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Αβστραχτ: Τηισ ωορκ φοχυσεσ ον Dιστριβυτεδ Σεχονδαρψ Χοντρολ (DΣΧ) τεχηνιθυε, φορ φρεθυενχψ ρεγυλατιον ανδ Εχονοmιχ Λοαδ 

Dισπατχη (ΕΛD) οφ Μιχρογριδ (ΜΓ). Τηε φλυχτυατινγ νατυρε ανδ λαργε θυαντιτψ οφ Dιστριβυτεδ Ενεργψ Ρεσουρχεσ (DΕΡ) ιν 

αυτονοmουσ ΜΓ ρεσυλτ ιν χοmπλεξ χοντρολ ρεθυιρεmεντσ, δεmανδινγ φαστ ανδ ροβυστ ρεσπονσε. Τηε χοντεmποραρψ DΣΧ 

σχηεmεσ αρε mοστλψ βασεδ ον Dιστριβυτεδ Αϖεραγινγ Ιντεγρατιον τεχηνιθυε, οωινγ σλοω ρεσπονσε. Τηε παπερ προποσεσ, 

Dιστριβυτεδ Μοδελ Πρεδιχτιϖε βασεδ Σεχονδαρψ Χοντρολ (DΜΠΣΧ) ωηιχη εφφεχτιϖελψ χοmπλψ ωιτη τηε χοντρολ ρεθυιρεmεντσ οφ 

ΜΓ. DΜΠΣΧ ρεθυιρεσ εαχη DΕΡ−νοδε το σολϖε α λοχαλ οπτιmιζατιον προβλεm ωιτη τηε χοστ φυνχτιον πεναλιζινγ τηε δεϖιατιον 

οφ στατεσ φροm τηειρ δεσιρεδ ϖαλυεσ ανδ διφφερενχε βετωεεν τηε ασσυmεδ ανδ πρεδιχτεδ ϖαλυεσ. Τηε δεσιρεδ−στατεσ φορ νον−

λινεαρ δψναmιχσ οφ DΕΡ−νοδεσ, αρε βασεδ ον λοχαλ ιντερmεδιατε−οπτιmυm ϖαλυεσ, χοmπυτεδ υσινγ λοχαλ ανδ νειγηβουρινγ 

ινφορmατιον. Εθυαλιτψ βασεδ τερmιναλ χονστραιντσ αρε ιντροδυχεδ το ενσυρε τηε σταβιλιτψ, ωηερε εαχη νοδε ισ φορχεδ το ρεαχη 

τηε δεσιρεδ−στατε ϖαλυε ατ τηε ενδ οφ πρεδιχτιον ηοριζον. Τηε τερmιναλ−χονσενσυσ οφ τηε νετωορκ αφφιρmσ χονϖεργενχε οφ 

δεσιρεδ−στατεσ το α γλοβαλ οπτιmαλ ποιντ οφ τηε νετωορκ. Τηε ασψmπτοτιχ σταβιλιτψ οφ προποσεδ χοντρολ ισ προϖεδ βψ υσινγ τηε 

συm οφ λοχαλ χοστ−φυνχτιονσ ασ Λψαπυνοϖ χανδιδατε φυνχτιον. Σιmυλατιον ρεσυλτσ ϖαλιδατε τηε εφφεχτιϖενεσσ οφ τηε προποσεδ 

χοντρολ σχηεmε. 

 

1. Introduction 
Expanding fraction of power generation by Distributed 

Energy Resources (DER) has given significant research 
importance to Microgrid (MG) [1]. MG is an accumulation of 
heterogenous sources (preferably DERs), storage device and 
load, beside possess the capability to operate in grid-
connected and islanded mode. This flexibility of MG comes 
at the expense of control complexity. Small capacity, 
physically widely-distributed, large number and fluctuating 
output of DERs has resulted in several control challenges in 
MG, particularly related to the stability of the system [2]. 
Proportional-Integral based control solutions have been 
proposed in contemporary research to address the 
requirements of MG. Growing penetration of DERs with 
distinctive fluctuating nature is continuously demanding fast 
and robust control, especially for maintaining frequency (and 
voltage) stabilization and cost-efficient operation. This 
research work proposes a Distributed Model Predictive 
Control (DMPC) based solution, effectively complying with 
the control demands. 

The power produced by DERs is in the form of DC 
(photovoltaic, fuel cells) or variable AC (wind turbine, 
microturbine) requiring a DC to AC inverter to inject the 
power in AC gird. Unlike synchronous generators, these 
inverter-interfaced DERs have inadequacy of fundamental 
synchronization mechanism due to absence of rotational 
inertial [3], [4]. It is clear from growing dependence on DERs 
that various control operations are to be achieved through 
control of inverters. The control objectives of MG consist of; 
balance of power, voltage and frequency regulation, sharing 
of load among the inverters, minimization of cost of 
production [5], [6], [7], [8] and phase synchronous with wide 
area gird [9], [10], [11]. 

The control required to achieve the above-mentioned 
control objectives is organized in hierarchical form, with each 
layer serving specific control objectives [12]. The Primary 
Control (first layer), uses decentralized droop control 
technique for active and reactive power sharing among the 
inverters. The proportional technique used in primary control 
causes deviation, from nominal values, in frequency and 
voltage. The Secondary Control (SC) (second layer) is used 
to keep the frequency and voltage at their nominal values. The 
Tertiary Control (third layer) provides the Economic Load 
Dispatch (ELD) to minimize the cost of production. However, 
the recent research has merged the Tertiary Control within the 
SC, providing the frequency regulation and ELD at the same 
level (SC level) [5], [6], [7], [8], [13]. The SC can be 
centralized [14], [15] as in conventional system, 
decentralized [16], [17], [18] as well as distributed [5], [19], 
[20], [21]. However, DSC has gained a lot of interest recently 
providing eased plug and play to expanding number of DERs. 

In Centralized Secondary Control the central control unit is 
connected with all the generating units through 
communication links. Conventionally, centralized control 
contains PI based Automatic Generation Control that makes 
use of Area Control Error to regulate the frequency and power 
flow between different Areas [22]. Similarly, at MG level, 
Microgrid Central Control (MGCC) is used that makes use of 
low bandwidth communication channels with DERs [14], 
[15]. The centralized control architecture, however, is not a 
preferred choice, specifically in the presence of a large 
quantity of small-scale DERs [23], also the communication 
link failure with DER node/nodes, may intimidate the 
frequency regulation of the system. The Decentralized 
Secondary Control uses local control at each DER node [13] 
without any coordination with central control or peers. The 
integral based decentralized control may possess additional 
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equilibrium point and may fail to provide the optimum power 
injection profiles [5] and also, under adverse conditions may 
even fail to achieve the frequency regulation [24]. 

The DSC on the other hand, offers flexibility of eased plug 
and play, requiring only the communication with 
neighbouring DER node/nodes. DSC is unaffected by single 
link failure as long as DER nodes form a connected 
communication graph. Distributed Averaging Integrator 
based DSCs have been proposed in [24], [25], [26], where the 
control input of each node is based on neighbouring 
information and local frequency deviation. However, DAI 
based DSC possesses slow convergence, which is often 
compensated with larger gains, resulting in overshoot and 
oscillation problem. In the presence of fluctuating nature of 
DERs, fast convergence of SC is critical [6]. Other DSC 
schemes include, MPC and Smith Predictor based SC [27], 
provides the frequency regulation, but fails to assign optimum 
power injections to each node. A mixture of centralized and 
distributed control is used in [6] and [23]. The author, in [6] 
proposed Power Imbalance Allocation Control (PIAC), uses 
a PI based local control for frequency regulation and a 
centralized control within the Area to solve the optimization 
problem for ELD and Inter-Area power exchange. While, an 
integral based centralized control is proposed in [23] that 
aggregates the measured frequencies and broadcasts a control 
message to individual nodes, which uniquely interprets it 
based on local parameters. 

Another control challenge of MG, switching between 
islanded and grid-connected mode is the phase 
synchronization. MG while operating in islanded mode, may 
deviate in phase angle from the main utility grid. The 
prerequisite of MG switching, from islanded to grid-
connected mode, is the phase synchronization. The phase 
difference between MG and wide area grid should be within 
the acceptable limits at Point of Common Coupling (PCC) 
[11]. The phase synchronization issue has been dealt 
separately and has not been addressed in presented control 
hierarchy. 

This paper focuses on the implementation of MPC 
technique at SC level. Traditionally, MPC is designed for a 
single agent system, where optimum control is achieved by 
solving the finite horizon optimal control problem. MPC has 
practically been utilized as centralized control, where all the 
states are known. However, in multiagent systems the 
centralized implementation is not suitable because of 
difficulties in collecting the information from physically 
distributed nodes and computation of large-scale 
optimization problem. DMPC has been introduced in [28], 
[29] for multiagent systems, relaxing the requirement of 
centralized control. Here, each node solves local optimal 
control problem based on information from its neighbouring 
peer nodes, so the size of the network does not affect the 
computational efficiency and performance of the control. 

A Distributed Model Predictive based Secondary Control 
(DMPSC) is introduced in this paper for frequency regulation 
and ELD. DMPC with its inherent constraint handling 
capability, provides fast convergence as compared with 
integral based SC schemes. DMPSC efficiently provides the 
frequency regulation while maintaining the optimum power 
injection profile at each node. Based on local and 

neighbouring information, each DER node computes an 
intermediate-optimum phase angle and tracks the local phase 
towards that optimum phase direction, in each iteration. The 
significant contributions of the paper are highlighted below 

 A model predictive based SC is proposed in this paper. 
The control is implemented in a distributed manner, each 
node communicates its information with neighbouring 
nodes, solves a local optimization problem and achieves 
the consensus asymptotically. 

 Provides frequency regulation by maintaining the real 
power balance in the network and ELD, using identical 
cost criteria [5]. 

 Phase synchronization with wide-area is achieved by 
forcing a single node to follow the reference 
instantaneous phase. This is the foremost attempt to 
provide the phase synchronization in DSC. 

 The sufficient condition for convergence of proposed 
control is derived and used the total cost of network as a 
Lyapunov candidate function to prove the Asymptotic 
stability of the system.  

 Effectiveness of proposed control schemes is 
demonstrated with the help of MATLAB model and the 
results are compared with the DAI based control scheme. 

