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Abstract

In this paper, the numerical discretizations based on Hamiltonian splitting
for solving the Vlasov–Maxwell system are constructed. We reformulate
the Vlasov–Maxwell system in Morrison–Marsden–Weinstein Poisson bracket
form. Then the Hamiltonian of this system is split into five parts, with
which five corresponding Hamiltonian subsystems are obtained. The split-
ting method in time is derived by composing the solutions to these five sub-
systems. Combining the splitting method in time with the Fourier spectral
method and finite volume method in space gives the full numerical discretiza-
tions which possess good conservation for the conserved quantities including
energy, momentum, charge, etc. In numerical experiments, we simulate the
Landau damping, Weibel instability and Bernstein wave to verify the numer-
ical algorithms.
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method.

1. Introduction

In modern plasma physics and accelerator physics, the system of Vlasov–
Maxwell (VM) equations is an important model to describe collisionless
plasma. In most applications such as radio-frequency wave heating, current
drive in tokamaks, etc., this system usually involves a wide range of space
and time scales, which requires long-time numerical simulation. Classical
algorithms, however, can not control the rapid accumulation of numerical
errors which soon destroy the numerical simulation completely. Therefore,
the challenging task for simulating the VM system is to construct efficient
and accurate numerical methods with long-term stability.

To numerically solve the VM equations, Particle-in-Cell (PIC) method
has been an important tool in the last half century [1, 2, 11]. The main idea
of this method is to approximate the distribution function by a collection of
finite-size “quasi-particles” with the weighted Klimontovich representation.
The particles are advanced along the characteristics of the Vlasov equation,
and the electromagnetic field is computed by using a mesh in the physical
space. The advantage of PIC method is its low computational cost, thus it is
suitable to solve high-dimensional problems. The PIC method has also been
developed by combining with the geometric integrators, and applied to the
VM system [14, 25, 32, 44, 38]. However, PIC method suffers from numer-
ical noises which results in poor description for low-density regions. More-
over, the numerical noise decreases in 1/

√
N , when the number of particles

N is increased. Besides the PIC method, there are deterministic methods
for solving the VM system, such as the semi-Lagrangian methods [10, 37],
the finite volume methods [17], the spectral methods [26], the finite ele-
ment methods [13, 23], etc. In some cases, for example, when particles in
the tail of the distribution play an important role, or when the numerical
noise becomes too evident, deterministic methods are much better than PIC
methods. Recently, some energy conserving methods have been proposed for
Vlasov system in [6, 7, 8].

Geometric numerical integrators [16, 20, 34] have been proposed with
the purpose of preserving the intrinsic properties inherited by the given sys-
tem. Via preserving the properties of system such as the Poisson structure
of Hamiltonian system and the invariant volume form of source-free system,
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geometric integration methods usually generate numerical results with supe-
rior long-term behavior compared to others. The VM system is known to be
a non-canonical Hamiltonian system with Poisson bracket [29, 41, 27]. This
implies that its solution flow is a Poisson map, and the system has Casimir
functions and many conserved quantities. Thus, it is significant to construct
numerical methods which can preserve the Poisson structure. In construction
of Poisson-preserving numerical methods, splitting approach has been widely
used. Splitting approach is a useful method in designing geometric numeri-
cal methods, e.g. symplectic methods, Poisson methods, volume-preserving
methods, and first integral preserving methods [20, 33], etc. They have
been developed for solving the charged particle system [21, 22], and the
Schrödinger equation [3, 15]. Moreover, splitting methods are also applied
to the VM system [9, 35]. However, it has been pointed out in [31] that the
method in [9] is not a Poisson-preserving method as the bracket used is not
Poisson [41].

In this paper, we construct the Poisson-preserving methods for the VM
system by Hamiltonian splitting. Based on Hamiltonian formulation of VM
system, the Hamiltonian of this system is split into five parts with which
five Hamiltonian subsystems are obtained. The approximate solution of the
VM equations finally can be constructed by composing the solutions of each
subsystem. Moreover, the evolution of the distribution function can be writ-
ten as a composition of several one-dimensional advections, which makes
the method efficient and easy to implement. It is also proved that the
semi-discretized approximate solutions computed by our method preserve
the Poisson structure, and also satisfy the Gauss’s laws.

The framework of this paper is organized as follows. In section 2, we
introduce the Hamiltonian structure and conserved quantities of the Vlasov–
Maxwell equations. In section 3, the Hamiltonian splitting method is pro-
posed. In section 4, we obtain a full discretization for the reduced VM system
by combining the spectral method and the finite volume method in space.
Section 5 is concerned with numerical experiments exploring Landau damp-
ing, the Weibel instability and Bernstein wave, and section 6 contains the
concluding remarks and future works.

2. The Vlasov–Maxwell equations

The Vlasov–Maxwell equations describe collisionless magnetized charged
particles in an electromagnetic field which can be either self-consistent, i.e.,
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generated by the particles themselves or externally applied. As the ions have
much greater inertia than the electrons, in this paper the ions are treated
as a uniform fixed background. Then, the evolution of a single species of
non-relativistic electrons under the self-consistent electromagnetic field is de-
scribed as

∂f

∂t
+ v · ∂f

∂x
+

e

m
(E+ v ×B) · ∂f

∂v
= 0,

∇×B = µ0J(x, t) + ε0µ0
∂E

∂t
,

∇× E = −∂B

∂t
,

∇ · E =
ρ(x, t)

ε0
+

ρi
ε0
,

∇ ·B = 0,

(1)

where J(x, t) = e
∫

R3 f(x,v, t)v dv and ρ(x, t) = e
∫

R3 f(x,v, t) dv. The
above equations are defined on Ω = Ω

x
× R

3 with x ∈ Ω
x
⊂ R

3 the po-
sition in physical space, and v ∈ R

3 the velocity. Here m is the electron
mass, e is the electron charge, µ0 is the magnetic permeability, ε0 is the vac-
uum permittivity, f(x,v, t) ≥ 0 is the electron distribution function, ρ(x, t)
is the charge density of electrons, ρi is a constant charge density of ions,
J(x, t) is the electric current, and E(x, t) and B(x, t) are the electric and
magnetic fields respectively. By requiring

