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Abstract: This paper investigates the use of underwater acoustic sensor networks (UASNs)

for large scale monitoring of the ocean environment. The slow propagation of acoustic waves

is a fundamental challenge in implementing reliable networking protocols due to the limited

amount of control signalling that is achievable due to the long propagation delays in UASNs.

Sequential Dual-Hop Transmit Delay Allocation MAC (SDH-TDA-MAC) is a Medium Access

Control (MAC) protocol that mitigates these physical constraints by incorporating long propa-

gation delays into the transmission schedules to provide high network throughput in dual-hop

UASNs. In this paper, we take a cross-layer approach to designing a routing protocol tai-

lored to SDH-TDA-MAC. We present and evaluate the minimum delay and fewest relays routing

strategies with optional routing redundancy, to offer a trade-off between achieving high network

throughput and reliable packet delivery.

Keywords: Medium Access Control, Routing, Sensor Network, Underwater Acoustic Network

1. INTRODUCTION

The use of wireless sensor networks (WSNs) for remote monitoring of the ocean environment

is becoming an increasingly popular research subject, owing to the modern developments in

underwater acoustic modem technologies [1][2][3]. Acoustic waves are the preferred practi-

cal medium for underwater communications, since they exhibit significantly better propagation

characteristics compared with electromagnetic and optical waves. However, acoustic communi-

cations are fundamentally limited by the low sound propagation speed and low usable frequency

bandwidth [4]. These severe physical constraints necessitate the design of networking protocols

dedicated to underwater acoustic sensor networks (UASNs).

Much of the well-established research on Medium Access Control (MAC) in UASNs focuses

on Time Division Multiple Access (TDMA) based protocols that aim to schedule packet trans-

missions in a way that mitigates the negative effect of long propagation delays on the network

performance, e.g. by exploiting large differences in propagation delays and/or topology sparsity

for spatial reuse of the channel airtime [5][6]. For example, in [7] we proposed the Transmit



Delay Allocation MAC (TDA-MAC) protocol that leverages the knowledge of the propagation

delays in a centralised UASN to achieve high throughput without clock synchronisation at the

sensor nodes. In [8] we proposed Sequential Dual-Hop TDA-MAC (SDH-TDA-MAC), extend-

ing the TDA-MAC approach to dual-hop UASNs, which introduced the problem of routing, i.e.

choosing which sensor nodes act as relays to optimise a particular performance objective, e.g.

throughput, reliability, energy fairness etc.

Routing in WSNs is a well-established research field with many solutions available for different

network architectures, and for specific performance objectives [9]. In this paper, we take a

cross-layer approach to design routing strategies that are specifically tailored to dual-hop TDA-

MAC applied to UASNs, i.e. a combined design of the MAC and the network layer. We believe

that cross-layer protocol design is key for achieving efficient network operation under the severe

constraints imposed by the long propagation delays in UASNs. The purpose of this paper is to

provide an insight into the performance of several dual-hop routing strategies in the context of

two performance metrics: network throughput and packet delivery ratio. The routing strategies

presented in this paper incorporate both relay node selection to maximise the throughput, and

routing redundancy to increase the network reliability, similar to flooding protocols [10] but

designed specifically for dual-hop TDA-MAC [8].

The rest of the paper is organised as follows: Section 2 describes the SDH-TDA-MAC protocol;

Section 3 presents details of several routing strategies for SDH-TDA-MAC; Section 4 evaluates

the proposed routing strategies in simulation; finally, Section 5 concludes the paper.

2. DUAL-HOP TDA-MAC

In [7], we proposed the TDA-MAC protocol for centralised scheduling of data transmissions

from sensor nodes connected to a single gateway node. Its main advantage over other MAC

protocols found in the literature is that it can achieve network throughputs close to the channel

capacity without clock synchronisation at the sensor nodes. Therefore, it shows great potential

as a practical solution for efficient data gathering in UASNs. A practical application of TDA-

MAC was successfully demonstrated in sea trials with a small underwater sensor network in

July 2018 in Fort William, UK [11]. Figure 1a shows an illustrative example of the packet

flow in TDA-MAC. The gateway (master) node broadcasts a data request (REQ) packet that is

received by every sensor node at a different time (due to the differences in propagation delays

of the acoustic links). Each sensor node then waits for a specific (individually assigned) amount

of time before transmitting their data packet back to the gateway node as shown in Figure 1a.

In [8], we extended the TDA-MAC protocol to dual-hop networks, i.e. where nodes that do not

have a direct link with the gateway node are connected via another sensor node that acts as a

relay. Figure 1b shows the flowchart of the SDH-TDA-MAC protocol. There, the single-hop

TDA-MAC protocol depicted in Figure 1a is first used at the gateway node for all directly con-

nected sensor nodes, and then at every relay node to gather data packets within their respective

network branch sequentially. This approach was shown to achieve high network throughput by

leveraging the many-to-one connections in dual-hop UASNs.