The rest of the paper is organized as follows; Section 2, 
contains modelling of MG system and the control objects. 
The Section starts with introduction of notations used in the 
paper and graph theory, followed by dynamics of power 
network, explanation of control objectives and introduction 
of DAI control scheme. Section 3, introduces the proposed 
DMPSC algorithm, used as local control at each power-node. 
The stability analysis is presented in Section 4, consisting of 
convergence of desired-states to global optimum and 
convergence of the cost function. Lastly, Section 5, contains 
MATLAB based simulation results and comparison with DAI 
control. 

2. Microgrid Modelling and Control Objectives  

2.1 Notations 

Let, the set of all real numbers be represented by Թ, ԧ 
represents the set of complex numbers and ॹ represents the 
null set. Թவ଴ denotes the set ሼݔ א Թȁݔ ൐ Ͳሽ, Թஹ଴ denotes the 
set ሼݔ א Թȁݔ ൒ Ͳሽ, Թழ଴  denotes the set ሼݔ א Թȁݔ ൏ Ͳሽ and Թஸ଴ denotes the set ሼݔ א Թȁݔ ൑ Ͳሽ. If ܵ represents a set, then ȁܵȁ  represents the cardinality of set ܵ ݔ . ؔ ሺܵሻǡ݈݉݋ܿ ݔ Թȁௌȁൈଵא , represents a column vector of length ȁܵȁ and ܺ ؔुሺݔሻ א Թȁௌȁൈȁௌȁ, represents a diagonal matrix containing all 
zeros except the diagonal entries containing ݔ. ૤௡ א Թ௡ൈଵ , 
denotes a column vector of ones with length ݊ and identity 
matrix is denoted by ܫ௡ א Թ௡ൈ௡ . For sets ܵଵ  and ܵ ଶ , ଵܵתଶ 
denotes ܵଵ ת ܵଶ and ܵ ଵିଶ denotes ܵଵ െ ܵଶ. The operator ̶ ל ̶, 
represents Hadamard product (elementwise multiplication) of 
matrices of same dimensions. 

2.2 Graph Theory 

Let ॳ, be a static, connected and undirected graph of ݊ nodes, represented by the set ܰ ൌ ሼͳǡ ǥ ݊ሽ. The nodes of ॳ, 
are connected through the edges, represented by ܧ ك ܰ ൈ ܰ 
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and ܣ א Թ௡ൈ௡ is the associated adjacency matrix (ܣ ൌ  (்ܣ
with elements ܽ ௜௝ ൌ ͳ ,  ݅ǡ ݆ א ܰǡ  if the nodes ݅  and ݆  are 
connected by an edge and ܽ௜௝ ൌ Ͳ, otherwise. The degree 
matrix of ܣ , is denoted by Է஺ ؔ  ुሺ݀஺௜ሻ א  Թ௡ൈ௡ , where ݀஺௜, is the ݅௧௛ row-sum of ܣ. The set of neighbouring nodes 
of ݅௧௛  node is represented by ௜ܰ ؔ ሼ ௝݊ሽ, such that ܽ௜௝ ൌ ͳ, ݅ǡ ݆ א ܰ , ( ݀஺௜ ൌ ȁ ௜ܰȁ ). Let ࣦ஺ ؔ Է஺ െ ǡܣ א Թ௡ൈ௡ , 
represented the associated Laplacian matrix of ॳ. 

2.3 Power Network 

Consider a power network consisting of a set of nodes; ܰ (݊ ൌ ȁܰȁ) and represented by graph ॳ. The nodes in ॳǡ are 
categorized as power-nodes and load-nodes. Power-nodes 
have a (renewable) power source and may contain a localized 
load as well. While, load-node are the ones that (only) 
consume the real power. Both types of nodes are respectively 
represented by ܰ௉ ൌ  ሼͳǡ ǥ ݊௉ } and ௅ܰ ൌ  ሼ݊௉ ൅ ͳǡ ǥ ݊௉ ൅݊௅}, such that ݊ ൌ ݊௉ ൅ ݊௅  (N ൌ  ௉ܰ ׫ ௅ܰ). 

The power consumption by ݅௧௛  load-node is 
represented by ݌௟ǡ௜ . The power network forms a connected 
graph in terms of power lines, that is, there exist a path (of 
power-lines) between all possible pairs of nodes in ܰ. For 
simplicity, the power lines are assumed to be lossless (pure 
inductive lines). The set ܰ௕௉ǡ௜ , represents the neighbouring 
power-nodes, while ܰ௕௅ǡ௜, represents the neighbouring load-
nodes, of ݅௧௛ node. The matrix ܤ௉ א Թ௡ುൈ௡ು, (with elements; ܾ௉ǡ௜௝) represents the susceptance matrix between the power-
nodes, while ܤ௅ א Թ௡೛ൈ௡ಽ , (with elements; ܾ௅ǡ௜௝) represents 
the susceptance matrix between power and load nodes. The 
adjacency matrices corresponding to ܤ௉  is represented by ܣ௕௉ǡ א  Թ௡ುൈ௡ು. The power-nodes also form a connected sub-
graph in terms of communication links. The set of 
neighbouring communication nodes of ݅௧௛  node is 
represented by ܰ௖ǡ௜  with corresponding adjacency matrix 
represented by ܣ௖ ǡ א Թ௡ುൈ௡ು . The degree matrices of ܤ௉ ௅ܤ , , ௅்ܤ   and ܣ௖  are denoted by Է௕௉ ǡ א  Թ௡ುൈ௡ು , Է௕௅ ǡ Թ௡ುൈ௡ು א ,  Է௕௅ୄ ǡ א  Թ௡ಽൈ௡ಽ   and Է௖ ǡ א  Թ௡ುൈ௡ು , ( Է௕௅ ൌु൫ܤ௅૤௡ಽ൯ and Է௕௅ୄ ൌ ु൫ܤ௅் ૤௡ು൯).  The instantaneous phase 
angle and voltage magnitude of each power node is 
represented by ߠ௜ , and ݒ௜ , respectively. For simplicity the 
voltage magnitude at each node is considered as 1p.u. 

Emulating the behaviour of synchronous generator 
[26], the discretised dynamics of power-node is given in (1). 

Where, οݐ  is the sampling time, ݐ  represents the 
discrete time, ߠ௜ሺݐሻ  and ߱௜ሺݐሻ  represent the phase and 
angular frequency of ݅௧௛  inverter. ݀ ௜ א Թவ଴  is the damping 
coefficient, ݉ ௜ א Թவ଴ is the virtual inertia of inverter [16], 
[17]. ߱ௗ א Թவ଴  is the desired angular frequency of the 
system. ௜݂ א Թ  is the additional state, represents the 
integrated control effort, while ߬ א Թவ଴  represents the 
inertial lag and ݑ௜ א Թ  is the control input. ݌௜  is the total 
power production of ݅௧௛ node, contains of power flow to the 
neighbouring power-nodes and load, ݌௜ሺݐሻ ൌ σ ቀܾ௉ǡ௜௝ݒ௜ݒ௝ sin ቀߠ௜ሺݐሻ െ ே್ುǡ೔אሻቁቁ௝ݐ௝ሺߠ ൅ ݌௜௅ሺݐሻ, (2) ݌௜௅ denotes the power delivered to the load; ݌௜௅ሺݐሻ ൌ݌௅௅ǡ௜ ൅ ሻݐ௅ǡ௜ሺ݌ , where ݌௅௅ǡ௜  represents the local power 
consumption of power-node, while ݌௅ǡ௜ሺݐሻ  represents the 
power delivered to load-nodes 

௅௅ǡ௜݌    ൌ ȁ௩೔ȁమோಽಽ೔ ǡ     ݅ א ௉ܰ,               (3) ݌௅ǡ௜ሺݐሻ ൌ σ ቀܾ௅ǡ௜௝ݒ௜ݒ௝ sin ቀߠ௜ሺݐሻ െ ሻቁቁݐ௝ሺߠ ǡ     ݅ א ௉ܰ௝אே್ಽǡ೔ , 

             (4) 
Where, ܴ௅௅ǡ௜  is the resistance of local load. To 

translate the dynamic equations in terms of deviation variable, 
let ο߱௜ሺݐሻ ൌ ߱௜ሺݐሻ െ ߱ௗ  and οߠ௜ሺݐሻ ൌ ሻݐ௜ሺߠ െ ሻݐௗሺߠ , 
where ߠௗሺݐሻ ൌ ਜ਼߱ௗοݐ  and discrete variable ਜ਼ ൌ ݐ οݐൗ ൌͲǡ ͳǡ ʹǡ ǥ . (or ݐ ൌ ਜ਼οݐ ). For above translation, οߠ௜ሺݐሻ െοߠ௝ሺݐሻ ൌ ሻݐ௜ሺߠ െ ሻ, also subtracting ߱ௗݐ௝ሺߠ  from both side 
of (1) results in; ο ௜݂ሺݐሻ ൌ ௜݂ሺݐሻ. So (1) can be rewritten as (5). 

Let, the states of the system be represented by ߯௜ ൌሾοߠ௜           ο߱௜       ο ௜݂ሿ் א Թଷൈଵ , and ݕ௜ ൌ ሾοߠ௜           ο߱௜ሿ்  Թଶൈଵ denote the output vectorǤ Further (5) can be compactlyא
represented as, ߯௜ሺݐ ൅ ͳሻ ൌ  ࣠ ቀ߯௜ሺݐሻǡ οߠ௝ሺݐሻǡ ݅ ,ሻቁݐ௜ሺݑ א ௉ܰ ǡ ݆ א ௕ܰ௉ǡ௜ ׫ ௕ܰ௅ǡ௜, 
ሻݐ௜ሺݕ                 ൌ ȣ߯௜ሺݐሻǡ          ݅ א ௉ܰ, 

the ȣ and ࣠ ሺǤ ሻ are defined in (6) and (7).  

