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Evaluation of Low Complexity Massive MIMO

Techniques Under Realistic Channel Conditions
Manijeh Bashar, Student Member, IEEE, Alister G. Burr, Senior Member, IEEE, Katsuyuki

Haneda, Member, IEEE, Kanapathippillai Cumanan, Member, IEEE, Mehdi M. Molu, Member, IEEE, Mohsen

Khalily, Senior Member, IEEE and Pei Xiao, Senior Member, IEEE

Abstract—A low complexity massive multiple-input multiple-
output (MIMO) technique is studied with a geometry-based
stochastic channel model, called COST 2100 model. We propose
to exploit the discrete-time Fourier transform of the antenna
correlation function to perform user scheduling. The proposed
algorithm relies on a trade off between the number of occupied
bins of the eigenvalue spectrum of the channel covariance matrix
for each user and spectral overlap among the selected users.
We next show that linear precoding design can be performed
based only on the channel correlation matrix. The proposed
scheme exploits the angular bins of the eigenvalue spectrum
of the channel covariance matrix to build up an “approximate
eigenchannels” for the users. We investigate the reduction of
average system throughput with no channel state information at
the transmitter (CSIT). Analysis and numerical results show that
while the throughput slightly decreases due to the absence of
CSIT, the complexity of the system is reduced significantly.
cc Index terms— COST 2100 channel model, massive MIMO,
MMSE estimation, spatial correlation, user scheduling.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) is a tech-

nology which involves an increased number of base station

(BS) antennas and users in a multi-user (MU)-MIMO system.

To investigate the performance of massive MIMO systems, an

accurate multi-user channel model is necessary. Most standard-

ized MIMO channel models such as IEEE 802.11, the 3GPP

spatial model, and the COST 273 model rely on clustering [1].

Geometry-based stochastic channel models (GSCMs) consider

the physical reality of channels to investigate the performance

M. Bashar, A. G. Burr, and K. Cumanan are with the Department of
Electronic Engineering, University of York, Heslington, York, U.K. Email:
{mb1465, alister.burr, kanapathippillai.cumanan}@york.ac.uk. M. Bashar is
also with home of the 5G Innovation Centre, Institute for Communication
Systems, University of Surrey, U.K. e-mail: m.bashar@surrey.ac.uk.

K. Haneda is with Aalto University School of Electrical Engineering, Espoo,
Finland. Email: katsuyuki.haneda@aalto.fi

M. M. Molu is with Samsung Cambridge Solution Centre (SCSC), UK,
Email: mehdi.molu@gmail.com.

M. Khalily and P. Xiao are with the 5G Innovation Center, Institute
for Communication Systems, University of Surrey, Guildfordm U.K. Email:
{m.khalily, p.xiao}@surrey.ac.uk.

This work was supported by H2020- MSCA-RISE-2015 under grant number
690750. Moreover, the work on which this paper is based was carried out in
collaboration with COST Action CA15104 (IRACON).

K. Haneda would like to acknowledge the financial support from the
Academy of Finland research project “Massive MIMO: Advanced Anten-
nas, Systems and Signal Processing at mm-Waves (M3MIMO)”, decision
#288670.

The work of P. Xiao was supported in part by the European Commission
under the 5GPPP project 5GXcast (H2020-ICT-2016-2 call, grant number
761498) as well as by the U.K. Engineering and Physical Sciences Research
Council under Grant EP/ R001588/1.

of MIMO systems using the concept of clusters [2]. The COST

2100 model is a well known GSCM [2], [3].

In massive MIMO, a very large number (hundreds or even

thousands) of antennas communicate with a large number of

users, where the number of users is much smaller than the

number of BS antennas. Hence, an important issue in massive

MIMO systems is user scheduling [4]–[6] in which multiuser

diversity gain is obtained with imperfect channel state informa-

tion (CSI). Recently, a range of user scheduling schemes have

been proposed for large MIMO systems. Most of these, such as

that described in [7], require accurate knowledge of the channel

from all potential users to the BS, which in the massive MIMO

case is completely infeasible to obtain. However, a simplified

correlation-based user scheduling algorithm, is still an open

problem.