3. DUAL-HOP ROUTING STRATEGIES

In addition to scheduling, dual-hop TDA-MAC also needs to incorporate a routing procedure,

i.e. choosing the dual-hop links between sensor nodes to deliver packets to the gateway node.
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Figure 1: Sequential Dual-Hop TDA-MAC (SDH-TDA-MAC) scheduling. The gateway node

first uses TDA-MAC to gather data packets from directly connected non-relay sensor nodes. It

then gathers data from every relay node sequentially, instructing it to gather data within its

network branch using TDA-MAC.

In this section we present several routing strategies, expanding on our previous work in SDH-

TDA-MAC in [8]. In particular, we investigate routing in terms of two key metrics: network

goodput and robustness against link fading, typical in the underwater acoustic environment.

3.1. MINIMUM DELAY ROUTING

A simple and reliable approach to routing in WSNs is minimum delay routing. In most cases it

is equivalent to shortest path routing, where a sensor node that requires a multi-hop route to the

destination chooses the relay nodes by minimising the total propagation delay across all hops.

Let C and Tp be N ×N connectivity and propagation delay matrices respectively, established

during the network discovery and setup stage, and then periodically updated based on received

data packets, e.g. as described in [7]. This process is sufficient to maintain an accurate topology

estimate of a quasi-stationary underwater sensor network. N = 1 +Nsn is the total number of

nodes, including one gateway node and Nsn sensor nodes. C is a binary matrix, whose elements

are C[i, j] = 1 if there is a link between nodes i and j, and C[i, j] = 0 otherwise. Tp[i, j] is the

propagation delay from node i to node j.

We can identify the set of sensor nodes Mdual-hop, that do not have a direct link with the gateway

node and, therefore, require a dual-hop connection, as follows:

Mdual-hop =
{

n |n ∈ [2, N ], C[1, n] = 0
}

(1)

For every sensor node i that requires a dual-hop connection, a relay node ri is found that min-
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Figure 2: Dual-hop routing strategies in a UASN comprising a surface gateway node and 20

sensor nodes at approximately 500 m depth with 3 km communication range.

imises the total propagation delay across two hops (sensor-relay and relay-gateway nodes):

∀i ∈ Mdual-hop, ri = argmin
j∈[2,N ]

{

Tp[j, i] + Tp[1, j]
}

, s.t. C[1, j] = 1, C[j, i] = 1 (2)

If there are no other sensor nodes that can serve as a relay, i.e. there is no node j that satisfies

both C[1, j] = 1 and C[j, i] = 1 conditions, node i does not have dual-hop connectivity.

For an arbitrary multi-hop network, minimum delay routing can be achieved by the well-

established Dijsktra’s algorithm [12] which finds the shortest path tree topology, such as that

shown in the 20-node example in Figure 2a. However, in the specific case of a dual-hop network

topology, this process is significantly simpler, since an optimal relay node can be found by a

single evaluation of (2) for every sensor node requiring a dual-hop connection.

3.2. FEWEST RELAYS ROUTING

The disadvantage of the minimum delay routing approach is that it does not take into account the

network throughput performance. The key feature of the SDH-TDA-MAC protocol described

in Section 2 is the exploitation of many-to-one connections to achieve high throughput, whereas

every relay branch of the network topology is processed sequentially, increasing the idle time

caused by the dual-hop round trip delays and thus reducing the throughput.

Therefore, to maximise the throughput of the SDH-TDA-MAC protocol, the routing strategy

should minimise the number of relay nodes, hereafter referred to as “fewest relays” routing.

The aim of the routing algorithm is to find the smallest set of nodes Mrelays such that:

∀i ∈ Mdual-hop, ∃j ∈ Mrelays, C[1, j] = 1, C[j, i] = 1, (3)

i.e. the smallest subset of relay nodes that covers all sensor nodes requiring a dual-hop connec-

tion.

This is a set cover problem [13]. Every potential relay node j can be represented by a set of



nodes directly linked to it M
j
C = {i |C[j, i] = 1}. The optimal set of relay nodes Mrelays =

{a, b, ...} is determined by finding the smallest collection of node sets S = {Ma
C ,M

b
C ...} such

that their union contains all nodes in Mdual-hop:

Mdual-hop ⊆
⋃

M
j
C
∈S

M
j
C , (4)

i.e. this is a problem of finding the set cover S of Mdual-hop that uses the fewest sets M
j
C .

The set cover problem is NP-hard [13]; therefore, a computationally efficient method of finding

the optimal set of relays Mrelays does not exist. Instead, it can be found by a heuristic approxima-

tion algorithm that does not guarantee an optimal solution but efficiently finds good suboptimal

solutions. Our implementation of such a heuristic algorithm is outside of the scope of this paper,

but any existing general approximation algorithm for the set cover problem can be used to solve

this problem, e.g. see [14], [15].

Figure 2b gives an example of the fewest relays routing solution found by our algorithm for

the 20 node UASN. This routing strategy is more suitable for SDH-TDA-MAC, since there are

only 3 sequential instances of TDA-MAC required to cover the whole network (1 gateway +

2 relays), compared with 6 TDA-MAC instances (1 gateway + 5 relays) using minimum delay

routing shown in Figure 2a.