∫∫

Ω
ρ(x, t) + ρi dx = 0, the total

charge neutrality of system (1) is ensured.
Let ωρ = (ne2/mε0)

1/2 be the electron plasma frequency with the total
number of electrons n =

∫∫

Ω
f(x,v, t) dx dv. We consider the normalized VM

system where (t,x,v, f,E,B) is normalized by (ω−1
ρ , cω−1

ρ , c, n/c3, ωρcm/e,
ωρm/e) with c the speed of light in vacuum [6]. This yields the dimensionless
non-relativistic Vlasov–Maxwell system:

∂f

∂t
+ v · ∂f

∂x
+ (E+ v ×B) · ∂f

∂v
= 0, (2)

∂E

∂t
= ∇×B− J, (3)

∂B

∂t
= −∇× E, (4)

∇ · E = ρ− 1, (5)

∇ ·B = 0, (6)
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where J(x, t) and ρ(x, t) are normalized as J(x, t) =
∫

R3 f(x,v, t)vdv and
ρ(x, t) =

∫

R3 f(x,v, t)dv.
It is known that equations (2)–(6) are not independent, as equations

of Gauss’s laws (5)–(6) can be derived from (2)–(4). Indeed, taking the
divergence of both sides of (4) we derive

∂

∂t
(∇ ·B) = 0. (7)

Similarly, taking the divergence of both sides of (3) gives

∂

∂t
∇ · E+

∫

R3

v · ∂f
∂x

dv = 0. (8)

By using (2), from (8) we obtain

∂

∂t
∇ · E−

∫

R3

∂f

∂t
dv −

∫

R3

(E+ v ×B) · ∂f
∂v

dv = 0. (9)

If we assume f(x,v, t) is compactly supported in the velocity direction, then
the third term of (9) vanishes after integration by parts, which leads to

∂

∂t

(

∇ · E−
∫

R3

f dv

)

= 0. (10)

If an appropriate initial condition is imposed, it is clear that Eqs. (5)–(6) can
be derived directly from (7) and (10).

Denote by M the infinite-dimensional manifold {(f,E,B)| ∇ ·B = 0}.
In this paper, we consider the Vlasov–Maxwell system expressed with the
below Poisson bracket [27] for the purpose of applying the ideas of geometric
numerical integration [20]. For two functionals F and G on M, the bracket
is defined [29, 27] as

{F ,G} =

∫∫

Ω

f

[

δF
δf

,
δG
δf

]

xv

dx dv +

∫∫

Ω

(

δF
δE

· ∂f
∂v

δG
δf

− δG
δE

· ∂f
∂v

δF
δf

)

dx dv

+

∫

Ωx

(

δF
δE

·
(

▽× δG
δB

)

− δG
δE

·
(

▽× δF
δB

))

dx

+

∫∫

Ω

fB ·
(

∂

∂v

δF
δf

× ∂

∂v

δG
δf

)

dx dv,

(11)
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where [·, ·]
xv

denotes the canonical Lie bracket of two functions of (x,v),
i.e., [h, g]

xv
=
∑3

i=1

(

∂h
∂xi

∂g
∂vi

− ∂h
∂vi

∂g
∂xi

)

. It has been proved in [27, 30] that
the bracket (11) is Poisson. With the defined Poisson bracket, the Vlasov–
Maxwell system of equations (2)–(4) is equivalent to

∂Z
∂t

= {Z,H}, (12)

with Z = (f,E,B) ∈ M, where the Hamiltonian functional is defined by

H(f,E,B) =
1

2

∫

Ω

v2fdxdv +
1

2

∫

Ωx

(

|E|2 + |B|2
)

dx. (13)

Note that Eq. (2) can also be written in conservative form

∂f

∂t
+∇

xv
· (κf) = 0, (14)

where the phase space velocity vector is κ = (v,E + v × B), and ∇
xv

=
(∇

x
,∇

v
) denotes the gradient operator in phase space. There are numerical

methods derived from this conservative formulation [18, 10].
With appropriate initial conditions (f0(x,v),E0(x), B0(x)) ∈ M, the

existence and uniqueness of a local solution for the VM equations have been
proved in [42], and the global existence without uniqueness of the weak so-
lution has been proved in [12]. As a system from plasma physics, the VM
system is known to have a number of conservative quantities among which
the several important ones are reviewed as follows.

Proposition 2.1. Consider the Vlasov–Maxwell system (2)–(6). If f(x,v, t),
E(x, t), and B(x, t) are periodic in x, and f is compactly supported in v, then
the following quantities are conserved:

(i). The energy E = 1
2

∫∫

Ω
f |v|2 dv dx+ 1

2

∫

Ωx

(|E|2 + |B|2) dx;

(ii). The charge Q =
∫∫

Ω
f(x,v, t) dv dx;

(iii). The Lp–norm of the distribution function,
(∫∫

Ω
|f |p dv dx

)1/p
, for 1 ≤

p ≤ +∞;

(iv). The entropy S = −
∫∫

Ω
f ln f dv dx.
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Proof. (i). The energy conservation is obvious because the energy E is
actually the Hamiltonian (13) of the VM system.

(ii). Integrating (2) over x and v yields
∫∫

Ω

∂f

∂t
dx dv = −

∫

R3

v·
(∫

Ωx

∂f

∂x
dx

)

dv−
∫∫

Ω

(E+ v ×B)·∂f
∂v

dx dv.

(15)
Because f is periodic in x, the first term on the right-hand side is zero.
The assumption of f having compact support in the velocity directions
implies that the second term on the right-hand side of (15) also van-
ishes. This leads to

dQ
dt

=
d

dt

∫∫

Ω

f(x,v, t) dv dx = 0,

which implies the conservation of charge.

(iii). We multiply (2) by pf p−1 and integrate over Ω to obtain

d

dt

∫∫

Ω

f p dx dv = −
∫

R3

v·
(∫

Ωx

∂f p

∂x
dx

)

dv−
∫∫

Ω

(E+ v ×B)·∂f
p

∂v
dx dv.

(16)
Similarly as in (ii), the right-hand side of (16) vanishes.

(iv.) As in the proof of (iii), multiplying (2) by ln f+1 and integrating over Ω
gives the desired conservation law.