The problem of correlation-based user scheduling and pre-

coding in cluster-based channel models and its effect on the

system performance of massive MIMO has not been well

studied in the literature. In [8], the authors assume that

each scattering cluster contributes a single propagation path.

However, [5] considers the cluster-based millimetre-wave (mm-

wave) channel model, and investigates the effect of shared

clusters on the system performance. Note that in this work, the

effect of shared and distinct clusters on the system throughput

is considered. Moreover, in [9], the authors consider multi-

antenna receivers and exploit block-diagonalization, which is

a generalization of channel inversion when there are multiple

antennas at each receiver whereas in this paper, we have consid-

ered single-antenna receivers. Coordinating receiver antennas

through receiver processing is still beneficial for a finite number

of antennas [9]. Interestingly, however, in [10], [11] the authors

show that the asymptotic performance as the number of users

tends to infinity is not improved by antenna cooperation. In

[12], [13], the authors present a robust user selection algorithm

based on knowledge of the geometry of the service area

and of location of clusters, without having full CSI at the

BS. The problem of user scheduling with delayed channel is

investigated in [14], [15].

In this paper, we investigate the problem of joint user

scheduling and beamforming design when only knowledge of

the statistics of the channel is available at the BS. The second

order statistics of the channel depend on the position of the

users and the geometry of the system, including the relative

position of clusters in the area with respect to the BS and

users. The fixed positions of the users and clusters mean that a

wide sense stationary (WSS) process is an appropriate model
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for the statistics of the channel. In the other words, if the

geometry of the system is fixed, the channel covariance matrix

remains constant over time. Moreover, changing the position

of the users by a few meters will not affect the statistics of the

channel [4].

In general, multi-path components (MPCs) from shared

clusters cause correlation which reduces the rank of the channel

[16], [17]. We therefore work in this paper on the effect of

shared bins on the system performance. Given the second

order statistics of the channel, we perform low-complex user

scheduling and precoding based only on the covariance matrix

of the users. The behaviour of the eigenvalues of the channel

covariance matrix for a large number of antennas at the BS is

studied. When the number of antennas tends to infinity, based

on Szego’s theorem for large Toeplitz matrices [4], [18], the

eigenvalue spectrum of the channel covariance matrix can be

obtained by the discrete-time Fourier transform of the antenna

correlation function. In this paper, we assume that the carrier

frequency is 2 GHz and hence improve the existing design

method of the beamformer matrix for the mm-wave range [4],

[5], [19] so that the method takes advantage of the nature of

clustered channels at 2 GHz. The existing methods [4], [5],

[19] are based on an assumption that the spatial multipath

channels are sparse, while the assumption is not valid at 2

GHz and hence the design method is not directly applicable.

Furthermore, we for the first time design a beamformer matrix

for the COST 2100 channel model that is parameterised based

on extensive urban MIMO measurements.

Massive MIMO is attractive in the range of 1.5-3 GHz band

from the perspective that considering half-wavelength spacing,

the authors in [20] emphasise that an array area of 1 m2 can

accommodate 100 antennas at a 1.5 GHz carrier frequency and

400 antennas at 3 GHz. [20], [21]. Our results and contributions

are summarized as follows:

1. Exploiting the eigenvalue spectrum of the channel covari-

ance matrix, we propose to use the angular bins to build up

an approximate eigenchannel, which can be used for linear

precoding design. Next, a new user scheduling scheme

is proposed under the assumption that no instantaneous

channel information is available at the BS, other than the

channel correlation.

2. The complexity of different schemes is investigated.

Moreover, we show that exploiting the proposed algo-

rithm, the computational complexity of the system reduces

significantly.

