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At its inceptionDNAnanotechnologywas conceived as a tool for spatially arranging biologicalmolecules in a pro-
grammable and deterministic way to improve their interrogation. To date, DNA nanotechnology has provided a
versatile toolset of nanostructures and functional devices to augment traditional single molecule investigation
approaches – including atomic force microscopy – by isolating, arranging and contextualising biological systems
at the singlemolecule level. This review explores the state-of-the-art of DNA-based nanoscale tools employed to
enhance and tune the interrogation of biological reactions, the study of spatially distributed pathways, the visu-
alisation of enzyme interactions, the application and detection of forces to biological systems, and biosensing
platforms.
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1. Introduction

The desire to decipher and understand the form and function of bio-
logicalmacromolecules, aswell as themechanisms of themany interac-
tion networks that are fundamental to the machinery of all living
organisms has yielded significant scientific activity in this field for well
over a century. A more in-depth understanding would empower us to
harness, engineer and repair biological systems to produce sustainable
fuels, enhance food production, diagnose and treat disease, inter alia.
To date, the breadth of our understanding is mainly derived from
. on behalf of Research Network of C
techniques which analyse large ensembles of identical molecules and
systems concurrently. These include a plethora of biochemical, struc-
tural, andmolecular biology approacheswhich,when coupledwith bio-
physical analysis, have provided significant insight into the form,
function, and kinetics of a vast array of biological systems. However,
these methods only report averaged information. This can be seen
most keenly in cryo-electron microscopy (cryoEM) which, although it
provides unparalleled atomic-level structural detail of biomolecules, it
does generally require an ensemble of N100,000 instances of the subject
macromolecule to provide such detailed information. As a result, these
approaches are insensitive to the often not readily visible heterogene-
ities of complex biological systems, which are arguably of significant
importance.
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While sophisticated ensemble-average studies will undoubtedly
play a major role in furthering our understanding of biological systems,
it is also clear that techniques which enable single-molecule studies are
highly desirable and will provide important information that is often
complementary to that obtained from broader studies. Significant ad-
vances in single-molecule techniques have been reported over recent
decades, and depending on the desired quantity to be studied, time-
resolved single-molecule FRET, [1] mechanical measurements using
magnetic [2] or optical [3] tweezers and traps, and direct visualisation
with atomic force microscopy [4,5] go some way to achieving this.
Moreover, techniques which attempt to aspirate or inject single mole-
cules from biological systems such as cells, including nanopipettes, [6]
dielectrophoretic trapping with nano-electrodes [7] or the use of
nanopores [8] can offer routes to single entity quantification. However,
despite the rapid advances in these techniques, substantial challenges in
isolating, manipulating, and in particular contextualising discrete bio-
logical entities for the purposes of these studies remain, which limits
their utility.

An emerging solution to this challenge is the use of DNA-based
nanostructures to arrange discrete biological entities in a highly pro-
grammablemanner, providing a spatial connection between the readily
accessible micro environment and the biological system at the nano-
scale. The field of DNA nanotechnology (Fig. 1) has grown significantly
over recent decades owing to the versatility of its intrinsic lock-and-
key assembly mechanisms and the abundance of commercial nucleic
acid synthesis.

DNA nanotechnology – originally inspired by the native Holliday
junctions (Fig. 1) – harnesses DNA as a structural polymer, making use
of the high-fidelity base-pair interactions to assemble different single-
stranded DNA molecules into complex shapes. Collections of nucleic
acids can form pre-designed non-canonical structures whose arrange-
ments are specified by their base-pairing. However, in 2006 DNA nano-
technology expanded well beyond the design of multi-arm branched
arrangements and their derived wireframe structures with the arrival
of the highly efficient scaffolded design paradigms, known as DNA ori-
gami [9]. Importantly, the well-defined base-pairing provides a simple
but powerful language for creating internally-programmed self-
assembling designs, arguably one of the main reasons for the success
of the field [10].
Fig. 1. Constructing with DNA. A) A schematic diagram depicting the construction paradigm cen
DNA nanostructures, including multi-arm branched junctions, wire-frame structures, DNA orig
Notable advances in the DNA origami approach have taken the field
from two-dimensional discrete and planar lattice structures [11,12] to
three-dimensional objects, encompassing, for example, solid, [13] hol-
low and wireframe designs (Fig. 1B) [14–16]. Moreover, current design
strategies allow for flexible and responsive elements to be incorporated
to enable programmable action [17]. In conjunctionwith these sophisti-
cated structural designs, a vast array of nucleic acid chemical modifica-
tions are available to enhance these nanostructures, thus enabling the
spatial organisation of a multitude of molecular-scale components
from individual chemical groups [18] to peptides and proteins,
[19–23] and even inorganic objects such as carbon nanotubes [24] or
gold nanoparticles [25,26]. With this in mind, it is clear that DNA nano-
technology can provide the foundations for unique and adaptable tools
capable of localizing and organising discrete biological entities. Further-
more, DNA nanotechnology finds applications in clinical therapeutics,
with a focus on their potential as functional drug delivery systems
in vivo [27].