�

In this paper, as we take ions as the uniform fixed background, the clas-
sical momentum

M =

∫∫

Ω

vf dv dx+

∫

Ωx

E×B dx (17)

can not be conserved [8]. For two species (electrons and ions) Vlasov–Maxwell
system, the following momentum with incorporating the motion of ions

P =

∫∫

Ω

v
(

f +
mi

m
fi

)

dv dx+

∫

Ωx

E×B dx,

where fi is the distribution function of ions andmi is their mass, is conserved.
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Proposition 2.2. Define

C
x0(f,E,B) =

∫

Ωx

∇ · E(x)δ(x− x0) dx−
∫∫

Ω

f(x,v, t)δ(x− x0) dx dv,

(18)

where x0 ∈ Ωx and δ represents the delta function. Then, (18) is a Casimir
function1 with respect to the Poisson bracket defined in (11).

Proof. For the Poisson bracket defined in (11), we have

{C
x0(Z),G(Z)}

=

∫∫

Ω

f

[

−δ(x− x0),
δG
δf

]

xv

dxdv +

∫∫

Ω

(

−∇
x
δ(x− x0) ·

∂f

∂v

δG
δf

)

dxdv

+

∫∫

Ω

(

δG
δE

· ∂f
∂v

δ(x− x0)

)

dxdv +

∫

Ωx

−∇
x
δ(x− x0) ·

(

∇× δG
δB

)

dx.

(19)

In the above equality, we have used the following variational derivatives of
Cx0 ,

δC
x0

δf
= −δ(x− x0),

δC
x0

δE
= −∇

x
δ(x− x0),

δC
x0

δB
= 0.

In (19), with the integration by parts the sum of the first and second terms
is zero, and the integrand of the fourth term vanishes. Since f is compact
supported in velocity direction, the third term is also zero. Then the proof
is finished. �

Due to the conservation properties inherited by the VM system, it is
important to construct the numerical discretizations which can preserve these
conserved quantities (at least up to some tolerance; ideally up to machine
precision) in long-time numerical simulations. In the subsequent sections, we
present the numerical discretizations which preserve the Poisson bracket of
the VM system, and the corresponding numerical simulations.

1For the given Poisson bracket { , }, function C is a Casimir function if it Poisson
commutes with any smooth function G, i.e., {C,G} = 0.
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3. Hamiltonian splitting methods for the VM equations

In this section, we introduce a Hamiltonian splitting method for the VM
system based on its formulation written in (12). Observing the Hamilto-
nian (13) of the VM equations, we find that we can split the Hamiltonian H
as

H =
1

2

∫

|E|2dx+
1

2

∫

|B|2dx+
1

2

3
∑

i=1

∫

v2i fdxdv

=: HE +HB +
3
∑

i=1

Hif .

(20)

Substituting (20) into (12) gives five subsystems of the Vlasov–Maxwell sys-
tem (12) defined on M:

Ż = {Z,HE} , Ż = {Z,HB} , Ż = {Z,Hif} for i = 1, 2, 3.

This Hamiltonian splitting enjoys the following properties: (i) it is Hamilto-
nian, i.e., each subsystem preserves the same Hamiltonian structure as the
VM system; (ii) it is a conservative splitting, i.e., each subsystem can be
written in conservative form like Eq. (14); (iii) the solution to each subsys-
tem can be written explicitly; (iv) the distribution function f(x,v, t) evolves
by several one-dimensional translations.

We start with the first subsystem Ż = {Z,HE}, which is equivalent to

∂f

∂t
+ E(x, t) · ∂f

∂v
= 0,

∂E

∂t
= 0,

∂B

∂t
= −∇× E.

(21)

For given initial values (f0,E0,B0) ∈ M at time t = 0, the solution to
subsystem (21) at time t can be written explicitly as

f(x,v, t) = f0 (x,v − tE0(x)) ,

E(x, t) = E0(x),

B(x, t) = B0(x)− t∇× E0(x).

(22)
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In fact, the evolution equation for f can be further split into three parts:

∂f

∂t
+ E1

∂f

∂v1
= 0,

∂f

∂t
+ E2

∂f

∂v2
= 0,

∂f

∂t
+ E3

∂f

∂v3
= 0, (23)

where E(x, t) = [E1, E2, E3]. It is easy to verify that the Lie composition of
the three solutions of (23) leads to the solution f in (22), i.e.,

f(x,v, t) = SE
v3
(t)SE

v2
(t)SE

v1
(t)f0(x,v), (24)

where the translation operator SE
vi
(t), i = 1, 2, 3 is defined as SE

vi
(t)h(x,v) =

h(x,v − tEiei) with ei the unit vector in the i-th Cartesian direction.
The second subsystem, which corresponds to Ż = {Z,HB}, is given by

∂f

∂t
= 0,

∂E

∂t
= ∇×B,

∂B

∂t
= 0.

(25)

With the initial condition (f0,E0,B0) ∈ M, the solution to the subsys-
tem (25) can be written explicitly as

f(x,v, t) = f0(x,v),

E(x, t) = E0(x) + t∇×B0(x),

B(x, t) = B0(x).

(26)

The subsystem corresponding to Hif is

∂f

∂t
+ vi

∂f

∂xi

+
3
∑

j=1

B̂jivi
∂f

∂vj
= 0,

∂Ei

∂t
= −

∫

vif dv and
∂Ej

∂t
= 0 for j 6= i,

∂B

∂t
= 0.

(27)

Here, B̂ =
[

0 B3 −B2
−B3 0 B1
B2 −B1 0

]

is a skew-symmetric matrix determined byB(x, t) =

[B1, B2, B3]
⊤. From the third equation of (27), we know that B(x, t) does
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not depend on time. Thus, the characteristic equation of the first equation
of (27) is

ẋi = vi, v̇i = 0,

ẋj = 0, v̇j = B̂ji(x, 0)vi for j 6= i.

The solution to these equations is

xi(t) = xi(0) + tvi(0), vi(t) = vi(0),

xj(t) = xj(0), vj(t) = vj(0) +

∫ xi(t)

xi(0)

B̂ji(x, 0) dxi for j 6= i.
(28)

With the initial condition (f0,E0,B0) ∈ M, this leads to the following exact
solution to the subsystem Hif :

f(x,v, t) = f0

(

x− tviei,v −
3
∑

l=1

elF
(i)
l

)

with F
(i)
l =

∫ xi

xi−tvi

B̂li(x, 0) dxi,

Ei(x, t) = Ei(x, 0)−
∫ t

0

∫

vif(x,v, τ) dv dτ,

B(x, t) = B0(x), Ej(x, t) = E0j(x) for j 6= i.