ݐ௜ሺߠ  ൅ ͳሻ ൌ ሻݐ௜ሺߠ  ൅  ߱௜ሺݐሻοݐ, ߱௜ሺݐ ൅ ͳሻ ൌ  ߱௜ሺݐሻ ൅ ο௧௠೔ ሾെ݀௜ሺ߱௜ሺݐሻ െ ߱ௗሻ െ ሻݐ௜ሺ݌ ൅ ௜݂ሺݐሻሿ, 
 ௜݂ሺݐ ൅ ͳሻ ൌ ௜݂ሺݐሻ െ ο௧ఛ ௜݂ሺݐሻ௜ ൅ ο௧ఛ ݐ௜ሺߠሻ,  οݐ௜ሺݑ ൅ ͳሻ ൌ  οߠ௜ሺݐሻ ൅  ο߱௜ሺݐሻοݐ, ο߱௜ሺݐ ൅ ͳሻ ൌ  ο߱௜ሺݐሻ ൅ ο௧௠೔ ቂെ݀௜ο߱௜ሺݐሻ െ σ ቀܾ௉ǡ௜௝ݒ௜ݒ௝ sin ቀοߠ௜ሺݐሻ െ οߠ௝ሺݐሻቁቁ௝אே್ುǡ೔ െσ ቀܾ௅ǡ௜௝ݒ௜ݒ௝ sin ቀοߠ௜ሺݐሻ െ οߠ௝ሺݐሻቁቁ௝אே್ಽǡ೔ െ ȁ௩೔ȁమோಽಽ೔ ൅ ο ௜݂ሺݐሻቃ,  ο ௜݂ሺݐ ൅ ͳሻ ൌ ο ௜݂ሺݐሻ െ ο௧ఛ ο ௜݂ሺݐሻ௜ ൅ ο௧ఛ   ,ሻݐ௜ሺݑ

                                    ȣ ൌ ቂͳ Ͳ ͲͲ ͳ Ͳቃ א Թଶൈଷ, 

࣠ ቀ߯௜ሺݐሻǡ οߠ௝ሺݐሻǡ ሻቁݐ௜ሺݑ ൌ ߯௜ሺݐሻ ൅ οݐ ێێۏ
ۍ ο߱௜ሺݐሻଵ௠೔ ሾെ݀௜ο߱௜ሺݐሻ െ ሻݐ௜ሺ݌ ൅ ο ௜݂ሺݐሻሿെ ଵఛ ο ௜݂ሺݐሻ ൅ ଵఛ ሻݐ௜ሺݑ ۑۑے

ې
, 

 
(1) 

 
 
 
 
 

(5) 
 
 
 
 
 

(6) 
 
 

(7) 
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Assumption 1: We relax the condition of identical 
power and communication neighbours; ௖ܰ௜ ൌ ௕ܰ௉௜. Instead, 
we assume that ܰ௖௜ ת ௕ܰ௉௜ ് ॹǡ ݅ א ௉ܰ. 

2.4 Objectives of Secondary Control 

The objective of secondary control is to regulate the 
frequency to nominal values and minimize the cost of 
production. For cost minimization, optimum power 
production for each node is obtained from identical cost 
criteria introduced in [5]. So, the control objectives are; 

                                        ο߱௜ሺݐሻ ൌ Ͳǡ         ݅ א ௉ܰǤ       (8) σ ቀܿ௜݌௜ሺݐሻ െ ௝ܿ݌௝ሺݐሻቁ ൌ Ͳǡ௝אேು           ݅ א ௉ܰ.        (9) 

Where, ܿ ௜  represents the incremental cost of power-
nodes. Frequency regulation, the primary objective of SC is 
represented in (8), while (9) represents ELD objective and is 
based on identical marginal cost criteria for all power-nodes. 

2.5 Distributed Averaging Integrator 

The DAI control scheme is based on integration of 
errors in (8) and (9). The control law for DAI is represented 
in discrete form in (10). 

Where, ݇ ௪  and ݇௣  are the tuning variables. The 
frequency deviation (ο߱௜ሺݐሻ) can be locally measured, in fact 
its value can be easily extracted from Primary Control of the 
inverter. Since, an ݅௧௛ node cannot obtain the value of ݌௝ሺݐሻ 
from all the nodes in the network, it uses its communication 
neighbouring set ൫ ௖ܰǡ௜൯ to form the error in (9). The control 
rapidly regulates the frequency to its nominal values but 
possesses slow converges to identical cost. Also, increasing ݇௣  to improve ELD, adversely affects the frequency 
regulation, indicating its troublesome tuning.  

 
3. Design of Distributed Model Predictive 

Secondary Control  

Let ߯௜כ ൌ ሾοߠ௜כሺݐሻ ο߱௜כሺݐሻ ο ௜݂כሺݐሻሿ , be the 
equilibrium point that globally satisfies the control objective 
(8) and (9). From (8), the equilibrium point for frequency 
deviation is; ο߱כ ൌ Ͳ . Now, using the nearest neighbor 
communication approach of (10), (9) can be rewritten in 
matrix form as, ࣦ௖ܲܥ ൌ Ͳ.               (11) 

Where ܥ ൌ ुሺܿ௜ሻ א  Թ௡ುൈ௡ು , ܲ ൌ ௜ሻǡ݌ሺ݈݉݋ܿ ࣦ Թ௡ುൈଵ andא ௖ ൌ Է௖ െ ௖ܣ א  Թ௡ುൈ௡ು is the Laplacian matrix 
with rank equal to ݊௉ െ ͳ. So, the equilibrium points for οߠ௜ 
and ο ௜݂ cannot be obtained using (11). Since the equilibrium 

point is not known exactly, we adopt iterative method and 
find the desired-states (߯௜ௗሺݐሻ) in each iteration and force the 
state ߯ ௜ሺݐሻ to track the desired-state. The desired values are 
calculated based on local and neighbouring information and 
updated after each iteration, such that, ߯௜ௗሺݐሻ asymptotically 
converges to ߯௜כ as ݐ ՜ λ. The desired-states are defined as, ߯௜ௗሺݐሻ ൌ ሾοߠ௜ௗሺݐሻ ο߱௜ௗሺݐሻ ο ௜݂ௗሺݐሻሿ்  ൌ ȩ ቀ߯௜ሺݐሻ ൅ ൫ߙ ෤߯௜כሺݐሻ െ ߯௜ሺݐሻ൯ቁ ǡ     ݅ א ௉ܰ 

Where, ߯෤௜כሺݐሻ is the local intermediate-optimum point 
that satisfies (8) and (9) at every discrete time ݐ ߙ , ؔሼߙ א ԹȁͲ ൏ ߙ ൏ ͳሽ  is the step size and ȩ ൌ ൥ͳ Ͳ ͲͲ Ͳ ͲͲ Ͳ ͳ൩ , 

implying that ο߱௜ௗሺݐሻ ൌ Ͳ  (also ο߱௜ௗሺݐሻ ൌ ο ෥߱௜כሺݐሻ ൌ Ͳ ). 
Now using ο߱௜ሺݐሻ ൌ Ͳ, in (5) results in; ݌௜ሺݐሻ ൌ ο ௜݂ሺݐሻ, (and 
during steady state; ݌௜ሺݐሻ ൌ ο ௜݂ሺݐሻ ൌ  ሻ ). Following theݐ௜ሺݑ
same approach of (10) and writing (9) using communication 

neighbouring set ൫ ௖ܰǡ௜൯  provides; σ ቀܿ௜݌௜ሺݐሻ െ௝אே೎ǡ೔௝ܿ݌௝ሺݐሻቁ ൌ ͲǤ So the value of intermediate-optimum power is,  ο ሚ݂௜כሺݐሻ ൌ ሻݐሺכ෤௜݌ ൌ σ ௖ೕ௣ೕሺ௧ሻೕאಿ೎ǡ೔หே೎ǡ೔ห௖೔ ǡ     ݅ א ௉ܰ      (12) 

Note, that the value ο ሚ݂௜כሺݐሻ  is based entirely on 
neighbouring information and represents the intermediate-
optimum power injection of local node. Now, to derive the 
value of οߠ෨௜כሺݐሻ, we evaluate (5) using (2), (8) and (12), and 
using Assumption 1, resulting in (13), (14) and (15). 

Where ݌ƴሺݐሻ ൌ  σ ቀܾ௉ǡ௜௝ݒ௜ݒ௝ sin ቀοߠ௜ሺݐሻ െ௝אே್ುష೎ǡ೔οߠ௝ሺݐሻቁቁ. The first two terms on right hand side, in (15), can 

be measured locally, while the last term is obtained using peer 
communication. We use the non-empty set ௕ܰ௉ת௖ǡ௜ 
(Assumption 1) in (15) to find the intermediate phase 
equilibrium value. 

Remark 1: The MG may shift from islanded to gird-
connected mode, requiring a prior phase synchronization 
between MG and main grid [9], [10]. For that reason, the 
phase of a power-node near PCC (let it be node 1; ݊ଵ) is made 
to follow a reference value, such that phase difference at PCC 
is kept within the acceptable limits [12].  

Without loss of generality, let the reference phase be ߠௗሺݐሻ ൌ ਜ਼߱ௗοݐ (used in (5)). So, from (15) we can obtain the 
value of οߠ෨௜כሺݐሻ as presented in (16). 

ݐሺݑ ൅ ͳሻ ൌ ሻݐሺݑ െ ݇௪൫ο߱௜ሺݐሻ൯οݐ െ ݇௣ σ ሺܿ௜ݑ௜ሺݐሻ െ ௝ܿݑ௝ሺݐሻሻοݐ௝אே೎ǡ೔ , σ ቀܾ௉ǡ௜௝ݒ௜ݒ௝ sin ቀοߠ෨௜כሺݐሻ െ οߠ௝ሺݐሻቁቁ௝אே್ುǡ೔ ൅ ሻݐ௜௅ሺ݌ ൌ ο ሚ݂௜כሺݐሻ, σ ቀܾ௉ǡ௜௝ݒ௜ݒ௝ sin ቀοߠ෨௜כሺݐሻ െ οߠ௝ሺݐሻቁቁ௝אே್ುת೎ǡ೔ ൌ െ σ ቀܾ௉ǡ௜௝ݒ௜ݒ௝ sin ቀοߠ௜ሺݐሻ െ οߠ௝ሺݐሻቁቁ௝אே್ುష೎ǡ೔ െ ሻݐ௜௅ሺ݌ ൅ ο ሚ݂௜כሺݐሻ, σ ቀܾ௉ǡ௜௝ݒ௜ݒ௝ sin ቀοߠ෨௜כሺݐሻ െ οߠ௝ሺݐሻቁቁ௝אே್ುת೎ǡ೔ ൌ െ݌పሺݐሻሖ െ ሻݐ௜௅ሺ݌ ൅ ο ሚ݂௜כሺݐሻ, 

