used to increase precision
in interference analysis (using knowledge of where the data is and which task may read or write

6Amemory may also be partitioned using software; this will then appear in the software isolation column of the classification
table.

ACM Comput. Surv., Vol. 1, No. 1, Article 01. Publication date: February 2019.

A Survey of Timing Verification Techniques for Multi-Core Real-Time Systems 01:41

it), and in the schedulability analysis (a task may not start to execute before all its predecessors
have completed).

Ph-Phased execution. Another popular way of limiting the duration of memory interference is
to use phased execution where tasks first read all their inputs, then compute and finally write all
their outputs. Thus, if a local memory is used and is sufficiently large to contain all instructions
and data, the execution phase may be considered as local. It therefore does not interfere with the
execution on other cores, nor suffer interference from them. The read or write phases, in contrast,
are subject to interference. The principle of phased execution comes from the code generated from
design level tools for reactive systems (e.g. Scade/Lustre or Simulink). This phased execution model
has been extended in a number of ways. For example, shared data may be stored locally such that
only write phases interfere. Phased execution is a useful way to achieve isolation, for example by
employing a scheduling policy that avoids any concurrent read or write phases.

Is-Software isolation. Refers to any mechanism that is implemented at the software level in order
to isolate tasks or cores from one another. Such mechanisms may be implemented in a number of
ways, for example through scheduling, using a hypervisor, memory bandwidth regulators, or by
fixing some execution time window (software time division multiplexing). The common goal is
that the mechanism bounds or eliminates interference.

A.5 Classification Table

The classification table below lists all of the 119 research papers7 on multi-core timing verification
reviewed in this survey. For each one, it provides a detailed classification according to the criteria
and properties described above.

7Note some of the papers in the bibliography are related works that are not classified in this table.

ACM Comput. Surv., Vol. 1, No. 1, Article 01. Publication date: February 2019.

01:42
C
.M

aiza,H
.R

ih
an

i,J.M
.R

ivas,J.G
oossen

s,S.A
ltm

eyer,an
d
R
.I.D

avis

Type of analysis Timing model HW properties SW properties

Total: 119 papers I W S M E γ Mi ID Pt #C #L LM GM IC Pr Ph Is

Agrawal et al. [1] X X X X C 2+ 1 N NoC X
Agrawal et al. [2] X X X C 2+ 1 N B X

Alhammad and Pellizzoni [4] X X C 2+ 2 C B X X
Alhammad and Pellizzoni [3] X X C 1+ 2 C B X X

Alhammad et al. [5] X X N 2 C, S B X X
Altmeyer et al. [6] X X X X X P N 2 C, S B
Anderson et al. [7] X X M N 2 C C X
Andersson et al. [8] X X X C N 2 C B
Andersson et al. [9] X X X C N 2 C
Andrei et al. [10] X X X X X N 3 C B
Awan et al. [11] X X C 2+ 2 C C B X X
Awan et al. [13] X X X X C N 2 C C, BM B X
Bak et al. [14] X X C 2+ 2 C B X X

Becker et al. [15] X X X M N 1 BM B, NoC X X X
Behnam et al. [16] X X C N 3 C C B X
Boniol et al. [17] X X X X X C 2+ 3 C B X X X
Carle et al. [19] X X N 1 B X X X

Carle and Cassé [18] X X X X C N 2 C B X
Chang et al. [22] X X N 2 C
Chang et al. [21] X X N 2 S (partitioned)

Chattopadhyay et al. [26] X X I, P 2+ 3 C C B
Chattopadhyay and Roychoudhury [25] X X X X P N 2 S B X

Chattopadhyay et al. [24] X X P 2+ 3 C C B
Chattopadhyay et al. [23] X X P 2+ 3 C C B

Cheng et al. [28] X X N 2 S (partitioned) B
Cheng et al. [27] X X X X P N 1 BM B

Chisholm et al. [30] X X X C N 3 C C
Chisholm et al. [29] X X X X C N 3 C C, BM X X X
Choi et al. [31] X X X X N 1 X
Dasari et al. [33] X X X X C N 1 B

Dasari and Nelis [34] X X X X C N 1 B
Dasari et al. [35] X X X N 1 B
Dasari et al. [36] X X X N 1 C (partitioned) C (partitioned) B
Davis et al. [37] X X X X X P N 2 C, S C, S B
Ding et al. [39] X X X C N 3 C C B X

Farshchi et al. [40] X X x P 2+ 2 C BM B
Freitag et al. [41] X C, P 2+ 2 C B

A
C
M

C
om

pu
t.Su

rv.,V
ol.1,N

o.1,A
rticle

01.P
u
blication

date:
Febru

ary
2019.