3.3. ROUTING REDUNDANCY

Although the fewest relays routing strategy increases the network throughput, it makes it less ro-

bust against random link fading typical for the underwater acoustic environment. For example,

if a link between the gateway node and a relay node fails, e.g. due to signal path obstruction,

excessive noise, interference, Doppler shift, multipath fading etc., all packets from this relay

node’s branch will be lost. To combat this issue, in [8] we proposed a routing diversity ap-

proach that is backward compatible with the SDH-TDA-MAC protocol, and where every node

has multiple unique routes for its packets to reach the gateway node. Figure 3 shows an example

of adding double redundancy to the two routing strategies from Figure 2. Every sensor node

has two unique routes to the gateway, while the SDH-TDA-MAC protocol is identical to the

original one described in Section 2.

The routing diversity approach, such as that shown in Figure 3 is implemented by repeating the

routing procedure for every additional level of redundancy with extra constraints [8]:

• Every node (including directly connected nodes) must choose an extra destination differ-

ent from the one already in use.

• Existing links cannot be used in reverse (i.e. if node j is a relay for node i, node i cannot

be a relay for node j).

4. SIMULATION RESULTS

This section presents the empirical evaluation results of the routing strategies discussed in this

paper using an event-driven Matlab network simulator running the SDH-TDA-MAC protocol

[8]. 100 sensor nodes are spread over a 6×6 km area at 470-490 m depth, similarly to the

20 node example shown in Figures 2 and 3. The gateway node is located at the centre of the

coverage area at 10 m depth. The connection range is fixed at 2.5 km, which on average yields
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Figure 3: Dual-hop routing with double redundancy in a UASN comprising a surface gateway

node and 20 sensor nodes at approx. 500 m depth with 3 km communication range. Every

sensor node has two unique routes to send data to the gateway node.

a 52/48% split among directly connected nodes and nodes connected via dual-hop links. All

datapoints in the plots show an average of 50 simulations with different random seeds and node

locations, with the error bars representing the 5th and 95th percentiles.

The network is simulated at a range of link outage probabilities to assess its robustness against

random link fading. Link fading was modelled using a classical two-state Markov process [16]

to approximate large-scale underwater acoustic link fading often observed in practice, where

link outage may last for tens of seconds or minutes due to changes in the channel caused by

node movement or external factors, such as noise. In the two-state Markov model both the

duration of random link outage and the duration of normal link operation are exponentially

distributed [17]. We fix the mean link outage duration at τoutage = 30 s, whereas the mean

duration of the normal link operation is calculated as follows [17]:

τnormal =
1− poutage

poutage

τoutage (5)

where poutage is the probability of link outage.

Figure 4 shows that the fewest relays routing strategy achieves a significant 79% increase in the

network goodput (i.e. different data packets received at the gateway node) compared with min-

imum delay routing. However, it is less robust against random link fading compared with the

latter that uses more relay nodes thus increasing the routing diversity. Introducing the double

routing redundancy dramatically improves the network reliability, but at the cost of reducing

the network goodput due to duplicate transmissions. For example, at 0.1 link outage probabil-

ity the proportion of failed packet deliveries (one minus the packet delivery ratio) is reduced

by a factor of 4, while the network goodput is reduced by 40% and 48% for minimum delay

and fewest relays routing, respectively. This again shows that there is a trade-off between the

network throughput and reliability. If maximising the network goodput is the primary concern,

fewest relays routing with no redundancy is the best strategy, whereas if reliable packet deliv-

ery is more important than supporting high traffic loads, minimum delay routing with double

redundancy is a far better strategy. The strategy that strikes a balance between the network
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Figure 4: Trade-off between the network goodput and reliability achieved using the minimum

delay and fewest relays routing strategies, with and without double redundancy (2R).

throughput and reliability is the fewest relays routing protocol with double redundancy, which

combines the throughput maximising relay selection approach with routing redundancy for in-

creased resilience against random link fading.

Another valuable metric to consider in future work on this topic is load balancing, i.e. designing

routing strategies suitable for SDH-TDA-MAC that spread the transmission load more evenly

among the sensor nodes, e.g. to maximise the network lifetime limited by the available battery

energy at the underwater sensor nodes. For example, this could involve a dynamically changing

network topology with different sensor nodes working as relays, based on the gateway node’s

knowledge of the channel state information received from the sensor nodes.

5. CONCLUSION

The routing strategies investigated in this paper provide new insights into the performance of

the SDH-TDA-MAC protocol applied to UASNs with random link fading. Fewest relays rout-

ing maximises the network throughput, whereas minimum delay routing provides more robust

packet delivery. Introducing the routing redundancy, where each sensor node has more than

one unique path for its packet to reach the destination, dramatically increases the network reli-

ability, but reduces the network goodput due to duplicate packet transmissions. Depending on

the application-specific network criteria, e.g. high throughput vs reliable packet delivery, the

routing strategies presented in this paper provide a range of options to achieve this trade-off.
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