3. Numerical results show significant performance improve-

ment compared to the joint spatial division and multi-

plexing (JSDM)-based scheduling scheme presented in

[4]. Moreover, in [10], the BS exploits knowledge of

the estimated channel to design the beamformer. Hence

it is very difficult to achieve the performance of the

greedy weight clique (GWC) scheme [10] knowing only

the correlation matrix. The numerical results confirm that

there is only a small gap (5-8 bits/s/Hz in terms of

achievable sum rate) between the performance of the

proposed correlation-based scheme and the GWC scheme

(which relies on the availability of the channel estimates

at the BS).

II. SYSTEM MODEL

Consider downlink transmission in a single cell with M
antennas at the BS and K single antenna user terminals on the

same time-frequency resource. Here, we assume time division

duplexing (TDD) mode where the uplink and downlink channel

are the same.

A. Downlink Transmission

The transmitted signal when Ks (Ks ≪ M) users have

been selected from the pool of K users, is given by x =
∑Ks

k=1

√
pkwksk, where sk denotes the data symbol of user

k, wk denotes the precoding vector of size M and pk denotes

the power assigned to user k. Then the received signal at user

k is given by

yk =
√
pkhkwksk +

Ks∑

j=1,j 6=k

√
pjhkwjsj + nk, (1)

where the vector hk of size M denotes the downlink channel of

the kth (k = 1, · · · ,Ks) user and nk ∈ C(0, 1) is the complex

additive white Gaussian noise (AWGN) element.

B. Geometry-based Stochastic Channel Model

GSCMs are mathematically tractable models to investigate

the performance of MIMO systems [2], where the double

directional channel impulse response is a superposition of

MPCs as given by [2], [22]

h(t,τ,φBS
,θMS)=

NC
∑

j=1

Np
∑

i=1

ai,jδ(φ
BS

−φ
BS
i,j)δ(θ

MS
−θ

MS
i,j )δ(τ −τi,j), (2)

where Np and NC are the number of MPCs and the total

number of clusters, respectively, t is time, τ denotes the delay,

δ denotes the Dirac delta function, and φBS and θMS represent

the direction of departure (DoD) at the BS and direction of

arrival (DoA) at the mobile station (MS), respectively. Similar

to [22], we group the MPCs with similar delay and directions

into clusters. The circular visibility region (VR) determines

whether the cluster is active or not for a given user. The MPC’s

gain scales by a transition function of the VR that is given by

AVR and is a function of the distance between the MS and

the VR centre [22]. We assume Rayleigh fading for the MPCs

within each cluster. The complex amplitude of the ith MPC in

the jth cluster in (2) is given by

ai,j = LpAV R

√

ACAMPC, (3)

where Lp is the channel path loss, AMPC is the Rayleigh-

faded power of each MPC, and AC refers to the cluster power

attenuation [22]. For the non-line-of-sight (NLoS) case of the

micro-cell scenario, the path loss is L = 26 log10 dBS,MS +
20 log10(4π/λ), where dBS,MS and λ denote the distance from

the BS to the MS and the wavelength in meters, respectively.
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III. EIGENVALUE SPECTRUM OF THE ANTENNA

CORRELATION FUNCTION

In the COST 2100 channel model, each entry of the channel

matrix can be written as

hkm =

Nl∑

i=1

aki δ(φ− φki)δ(θ − θki)δ(τ − τki), (4)

where Nl = NC×Np, and it denotes the total number of paths

and φki and θki represent the DoD and DoA respectively of

path i to the kth user. The complex amplitude of the ith MPC

in (4) is given by

aki= Lp AVR

√

AC
︸ ︷︷ ︸

geometry-based attenuation

× AMPC
︸ ︷︷ ︸

small-scale fading

=aga

ki × asf
ki. (5)

Note that the power of each path in (5) is scaled with respect to

the small-scale fading and the attenuation due to the geometry

of the system which we call geometry-based attenuation.