Similarly as in the first subsystem, the distribution function f(x,v, t) which
solves (27) can also be expressed as three one-dimensional advections. Firstly,
we translate f0 in two velocity directions vj and vk, j, k 6= i, and ob-

tain f0

(

x,v −
3
∑

l=1

elF̂
(i)
l

)

, then we translate −tvi in the xi-direction to get

f(x,v, t), i.e.,

f(x,v, t) = S if
xi
(t)S if

vj
(t)S if

vk
(t)f0(x,v), j, k 6= i, (29)

where S if
xi
(t)h(x,v) = h(x − tviei,v), and S if

vj
(t)h(x,v) = h(x,v − F̂

(i)
j ej)

with F̂
(i)
j =

∫ xi+tvi
xi

B̂li(x, 0) dxi.
Combining the solutions of the above subsystems by various kinds of

composition methods [20, 45, 40, 28] gives schemes of high order, e.g., the
first-order Lie splitting method, the second-order Strang splitting method
and so on.
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Theorem 3.1. Assume that the VM system is periodic in x, f(x,v, t) is
compactly supported in v, and the Gauss’s Law is satisfied by initial condi-
tions, then the solution given by Hamiltonian splitting method (semi-discretization
in time) satisfies the Gauss’s law.

Proof. For the semi-discretization, it is sufficient to check whether Gauss’s
law holds for the solution of each subsystem. From the solution of each sub-
system, it is obvious that ∇ · B = 0 is satisfied by the solution of semi-
discretization. As for ∇ · E =

∫∫

Ω
f dx dv − 1, we first consider subsystem

HE (21). From (22) we know

∫

R3

f(x,v, t) dv =

∫

R3

f0 (x,v − tE0 (x)) dv =

∫

R3

f0(x,v) dv for all x.

As E(x, t) does not change along time, and ∇ · E0(x) =
∫

R3 f0(x,v) dv − 1,
we derive

∇ · E(x, t) = ∇ · E0(x) =

∫

R3

f(x,v, t) dv − 1.

For subsystem HB (25), taking the divergence of E(x, t) in (26) directly gives

∇ · E(x, t) = ∇ · E0(x) + t∇ · ∇ ×B0(x) = ∇ · E0(x).

Notice that f(x,v, t) does not change along time, it is clear from the above
equality that Gauss’s law is satisfied by the solution of HB. Finally, we
consider the Hif subsystem (27). Taking the derivative of the second equation
in (27) with respect to t, gives

∇ · ∂E
∂t

= −
∫

R3

3
∑

i=1

vi
∂f

∂xi

dv.

Substituting the first equation of (27) into the above equation gives

∂

∂t
∇ · E =

∫

R3

(

∂f

∂t
+

3
∑

j=1

B̂jivi
∂f

∂vj

)

dv.

As the distribution function f(x,v, t) is compactly supported, the second in-
tegral on right side of the above equality

∫

R3

∑

j B̂jivi
∂f
∂vj

dv vanishes, and

then Gauss’ law is satisfied by the solution of Hif . Thus we have finished our
proof. �
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4. Phase space discretizations

In this section, we study the phase space discretizations for the so-called
1+ 1

2
dimensional VM equations [9] defined on [0, L]×R

2. In this formulation,
the independent variables are x1, v1 and v2, and the fields E3, B1 and B2 are
set to be zero:

∂f

∂t
+ v1

∂f

∂x1

+ (E1 + v2B3)
∂f

∂v1
+ (E2 − v1B3)

∂f

∂v2
= 0, (30)

∂E1

∂t
= −

∫

R2

v1f dv1 dv2, (31)

∂E2

∂t
= −∂B3

∂x1

−
∫

R2

v2f dv1 dv2, (32)

∂B3

∂t
= −∂E2

∂x1

. (33)

We consider the case that the system is periodic in the x1-direction. The
computation domain is taken as Ω = Ωx × Ωv := [0, L] × [−V1,L, V1,R] ×
[−V2,L, V2,R] with V1,L, V1,R, V2,L and V2,R large enough such that f is suffi-
ciently small near Ωx × ∂Ωv. We use a uniform mesh defined as follows:

x1,j = (j − 1)∆x with ∆x = L/M for j = 1, . . . ,M ;

vi,ℓi+ 1
2
= −Vi,L + ℓi∆vi with ∆vi =

Vi,R + Vi,L

Ni

for ℓi = 0, . . . , Ni, i = 1, 2.

Firstly, we discretize the electromagnetic fields (E1, E2, B3) for which the
grid number M is usually even. We use the notation E1,j(t) to denote the
approximation of E1(x1, t) at (x1,j, t). As E1 is periodic in the x1-direction,
we use the spectral Fourier expansion to approximate E1 which is expressed
as

E1,j(t) =

M/2
∑

k=−M/2+1

Ê1,k(t)e
2πijk/M for j = 1, . . . ,M. (34)

We discretize E2 and B3 in the same way.
To discretize the distribution function f , we use a spectral representation

in the x1-direction and a finite volume discretization in the velocity directions.
We discretize the distribution function f on Ωv by taking the averages of f
over the rectangular cells Vℓ1,ℓ2 := [vℓ1− 1

2
, vℓ1+ 1

2
]×[vℓ2− 1

2
, vℓ2+ 1

2
] as our discrete

13



variables at velocity direction

fℓ1,ℓ2(x1, t) =
1

∆v1∆v2

∫∫

Vℓ1,ℓ2

f(x1, v1, v2, t) dv2 dv1 for ℓi = 1, . . . , Ni, i = 1, 2.

Similar to (34), we have

fj,ℓ1,ℓ2(t) =

M/2
∑

k=−M/2+1

f̂k,ℓ1,ℓ2e
2πijk/M for j = 1, . . . ,M.