This review aims to provide an overview of the application of DNA-
based nanostructures in the static as well as dynamic analysis and char-
acterisation of functional biological entities and their complex pathways
at the single molecule level.

2. Spatially Defined Reactions

Biological functionality is mediated through interacting species
in specific pathways by either a defined temporal or spatial organisa-
tion. Within a native context this is largely achieved through
compartmentalisation or association of species at or within mem-
branes. Alternatively, DNA nanostructures provide a controllable
mimic, able to define the spatial distribution, relative orientation
and stoichiometric relationships of biological entities with sub-
nanometre resolutions. Arguably, DNA nanostructures may be con-
sidered as molecular pin boards on which the entities of interest
can be localised for study (Fig. 2).

Early examples of this approach by Voigt et al. demonstrated direct
coordination of chemical reactions taking place on the surface of DNA
nanostructures [18]. Although these studies were not strictly biological
in nature, they provide an excellent example of studying spatially
defined processes at the single molecule level using DNA
tral to all non-canonical DNA-based nanostructures. B) Examples of architectural forms of
ami and 3D multi-layered objects.



Fig. 2. Spatially distributed enzyme systems. A) Schematic diagram depicting a recapitulated enzyme cascade on the surface of a DNA nanostructure. B & C) Enhanced reaction rates can be
achieved through the confinement of reacting species within modular DNA-based nanoreactors (B) or tuned dynamically using nanoactuators (C). Panels B) and C) are adapted with
permission from Linko et al [28] copyright: (2015) The Royal Society of Chemistry, 2015 and Xin et al [29] copyright: (2013) JohnWiley and Sons, respectively.
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nanostructures. In order to visualise directly the active chemistry the
authors used atomic force microscopy (AFM), and the chemical groups
were sandwiched in-between the DNA nanostructure and a fiducial bi-
otin/streptavidin marker. Using this approach, the authors demon-
strated the formation of specific patterns through the selective
breakage or formation of a variety of chemistries, including the reduc-
tion of disulphide bonds, singlet oxygen nucleophilic attack, and the for-
mation of triazole and amide groups from the reaction of azide and
alkyne, and ester and amine groups, respectively. Helmig et al [30]
adapted this approach to report on the diffusion of singlet oxygen
from an immobilised indium pyrophenophorbide photosensitiser to
the surrounding array of liable linker substrates on the surface of a
DNA nanostructure. This work highlights that DNA nanostructures pro-
vide uniquely addressable platforms for probing the spatial relation-
ships between reactive species, appealing to the study of coupled
enzyme systems.

Where enzymes act as part of a coordinated network or cascade, the
diffusion of reactive species is often a limiting factor in the efficiency of
the overall system. DNA nanostructures can provide a unique approach
to control precisely the spatial and stoichiometric relationships be-
tween different constituent enzymes (Fig. 2A). This can be orchestrated
through the arrangement of 2D arrays, such as those used to study the
parts of the Xylose metabolic pathway [31] or the Pentose phosphate
pathway [32]. Or by designing nanostructures for the confinement of re-
active species within 3D containers, so called nanoreactors (Fig. 2B),
which have been demonstrated to enhance the efficiency of coupled en-
zyme systems [28].