A
Su

rvey
of

T
im

in
g
V
erification

Tech
n
iq
u
es

for
M
u
lti-C

ore
R
eal-T

im
e
System

s
01:43

Type of analysis Timing model HW properties SW properties

Total: 119 papers I W S M E γ Mi ID Pt #C #L LM GM IC Pr Ph Is

Giannopoulou et al. [42] X X X X N 1 B X
Giannopoulou et al. [43] X X X X X N 1 B X X
Giannopoulou et al. [44] X X X X X P N 1 BM B X
Giannopoulou et al. [45] X X X X X M, C, P N 1 BM B, NoC X X

Guan et al. [48] X X N 2 C X
Guo et al. [50] X X X X N 2 C B

Gustavsson et al. [51] X X P 2+ 3 C C
Hardy et al. [54] N N C C
Huang et al. [60] X X X X P N 1 B
Inam et al. [61] X X X X C N 2 C B X
Jacobs et al. [62] X X 4 2 C, S B
Jacobs et al. [63] X X N 2 C, S B

Kafshdooz and Ejlali [64] X X X X 2+ 3 S B
Kelter et al. [66] X X X P* N 2 C, S B
Kelter et al. [68] X P N 2 S B
Kelter et al. [67] X X X P* N 2 C, S B
Kelter et al. [65] X X X X P N 1 B

Kelter and Marwedel [69] X X N 3 C, S B
Kim et al. [75] X X X C N 1 B X
Kim et al. [73] X X X X X X C N 2 C C X
Kim et al. [71] X X X X C N N C C, BM
Kim et al. [76] X X 1+ 2 S B X
Kim et al. [74] X X C N 1 B X
Kim et al. [72] X X X X P N 2 BM B

Lampka et al. [77] X X N 3 C B X X
Li et al. [78] X X X P N 3 C C B X

Liang et al. [79] X X X X X X 2+ 3 C C X
Liu and Zhang [81] X X P 2+ 2 S S

Lv et al. [82] X X 2 C B
Mancuso et al. [83] X X X X C N 2 C C, BM B X
Mancuso et al. [84] X X X X C N 2 C, BM B X
Melani et al. [85] X X 1+ 2 C B X X

Nagar and Srikant [86] X X X X N 3 C C B
Nikolic et al. [88] X X M N 1 N NoC

Nikolic and Petters [87] X X M N 1 N NoC
Nowotsch and Paulitsch [89] X X X X C N 2 NoC X

Nowotsch et al. [90] X X X X C N 2 NoC X

A
C
M

C
om

pu
t.Su

rv.,V
ol.1,N

o.1,A
rticle

01.P
u
blication

date:
Febru

ary
2019.

01:44
C
.M

aiza,H
.R

ih
an

i,J.M
.R

ivas,J.G
oossen

s,S.A
ltm

eyer,an
d
R
.I.D

avis

Type of analysis Timing model HW properties SW properties

Total: 119 papers I W S M E γ Mi ID Pt #C #L LM GM IC Pr Ph Is

Oehlert et al. [92] X X N 2 S B
Pagetti et al. [93] X X X P N 2 S B X X X
Paolieri et al. [95] X X X X P N 3 C, BM C, BM B
Paolieri et al. [94] X X P 3 C, S C, BM B
Pellizzoni et al. [97] X X X X X C 1+ 2 C B X
Pellizzoni et al. [98] X X X X C N 2 C B
Pellizzoni et al. [96] X X C 1+ 2 C B X X

Pellizzoni and Yun [99] X X X X C N 2 C B X
Perret et al. [100] X X M N 2 P NoC X X
Perret et al. [101] X X M, C, P N 2 BM BM B, NoC
Perret et al. [102] M, C, P N 2 C BM NoC X
Rihani et al. [103] X X P 1+ 1 B
Rihani et al. [104] X X X X M, C, P 1 BM B X X
Rosèn et al. [105] X X X X P N 2 C B X X