In order to evaluate the value of f off-grid in the v1 (or v2) direction, here we
reconstruct a continuous function from the discrete value fj,ℓ1,ℓ2 by using the
Parabolic Spline Method (PSM) introduced in [46]. It is proved in [46, 10]
that the method has good accuracy, high efficiency and mass conservation
property. It is also proved that the reconstruction by PSM is equivalent to
apply the cubic spline interpolation to the primitive function with cumu-
lative averages. From the analysis in previous section, we know that the
implementation of splitting method only needs 1D translations. This implies
that we only need the one-dimensional PSM in the purpose of approximating
distribution function f by a continuous function.

Let [a, b] be an interval, and assume that it is divided into N equal parts
with vi = a + ih for i = 0, 1, · · · , N , where ∆v = (b − a)/N . As follows,
we introduce the PSM by approximating the function f from the integral
averages of f on each cell [vi, vi+1], fi :=

∫ vi+1

vi
f(v)dv/∆v, i = 0, · · · , N − 1.

For the given fi, the PSM gives a piecewise quadratic polynomial F (v) which
is continuously differentiable on [a, b],

F (v) = pi

(

v − vi
∆v

)

for v ∈ [vi, vi+1], i = 0, · · · , N − 1,

where pi(v) = αiv
2 + βiv + γi with αi, βi and γi the coefficients. The 3N

coefficients of function F (v) are derived by requiring the following conditions,

∫

[vi,vi+1]

F (v)dv/∆v =

∫ 1

0

pi(v)dv = fi, i = 0, · · · , N − 1, (35)

pi(1) = pi+1(0), pN−1(1) = p0(0), i = 0, · · · , N − 2, (36)

p′i(1) = p′i+1(0), p′N−1(1) = p′0(0), i = 0, · · · , N − 2, (37)
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where conditions (36) and (37) imply that F (v) and F ′(v) are continuous at
vi, i = 0, · · · , N − 1. Instead of directly solving the above 3N equations, the
coefficients of F (v) can be determined by solving two N dimensional linear
systems. The first equation satisfied by γi is written in matrix form

Aγ = f

with

A =



















4 1 0 · · · 0 1
1 4 1 0 · · · 0

0 1 4 1
. . .

...
...

. . . . . . . . . . . . 0
0 · · · 0 1 4 1
1 0 · · · 0 1 4



















, γ =







γ0
...

γN−1






and f = 3















fN1 + f0
...

fk + fk+1
...

fN−2 + fN−1















.

The second equation for βi is
Bβ = g,

B =



















2 1 0 · · · 0 0
0 2 1 0 · · · 0

0 0 2 1
. . .

...
...

. . . . . . . . . . . . 0
0 · · · 0 0 2 1
1 0 · · · 0 0 2



















, β =







β0
...

βN−1






,g = 6















f0 − γ0
...

fk − γk
...

fN−1 − γN−1















.

(38)
The coefficients αi can be derived by αi = βi+1−βi

2
for i = 0, · · · , N − 2,

and αN−1 = β1−βN−1

2
. By using the fast solver in [36], the above two linear

systems Aγ = f and Bβ = g can be solved with the cost of O(N). Note
that we here use PSM with periodic boundary condition, PSM with natural
boundary condition can also be used, and there is also fast solver [36, 46].

Remark 1. As noticed above, the Hamiltonian splitting is also a conserva-
tive splitting, which means that if we want to construct the charge-preserving
methods, we can use the conservative methods presented in [18, 10] to solve
each subsystem.

Using the Hamiltonian splitting method introduced in Section 3 and phase
space discretization in Section 4, we now present the discrete solution to the
corresponding subsystems HE and H1f of the reduced VM system (30)–(33).
As the computation of H2f is similar to HE, we omit it here.

15



Algorithm 1 Procedure for computing f(x,v, t) in subsystem HE

Input: fj,ℓ1,ℓ2(0), Ê1(0), Ê2(0)
1: for j = 1 to M do

2: for ℓ1 = 1 to N1 do

3: obtain fj,ℓ2(v2) by using PSM with [fj,ℓ1,1(0), . . . , fj,ℓ1,N2(0)]

4: compute E2(xj) by using inverse FFT on Ê2(0)
5: obtain fj,ℓ1(v2 − tE2(xj)) by translating fj,ℓ1(v2)
6: compute the average of fj,ℓ1(v2 − tE2(xj)) along v2 to obtain f 1

j,ℓ1,ℓ2

7: end for

8: end for

9: repeat the above procedure on f 1
j,ℓ1,ℓ2

in the v1-direction for j = 1, . . . ,M
and l2 = 1, . . . , N2 to obtain fj,ℓ1,ℓ2(t)

Output: fj,ℓ1,ℓ2(t)

Subsystem of HE. In 1 + 1
2
dimensions, the subsystem corresponding to

HE turns into

∂f

∂t
+ E1

∂f

∂v1
+ E2

∂f

∂v2
= 0,

∂E1

∂t
=

∂E2

∂t
= 0,

∂B3

∂t
= −∂E2

∂x1

.

It is clear that the electric field does not depend on time and the mag-
netic field changes linearly along the time. Thus the Fourier-transformed
fields Ê1,k(t) and Ê2,k(t) stay constant, and the magnetic field B̂3 can be
expressed as

B̂3,k(t) = B̂3,k(0)−
2πik

L
tÊ2,k(0), k = −M/2 + 1, · · · ,M/2.

As in the previous section, the distribution function f can be computed by
translating in two velocity directions. The quantities of the electromagnetic
fields at some grid points can be obtained by using the inverse Fourier trans-
form. Details of the procedure for computing f(x1, v1, v2, t) for subsystem
HE are listed in Algorithm 1.

Subsystem of H1f . The subsystem corresponding to H1f is

∂f

∂t
+v1

∂f

∂x1

−v1B3
∂f

∂v2
= 0,

∂E1

∂t
= −

∫

v1f dv1 dv2,
∂E2

∂t
=

∂B3

∂t
= 0.

As in (29), we can compute the distribution function by translating f(x1, v1, v2, 0)
in the v2 and x1-directions. The procedure is listed in Algorithm 2.
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By using (29), we can express the electric field E1 as

E1(x1, t) = E1(x1, 0)−
∫ t

0

∫

Ωv

v1S1f
x1
(τ)S1f

v2
(τ)f(x1, v1, v2, 0) dv1 dv2 dt.