The quintessential example of a coupled enzyme reaction is the
glucose oxidase (GOx) – Horseradish Peroxidase (HRP) system
which was used as a reporter in early blood glucose sensing applica-
tions. GOx oxidises glucose to form gluconolacetone, and in the pres-
ence of oxygen the enzyme is then reoxised and H2O2 is produced as
a byproduct. H2O2 is subsequently oxidised by HRP which yields two
electrons which lead to a measurable current. Thus the activity of the
enzyme pair (and hence the glucose concentration) can be deter-
mined via the resulting current [33].

Although this system operates natively in solution, to date there
have been a host of DNA-bound enhanced GOx/HRP cascades demon-
strated, enabling exploration and optimisation of the spatial depen-
dence and reactive species confinement of this enzyme couple. These
include arrangements of GOx/HRP on linear single-stranded DNA
(ssDNA), [34] linear double-stranded DNA (dsDNA), [35] Hexagonal
DNA lattices, [36] 2DDNA origami, [37] and the confinement of reactive
species within DNA tubes and DNA nanocages [28,38,39]. Of particular
note are the related works of Xin et al [29] and Xing et al [40] which in-
dependently demonstrated tuneable efficiencies of this system – with
up to 1.5 times enhancement compared to the solution reactions –
through the use of tweezer-like nano-actuators (Fig. 2C). Here, DNA
strand displacement is used to modulate the nano-actuators between
open and closed states, specifically altering the separation distance be-
tween the tethered enzymes. Although previous works have explored
the precise spatial relationship between this enzyme pair, these studies
highlight the possibility of tuning their efficiency in situ and on demand.
More recently, the Andersen group have combined these actuation
and confinement approaches together to create an impermeable
nanovault capable of encapsulating the endopeptidase enzyme alpha-
Chymotrypsin (aCt). When the DNA-based container was closed, the
enzyme was shown to be sequestered away from its substrate within



835A.J. Lee, C. Wälti / Computational and Structural Biotechnology Journal 17 (2019) 832–842
the same environment and thus its activity could be modulated by re-
peatedly opening and closing the container using a strand displacement
locking mechanism [41]. Such approaches to modulating and remotely
activating or deactivating enzyme systems could have far reaching po-
tential in diagnostic and industrial applications, where targeted or
timed responses are desired. For a comprehensive discussion of the
field, we refer to the review by Rajendran et al. [42].

3. Direct Visualisation of Biomolecular Processes

In contrast to systems that require well defined spatial relationships
– such as signal transduction cascades – the function of many biological
entities are less tightly spatially constrained relative to their substrates
and these systems must undergo free movement in order to perform
their function. Therefore, it would not be appropriate to tether these
systems to a DNA nanostructure for studying, as tetheringwould signif-
icantly impair their function. Alternatively, DNA nanostructures can be
used to host reaction substrates in order to localise the enzyme activity
Fig. 3. Contextualising biomolecular interactions directly at the nanoscale. A) A schematic diag
substrate for observing enzyme activity with HS-AFM. The structure provides a support for th
geometry and orientation. B – D) This approach enables enzyme binding preference (B), DNA
at the single molecule level. B, C and D are adapted with permission from Yamamoto et al
American Chemical Society and Lee et al, [59] copyright: (2018) American Chemical Society, re
within a pre-defined spatial window for interrogation, for example by
high speed AFM (HS-AFM) or other appropriate tools.