οߠ෨௜כሺݐሻ ൌ ൝ Ͳǡ                                                                   ݅ ൌ ͳǡି݊݅ݏଵ ൜௣ഢƴ ሺ௧ሻି௣೔ಽሺ௧ሻା௙೔೏ሺ௧ሻඥ஌೔ሺ௧ሻమାԵ೔ሺ௧ሻమ ൠ െ ଵି݊ܽݐ ቀԵ೔ሺ௧ሻ஌೔ሺ௧ሻቁ ǡ     ݅ ൌ ʹ ǥ ݊௉Ǥ  

(10) 

(13) 

(14) 

(15) 

(16) 
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Where, ȯ௜ሺݐሻ ൌ σ ܾ௉ǡ௜௝ݒ௜ݒ௝ cos ቀοߠ௝ሺݐሻቁ௝אே್ುת೎ǡ೔  and  Ե௜ሺݐሻ ൌ σ ܾ௉ǡ௜௝ݒ௜ݒ௝sin ቀοߠ௝ሺݐሻቁ௝אே್ುת೎ǡ೔ . From (12) and 

(16), ߯௜ௗሺݐሻ ൌ ȩሺͳ െ ሻݐሻ߯௜ሺߙ ൅ ȩߙሾοߠ෨௜כሺݐሻ ο ෥߱௜כሺݐሻ ο ሚ݂௜כሺݐሻሿ, ݕ௜ௗሺݐሻ ൌ ȣ߯௜ௗሺݐሻ          (17)                                                                  
 

3.1 Local Control of Power-Nodes 

The local control of each node is designed to track the 
desired-state ߯ ௜ௗሺݐሻ . The desired-state is calculated for 
compete length of prediction horizon (ࣨऀ ), with the help of 
local measurement and information from neighbouring nodes 
( ௖ܰǡ௜). The length of prediction horizon (ࣨऀ ), is same for all 
the individual power-nodes. Following [28][29], we define 
three different types of state trajectories over prediction 
horizon; ߯ ௜௣ሺ݇ȁݐሻ , the predicted trajectories, ߯௜௢௣ሺ݇ȁݐሻ , the 
optimal trajectories and  ߯௜௔ሺ݇ȁݐሻ, the assumed trajectories. 
The state trajectories ߯௜௣ሺ݇ȁݐሻ are used in the optimization 
problem, ߯ ௜௢௣ሺ݇ȁݐሻ is the optimal state trajectories obtained 
after solving the local optimization problem, while ߯௜௔ሺ݇ȁݐሻ 
is obtained from optimal trajectories by shifting one step in 
time. The assumed state trajectories are communicated 
between the neighbouring nodes to form the local control 
problem. Similarly, ݑ௜௣ሺ݇ȁݐሻ denotes predicted control-input 
used in optimization problem while, ݑ௜௢௣ሺ݇ȁݐሻ and ݑ௜௔ሺ݇ȁݐሻ 
are the optimal control and assumed control input, 
respectively.  

3.2 Optimization Problem ॲ௜ 
The local open-loop optimal control problem for ݅௧௛ 

node is given below. The cost function penalizes the deviation 
of output from desired and assumed value. ݉݅݊ሺ௨೔೛ሻ  ܬ௜൫ݕ௜௣ሺ݇ȁݐሻǡ ሻǡݐ௜௣ሺ݇ȁݑ ሻǡݐ௜௔ሺ݇ȁݕ ௜ௗሺǣݕ ȁݐሻ൯, ݋ݐ ݆ܾݑݏ. 

          ߯௜௣ሺͲȁݐሻ ൌ ߯௜௔ሺͲȁݐሻ, 

          ߯ ௜௣ሺ݇ ൅ ͳȁݐሻ ൌ ࣠ ቀݔ௜௣ሺ݇ȁݐሻǡ ሻǡݐ௝௔ሺ݇ȁߠ  ,ሻቁݐ௜ሺ݇ȁݑ

ሻݐ௜௣ሺ݇ȁݕ                  ൌ ȣ߯௜௣ሺ݇ȁݐሻ, 

ሻݐ௜௣ሺ݇ȁݑ                  א ௜ܷ, 
௜௣൫ࣨऀݕ              หݐ൯ ൌ ௜ௗ൫ࣨऀݕ หݐ൯,       (18) 

             ݂௜௣൫ࣨऀ ȁݐ൯ ൌ ο ௜݂ௗ൫ࣨऀ ȁݐ൯.           (19) 

The cost function ܬ௜ሺǤ ሻ is defined in (20). The terminal 
constraints (18) and (19), are used to force the state to reach 
the desired value; ߯௜ௗ൫ࣨऀ หݐ൯, at the end of prediction horizon. ܴ א Թவ଴ଶൈଶ and ܵ א Թவ଴ଶൈଶ represents the symmetric weighting 
matrices. R penalizes the deviation of trajectories from 
desired values, while ܵ penalizes the deviation between the 
assumed and predictive trajectories. 

Remark 2: Tracking the desired value is actually 
tracking the local intermediate-optimum values at any given 
(discrete) time instant ݇Ǥ The desired value defined in (17) do 
not necessarily converge to a global optimum point and 
requires a careful selection of step size ߙ . The sufficient 
condition for selection of ߙ is discussed in Section 4. 

3.3 DMPC Algorithm 

The DMPSC algorithm consists of the following steps; 

I. Initialization 

 ߯௜௔ሺͲȁͲሻ ൌ ߯௜ሺͲሻ ൌ߯௢ǡ௜,
  
௜௔ሺǣݑ  ȁͲሻ ൌ  ,௢ǡ௜ݑ

Communicate the initial state; ߯௢ǡ௜ to neighbouring nodes 
and construct the initial assumed values (߯௜௔ሺǣ ȁͲሻ), ߯௜௔ሺ݇ ൅ ͳȁͲሻ ൌ  ࣠ ቀ߯௜௔ሺ݇ȁͲሻǡ οߠ௝௔ሺͲȁͲሻǡ  ,௜ሺ݇ȁͲሻቁݑ

௜௔ሺ݇ȁͲሻݕ        ൌ ȣ߯௜௔ሺ݇ȁͲሻ,      ݇ ൌ Ͳǡͳǡ ǥ ǡ ࣨऀ െ ͳ, 

II. DMPSC Iterations 

1) Calculate the desired-states phase ቀ߯௜ௗሺǣ ȁݐሻቁ,  

2) Solve the optimization problem ॲ௜, for optimum 
control input ݑ௜௢௣ሺǣ ȁݐሻ, 

3) Compute the optimal trajectories, 
 ߯௜௢௣ሺͲሻ ൌ ߯௜ሺݐሻ, ߯௜௢௣ሺ݇ ൅ ͳȁݐሻ ൌ  ࣠൫߯௜௢௣ሺ݇ȁݐሻǡ οߠ௝௔ሺ݇ȁݐሻǡ       ,ሻ൯ݐ௜௢௣ሺ݇ȁݑ

                    ݇ ൌ Ͳǡͳǡ ǥ ǡ ࣨऀ െ ͳ, 

4) Assumed values are obtained by one step shifting the 
optimum values, ݑ௜௔ሺ݇ȁݐ ൅ ͳሻ ൌ ௜௢௣ሺ݇ݑ ൅ ͳȁݐሻ,      ݇ ൌ Ͳǡͳǡ ǥ ǡ ࣨऀ െ ʹ, ߯௜௔ሺ݇ȁݐ ൅ ͳሻ ൌ ߯௜௢௣ሺ݇ ൅ ͳȁݐሻ        ݇ ൌ Ͳǡͳǡ ǥ ǡ ࣨऀ െ ͳ, 

      (21) 
5) The last value of assumed input maintains the desired-

states as shown in (22) while, (23) represents the last 
value of assumed states. 

1) Implement the first value of control law, ߯ሺݐ ൅ ͳሻ ൌ  ࣠൫߯ሺݐሻǡ οߠ௝௔ሺͲȁݐሻǡ  ,ሻ൯ݐ௜௢௣ሺͲȁݑ

2) Increment the time ݐ ൌ ݐ ൅ ͳ, 
3) Communicate the assumed values (߯௜௔ሺǣ ȁݐሻ, power 

injection ൫݌௜ሺݐሻ൯ and incremental cost ൫ܿ௜ሺǣ ȁݐሻ൯ to 
neighbouring nodes,  

4) Go to step ͳ. 

Where, ߯ ௢ǡ௜  and ݑ௢ǡ௜  represent the initial values of 
states and input respectively. The state trajectories are forced 
to reach the desired values at the end of prediction horizon. 
Also, the last values of assumed input in (22) maintains the 
desired-state values achieved in (18) and (19). Step No. 6 

ሻǡݐ௜௣ሺ݇ȁݕ௜൫ܬ ሻǡݐ௜௣ሺ݇ȁݑ ሻǡݐ௜௔ሺ݇ȁݕ ሻ൯ݐ௜ௗሺ݇ȁݕ ൌ σ ঌ௜൫ݕ௜௣ሺ݇ȁݐሻǡ ሻǡݐ௜௣ሺ݇ȁݑ ሻǡݐ௜௔ሺ݇ȁݕ ሻ൯ࣨऀݐ௜ௗሺ݇ȁݕ ିଵ௞ୀ଴ ,                                                                         ൌ σ ȁȁݕ௜௣ሺ݇ȁݐሻ െ ሻȁȁோݐ௜ௗሺ݇ȁݕ ൅ ȁȁݕ௜௣ሺ݇ȁݐሻ െ ሻȁȁௌࣨऀݐ௜௔ሺ݇ȁݕ ିଵ௞ୀ଴ ௜௔൫ࣨऀݑ  , െ ͳหݐ ൅ ͳ൯ ൌ ο ௜݂ௗ൫ࣨऀ ȁݐ൯,    

       ߯ ௜௔൫ࣨऀ ȁݐ ൅ ͳ൯ ൌ  ࣠ ቀ߯௜௔൫ࣨऀ െ ͳȁݐ ൅ ͳ൯ǡ οߠ௝௔൫ࣨऀ െ ͳȁݐ൯ǡ ௜௔൫ࣨऀݑ െ ͳหݐ ൅ ͳ൯ቁ, 

ݐ௜௔ሺ݇ȁݕ           ൅ ͳሻ ൌ ȣ߯௜௔ሺ݇ȁݐ ൅ ͳሻ, 

 
 

(20) 
 

(22) 

(23) 
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implements the first value of control input to update the actual 
states. In Step No. 1, the desired values are calculated using 
the (local and neighbouring) assumed states trajectories, over 
the complete length of prediction horizon. Equation (17) 
involves intermediate-optimum state trajectories ሺ ෤߯௜כሺǣ ȁݐሻሻ, 

for which ο ሚ݂௜כሺǣ ȁݐሻ is calculated using (12) ቀο ሚ݂௜כሺǣ ȁݐሻ ൌο ሚ݂௜כሺݐሻቁ  and οߠ෨௜כሺǣ ȁݐሻ  is obtained using (16) (employing οߠ௝௔ሺǣ ȁݐሻ, ݌పሺݐሻሖ  and ݌௜௅ሺݐሻ ). Note that the value of  ο ሚ݂௜כሺǣ ȁݐሻ, ݌పሺݐሻሖ  and ݌௜௅ሺݐሻ do not change over prediction horizon. 
 