The computation of E1 is as follows. When k 6= 0, we have

Ê1,k(t) = Ê1,k(0)−∆v1∆v2
∑

ℓ1

∑

ℓ2

∫ t

0

f̂ 3
k,ℓ1,ℓ2

(τ)vℓ1 dτ

= Ê1,k(0)−∆v1∆v2
∑

ℓ1

∑

ℓ2

∫ t

0

f̂ 2
k,ℓ1,ℓ2

exp

(

−2πi

L
kτvℓ1

)

vℓ1 dτ

= Ê1,k(0) +
∆v1∆v2L

2πik

∑

ℓ1

∑

ℓ2

f̂ 2
k,ℓ1,ℓ2

[

exp

(

−2πi

L
ktvℓ1

)

− 1

]

,

(39)

where f̂ 2
k,ℓ1,ℓ2

and f̂ 3
k,ℓ1,ℓ2

are defined in steps 8 and 13 in Algorithm 2.
For k = 0, we simply have

Ê1,0(t) = Ê1,0(0)−∆v1∆v2
∑

ℓ1

∑

ℓ2

∫ t

0

f̂ 3
0,ℓ1,ℓ2

(τ)vℓ1 dτ

= Ê1,0(0)− t∆v1∆v2
∑

ℓ1

∑

ℓ2

f̂ 2
0,ℓ1,ℓ2

vℓ1 .

5. Numerical experiments

The computation of physical problems in plasma are numerically challeng-
ing. Even though the initial value of physical problem is perfectly smooth, the
multi-scale nature of problem may bring difficulties in simulating small-scale
structures. In this section, the numerical discretizations discussed above are
applied to simulate several numerical experiments including Landau damp-
ing, Weibel instability, and Bernstein wave. The accuracy order in time and
comparison with semi-Lagrangian method are also presented.

Landau damping. Landau damping is a physical phenomenon in unmag-
netized plasma which was predicted by Landau in 1946 and shown experi-
mentally by Malmberg and Wharton in 1964. The experiment reveals that
even without the particle collisions the amplitude of waves can also decrease
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Algorithm 2 Procedure for computing f(x,v, t) of subsystem H1f

Input: fj,ℓ1,ℓ2(0), B̂3(0)
1: obtain trigonometric polynomial

B3(x1) =

M
2
−1
∑

k=−
M
2
+1

B̂3,k(0) exp

(

2πik

L
x1

)

+ B̂M
2
(0) cos

(

πM

L
x1

)

2: for j = 1 to M do

3: for ℓ1 = 1 to N1 do

4: compute α =
∫ xj+tvℓ1
xj

B3(ξ)dξ from B3(x1)

5: obtain fj,ℓ1(v2) by using PSM with [fj,ℓ1,1(0), . . . , fj,ℓ1,N2(0)]
6: obtain fj,ℓ1(v2 + α) by translating fj,ℓ1(v2)
7: obtain f 1

j,ℓ1,ℓ2
by averaging fj,ℓ1(v2 + α) over each v2-cell

8: end for

9: end for

10: for ℓ1 = 1 to N1 do

11: for ℓ2 = 1 to N2 do

12: take fast Fourier transform of f 1
j,ℓ1,ℓ2

and denote result by f̂ 2
k,ℓ1,ℓ2

13: obtain f̂ 3
k,ℓ1,ℓ2

by translating f̂ 2
k,ℓ1,ℓ2

in the x1-direction:

f̂ 3
0,ℓ1,ℓ2

= f̂ 2
0,ℓ1,ℓ2

and f̂ 3
k,ℓ1,ℓ2

(t) = f̂ 2
k,ℓ1.ℓ2

exp(−2πi
L
ktvℓ1)

14: compute fj,ℓ1,ℓ2(t) by taking the inverse FFT of f̂ 3
k,ℓ1,ℓ2

15: end for

16: end for

Output: fj,ℓ1,ℓ2(t)
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rapidly with time. During that process, the energy between electric waves
and particles is exchanged.

In the zero-magnetic limit, the 1+ 1
2
dimensional Vlasov–Maxwell system

reduces to the following Vlasov–Poisson system,

∂f

∂t
+ v1

∂f

∂x1

+ E1
∂f

∂v1
+ E2

∂f

∂v2
= 0,

∂E1

∂t
= −

∫

v1f dv1 dv2,
∂E2

∂t
= −

∫

v2f dv1 dv2,

∂E1

∂x1

=

∫

f dv1 dv2 − 1,
∂E2

∂x1

= 0.

(40)

In the following proposition, we present the dispersion relation for linear
Landau damping.

Proposition 5.1. [23, 36] With a small perturbation of the Fourier mode
exp (i(kx− ωt)), we can derive the dispersion relation for linear Landau
damping which is

D(ω, k) = 1 +
1

k2

[

1 +

√

π

2

ω

k
e−

ω2

2k2

(

I− 2√
π

∫ ω√
2k

0

et
2

dt

)]

= 0, (41)

where ω is the frequency and k is the wave number.

Following [9], we consider the Vlasov–Poisson equations (40) on the do-
main Ω = [0, 2π/k] × [−5, 5] × [−5, 5]. Periodic boundary conditions are
imposed in both the x and v-directions. The initial values are

f(x1, v1, v2) =
1

2π
e−

v21+v22
2 (1 + α cos(kx1)) , E1(x1) =

α

k
sin (kx1) , E2(x1) = 0,

with wave number k = 0.4. Here, α measures the size of the perturbation:
α = 0.01 for linear Landau damping and α = 0.5 for nonlinear Landau
damping. We discretize the problem by using 32 × 64 × 64 grid points and
time step ∆t = 0.05. Taking k = 0.4 in the dispersion relation (41) gives
ω = ωr + iωi = ±1.2850 − 0.0661i, where the real part ωr represents the
frequency and the imaginary part ωi is the decay rate.