Endo et al employed a DNA origami frame-like structure (Fig. 3A)
capable of hosting tandem dsDNA molecules to investigate how
EcoRI methyltransferase was regulated by the conformational flexi-
bility of its substrate, i.e. the tandem dsDNA [43]. In this work, one
DNA substrate was placed under tension while the second one was
left slack and thus more flexible. The two dsDNA substrates were ar-
ranged parallel within a cavity at the centre of a DNA origami struc-
ture. Extraordinarily, not only were the authors able to observe the
binding of EcoRI methytransferase in real time using HS-AFM, but
they were able to discriminate the binding preference of the
enzyme to the flexible DNA strand and measure the induced bend
angle of the DNA once bound [43]. Following this, the approach
was subsequently expanded to study several DNA topological transi-
tions, including B – Z form DNA transitions, [44,45] G quadr-
uplex formations, [46–50] and the action of a Zn2-dependent
DNAzyme. [51]
ram depicting a DNA origami frame-like structure containing a complex topological DNA
e substrate whilst contextualising the ensuing enzyme reaction with a known reference
topological change (C) and specific interaction dynamics (D) to be directly interrogated
[56] copyright: (2014) American Chemical Society, Suzuki et al [54] copyright: (2014)
spectively. All scale bars = 40 nm.
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The use of DNA frame structures to host the biological reaction sys-
tems for AFM observations of their activity has many benefits over pre-
viouswork where the biological systemswere largely unconstrained. In
particular the ability to contextualise the interaction species within a
known geometry – given the defined dimensions of the DNA origami
structure and the typical inclusion of a polarity maker to identify orien-
tation (Fig. 3A) – offersmany benefits. Furthermore, inbuilt control sub-
strates can be provided and the inclusion of functional chemistry, such
as photocleavable linkers, can enable parts of a reaction to be initiated
through external means.

The known position and orientational geometry of the observed
reaction enables the determination of characteristics such as the ar-
rangement and angles of specific topological states of DNA formed as
the result of enzyme activity. These can be discerned and statistically
analysed, for example the different dsDNA products of the RecU,
Muc1 or Cre recombinase [52–54] resolution of Holliday junctions
(Fig. 3B) have been reported. In addition, with the inclusion of paral-
lel arranged substrates – in some cases used as a control – the statis-
tical analysis of the binding or functional preferences of enzymes as a
result of sequence (e.g. a specific binding site) or DNA modification
can be achieved (Fig. 3C) [55–57]. Moreover, the DNA structure itself
can be used as ameasurement standard against which the position of
an interaction species can be measured over time, for example, this
approach was used to measure the progress and derive a rate esti-
mate of T7 polymerase RNA transcription in vitro [58]. It is, however,
important to be mindful of the limitations of the microscopy system
when attempting to define these quantities, in particular the tempo-
ral resolution and the challenges caused by the confinement of spe-
cies to a surface.

Our recent work has exploited these advances to decipher the ho-
mology searchingmechanism of the ubiquitous recombination enzyme
RecA (Fig. 3D) [59]. RecA forms a nucleoprotein polymer which locates
regions of DNA that share sequence homology in the preliminary steps
of a strand exchange reaction that is central to DNA repair. Conducting
Fig. 4. DNA-based optical super resolution calibration references. A) A schematic diagram de
nanostructure, indicated for the DNA-PAINT imaging regime. B) The sequential washing and i
the same fluorophores attached to different DNA hybridisation probes within the same samp
nanostructure through successive imaging cycles. B Is adapted with permission from Jungman
the homology searching experiments within a DNA origami cavity we
directly observed the previously debated involvement of facilitated dif-
fusion of the RecA nucleoprotein complex along the dsDNA substrate,
deconvoluting the small registration steps from the larger scale random
sampling interactions taken by the complex. Moreover, as a result of the
known substrate geometry we were able to identify the angle of inter-
action (106°) of the nucleoprotein complex and DNA substrate and
thus confirm that the binding interaction takes place within the pro-
posed secondary binding pocket on the external surface of the RecA
structure.

The list of biological systems studiedwith these tools to date is by no
means exhaustive and there remains a large number of important
mechanisms and pathways that are not well understood as yet and di-
rect investigations using this approach would arguably contribute to
furthering the understanding. In particular, our current work aims to
expand this approach from DNA-based enzymatic reactions to those
which involve protein–protein interactions, and to address recruitment
of enzymes into multicomponent complexes – such as the DNA tran-
scription complex.