Saidi and Syring [106] X X X M N 3 S BM B, NoC
Schliecker et al. [109] X X X X N 2 C
Schliecker et al. [110] X X X X N B
Schliecker et al. [108] X X X X X P 2+ 2 C B

Schliecker and Ernst [107] X X X X X P N 2 C B
Schoeberl et al. [111] X X P N 2 C, S B, NoC

Schranzhofer et al. [112] X N 1 B X
Schranzhofer et al. [113] X X X X P N 1 B X X
Schranzhofer et al. [114] X X X P N 1 B X

Skalistis and Simalatsar [116] X X X M N 1 N BM NoC X
Skalistis and Simalatsar [117] X X X X X M N 1 N BM NoC X

Souto et al. [118] X X X X N
Still and Indrusiak [119] X X N 1 S NoC
Suhendra et al. [120] X X X H, P N 2 S B X
Suhendra et al. [121] X X X P N 2 S B X
Tabish et al. [122] X X P N 2 S B X X
Valsan et al. [123] X X C N 3 C C B X
Valsan et al. [124] X X C N 3 C C B X

Wasly and Pellizzoni [125] X X 1+ 2 S B X
Xiao et al. [126] X X X X H,C N 2 C C
Xu et al. [127] X X X X X X C N 1 C

Yan and Zhang [128] X X X 2+ 3 C C B
Yao et al. [129] X X N 2 C C B X X

A
C
M

C
om

pu
t.Su

rv.,V
ol.1,N

o.1,A
rticle

01.P
u
blication

date:
Febru

ary
2019.

A
Su

rvey
of

T
im

in
g
V
erification

Tech
n
iq
u
es

for
M
u
lti-C

ore
R
eal-T

im
e
System

s
01:45

Type of analysis Timing model HW properties SW properties

Total: 119 papers I W S M E γ Mi ID Pt #C #L LM GM IC Pr Ph Is

Yao et al. [130] X X N 2 C C B X X
Yao et al. [131] X X C 2+ 2 C C B X X
Yoon et al. [132] X X X X X P N 2 C, BM B
Yun et al. [135] X X X X C 2+ 2 C B
Yun et al. [134] X X C N 3 C C, BM

Zhang and Yan [137] X X P 2+ 3 C C
Zhang et al. [138] X X X X N 2 C
Zheng et al. [139] X X X X N 2 N C B X

A
C
M

C
om

pu
t.Su

rv.,V
ol.1,N

o.1,A
rticle

01.P
u
blication

date:
Febru

ary
2019.

01:46 C. Maiza, H. Rihani, J.M. Rivas, J. Goossens, S. Altmeyer, and R.I. Davis

Received October 2018; revised February 2019; accepted February 2019

ACM Comput. Surv., Vol. 1, No. 1, Article 01. Publication date: February 2019.

	Abstract
	1 Introduction
	1.1 Organisation
	1.2 Related Areas of Research and Restrictions on Scope

	2 Full Integration
	2.1 Analysis of Shared Memory Only
	2.2 Analysis of the Interconnect Only
	2.3 Analysis of Shared Memory and Interconnect
	2.4 Critique and Perspectives

	3 Temporal Isolation
	3.1 Phased Execution Model
	3.2 Memory Bandwidth Regulators
	3.3 Offline Scheduling
	3.4 Hardware Isolation
	3.5 Critique and Perspectives

	4 Integrating Interference Effects into Schedulability Analysis
	4.1 Interference Contending for the Memory Bus
	4.2 Interference Contending for Memory
	4.3 Interference Contending for Multiple Resources
	4.4 Critique and Perspectives

	5 Mapping and Scheduling
	5.1 ILP and MILP
	5.2 Constraint Programming and Dynamic Programming
	5.3 Bin-Packing
	5.4 Genetic Algorithms
	5.5 Critique and Perspectives

	6 Observations Discussion and Conclusions
	6.1 Discussion
	6.2 Conclusions

	Acknowledgments
	References
	A Detailed Classification
	A.1 Type of Timing Verification Performed
	A.2 Timing Model Used for the Analysis
	A.3 Hardware Properties
	A.4 Software Properties
	A.5 Classification Table