Hence, assuming a linear array response at the BS side the

K ×M aggregate channel of all K users is given by

H=











∑Nl
i=1 a1i

∑Nl
i=1 a1ie

jα sinφ1i . . .
∑Nl

i=1 a1ie
jα(M−1) sinφ1i

∑Nl
i=1 a2i

∑Nl
i=1 a2ie

jα sinφ2i . . .
∑Nl

i=1 a2ie
jα(M−1) sinφ2i

...
...

. . .
...

∑Nl
i=1 aKi

∑Nl
i=1 aKie

jα sinφKi . . .
∑Nl

i=1 aKie
jα(M−1) sinφKi











,

(6)

where α = −2π d
λ

, d is the spacing between two antenna

elements and λ denotes the wavelength (in m). The M ×M
channel spatial covariance of the kth user channel vector is

given by Rk = E{hH
k hk}. Assuming that the positions of

users and clusters are fixed, the expectation is taken over the

power of MPCs which have the Rayleigh fading distribution.

Assuming a linear array response for the AoD φ and WSS

over the array, each (m,n)-th entry of the channel covari-

ance matrix for the kth user, Rk, is given by [Rk]m,n =
∑Nl

i=1

(
aga

ki

)2
ejα(n−m) sinφki , where the second equality comes

from the fact that E
{
|aki|2

}
= (aga

ki)
2.a11

A. Eigenvalue Spectrum with M →∞
In [5], the authors exploit Szego’s theory for large Toeplitz

matrices [18], and show that for massive MIMO systems,

the eigenvalue spectrum of the antenna correlation function

converges to the discrete-time Fourier transform of the antenna

correlation function. In other words, in the limit of a large

number of antennas, the empirical eigenvalue cumulative dis-

tribution function (CDF) of the empirical eigenvalues from the

channel correlation matrix can be approximated by the samples

of the discrete-time Fourier transform of the antenna correlation

function [5]. The eigenvalue spectrum, Sk(f), is obtained

by the discrete-time Fourier transform of the autocorrelation

function. Hence, we consider the spectrum over the range

f ∈ [
−1
2

,
1

2
]. As the eigenvalue spectrum can take any positive

real value, similar to [5], we write Sk(f); f ∈ [
−1
2

,
1

2
]→ R

+,

1a1Note that the measurement results in [23] show that at the frequency of
2 GHz, to calculate the channel covariance matrix, the BS needs to average
the channel samples over around 300-400 samples and 100-200 samples for
the case of urban and rural environments, respectively.

where R
+ = {x ∈ R|x > 0} refers to the positive real

values. Each entry of the channel correlation matrix for the

kth user is given by rk(mn) = [Rk]m,n, which with a change

of notation, we rewrite as rk(m) = [Rk]l,l−m. Hence, the

general expression for the discrete-time Fourier transform of

the antenna correlation function is given by the following

Lemma.

Lemma 1. The discrete-time Fourier transform of the antenna

correlation for COST 2100 channel model with large number

of antennas at the BS is obtained as:

Sk(f) =

∞∑

m=−∞

rk(m)e
−j2πfm

=

∞∑

m=−∞

(
Nl∑

i=1

(aga

ki)
2
e−j2π d

λ
(m) sinφki

)

e−j2πfm

(a)
=

Nl∑

i=1

(aga

ki)
2

∞∑

m=−∞

δ

(

m−
(
d

λ
sinφki + f

))

=

Nl∑

i=1

(aga

ki)
2δ

(

f +
d

λ
sinφki

)

, (7)

where the step (a) comes from the property of sum of complex

exponentials [4].

Equation (7) shows that the DoD of paths can be estimated

perfectly from the eigenvalue spectrum in the case of M →∞.

In the next section, we show that the eigenvalue spectrum of

Rk can be used to build up an approximate eigenchannel matrix

for precoding and user scheduling.