4. Super Resolution Optical Rulers

Over the last decade, DNA nanostructures have found an additional
application in augmenting optical microscopy to provide in situ calibra-
tion standards for a host of singlemolecule localisation super resolution
imaging approaches (Fig. 4). This is due, in part, to the flexibility and ad-
dressability of the DNA nanostructures themselves and the commercial
availability of fluorescently labelled nucleic acids. The DNA origami ap-
proach has been used to produce nanoscopic calibration standards for
super resolution techniques including stochastic reconstructionmicros-
copy (STORM) and photoactivated localization microscopy (PALM)
(Fig. 4B) [60]. Both PALM and STORM are able to circumvent the classi-
cal diffraction limit of light microscopy by temporally activating or
“switching” the fluorophores sequentially and thereby localizing the
picting the assembly of fluorophores with a defined spatial distribution on a rigid DNA
maging steps of the Exchange-PAINT approach which enables multiplexed imaging with
le. Here, the digits 0–9 are demonstrated in false colour on the surface of a 70 nm DNA
n et al [61] copyright: (2014) Springer Nature.
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emission of one dye at any given timepoint.Where this is performed for
two dyes separated by less than the diffraction limit, the two
localisations can nevertheless be spatially deconvoluted, with achiev-
able resolutions of a few tens of nanometres. The localisation of the
dyes with a known spacing on a DNA nanostructure makes them the
ideal standard against which to calibrate these approaches.

Furthermore, the well characterised thermodynamics of DNA
hybridisation has lent itself to additional advances in super resolution
microscopy in the form of DNA-mediated Points Accumulation In Nano-
scale Topography (DNA – PAINT) imaging. This approach, developed by
Jungmann et al. [62]. adapted the previously reported PAINT technique
by using short ssDNA sequences to encode the specific, yet transient,
binding of dyes to a target.

Instead of chemically switching fluorophores localised at fixed loca-
tions, the stochastic switching behaviour is achieved through transient
hybridisation of a fluorophore-containing short DNA oligonucleotide –
or imager strand – and another short DNA oligonucleotide – or docking
strand – which is fixed to the target (Fig. 4A). By using simple oblique
illumination [63] or total internal reflection only the fluorophores tran-
siently localised within the imaging plane are observed as blinking
pointswith the unbound imaging strands contributing little background
to the image whilst diffusing freely in bulk solution [62,64,65].

This has circumventedmany of the limitations in themultiplexing of
other stochastic switching techniques, such as STORM and PALM, by
removing the need to re-optimise buffer conditions for different fluoro-
phores. Thus, the multiplexing of DNA-PAINT is simply achieved for
spectrally separated dyes linked to orthogonal DNA sequences simulta-
neously imaged within the same sample. Alternatively, more advanced
multiplexing can now be achieved using simplified laser setups within
the same sample through sequential use of the same dye attached to or-
thogonal DNA sequences (referred to as exchange PAINT) (Fig. 4B) [61]
Fig. 5. Generating and sampling forces with DNA nanostructures. DNA devices, including tweez
forces in order to enable force-investigations at the single molecule level. These systems have
generated byMyosin VI (B) and the mechanosensitive binding of enzymes to DNA (C). A, B and
ation for the Advancement of Science, Iwaki et al [75] copyright: (2016) Springer Nature and N
respectively.
or by target-correlated FRET efficiency differentiation (referred to as
FRET PAINT) [66]. This use of FRET pairs spatially organised by DNA
builds on conceptually similar work of the conformational dynamics of
DNA hairpins [67,68] and Holliday junctions [69] by others. Interest-
ingly, these latter exchange-based methods have more recently been
adapted to multiplex STORM approaches, by sequentially cycling
through transient and stable DNA hybridisation environments for a set
of different target probes [70].

DNA-PAINT has now evolved to provide true quantitative measure-
ments, which has been demonstrated for a number of individual pro-
teins in vivo [71], and to quantify the incorporation efficiencies of
oligonucleotides within DNA origami substrates in vitro [65]. More
recently, proponents of the technique have moved away from the
traditional and expensive use of DNA labelled antibodies towards
DNA-based aptamers [72] and peptide-based antibody mimetics [73]
for target binding, increasing the versatility and accessibility of the
technique. As such, DNA nanotechnology is now enabling optical
microscopy to be pushed further than ever before, bringing the quanti-
fication of single biological entities into context within a native cellular
environment.