4. Stability Analysis 

This Section discusses the stability of DMPSC 
algorithm. The stability is discussed in two portions, first the 
convergence of desired-states to global optimum is discussed 
with the help of terminal constraints, followed by Lyapunov 
stability of the cost function.  

4.1 Terminal Constraints and Convergence of 
Desired-State 

The value of desired-state (߯௜ௗ) in (17), is based on 
intermediate-optimum state value (෤߯௜כ ) in (15). For 
convergence proof, we linearize (15), assuming that the phase 
difference between the nodes in MG scenario is quite small. 
DMPSC algorithm employs assumed state (߯௜௔) in (17) for the 
desired-states, over the complete length of prediction horizon. 
So, (15) can be written as (24). 

To writing (24), in matrix form, representing the 
complete network, we start with (12),  ܨ෨௜כሺ݇ȁݐሻ ൌ Է௖ି ଵିܥଵܣ௖ܲܥሺݐሻ.        
(25) 

Where, ܨ෨௜כ ൌ ൫ο݈݉݋ܿ ሚ݂௜כ൯ א  Թ௡ುൈଵǡ ܥ ൌ ुሺܿ௜ሻ ܲ Թ௡ುൈ௡ು andא  ൌ ௜ሻ݌ሺ݈݉݋ܿ א Թ௡ುൈଵ. Now, (24) in matrix 
form is presented in (26). 

Were, ሖܲ ൌ ݈݉݋ܿ ቄσ ቀܾ௉ǡ௜௝ݒ௜ݒ௝ sin ቀοߠ௜ሺ݇ሻ െ௝אே್ುష೎ǡ೔οߠ௝ሺ݇ሻቁቁቅ א Թ௡ುൈଵ ,  ܲ௅ ൌ ௜௅ሻ݌ሺ݈݉݋ܿ א Թ௡ುൈଵ ,  ܸ ൌ ुሺݒ௜ሻ א Թ௡ುൈ௡ು ܨ  , ൌ ሺ݈݉݋ܿ ௜݂ሻ א Թ௡ುൈଵ ,  οߠ ൌ݈ܿ݉݋ሺοߠ௜ሻ א Թ௡ುൈଵ. 
Let, ܭ ൌ Է௖ି ଵିܥଵܣ௖ܥ  and assuming the voltage at 

each node to be one per-unit (ܸ ൌ  .ሻ, (26) results in (27)ܫ

Remark 3: Hadamard product is used in (27) to divide 
the neighbouring set ܰ௕௉. Where, ሺܣ௕௉ ת ௖ሻܣ ל  ௉ representsܤ
the neighbouring nodes with power and communication links 
while, ܲ ሺݐሻሖ  is composed of neighbouring nodes with power 
link but no communication (ሺܣ௕௉ െ ௖ሻܣ ל   .(௉ܤ

Remark 4: For a matrix ܺא Թ௡ൈ௡, ܺ ૤௡ contains the 
row sum of ܺ . So, the degree matrix of ܺ can be written as Է௑ ൌ  ुሺܺ૤௡ሻ.  

Now, let ी ൌ ሺܣ௖ ת ௕௉ሻܣ ל ௉ܤ א Թ௡ುൈ௡ು , with 
degree matrix of ी ; Էी ൌ ुሺी૤௡ುሻ א Թ௡ುൈ௡ು . So, (27) 
becomes, οߠ෨כሺ݇ȁݐሻ ൌ Էीିଵ൛ीοߠ௔ሺ݇ȁݐሻ ൅ ሻݐሺܲܭ െ ܲ௅ሺݐሻ െ ሖܲ ሺݐሻൟ  (28) 

Now, we represent ܲሺݐሻ, ሖܲ ሺݐሻ and ܲ ௅ሺݐሻ in terms of 
assumed phase deviation ሺοߠ௔ሻ. From (2) we have,   ܲሺݐሻ ൌ ु൫οߠ௔ሺݐሻ൯ܤ௉૤௡ು െ ሻݐ௔ሺߠ௉οܤ ൅ ܲ௅ሺݐሻ, ܲሺݐሻ ൌ ሺԷ௕௉ െ ሻݐ௔ሺߠ௉ሻοܤ ൅ ܲ௅ሺݐሻ,       (29) 

from (24) and (26) we represent ሖܲ ሺݐሻ as in (30).  

Now, let ी෡ ൌ ሺܣ௕௉ െ ௖ሻܣ ל ௉ܤ  and Է෡ ௕௉ ൌ ी෡ ૤௡ು  so, 
(30) becomes, ሖܲ ሺݐሻ ൌ ൫Է෡ ௕௉ െ ी෡ ൯οߠ௔ሺݐሻ,        (31) 

now, ܲ௅ሺݐሻ ൌ ቀԷ௕௅ െ ௅்ܤ௅Է௕௅ୄିଵܤ ቁ οߠ௔ሺݐሻ ൅ ܮ௅Է௕௅ୄିଵܤ ൅ ௅ܲ௅, 

(32) 
using (29), (31) and (32) in (28) results in (33). 

Where, ܮ ൌ ௟ǡ௜൯݌൫݈݉݋ܿ א  Թ௡ಽൈଵ  represents the 
power consumption by load-nodes. The complete derivation 
of (32) is available in Appendix I. Note that, (33) is the 
linearized-matrixed form of (16), represents the intermediate-
equilibrium point at a given time instant.  

Now, the following lemma defines the equilibrium 
point of the network in terms of phase deviations. 

Lemma 1: For the dynamic system defined in (5), with 
control objectives (8) and (9), the following is sufficient 
condition for global optimum point in DMPSC algorithm. οߠ௔ሺݐ ൅ ͳሻ ൌ οߠௗሺݐ ൅ ͳሻ ൌ οߠ௔ሺݐሻ ൌ οߠௗሺݐሻ.     (34) 

Proof: Considering (17), (34) implies that οߠ௔ሺݐሻ ൌοߠௗሺݐሻ ൌ οߠ෨כሺݐሻ  and ο߱௔ሺݐሻ ൌ Ͳ  (for all power-nodes). 
Now, following the derivation of οߠ෨כሺݐሻ, it means that all 
power nodes are injecting optimum power and achieved the 
ELD, at nominal frequency, hence ߯௔ሺݐሻ ൌ  ז         .ሻݐሺכ߯

Following lemmas, together with Lemma 1, would be 
useful for convergence proof. 

Lemma 2: (Gersgorin Disk Criteria) Let ܺ ൌ ௜௝൧ݔൣ ܺ of (௜ߪ) Թ௡ൈ௡ be a matrix, then eigen valuesא  will lie in union 
of circles (ࣝ ௜) defined by, ࣝ௜ ൌ ڂ ൛ߪ௜ א ԧȁȁߪ௜ െ ௜௜ȁݔ ൑ σ ௜௝௡௝ୀଵǡ௝ஷ௜ݔ ൟ௡௜ୀଵ . σ ቀܾ௉ǡ௜௝ݒ௜ݒ௝ ቀοߠ෨௜כሺ݇ȁݐሻ െ οߠ௝௔ሺ݇ȁݐሻቁቁ௝אே್ುת೎ǡ೔ ൌ െ σ ൬ܾ௉ǡ௜௝ݒ௜ݒ௝ ቀοߠ௜ሺ݇ሻ െ οߠ௝௔ሺ݇ሻቁ൰௝אே್ುష೎ǡ೔ െ ሻݐ௜௅ሺ݌ ൅ ο ሚ݂௜כሺݐሻ, ु ቀοߠ෨כሺ݇ȁݐሻቁ ൛ሺܣ௕௉ ת ௖ሻܣ ל ௉ܸ૤௡ುൟܤܸ െ ሺܣ௕௉ ת ௖ሻܣ ל ሻݐ௔ሺ݇ȁߠοܸܤܸ ൅ ሖܲ ሺݐሻ ൅ ܲ௅ሺݐሻ ൌ Է௖ି ଵିܥଵܣ௔ܲܥሺݐሻ. ु ቀοߠ෨כሺ݇ȁݐሻቁ ൛ሺܣ௕௉ ת ௖ሻܣ ל ௉૤௡ುൟܤ െ ሼሺܣ௕௉ ת ௖ሻܣ ל ሻݐ௔ሺ݇ȁߠሽοܤ ൌ ሻݐሺܲܭ െ ܲሺݐሻሖ െ ܲ௅ሺݐሻ, ሖܲ ሺݐሻ ൌ ु൫οߠ௔ሺݐሻ൯ሺܣ௕௉ െ ௖ሻܣ ל ௉૤௡ುܤ െ ሺܣ௕௉ െ ௖ሻܣ ל ሻݐሺ݇ȁכ෨ߠሻ, οݐ௔ሺߠ௉οܤ ൌ Էीିଵ ቄीοߠ௔ሺ݇ȁݐሻ ൅ ቄܭሺԷ௕௉ െ ௉ሻܤ ൅ ൫ܭ െ ௡ು൯ܫ ቀԷ௕௅ െ ௅்ܤ௅Է௕௅ୄିଵܤ ቁ െ ൫Է෡ ௕௉ െ ी෡ ൯ቅ οߠ௔ሺݐሻ ൅                               ൫ܭ െ ܮ௅Է௕௅ୄିଵܤ௡ು൯ܫ ൅ ൫ܭ െ ௡ು൯ܫ ௅ܲ௅ቅ. 