B. Eigenvalue Spectrum with Finite M

For the case of finite M , this paper follows the methodology

in [4]. In [4], Adhikari et al. proposed quantizing the interval

[− 1
2 ,

1
2 ] into M disjoint intervals of size 1

M
. Using analysis in

[4], each interval introduces an angular bin, where bin Bb is

centred at b
M
− 1

2 with b ∈ {0, 1, · · · ,M−1}. Hence, based on

[4], the kth user “occupies” bin Bb if the following condition

holds:

−d

λ
sinφkp∈Bb≡

b

M
− 1

2
− 1

2M
<−d

λ
sinφkp≤

b

M
− 1

2
+

1

2M
. (8)

Let us assume, similar to [4], that π(i) denotes the index of

the bin occupied by the MPC i. Then, based on [4], Sk(f) for

the case of finite M can be written as

Sk(f) =

Nl∑

i=1

(aga

ki)
2

∞∑

m=−∞

δ

(

m−
(
d

λ
sinφki + f

))

=

Nl∑

i=1

(aga

ki)
2 × 1

{
f ∈ Bπ(i)

}
. (9)

As (9) shows, the discrete-time Fourier transform at a par-

ticular Bb, is summation of the paths with DoDs in the same

bin, i.e. − d
λ
sinφkp ∈ Bb. Hence, the estimated DoD based on

the channel eigenvalue spectrum is not accurate for the case

of finite M . However, as we show in the next section, (9) can

still be used to build up an“approximate eigenchannels” matrix

which can be used for beamforming and user scheduling. Note
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that by comparing (7) and (9), we may conclude that by

having a larger number of antennas the DoD of paths can be

estimated perfectly, which demonstrates the effect of increasing

the number of antennas at the BS.

In this paper, we evaluate the performance of collocated

Massive MIMO for a realistic COST channel model. A possi-

ble, alternative system model is distributed Massive MIMO.

Distributed Massive MIMO [24]–[29] with COST channel

model has not been investigated before, but is out of the scope

of this paper.

IV. PROPOSED USER SCHEDULING AND BEAMFORMING

In this paper, we aim to solve the problem of joint user

scheduling and beamforming design assuming that only the

second order statistics of the channel are available at the

BS. The proposed user selection scheme relies on a trade off

between the number of occupied spectral bins for each user and

the spectral overlap among the selected users. For this case, the

performance analysis are found in the next subsection. Once

the set of active users has been determined, the BS exploits

the covariance matrix of the selected users for beamforming

design and transmits data to the users.

A. Correlation-based User Scheduling

By using the discrete-time Fourier transform of the antenna

correlation given in (9), we generate the K × B matrix U as

(10), where each (k, b)-th entry of the matrix U denotes the

discrete-time Fourier transform of the antenna correlation func-

tion of the kth user at the bth bin, i.e.
∑

i,− d
λ
sinφki∈Bb

(aga

ki)
2.

The BS uses the functions f1(uk) and f2(uk) to perform user

scheduling, where uk is the kth row of matrix U and we define

the functions f1(u) and f2(u) in the following. As described in

step 4.1 in Algorithm 1, the algorithm starts by calculating the

summation over all area in terms of eigenvalue spectrum for all

users, i.e. f1(‖ uk ‖ |) =‖ uk ‖, ∀ k, and selects the user which

has the largest value among the users. Then in the next step,

the proposed algorithm finds a set of ǫ-orthogonal users to the

selected users. Here, ǫ-orthogonality among the user k and the

user j means that f2(uk, uj) =
|uku∗

j |

||uk||||uj ||
< ǫ. Note that if the

user k and the user j do not have spectral overlap, which means

they do not have any shared bins, we have
|uku∗

j |

||uk||||uj ||
= 0.

Hence, increasing the value of ǫ allows the users to have a

bigger spectral overlap area. If the value of ǫ is too small, the

area of spectral overlap between the selected users decreases

and Algorithm 1 selects a small number of users. If the value

of ǫ is too big, Algorithm 1 selects users with a large spectral

overlap which can reduce the throughput due to interference.