5. Studies of Biomechanics and Interaction Forces

DNAnanostructures cannot only be used as static support structures
but can be designed as functional actuators capable of generating and
sampling forces between individual biological systems with exquisite
detail. An excellent example of this was contributed by the group of
Hendrik Dietz [74] where a set of spring-loaded nano-tweezers was
employed tomeasure the energy landscape between pairs of interacting
nucleosomes in order to gain better insight into the action of chromatin
compaction of the genome (Fig. 5A).
er-like systems (A), entropic springs (B) and clamps (C) have been used to apply resistive
been used to measure the interaction forces between nucleosomes (A), the pulling force
C are adapted with permission from Funke et al [74] copyright: (2016) American Associ-
ickels et al [76] copyright: (2016) American Association for the Advancement of Science,
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Moreover, DNA based devices have been used to impose defined re-
sistive forces to biological entities such that the mechanosensitivity of
the system can be probed. Recent work from Shih and co-workers de-
veloped a tunable nano-spring to probe the effect of applied resistive
force to the binding and walking mechanism of Myosin VI (Fig. 5B)
[75]. The nano-spring was formed from a two-helix bundle with a neg-
ative superhelical strain, the spring constant of which could be con-
trolled by the extent of the superhelical turns. This enabled the
authors to detect a force-dependent transition in the walking mecha-
nism of Myosin VI, and the same approach could be applied to studying
the mechanosensitivity and generated force of other molecular motors.

Using a conceptually similar approach, the Liedl group [76] has pro-
vided a nanoscale forceclamp for studying the mechanosensitivty of
gene regulation, using the suppression of DNA bending, and therefore
reducing association, of the TATA-binding protein (Fig. 5C). Here, a
ssDNAmolecule acted like an entropic springwhenheldwithin the con-
fines of a DNA origami clamp. The applied tension on the dsDNA
TATA-binding element at the centre could be controlled in the low
piconewton range, by loosening or tightening the ssDNA slack in the de-
sign. The authors found that disruption of the binding occurred when
forces in excess of 10 pN were employed.

6. Biosensing and Assays

Another promising use of DNA nanostructures is as carriers for bio-
sensing or localised biological assays. One of the earliest examples of
this was the multiplexed RNA detection system demonstrated by Ke
et al. [77]. The authors constructed a label free assay for detecting spe-
cific RNA sequences corresponding to the c-myc, Rag-1 and beta-actin
genes through hybridisation with DNA probes protruding from the sur-
face of a DNA nanostructure. Once bound, the RNA – DNA pair formed a
rigid structure, readily identifiable by AFM when compared to the
ssDNA probes alone. A Similar approach was taken by Seeman et al.
[78]. in developing a DNAnanochip for single nucleotide polymorphism
(SNP) detection. Here, DNA probes were arranged on the nanostructure
to spell the letters A, T, G and C – each contained the corresponding SNP
of interest within the target sequence. Detection was achieved through
isothermal branch migration with the target sequence initiated at a
small toehold on the probe. This led to the removal of the specific
probe and consequently the loss of the corresponding letter was visua-
lised on the DNA nanostructure.

Alternative work by the Bald group has produce spatially defined ar-
rays to assay quantitatively UV or low-energy electron (LEE) induced
DNA damage [79–81]. Here, biotinylated DNA species were presented
in defined patterns on the surface of a DNA origami, readily identifiable
by AFM with the addition of streptavidin. Following selective radiation
exposure, the absolute cross-section of DNA strand breakages was di-
rectly quantified by the resultant streptavidin patterns atop the DNA
origami. This elegant approach was used to assess the radiation suscep-
tibility of G-quadruplex-rich telomeric DNA regions [82], the impact on
specific DNA sequences [83] and the effects of several clinically relevant
radiotherapy photosensitisers [84] [85]. This concept can be expanded
through the introduction of DNA aptamers to remove the limitation of
detection via hybridisation or damage of nucleic acids. As such, these
systems are now capable of assaying proteins and small molecules,
which was first demonstrated for Thrombin on triple helical DNA tiles
[86] and later on DNA origami [87]. The use of DNA aptamers precludes
the need for additional chemistry or the use of bulky binding agents –
such as antibodies – meaning that appendages of the DNA nanostruc-
ture itself can directly contain the binding sequences, simplifying the
system to a one-pot reaction. Moreover, indirect reporting of enzyme
activity can also be achieved, where their action upon DNA – e.g.meth-
ylation – restores the structure of the aptamer enabling binding of a re-
porter [88].