In Fig. 1, we plot the time evolution of the electric energy. The top plot
shows the exponential decay of the electric energy for linear Landau damping,
which is consistent with the analytic one; The bottom plot shows that for
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Figure 1: Time evolution of the electric energy for the Landau damping test. The Strang
splitting is used. The 32 × 64 × 64 grid points and ∆t = 0.05 time step are used. Top
plot: linear Landau damping for α = 0.01; Bottom plot: nonlinear Landau damping for
α = 0.5.

nonlinear Landau damping, the electric energy decays at the beginning for
a short time before it starts to oscillate. The time evolution of conserved
quantities for nonlinear Landau damping are given in Fig. 2. From these
figures, we can see that the conserved quantities are preserved very well: en-
ergy error is bounded by about 10−2, charge error is up to 10−11, momentum
errors M1 =

∫

v1fdx1dv1dv2 is less than 10−12 and M2 =
∫

v2fdx1dv1dv2 is
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preserved to machine precision. We define the discrete Gauss’ law,

Gn
j =

(

∂En
1

∂x1

)

j

−
∑

ℓ1,ℓ2

fn
j,ℓ1,ℓ2

∆v1∆v2 + 1,

where
(

∂En
1

∂x1

)

j
is computed by using (inverse) FFT. The l2 error of discrete

Gauss’ law is presented in Fig. 3, from which we can see the error is in 10−4

level. The contour plots of the distribution function at v2 = 0 are exhibited
in Fig. 4. From these plots, it is observed that our method captures finer
and finer structures, which verifies the filamentation phenomenon [9].
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Figure 2: Time evolution of numerical errors by using the Strang splitting with 32×64×64
grid points and a time step of ∆t = 0.05 for nonlinear Landau damping. (a) Momentum
M1; (b) Momentum M2; (c) Energy; (d) Charge.
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Figure 3: Time evolution of l2 error of discrete Gauss’ law of nonlinear Landau damping.

Run k0 β v0,1 v0,2 δ γfluid γkin Ωv grid
1 1 0.002 0.2 0.2 0.5 0.14 0.1350 [−0.4, 0.4]2 32× 64× 64
2 0.2 0.01 0.3 0.3 0.5 0.06 0.0596 [−1.2, 1.2]2 80× 100× 100
3 1 0.01 0.1 0.5 1/6 0.15 0.1207 [−0.7, 0.7]2 32× 64× 64
4 1 0.01 0.3 0.3 0.5 0.21 0.1869 [−1.0, 1.0]2 32× 80× 80

Table 1: Growth rate γkin corresponding to different parameters of VM equations
.

Weibel instability. The Weibel instability is a very common instability in
plasma physics which can be induced by particles with different drift ve-
locities. It has many applications in important magnetic field generation
problems. In this example, we study the Weibel instability for two bunches
of particles with mean velocities v0,1 and −v0,2. Initial conditions are taken
as follows, in which a small perturbation of size b = 0.001 is added to the
magnetic field.

f (x1, v1, v2) =
1

πβ
e−

v21
β

(

δe−
(v2−v0,1)

2

β + (1− δ)e−
(v2+v0,2)

2

β

)

,

B3 (x1) = −b sin (k0x1) and E1 (x1) = E2 (x1) = 0.

Here, β1/2 represents the thermal velocity, δ and 1− δ are the proportion of
two bunches of particles. The spatial domain is Ωx = [0, 2π/k0] and periodic
boundary condition is imposed in both the x- and v- directions.

With step size ∆t = 0.1, we obtain the results which are listed in Table 1.
In this table, γfluid denotes the exponential growth rate obtained by solving
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Figure 4: Snapshots of the distribution f(x, v1, v2) at v2 = −4.98 for nonlinear Landau
damping using the Strang splitting with 64 × 256 × 256 grid points and a time step of
∆t = 0.1. These snapshots are taken at (a) t = 0, (b) t = 20, (c) t = 30 and (d) t = 40.

the linear dispersion relation of two-fluid equations [4]; γkin denotes the ex-
ponential growth rate calculated by making a best fit of the numerical energy
E1 in the linear stage of the simulation. Note that in our experiments, β is
small, thus γfluid is a good approximation of γkin. The data listed in Table 1
shows that our results match the results in [4] very well.

To see the time evolutions of electric energy, magnetic energy, and con-
served quantities, we take the first run of Table 1 for example. In this case
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Figure 5: Time evolution of numerical errors by using the Strang splitting with 32×64×64
grid points and a time step of ∆t = 0.1 for Weibel instability. (a) M1; (b) M2; (c) Energy;
(d) Charge.

we consider two initially symmetric beams with opposite mean velocities:
v0,1 = v0,2 = 0.2. The errors of charge, energy, momentums M1 and M2 are
displayed in Fig. 5. The energy is well conserved with an error of about 10−4,
charge error is less than 10−11, M1,M2 errors are in 10−11 and 10−13 levels.
Note that in [8] it is mentioned that M2 is conserved, while M1 is not. Time
evolutions of l2 error of discrete Gauss law, electric, and magnetic energies
are presented in Fig. 5. We can see that the discrete Gauss’ law error is
less than 10−8. It is investigated that after a rapid transient up to t ≈ 10,
the magnetic energy begins to grow exponentially. About t = 40, due to
that kinetic effects play a role the instability saturates. The magnetic energy
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Figure 6: (a) l2 error of discrete Gauss’ law; (b) electric and magnetic energies for Weibel
instability.

becomes nearly constant, and the electric energy reaches its maximum value
and then starts to decrease.

With grids 64× 64× 64 in phase space, we compute the sum of l1 errors
of E1, E2, and B3 at time T = 1 with respect to different step sizes, and the
accuracy orders in time are presented in Table 2. The reference solution here
is obtained by using the same grids in space with sufficiently small steps.
From Table 2, it can be seen that the numerical discretizations of order 1,
2 and 4 can be achieved by using Lie splitting, Strang splitting, and triple
jump splitting respectively.