It is well known that in GSCMs, MPCs from shared clusters

Algorithm 1 Correlation-based user scheduling and beamform-

ing (CUSBF):

Step 1) Initialization: Υ0 = [1, · · · ,K], S0 = ∅, i = 1,

Step 2) Calculate the eigenvalue spectrum of Rk by means of

the discrete-time Fourier transform of the antenna correlation

function,

Step 3) Generate matrix U given by (10),

Step 4) Greedy Algorithm:

•4.1 π(i) = argmaxk∈Υ0
f1(‖ uk ‖)

= argmaxk∈Υ0
‖ uk ‖, S0 ← S0 ∪ {k}, u(i) = u(π(i)),

•4.2 If |Υ0| < Ks, Υi = {k ∈ Υi−1, k 6= π(i) |
f2(uk, u(i)) =

|uku∗

(i)|

‖uk‖‖u(i)‖
< ǫ},

•4.3 If |Υ0| < Ks and Υi 6= ∅, then i ← i + 1, and go to

step 4.1, else, go to step 5,

Step 5) Generate matrix G given by (12). BS does not require

the instantaneous channels of the users and uses matrix G for

beamforming design.

cause high correlation which reduces the rank of the channel

[16], [17]. However, selecting users with no spectral overlap

does not necessarily result in a higher throughput. So, to find

the optimum value of ǫ, we draw the sum rate versus ǫ and set

the optimum value as ǫ in Algorithm 1. Note that, S0 contains

Ks = |S0| indices of the selected users.

B. Correlation-based Beamforming

Once the set of users is fixed, the BS can design the pre-

coding matrix based on the knowledge of Rk, ∀k. If Rk, ∀k,

is available at the BS, it is possible to find an approximated

version for the channel matrix G. So, at step 5 of Algorithm 1,

we propose to build up the approximate eigenchannel matrix

for the channels of users based on the channel covariance

matrix given by eq. (9) as follows:

gkm =

M∑

b=1





Nl∑

i,− d
λ
sinφki∈Bb

(agaki )
2





1
2

ej2π(m−1)( b
M

− 1
2), (11)

where the approximate eigenchannel gkm is a superposition

of B approximated paths, where B = M (denotes the total

number of angular bins) and the bth approximated path is

centred at b
M
− 1

2
. We propose that the BS uses equation (11)

to build up the approximate eigenchannel matrix G defined in

(12) at the top of the next page. The approximate eigenchannel

U=









∑

i,− d
λ
sinφ1i∈B1

(aga
1i)

2
∑

i,− d
λ
sinφ1i∈B2

(aga
1i)

2 . . .
∑

i,− d
λ
sinφ1i∈BM

(aga
2i)

2

∑

i,− d
λ
sinφ2i∈B1

(aga
2i)

2
∑

i,− d
λ
sinφ2i∈B2

(aga
2i)

2 . . .
∑

i,− d
λ
sinφ2i∈BM

(aga
2i)

2

...
...

. . .
...

∑

i,− d
λ
sinφKi∈B1

(aga
Ki)

2
∑

i,− d
λ
sinφKi∈B2

(aga
Ki)

2 . . .
∑

i,− d
λ
sinφKi∈BM

(aga
Ki)

2









, (10)
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Finite M ;G=










∑M

b=1(
∑Nl

i,− d
λ
sinφ1i∈Bb

(aga
1i)

2)
1
2 . . .

∑M

b=1(
∑Nl

i,− d
λ
sinφ1i∈Bb

(aga
1i)

2)
1
2 ej2π(M−1)( b

M
− 1

2 )

∑M

b=1(
∑Nl

i,− d
λ
sinφ2i∈Bb

(aga
2i)

2)
1
2 . . .

∑M

b=1(
∑Nl

i,− d
λ
sinφ2i∈Bb

(aga
2i)

2)
1
2 ej2π(M−1)( b

M
− 1

2 )

...
. . .