Using this combination of DNA aptamer and DNA nanostructure,
Rinker et al. [89]. demonstrated the distance-dependent binding ability
of a pair of thrombin aptamers. Here, binder spacing was optimised at
5.8 nm, attaching to either side of the thrombin protein. Larger separa-
tions were shown to result in only single binder interactions which sig-
nificantly reduced affinity and therefore the efficiency of the assay.
Recently, the energetics of this systemhave been probed independently
by others [90]. By simulating a dual aptamer platform the authors pro-
vide evidence to suggest that parallel binder approaches provide the
most robust routes to biosensing with improved measurement confi-
dence and reduced crosstalk. This work highlights the advantage of
the spatial addressability that DNA nanostructures can provide within
bio-sensing and bio-labelling applications. In order to ensure detection
confidence and reduce non-specific binding producing false positives,
it is preferable to have a two-pronged approach of binding multiple
analytes or binding the same analyte with multiple probes simulta-
neously. However, typically the latter approach is hampered by the ran-
dom distribution of the binder pairs when attached to support surfaces
using bulk chemistry. Here, DNA nanostructures are suitably placed to
act as an adapter between the support surface whilst providing spatial
precision to binding pair placements. This has been expertly applied
to the development of platformswhich have helped to define the spatial
binding tolerance of antibodies [91] and for fragment-based drug dis-
covery [92].

Furthermore, DNA nanostructure-based biosensors have been dem-
onstrated within complex biological fluids, where Mei et al. [93].
achieved a detection limit of 15 nM for a thrombin target directly
from spiked cell lysate. Additional examples include thework of Godon-
oga et al [94] where 12 DNA aptamers specific to Plasmodium falciparum
lactate dehydrogenase (PfLDH) – a malarial infection marker – were
arrayed on the surface of a rectangular DNA nanostructure enabling its
detection down to 500 nM within blood plasma. In the latter work,
binding of the marker to the functionalised DNA nanostructure was
confirmed in real-time using HS-AFM, but was also sampled indirectly
as the PfLDH was shown to retain its biochemical activity when
bound. These studies continue to broaden the applicability of DNA
nanostructures in biosensing, however, there remains some way to go
before the wide-spread adoption of this technology. Interestingly, the
approach using DNA nanostructures for biosensing can also be inverted,
and aptamer-labelled DNA nanostructures can be used for targeted de-
livery or response. For example the targeted release of a chemotherapy
agent upon binding to tumour-specific markers on a cell surface has
been demonstrated [95,96].

Thus far, with few exceptions, the sensing mechanisms of these
systems relies on the direct observation of the analyte bound to the de-
signed locations on theDNA nanostructure. This approach precludes the
detection of analytes which are too small to be reliably identified by
AFM. In response, alternative signal amplification approaches have
been demonstrated, such as the gold nanoparticle-coupled DNA probe
NOT-gate work by Lu et al. [98]. or the DNA-based nanomechanical
tweezers presented by Kuzuya et al. [99]. In the latter, the binding of
the analyte results in a conformational change in the DNA device from
an open to closed configuration. This system was shown to amplify
the detection of a variety of small analytes, in addition to reporting on
buffer composition and enzyme activity [100]. An analogous approach
byWang and co-workers [101] utilised the shape of theDNA nanostruc-
tures themselves as the specific detection marker, demonstrating the
detection of SNPs within disease-associated genes or directly genotyp-
ing Hepatitis B viruses (Fig. 6A) [97]. Here, several DNA-based shapes,
including a triangle and cross, were hybridised directly to genomic
DNA substrates via ‘mediator’ strands which were then used to identify
visually – by AFM – particular regions in the genome sample and even
discriminate between sequences with single base resolution [101]. An
alternative to AFM-based detection approaches has recently been dem-
onstrated by us, where the DNA nanostructures were shown to produce
characteristic ion current peaks for different shapes as a result of their
translocation through the pore of a nanopipette providing a novel
method of structural fingerprinting (Fig. 6B) [6]. In contrast, an