Dispersion of electron Bernstein wave. The study on physics of the
propagation of electron Bernstein wave has a long history, and has been
applied in a wide range of fields including magnetically confined plasma, as-
trophysics, and so on. In plasma physics, waves are usually induced by the
interaction between particles and electromagnetic fields. The electron Bern-
stein wave is a high-frequency electrostatic kinetic mode, especially in hot
magnetized plasma. In order to analyze the dispersion relation of Bernstein
wave [43], one needs to linearize the system around an equilibrium state with
a zero electric field and a uniform externally applied magnetic field. For the
linearized equation, we use the Fourier–Laplace transform to give the dis-
persion relation which characterizes the Bernstein wave. For our reduced
system (30)–(33), the dispersion relation relating to the perpendicular wave
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Method Time step l1 error Order

Lie splitting

0.2 6.007615595650e-3
0.1 3.073091845594e-3 0.96710
0.05 1.555971830528e-3 0.98187
0.025 7.831142475281976e-4 0.99052
0.0125 3.928739010065202e-4 0.99516

Strang splitting

0.2 2.759504011978908e-4
0.1 6.881116555789667e-5 2.00369
0.05 1.719180558077524e-5 2.00092
0.025 4.297269224821313e-5 2.00023
0.0125 1.074277896159182e-5 2.00005

Triple jump splitting
0.05 6.817763274516141e-9
0.025 4.286143175725143e-10 3.99155
0.0125 2.70765293391800e-11 3.98457

Table 2: Accuracy order in time by Lie splitting, Strang splitting, and triple jump splitting
method.

number k and the plasma wave frequency ω of Bernstein waves is [39]:
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where An = n2In (λ) /(ωM − n), Bn = (n(I
′

n (λ) − In(λ)))/(ωM − n), Cn =
(n2In (λ) + 2λ2In (λ)− 2λ2I

′

n (λ))/(ωM− n). Here, In is the modified Bessel
function of first kind, λ = (5.83696 ·10−3)k2, vT denotes the thermal velocity
and M = 1.2736. We truncate the above equality at sufficiently large n.

Consider the 1+1/2 dimensional Vlasov–Maxwell system on Ω = [0, 12]×
[−0.4, 0.4]× [−0.4, 0.4]. The initial value is chosen as

f(x1, v1, v2) =
1

T 2
r π

e
−

v21+v22
v2
T

(

1 + a
s
∑

n=1

n cos(
π

6
nx)

)

,

E1 =
6a

π

s
∑

n=1

sin
(π

6
nx
)

, E2 = 0, and B3 = 0.785,

where s represents the number of modes which is taken as s = 60 in order to
obtain the accurate Bernstein wave, a = 10−7 denotes the size of the pertur-
bation, and thermal velocity vT =

√
0.0072. Periodic boundary conditions

are imposed both in the x- and v-directions. The numerical computation is
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Figure 7: The dispersion relation of the Bernstein wave. Red lines represent the analytic
results and blue curves represent the numerical results.

done over the time interval [0, 30π] with step size ∆t = 0.02. We use the
Lie splitting method in time and take the spatial grids as 256 × 64 × 64.
We demonstrate the numerical Bernstein wave in Fig. 7. From the plot, it is
observed that our numerical dispersion relation of Bernstein wave is perfectly
consistent with the analytical one.

The errors of moments M1 and M2, the charge, the energy are listed
in Fig. 8, in which we can see that these quantities are preserved very well
on the discrete level. We also plot the time evolution of l2 error of discrete
Gauss law in Fig. 5, which is less than 10−8 and conserved for long time.

Comparison of cost with semi-Lagrangian method. As follows, the
computational costs between semi-Lagrangian method and Hamiltonian split-
ting method (Lie splitting) are compared. Here 1D and high dimensional
cubic spline methods [37] are used for Hamiltonian splitting method and
semi-Lagrangian method respectively. It is pointed out in paper [19] that the
semi-Lagrangian method is extremely expensive for solving the high dimen-
sional problem because of the multi-dimensional interpolation. Compared
with this, the Hamiltonian splitting method only needs one-dimensional in-
terpolation. Specifically, for a problem of d-dimension a typical cubic spline
evaluation involves a stencil of 4d points which grows very fast when d be-
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Figure 8: Errors of conserved quantities by using the Lie splitting with 256× 64× 64 grid
points and a time step of ∆t = 0.02 for Bernstein wave. (a) M1; (b) M2; (c) Energy; (d)
Charge.

comes large. By applying the fast solver to the linear system of cubic spline
interpolation [36], the computation cost of interpolation in the Hamiltonian
splitting method (e.g. Lie splitting) is O(Nd), while the computation cost
for the interpolation part in the semi-Lagrangian method is 4dO(Nd). Here,
we compare the Hamiltonian splitting method and semi-Lagrangian method
for 2D problem and 3D problem. As the computation cost mainly comes
from the Vlasov equation, here we assume that the electromagnetic field is
given. In this case, the 2D problem is reduced to ∂f

∂t
+ v ∂f

∂x
+ E(x)∂f

∂v
= 0,

and the 3D problem is written in (30). By using the same number of grids
and periodic boundary conditions in x and v, the computation costs over 100
steps are presented in Fig.10. From Fig.10 we can see that the Hamiltonian
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Figure 9: Time evolution of l2 error of discrete Gauss’ law of Bernstein wave.

splitting method is more efficient, and its efficiency is more obvious for higher
dimensional problems, although there are more subsystems to compute for
Hamiltonian splitting method. Recently the idea that computing the solu-
tion of distribution function by several 1D translations has been used in six
dimensional Vlasov–Poisson system [24].
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Figure 10: Comparison of costs between semi-Lagrangian method and Hamiltonian split-
ting method by running 100 steps. (a) 2D problem; (b) 3D problem.
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6. Conclusion

In this paper, we proposed a Hamiltonian splitting method based on the
Morrison–Marsden–Weinstein Poisson bracket. With this bracket, we de-
scribe the Vlasov–Maxwell system in a Poisson bracket formulation. Then
the Hamiltonian of the Vlasov–Maxwell system is split into five parts, yield-
ing five Hamiltonian subsystems. By composing the solutions of the five
subsystems which can be written out explicitly, we get an approximate solu-
tion of the original system which preserves the Poisson structure and satisfies
Gauss’s law. Moreover the solution of distribution function in each subsys-
tem can be expressed by several one dimensional translations. This makes
the computation of numerical solutions more efficient. In phase space, we
use the Fourier spectral method and finite volume method. Numerical simu-
lations show that our method gives accurate results in various standard test
settings.

There are several future perspectives for this research. In numerical simu-
lation, it should be quite natural to implement parallel computation, as only
1D translations are needed for solving the Vlasov equation. Furthermore,
we can obtain more efficient high-order numerical discretization in time by
optimizing the composition coefficients as in [5].
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