(24) 

(26) 

(27) 

(30) 

(33) 
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Lemma 3: The matrix, ࣦሚ = ൣκ௜௝ א Թ ȁκ௜௝ ൑ Ͳǡ ݆ ്݅ Ƭ σ หκ௜௝ห௡௝ୀଵǡ௝ஷ௜ ൌ κ௜௜൧ǡ א Թ௡ൈ௡ , is an altered Laplacian 
matrix and  ܺ ൌ ुሺݔ௜௜ሻ א Թ௡ൈ௡, with ݔ௜௜ א Թஹ଴, then ࣦሚ ൅ ܺ 
is invertible if at least one ݔ௜௜ ൐ Ͳ. 

Proof: The proof of the lemma is similar to the one 
used for sum of Laplacian and pinning matrix in [30].  

 ז                        
Theorem 1: If ॳ satisfies Assumption 1, then terminal 

state of problem ॲ௜ converges asymptotically to equilibrium 
state, satisfying the objectives (8) and (9). 

Proof: Constrained by (18) and (19), the ߯௜௣, reaches ߯௜ௗ at the end of prediction horizon. Considering (21), the  

assumed value of output can be written as, ݕ௜௔൫ࣨऀ െ ͳหݐ ൅ ͳ൯ ൌ ௜௣൫ࣨऀݕ หݐ൯ ൌ ௜ௗ൫ࣨऀݕ หݐ൯.        (35) 

Since, ο߱௜௔൫ࣨऀ െ ͳหݐ ൅ ͳ൯ ൌ ο ௜߱௣൫ࣨऀ หݐ൯ ൌ Ͳ , so οߠ௜௔൫ࣨऀ หݐ ൅ ͳ൯ ൌ οߠ௜ௗ൫ࣨऀ หݐ൯. Now, the terminal value of 
desired phase deviation for next iteration is given by (36). 

Using (33) in (36) results in (37). 

Let, ܼଵ ൌ Էीିଵ ीǡߙ א Թ௡ುൈ௡ು , Ժଵ ൌ ሺͳ െ ௡ುܫሻߙ ൅ܼଵǡ א Թ௡ುൈ௡ು , Ժଶ ൌ Էीିଵ ൬ܭሺԷ௕௉ െ ௉ሻܤ ൅ ൫ܭ െܫ௡ು൯ ቀԷ௕௅ െ ௅்ܤ௅Է௕௅ୄିଵܤ ቁ െ ൫Է෡ ௕௉ െ ी෡ ൯൰ ǡ א Թ௡ುൈ௡ು  and Ժଷ ൌ ܭԷीିଵ൫ߙ െ ௡ು൯ܫ ቀܤ௅Է௕௅ୄିଵܮ ൅ ௅ܲ௅ቁ ǡ א Թ௡ುൈଵ. So, (37) 

becomes (38). 

From (16), we have οߠ෨ଵכሺ݇ሻ ൌ Ͳ, so we replace the first 
rows of ܼ ଵ  in (38) with zero. Let Ժഥ ൌ ुሺሾͲ ͳ ͳ ǥ ͳሿ்ሻ Թ௡ುൈ௡ುא . Now, let Ժഥଵ ൌ ሺͳ െ ሻI௡ುߙ ൅ Ժഥܼଵǡ א Թ௡ುൈ௡ು , Ժഥଶ ൌԺഥԺଶǡ א Թ௡ುൈ௡ು  and Ժഥଷ ൌ ԺഥԺଷǡ א Թ௡ುൈଵ . So, (38) results in 
(39). 

Lemma 4: The eigen values (ߣଵǡ௜) of Ժഥଵ lies within the 
unit circle for all values of ߙ א ሺͲǡͳሻ. 

Proof: All the diagonal values of Ժഥଵ  are equal to ሺͳ െ  except the ,ߙ ሻ, while the row sum of Ժഥଵ is equal toߙ
first row. So according to lemma 2, all the eigen values of Ժഥଵ 
lies within the union of following disks, ൛หߣଵǡ௜ െ ሺͳ െ ሻหߙ ൑Ͳൟ ׫ ൛หߣଵǡ௜ െ ሺͳ െ ሻหߙ ൑ ൟ or ൛ͳߙ െ ߙʹ ൑ ଵǡ௜ߣ ൑ ͳൟ, for ݅ ൌͳǡ ǥ, ݊௉. 

Now, we prove using contradiction that eigen values 
of Ժഥଵ does not lies on boundary of unit circle. Let, some eigen 

values of Ժഥଵ lie on boundary of unit circle (ߣଵǡ௜=1) and let, ߩ 
be the corresponding eigen vector, then we can write,  Ժഥଵ ߩ ൌ ቀሺͳ ,ߩ െ ௡ುܫሻߙ ൅ ԺഥԷीିଵ ीቁߙ ߩ ൌ  ,ߩ

௡ುܫ൫ߙ                െ ԺഥԷीିଵ ी൯ ߩ ൌ Ͳ. 

Since, ߙ ് Ͳ , now it remains to prove that, Ȟ௡ು ൌܫ௡ು െ ԺഥԷीିଵ ी א Թ௡ುൈ௡ು is positive definite. Since, the top 
row of Ȟ௡ು contains zeros except the first element which is ͳ, 
we can remove the top row and first column of Ȟ௡ು without 
effecting its determinant. Now, we can represent the 
remaining matrix Ȟ௡ುିଵ ൌ ൫ܫ௡ುିଵ െ Էीିଵ ी൯ א Թ௡ುିଵൈ௡ುିଵ, 
by modified Laplacian matrix ࣦሚ א Թሺ௡ುିଵሻൈሺ௡ುିଵሻ.  Ȟ௡ುିଵ ൌ ൫ܫ௡ುିଵ െ Էीିଵ ी െ Ȳ൯ ൅ Ȳ ൌ  ሚࣦ ൅ Ȳ. 

Where, ሚࣦ ൌ ൫ܫ௡ು െ Էीିଵ ी െ Ȳ൯ , Ȳ ൌ ुሺɗ௝ଵሻ Թሺ௡ುିଵሻൈሺ௡ುିଵሻǡא ݆ ൌ ʹǡ ǥ ǡ ݊௉ and ɗ௜௝ א Թஹ଴ are the elements 
of  Ȟ௡ು . Since, ॳ  forms a connected graph, Ȳ cannot be completely zero and from lemma 3, ࣦሚ ൅ Ȳ is 
positive definite, completing the proof of lemma 4.           ז 

The eigen values (ߣଶǡ௜ ) of Ժഥଶ  however, may lies 
outside the unit circle. With proper selection of step size ߙ, 
the eigen values can be forced to lie inside the unit circle. Let, 
the maximum eigen value of Ժഥଶ  be ߣଶǡ௠௔௫ , and with  ߙ ൏ߣଶǡ௠௔௫ିଵ , then eigen values of ߙԺഥଶ will lie within unit circle. 

The eigen values of Ժഥଵ and ߙԺഥଶ show the asymptotic 
converge of (38) to steady state, whereupon satisfies lemma 
1, completing the proof of Theorem 1.            ז 

Remark 5: Smaller values of ߙ will move the eigen 
values of Ժഥଶ  towards the origin. On the other hand, eigen 
values of Ժഥଵ  lies between ሺͳ െ ሻߙʹ ൏ ௜ߣ ൏ ͳ . The small 
values of ߙ  will push the eigen values of Ժഥଵ  towards the 
boundary, resulting in slow convergence. So, the optimum 
value of ߙ does not lie near the boundaries of interval ሺͲǡͳሻ, 
but somewhere in the middle.  

4.2 Convergence of Cost Function 

Assuming, that the system satisfies Theorem 1 at time ݐ ൌ ࢚ (स א Թவ଴ ) then, ݕ௜௣൫ࣨऀ ȁस൯ ൌ ൫ࣨऀכ௜ݕ ȁस൯, then at any 
time ݐ ൒ स, a feasible solution of problem ॲ௜ is given by [29], ቀݕ௜௣ሺǣ ȁݐሻǡ ௜௣ሺǣݑ ȁݐሻቁ ൌ ൫ݕ௜௔ሺǣ ȁݐሻǡ ௜௔ሺǣݑ ȁݐሻ൯.      (40) 

οߠ௔൫ࣨऀ ȁݐ ൅ ʹ൯ ൌ οߠௗ൫ࣨऀ ȁݐ ൅ ͳ൯ ൌ ሺͳ െ ௔൫ࣨऀߠሻοߙ ȁݐ ൅ ͳ൯ ൅ ൫ࣨऀכ෨ߠοߙ ȁݐ ൅ ͳ൯, οߠ௔൫ࣨऀ ȁݐ ൅ ʹ൯ ൌ ൛ሺͳ െ ௡ುܫሻߙ ൅ ௔൫ࣨऀߠԷीିଵीൟοߙ ȁݐ ൅ ͳ൯ ൅ Էीିଵߙ ቄܭሺԷ௕௉ െ ௉ሻܤ ൅ ൫ܭ െ ௡ು൯ܫ ቀԷ௕௅ െ                                   ܤ௅Է௕௅ୄିଵܤ௅் ቁ െ ൫Է෡ ௕௉ െ ी෡ ൯ቅ οߠ௔ሺݐ ൅ ͳሻ ൅ ܭԷीିଵ൫ߙ െ ௡ು൯ܫ ቄܤ௅Է௕௅ୄିଵܮ ൅ ௅ܲ௅ቅ, οߠ௔൫ࣨऀ ȁݐ ൅ ʹ൯ ൌ Ժଵοߠ௔൫ࣨऀ ȁݐ ൅ ͳ൯ ൅ ݐ௔ሺߠԺଶοߙ ൅ ͳሻ ൅ Ժଷ, οߠ௔൫ࣨऀ ȁݐ ൅ ʹ൯ ൌ Ժഥଵοߠ௔൫ࣨऀ ȁݐ ൅ ͳ൯ ൅ ݐ௔ሺߠԺഥଶοߙ ൅ ͳሻ ൅ Ժഥଷ, ܬ௜כሺݐ ൅ ͳሻ െ ሻݐሺכ௜ܬ ൑ െ݈௜ ቀݕ௜௢௣ሺͲȁݐሻǡ ሻǡݐ௜௢௣ሺͲȁݑ ሻǡݐ௜௔ሺͲȁݕ ሻቁݐ௜ௗሺͲȁݕ െ σ ȁȁݕ௜௢௣ െ ௜௔ȁȁௌࣨऀݕ ିଵ௞ୀ଴ ,         ݅ א ௉ܰ. ܬ௜כሺݐ ൅ ͳሻ ൑ ௜௔ሺǣݕ௜൫ܬ ȁݐ ൅ ͳሻǡ ௜௔ሺǣݑ ȁݐ ൅ ͳሻǡ ௜௔ሺǣݕ ȁݐ ൅ ͳሻǡ ௜ௗሺǣݕ ȁݐ ൅ ͳሻ൯, ܬ௜כሺݐ ൅ ͳሻ ൑ σ ݈௜൫ݕ௜௔ሺ݇ȁݐ ൅ ͳሻǡ ݐ௜௔ሺ݇ȁݑ ൅ ͳሻǡ ݐ௜௔ሺ݇ȁݕ ൅ ͳሻǡ ݐ௜ௗሺ݇ȁݕ ൅ ͳሻ൯ࣨऀ ିଵ௞ୀ଴ , 

(36) 
 

(37) 
 

(38) 
(39) 

(41) 

(42) 

(43) 
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(40) provides a feasible but not necessarily an optimal 
solution for ॲ௜. Now, the optimum value of the cost function 
is given by, ܬ௜כሺݐሻ ൌ ௜௢௣ሺǣݕ൫כ௜ܬ ȁݐሻǡ ௜௢௣ሺǣݑ ȁݐሻǡ ௜௔ሺǣݕ ȁݐሻǡ ௜ௗሺǣݕ ȁݐሻ൯.  