Fig. 6.DNA-nanostructure based biosensing. Alongside the co-localisation of biological molecules in sensing applications, the DNA nanostructures have been used for signal amplification.
A) The structure of theDNA construct is used to provide a uniquevisual cue to thepresenceor absenceof specific sequences in aDNA sample through thehydridisation ofmediator strands.
B) Translocation of DNA nanostructures through a nanopore provides a unique ion current profile, which can be used to identify a particular DNA nanostructure. A and B are adaptedwith
permission from Liu et al [97] copyright: (2018) JohnWiley and Sons, and Raveendran et al [6] copyright: (2018) JohnWiley and Sons, respectively.
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interesting recent development by Torelli et al [102] demonstrated an
actuatable enzyme encapsulating DNA nanostructure tethered to the
end of an optical fibre in order to provide an analyte-responsive local-
ised chemiluminescent sensor [102]. Furthermore, others have demon-
strated plasmonic detection approaches, including the use of DNA
origami as a spatial adapter between the binding agents and the optical
fibres for surface plasmon resonance (SPR), [103] and the development
of a switchable chiral plasmonic DNA-device [104].

7. Outlook

DNA nanotechnology offers a unique and versatile toolset to localise
and host single biological entities as well asmulticomponent pathways.
These tools confer many advantages over the more contemporary
approaches and enable the studying of living systems at the relevant
length scales – including straight-forward scalability, chemical
addressability, ability to place molecules of interest with exquisite
sub-nanometre resolutions, perform responsive functions and even
undertake logic operations.

To date, an array of tools has been demonstrated which, amongst
others, augmentmicroscopic observations, probe biomolecule mechan-
ics, and detect analytes from complex biological fluids. However, the
field is far from being mature or saturated, with many of the described
approaches only in their infancy.

Physiologically, enzymes rarely work alone, and their action is typi-
cally the culmination of a network of interactions which tightly
regulates their biological functionality. Arguably oneof the greatest con-
tributions of DNA nanotechnology within this area is that it offers the
potential to reconstitute entire biological pathways, thereby providing
an approach to address spatially multi-component complexes and net-
works, beyond the two enzyme systems demonstrated to date. This is a
very achievable goal and one which can be considered primarily as a
challenge of scalability of the current DNA nanotechnology tools to ad-
dress larger complexes rather than isolated enzymes. An example of this
is the dissection of ribosome assembly, where a scalable DNA nano-
structure would enable the characterisation of the hierarchical assem-
bly of ribosome subunits to be studied in real time. This would
provide insight into how and at what stage the collective function of
the subunits begin to arise andhow their global function is orchestrated.

Building modular DNA-based systems in this way would allow
enzyme cascades to be presented in full and dissected into their constit-
uent interactions within the same environmental context. Moreover,
the internal organisation of these pathways could be subsequently ma-
nipulated to engineer synthetic alternatives, offering enhanced efficien-
cies or to generate a non-native biochemistry, such as the development
of a synthetic light harvesting complex. Where this is applied to closed
systems – for example those bound by membranes – routes towards
artificial protocells may emerge. This is arguably one of the great
challenges of biological study, enabling the recapitulation of basic phys-
iological units step-by-step to build up complexity and to investigate
theminimum requirements of life. Indeed, DNA nanotechnology has al-
ready made some impressive contributions in this endeavour to date,
including the development of DNA-templated membrane-spanning
nanopores, [105] DNA structures for membrane remodelling, [106]
and a DNA-based nuclear pore complex (NPC) including the integral
array of intrinsically disordered proteins, [107] to name but a few.

Moreover, continued progress in the related field of DNA computing
has made significant strides in recent years, with ever more complex
DNA reaction networks being demonstrated (an excellent review is
given by Fu et al.) [108]. These systems are now capable of providing
basic logic functions to autonomous protocells and have even been
shown to conduct intercellular DNA-based communications within
populations [109]. As such, it is conceivable that in the future we will
be able to reconstitute many biological functions within artificial sys-
tems, constructed from and programmed by DNA. Indeed, systems de-
signed from DNA are now emerging which are capable of detecting a
specific analyte, conducting logic-based functions and providing the
targeted delivery of a therapeutic payload in response [96].
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With this inmind, it is clear thatDNAnanotechnology has a transfor-
mative effect on our understanding of biological processes, which in
turn will enable us to address many clinical challenges through the ap-
plication of nanostructured diagnostics assay systems, responsive bio-
sensors, contextualised microscopic imaging and specifically targeted
or even personalised therapeutics.
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