...
∑M

b=1(
∑Nl

i,− d
λ
sinφKi∈Bb

(aga
Ki)

2)
1
2 . . .

∑M

b=1(
∑Nl

i,− d
λ
sinφKi∈Bb

(aga
Ki)

2)
1
2 ej2π(M−1)( b

M
− 1

2 )










. (12)

Table I. Computational Complexity of Different Schemes

Schemes Channel estimation user Scheduling Beamforming

GWC [10] O(K3M3) O(K) O(M3)

JSDM [4] O(K3
sM

3) O(K) KsO
(

M3+M log2 M log b
)

Algorithm 1 − O(K) O(M3)

matrix G can be used for user scheduling and precoding design.

Note that only for the case of M → ∞, the DoD of each

single MPC is resolvable and are available at the BS. The

investigation of the proposed scheme with the relay-assisted

[30]–[32] Massive MIMO will be considered in our future

work.

V. COMPLEXITY ANALYSIS

Without loss of generality the complexity, computation of

the minimum mean square error (MMSE) estimator is given by

O(τ3M3), where τ = K is sufficient to remove the effect of

pilot contamination [33]. Hence, the complexity of the MMSE

estimator scales as O(K3M3), which indicates the complexity

of inverting of matrix size KM×KM to estimate the channel

in equation (6), which is required in the GWC scheme in [10].

The proposed Algorithm 1 and the JSDM scheme in [4] do

not exploit the knowledge of channel for user scheduling and

beamforming design. For a given M ×M matrix, the required

operations to determine the eigenvectors is given by O
[
M3 +

(M log2 M) log b
]
, where b is the relative error bound [34].

Moreover, the complexity to search the user for the scheme

in [10] is linear with the number of users [35]. Note that the

complexity of user scheduling in the proposed Algorithm 1 and

the scheme in [4], [36] is linear in terms of the number of users.

The number of arithmetic operations required for Algorithm 1

is shown in Table I. The authors in [23] define the spatial WSS

quality which is given by

QWSS =
τLT

τc
, (13)

where τLT refers to the long-term time, where the statistics of

the channel may be considered constant within this interval

whereas τc is the channel coherence time. The measurement

results for the outdoor scenario at a center frequency of 2

GHz shows that QWSS = 120. As a result, every 120 × τc,

the correlation based schemes (the proposed Algorithm 1 and

the scheme in [4]) need to be run, while the scheme in [10]

need to be run at the beginning of each coherence time.

VI. NUMERICAL RESULTS AND DISCUSSION

A square cell with a side length of 2×R has been considered;

we call R the cell size and also assume users are uniformly

distributed in the cell. As in [37], we assume that there is

no user closer than Rth = 0.1 × R to the BS. We simulate

a micro-cell environment for the NLoS case and set the

operating frequency fC = 2 GHz. The external parameters

and stochastic parameters are extracted from chapter 3 of [22].

The BS and user heights are assumed to be hBS = 5 m and

hMS = 1.5 m, respectively. The noise power is given by

Pn = BW kB T0 W, where BW = 20 MHz denotes the

bandwidth, kB = 1.381 × 10−23 represents the Boltzmann

constant, T0 = 290 (Kelvin) denotes the noise temperature,

and W = 9 dB is the noise figure. For this network setup, the

average sum rate is evaluated for the three scenarios. First, we

evaluate the average throughput of the proposed Correlation-

based user scheduling and beamforming (CUSBF) scheme,

given by Algorithm 1. In Fig. 1a, the sum rate of users under

the proposed scheme is plotted as a function of ǫ in Algorithm

1. If ǫ is too large, the spectral overlap (number of shared

bins) is big, while if is too small, the multiuser diversity gain

decreases and users with shared bins cannot be selected. As

a result, there should be a trade off between total number of

shared bins and summation over all area in terms of eigenvalue

spectrum, which is explained in Subsection IV-A. The optimal

value of ǫ is shown in Fig. 1a. Next, we plot the average sum

rate versus the total number of users in the system in Fig.