Theorem 2: If ॳ satisfy Assumption 1 and Theorem 1, 
then local cost function converges asymptotically and 
satisfies (41). 

Proof: We start by comparing a sub-optimal cost 
function using (40), with the optimum cost function (ܬ௜כ), at 
time ݐ ൅ ͳ ൐ स, as shown in (42) and (43). 

Considering, (18), (20) and (40); ݈௜൫ݕ௜௔൫ࣨऀ െ ͳȁݐ ൅ͳ൯ ǡ ௜௔൫ࣨऀݑ െ ͳȁݐ ൅ ͳ൯ ǡ ௜௔൫ࣨऀݕ െ ͳȁݐ ൅ ͳ൯ ǡ ௜ௗ൫ࣨऀݕ െ ͳȁݐ ൅ͳ൯ ൯ ൌ Ͳ. Now, from (21); ݕ௜௔ሺ݇ȁݐ ൅ ͳሻ ൌ ௜௢௣ሺ݇ݕ ൅ ͳȁݐሻ so 
(43) results in (45). 

Now, changing the index of summation in (45) provides 
(46), then subtracting ܬ௜כሺݐሻ from ܬ௜כሺݐ ൅ ͳሻ, results in (47), 
(48) and (49). 

From definition of cost function (20); ቀ݈௜൫ݕ௜௢௣ሺͲȁݐሻǡ ሻǡݐ௜௢௣ሺͲȁݑ ሻǡݐ௜௔ሺͲȁݕ ሻ൯ݐ௜ௗሺͲȁݕ ൅ σ ȁȁݕ௜௢௣ െࣨऀ ିଵ௞ୀ଴ݕ௜௔ȁȁௌቁ ൒ Ͳ, satisfying Theorem 2.             ז 

Theorem 3: If ॳ satisfy Assumption 1, Theorem 1&2, 
then total cost of network converges asymptotically and 
satisfies (50). 

Where ॵכሺݐሻ ൌ σ ሻேು௜ୀଵݐሺכ௜ܬ . 

Proof: The proof of Theorem 3 is fairly, obvious; by 
summing (49) for all power-nodes gives (50).        ז 

 
5. Performance Validation 

To evaluate the performance of proposed DMPSC, a 
MATLAB based experimental setup is established consists of 
five power-nodes; ܰ௉ ൌ  ሼ݊ଵǡ ǥ ݊ହ}, with local-loads; ܲ ௅௅ ൌ൛Ͳǡ Ͳǡ Ͳǡ ௅௅ǡସǡ݌ Ͳൟ and two load-node ܰ௅ ൌ  ሼ݊଺ǡ ݊଻}, as shown 
in Figure 1. The power lines connecting the nodes are purely 
inductive. The parameters of power-nodes and susceptance 
matrices ܤ௉  and ܤ௅  are represented in Appendix II. The 
parameters of DMPSC (and DAI), and adjacency matrix ܣ௖ 
associated with the communication links are also listed in 
Appendix II. For comparative analysis, DAI based SC is also 
tested for same experimental setup. Keeping in view, the slow 
response of DAI, the simulation time is set to “40 seconds”. 

5.1 Test Case 

Two different types of disturbances; abrupt change in 
incremental cost (ܿ௜) and load (݌௟ǡ௜), are introduced to test the 
performance of DMPSC. The simulation of time “7.5 seconds” 
is assumed to be the start of peak-hour where, the incremental 
cost of four (out of five) nodes is increased abruptly. Then, 
instant load change is introduced at simulation time of “15 
seconds”, resulting in power and frequency fluctuations. The 
change in incremental cost is a planned-disturbance where the 
start of peak hours is known in advance to every node and 
each node communicates its incremental cost in the 
prediction horizon, to its neighbouring nodes. However, 
sudden load change introduced at “15 seconds” is an 
unplanned-disturbance where power-nodes do not have prior 
knowledge of the disturbance. Table A2 and Table A3 in 
Appendix II, lists the values of incremental costs and load 
demands before and after the respective disturbances. 

The simulations are performed at two separate 
sampling times, which corresponds to different 
communication-bandwidths in physical implementation, 
while keeping the rest of the environment identical. First, the 
simulation is performed with sampling time equal to 10ms, 
then sampling time is increased to 100ms, indicating a 
reduction in bandwidth. Figure 2 and Figure 3 represent the 
simulation results of DMPSC and DAI with sampling time 
equal to 10ms, respectively, while Figure 4 and Figure 5 
contain the respective results at 100ms sampling time.  
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Figure 1: 7-node MG Model. 

ݐሺכ௜ܬ ൅ ͳሻ ൑ σ ݈௜൫ݕ௜௢௣ሺ݇ ൅ ͳȁݐሻǡ ௜௢௣ሺ݇ݑ ൅ ͳȁݐሻǡ ௜௢௣ሺ݇ݕ ൅ ͳȁݐሻǡ ௜ௗሺ݇ݕ ൅ ͳȁݐሻ൯ࣨऀ ିଶ௞ୀ଴ ݐሺכ௜ܬ , ൅ ͳሻ ൑ σ ݈௜൫ݕ௜௢௣ሺ݇ȁݐሻǡ ሻǡݐ௜௢௣ሺ݇ȁݑ ሻǡݐ௜௢௣ሺ݇ȁݕ ሻ൯ࣨऀݐ௜ௗሺ݇ȁݕ ିଵ௞ୀଵ ݐሺכ௜ܬ , ൅ ͳሻ െ ሻݐሺכ௜ܬ ൑ σ ݈௜൫ݕ௜௢௣ሺ݇ȁݐሻǡ ሻǡݐ௜௢௣ሺ݇ȁݑ ሻǡݐ௜௢௣ሺ݇ȁݕ ሻ൯ݐ௜ௗሺ݇ȁݕ െࣨऀ ିଵ௞ୀଵ                                      σ ݈௜൫ݕ௜௢௣ሺ݇ȁݐሻǡ ሻǡݐ௜௢௣ሺ݇ȁݑ ሻǡݐ௜௔ሺ݇ȁݕ ሻ൯ࣨऀݐ௜ௗሺ݇ȁݕ ିଵ௞ୀ଴ ,                                   ൑ σ ൫ȁȁݕ௜௢௣ሺ݇ȁݐሻ െ ሻȁȁோݐ௜ௗሺ݇ȁݕ ൅ ȁȁݕ௜௢௣ሺ݇ȁݐሻ െ ሻȁȁௌ൯ࣨऀݐ௜௢௣ሺ݇ȁݕ ିଵ௞ୀଵ െ  

                                  σ ൫ȁȁݕ௜௢௣ሺ݇ȁݐሻ െ ሻȁȁோݐ௜ௗሺ݇ȁݕ ൅ ȁȁݕ௜௢௣ሺ݇ȁݐሻ െ ሻȁȁௌ൯ࣨऀݐ௜௔ሺ݇ȁݕ ିଵ௞ୀ଴ ,                                   ൑ െ݈௜ ቀݕ௜௢௣ሺͲȁݐሻǡ ሻǡݐ௜௢௣ሺͲȁݑ ሻቁݐ௜௔ሺͲȁݕ െ σ ȁȁݕ௜௢௣ െ ௜௔ȁȁௌࣨऀݕ ିଵ௞ୀ଴ .  ॵכሺݐ ൅ ͳሻ െ ॵכሺݐሻ ൑ െ σ ݈௜ ቀݕ௜௢௣ሺͲȁݐሻǡ ሻǡݐ௜௢௣ሺͲȁݑ ሻǡݐ௜௔ሺͲȁݕ ሻቁேು௜ୀଵݐ௜ௗሺͲȁݕ െ σ σ ȁȁݕ௜௢௣ െ ௜௔ȁȁௌࣨऀݕ ିଵ௞ୀ଴ேು௜ୀଵ , 

(45) 

(46) 

 

(47) 

 

(48) 

 

(49) 

(50) 
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5.2 Simulation Results for DMPSC (Sampling Time: 
10ms) 

The deviation in frequencies in response to the 
induced disturbances is illustrated in Figure 2a. The 

frequency deviation in response to planned-disturbance at 7.5 
seconds, is much smaller as compared to deviation produced 
due to unplanned-disturbance at 15 seconds. In case of 
planned disturbance, each node starts anticipating the 
upcoming change before 7.5 seconds, resulting in relatively 
smooth transition. However, in both the cases the frequency 

 

         (a)      (b) 

 

            (c)      (d) 
 Figure 2: Simulation results of DMPSC (sampling time: 10ms). 

  
            (a)      (b) 

  
                          (c)      (d) 

Figure 3: Simulation results of DAI (sampling time: 10ms). 

 

                                       (a)      (b) 
Figure 4:  Simulation results of DMPSC (sampling time: 100ms). 

 

Figure 5:  Simulation results of DAI (sampling time: 100ms). 
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is restored back to its nominal value within 0.5 seconds. The 
Figure 2b represents the convergence of power-nodes to 
identical cost, to achieve the ELD. Both the disturbances 
result in increased identical cost (ܿ௜݌௜), first due to increase in 
incremental cost, followed by the increase in power demand. 
The Figure 2c represents the phase deviation of individual 
nodes. The phase of the first node is forced to zero, to keep 
minimum phase difference between MG and main grid at 
PCC. In Figure 2d the power injection profiles of each power-
node settle rapidly an optimum value after each disturbance. 

5.3 Simulation Results for DAI (Sampling Time 
10ms) 

The performance of DAI is presented in Figure 3. The 
system fails to converge to identical cost even at simulation 
time of “40 seconds”. The DAI manifests active frequency 
regulation, but possesses sustained small-scale oscillations as 
illustrated in Figure 3a. The convergences of DAI is achieved 
with gain-value; ݇ ௪ ൌ ͺ ൈ ͳͲସ  and ݇ ௣ ൌ ͸, in control law 
equation (10). The values of ݇௪ ൐ ͺ ൈ ͳͲସ, may reduce the 
magnitude of oscillations but at the expense of even slower 
convergence to identical cost. The convergence to identical 
cost is shown in Figure 3b. The slow response in Figure 3b 
may be attributed to small value of ݇௣ however, increasing ݇௣ drastically affects the frequency regulation. Figure 3c and 
Figure 3d represent the frequency regulation and convergence 
to identical cost for ݇ ௪  and ݇ ௣  equal to ͅ ൈ ͳͲସ  and ͹ 
respectively. Figure 3d represents improved convergence rate 
as compared to Figure 3b while on the other hand, Figure 3c 
shows divergent behavior in frequency. The Figure shows 
increased oscillations in frequency, which increases in 
magnitude with time. 

5.4 Simulation Results DMPSC and DAI (Sampling 
Time: 100ms) 

The results of DMPSC in Figure 4 illustrate relatively 
less overshoot but longer convergence time, compared to 
Figure 2. The steady-state is achieved within 2 seconds for 
both the planned and unplanned disturbances. Figure 4a and 
Figure 4b represents the achievement of control objectives (8) 
and (9) respectively. The increased sampling time resulted in 
slightly increased convergence time. DAI on the other hand, 
failed to attain the stability. Figure 5 shows the results for 
DAI (݇௪ ൌ ͺ ൈ ͳͲସ and ݇ ௣ ൌ ͸), illustrating divergence in 
frequency. 

The simulation results affirm that proposed DMPSC 
has fast and robust convergence to steady state after 
subjection to planned and unplanned, abrupt changes. 
Benefiting from inherent capability of MPC to anticipate the 
future disturbances, the results illustrate minimal fluctuations 
in the power and frequency in response to planned 
disturbances. Both DMPSC and DAI demonstrate efficient 
frequency regulation, the magnitude of frequency deviation is 
negligible in response to significant disturbances in system, 
that can be attributed to the absence of physical rotational 
inertia in the system. DAI however, requires a significant 
amount of time to achieve ELD as compared to DMPSC. 
Lastly, DMPSC also has the capability to operate at much 
smaller bandwidth than DAI.  

6. Conclusion 

The paper proposes distributed model predictive based 
secondary control for frequency regulation, economic load 
dispatch and phase synchronization of islanded microgrid. 
The proposed control benefits from inherent capabilities of 
distributed model predictive control including, anticipation of 
upcoming changes/fluctuations in the system and fast 
response. The control algorithm is implemented locally at 
each power-node in the network so, the size of the network 
does not affect the computational complexity in the system. 
Due to absence of physical rotational inertia, the control 
provides active frequency regulation. However, unlike 
contemporary secondary control schemes, the control 
provides rapid convergence to identical-cost, forcing the 
power-nodes to inject optimum power in the system. The 
control also ensures minimum phase difference between 
microgrid and main grid, at point of common coupling. The 
proposed control outperforms the DAI in terms of fast 
convergence to equilibrium point and ability to operate at low 
bandwidth. The paper also presents sufficient condition for 
convergence and proves asymptotic stability of the system 
using sum of cost functions as Lyapunov candidate function. 

The future research openings related to the presented 
work contain; using the more generalized network topology 
and mechanism to cater the variations in network topology 
and parameters. The problems related to communication 
among the nodes is also an important issued that need to be 
addressed. 
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Appendix I 

From (2), (3) and linearization of (4), the power 
supplied by ݅௧௛ power node to load nodes is given by, ݌௅௜ሺݐሻ ൌ σ ൬ܾ௅ǡ௜௝ݒ௜ݒ௝ ቀοߠ௜௔ሺݐሻ െ οߠ௝ሺݐሻቁ൰ ൅௝אே್ಽǡ೔                                  ݌௅௅௜ ǡ      ݅ א ௉ܰ,         (a1) 

Writing (a1) for whole network and using value of 
voltage to be ͳሺݑ݌ሻ, ܲ௅ሺݐሻ ൌ ु൫οߠ௔ሺݐሻ൯൫ܤ௅૤௡ಽ൯ െ ሻݐሺ௝ሻሺߠ௅οܤ ൅ ௅ܲ௅, ܲ௅ ൌ Է௕௅οߠ௔ሺݐሻ െ ሻݐሺ௝ሻሺߠ௅οܤ ൅ ௅ܲ௅,       (a2) 
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https://doi.org/10.23919/EPE17ECCEEurope.2017.8098969
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https://doi.org/10.1109/NAPS.2016.7747929
https://doi.org/10.1109/TPWRS.2017.2651412
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=87
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=87
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=7876877
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Where, οߠሺ௝ሻ ൌ ௝ሻߠሺο݈݉݋ܿ א  Թ௡ಽൈଵ , ݆ א ௅ܰ  represents the 
phase deviation of load-node. Now, the power absorbed by ݆௧௛ load-node is given by, ݌௟ǡ௝ሺݐሻ ൌ σ ൬ܾ௅ǡ௜௝ ቀοߠ௜௔ሺݐሻ െ οߠ௝ሺݐሻቁ൰ேು௜ୀଵ ǡ    ݆ א ௅ܰ,      (a3) 

Writing (a3) for complete network, ܮ ൌ ௅்ܤ οߠ௔ሺݐሻ െ ु ቀοߠሺ௝ሻሺݐሻቁ ൫ܤ௅் ૤௡ು൯, ܮ ൌ ௅்ܤ οߠ௔ሺݐሻ െ Է௕௅ୄߠሺ௝ሻሺݐሻ, ߠሺ௝ሻሺݐሻ ൌ Է௕௅ୄିଵܤ௅் οߠ௔ሺݐሻ െ Է௕௅ୄିଵܮ,       (a4) 

Using (a4) in (a2) ܲ௅ ൌ Է௕௅οߠ௔ሺݐሻ െ ௅ܤ ቀԷ௕௅ୄିଵܤ௅் οߠ௔ሺݐሻ െ Է௕௅ୄିଵܮቁ ൅ ௅ܲ௅, ܲ௅ ൌ ቀԷ௕௅ െ ௅்ܤ௅Է௕௅ୄିଵܤ ቁ οߠ௔ሺݐሻ ൅ ܮ௅Է௕௅ୄିଵܤ ൅ ௅ܲ௅,   (a5) 

Appendix II 

Table A1 Power-nodes parameters 

Power-nodes ݉(pu) ݀ሺݑ݌ሻ ݊ଵ ͷǤʹʹ ͳǤ͸Ͳ ݊ଶ ͵Ǥͻͺ ͳǤʹʹ ݊ଷ ͶǤͶͻ ͳǤ͵ͺ ݊ସ ͶǤʹʹ ͳǤͶʹ ݊ହ ͷǤͶ ͳǤ͵Ͳ 

 

Table A2 Incremental Cost 

Power-nodes Incremental Cost 
(before 1.5 sec), 
(pu) 

Incremental Cost 
(after 1.5 sec), 
(pu) ݊ଵ ͵ ͷ ݊ଶ Ͷ ͷ ݊ଷ ͷ ͷ ݊ସ ͸ ͹ ݊ହ ͹ ͻ 

 

Table A3 Load-nodes Power 

Load-nodes Load (pu) 
(Before 3 
seconds) 

Load (pu) 
After 3 
seconds ݊଺ ͶǤͻͷ͸ ͹Ǥ͵ͷʹ ݊଻ ͳǤͻͻ ʹǤͻ͹Ͳ 

Table A4 Initial States 

Power-
nodes 

οߠ௢ǡ௜ 
(rad) 

ο߱௢ǡ௜ 
(rad/sec) 

ο ௢݂ǡ௜ ൌ  ௢ǡ௜ݑ
݊ଵ 0 Ͳ ͳ ݊ଶ ͲǤͲͳͻͳ Ͳ ͳ 

݊ଷ ͲǤͲʹͷͳ Ͳ ͳ ݊ସ ͲǤͲͳͺ͵ Ͳ ͳ ݊ହ ͲǤͲͲͷ͵ Ͳ ͳ 

    

Adjacency Matrix: ܣ௖ ൌ ێێێۏ
ͲͳͲͳͳۍ

ͳͲͳͲͳ
ͲͳͲͳͳ

ͳͲͳͲͲ
ͳͳͳͲͲۑۑۑے

ې
. 

Local load (pu): ܲ௅௅ ൌ ሼͲ Ͳ Ͳ ͲǤͺ͵͵ Ͳሽ. 
Susceptance Matrices:  

௉ܤ ൌ ێێێۏ
ۍ Ͳെ͵ʹǤ͵Ͷെ͵ͲǤ͹͸Ͳെ͵ͲǤͻͻ

െ͵ʹǤ͵ͶͲെʹͻǤ͵ͺͲͲ
െ͵ͲǤ͹͸െʹͻǤ͵ͺͲെʹͷǤͺͷͲ

ͲͲെʹͷǤͺͷͲെʹ͹Ǥ͵Ͷ
െ͵ͲǤͻͻͲͲെʹ͹Ǥ͵ͶͲ ۑۑۑے

ې
 

௅ܤ ൌ ێێێۏ
͵െʹͷǤͶͷͲͲͲെʹ͹Ǥ͸ۍ

ͲെʹͺǤͳ͸െͳǤͶ͹͵ͲͲ ۑۑۑے
ې
. 

DMPSC Parameters: ܴ ൌ ቂͳͲͲ ͲͲ ͳͲቃ, ܵ ൌ ቂͳ ͲͲ ͳቃ, ߙ ൌ ͲǤͺ. 

DAI parameters:݇௪ ൌ ͺ ൈ ͳͲସ,  ݇ ௣ ൌ ͸. 

 