1b. As the figure shows, by increasing the total number of

users, the average sum rate increases, as a result of multi-user

diversity gain. Fig. 1c demonstrates the average per-user rate

versus the total number of users in the system. Note that the

analysis in [38] demonstrate that in the limit of Massive MIMO

(M,Ks →∞ and α = M
Ks

), by increasing Ks the average per-

user rate decreases.

Finally, we evaluate the average throughput of the proposed

CUSBF scheme, given by Algorithm 1, and GWC [10], [39]

with an MMSE estimate of the channel. For the case of GWC,

similar to [39], we set the optimal channel direction constraint

to achieve the best performance for GWC. Moreover, the

comparison with the scheme proposed in [4] is provided. In

[4], Adhikari et al. propose to select users which occupy a

larger number of bins and find users having a smaller spectral

overlap with the selected users. This scheme is referred to

JSDM-based scheduling. The analysis in [38] demonstrates that

in the limit of Massive MIMO (M,Ks → ∞ and κ = M
Ks

),

when κ ≥ 5, linear precoding is “virtually optimal”, and can

be used instead of dirty paper coding (DPC). In this paper, we

follow the network setup introduced in [4] and [37], and we

choose κ = 15 and κ = 30. This is given by two cases with
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Figure 1. The performance of Algorithm 1 with pk = 10 dBm and R = 500 meters.
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Figure 2. The average sum rate vs. transmit power. Solid (blue), dashed (red)
and dotted (black) lines refer to {M = 300,K = 70,Ks = 20}, {M =
300,K = 50,Ks = 10} and {M = 200,K = 50,Ks = 10}, respectively.

κ = 300
20 = 15 and κ = 300

10 = 30, respectively. Moreover,

note that assuming 20 users and a BS having 300 antennas at

a frequency of 2 GHz is common assumption [40].

Fig. 2 depicts the average sum rate versus the total transmit

power for three cases of {M = 300,K = 70,Ks = 20},
{M = 300,K = 50,Ks = 10} and {M = 200,K =
50,Ks = 10}, while adopting the currently proposed scheme

with zero-forcing beamforming (ZFBF). As expected, since

GWC exploits the estimated instantaneous CSI, it has the best

throughput. In addition, the figure demonstrates that in the

medium and high SINR regime the difference between the

proposed CUSBF scheme and the GWC scheme is smaller.

As the figures show, the performance of the proposed Al-

gorithm 1 is slightly poorer than the case in which the BS

has the knowledge of the estimated instantaneous channel to

perform user scheduling and beamforming as in [10], i.e.,

GWC. Interestingly, for a larger number of antennas at the

BS, the superiority of the proposed scheme is more obvious

in terms of achieving performance close to that of the GWC

scheme. Moreover, the performance of the proposed algorithm

is several times higher than for the scheme in [4], i.e., JSDM-

based scheduling. In addition, the figure demonstrate that the

performance of the scheme in [4] is quite poor for the case

of the COST 2100 channel model. This is because of the

large number of clusters in the area, which means that the

performance of eigen-beamforming is not as good as ZFBF.

Note that the JSDM in [4] is designed to work well with the

angularly-sparse multipath channels typically observed in the

mm-waves.

VII. CONCLUSIONS

We proposed to use the angular bins of the eigenvalue

spectrum of the channel covariance matrix to build up an

approximate eigenchannel for the users. Using the discrete-

time Fourier transform of the antenna correlation function,

a novel user scheduling scheme and linear precoding design

has been proposed and tested with the COST 2100 channel

model. The results show that while the average throughput

slightly decreases due to absence of instantaneous channel, the

computational complexity of the system reduces significantly.

As a result, the proposed scheme can be considered as a

superior practical approach for massive MIMO systems.
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