
This is a repository copy of Critical Pairs in Term Graph Rewriting.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/148076/

Version: Accepted Version

Proceedings Paper:
Plump, Detlef orcid.org/0000-0002-1148-822X (1994) Critical Pairs in Term Graph 
Rewriting. In: Proc. Mathematical Foundations of Computer Science (MFCS 1994). 
Lecture Notes in Computer Science . Springer , pp. 556-566. 

https://doi.org/10.1007/3-540-58338-6_102

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Critical Pairs in Term Graph Rewriting 

Detlef Plump* 

Universitgt Bremen 

Abs t rac t  

Term graphs represent functional expressions such that common subex- 
pressions can be shared, making expression evaluation more efficient than 
with strings or trees. Rewriting of term graphs proceeds by both applica- 

tions of term rewrite rules and folding steps which enhance the degree of 
sharing. The present paper introduces critical pairs in term graph rewrit- 

ing and establishes a Critical Pair Lemma as an analogue to the well-known 
result in term rewriting. This leads to a decision procedure for confluence 

in the presence of termination. As a by-product, the procedure can be 

used as a confluence test for term rewriting sad as such it extends the 

classical test of Knuth and Bendix because it applies to all terminating 

and to certain non-terminating term rewriting systems. 

1 In troduc t i on  

The rich theory of term rewriting systems is an essential tool for many devel- 

opments in areas like algebraic specification, automated theorem proving, and 

functional programming. Implementations in these fields, however, usually relin- 

quish pure term rewriting in form of string or tree rewriting for efficiency reasons. 

Instead, terms are represented by pointer structures--i.e, graphs--which allow 

to share common subterms (see e.g. [5, 13, 18]). But this changes the compu- 

tational model, having consequences that  may be overlooked at a first glance. 

For instance, the two models behave differently with respect to termination, 

confluence, and the combination of b o t h  properties. 

The term "term graph rewriting" was introduced by Barendregt et al. [1] and 

is now used generically for various approaches to expression evaluation by graph 

rewriting such as [2, 4, 6, 7]. (See also [18] for a collection of recent papers on 

term graph rewriting). 

This paper is concerned with the confluence property of term graph rewriting. 

The objective is to  give a characterization and a decision procedure for conflu- 

ence, in analogy to the well-known result of Knuth and Bendix for term rewriting 

[11]. This is achieved by introducing critical pairs in term graph rewriting and 
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by establishing a sufficient condition for local confluence in form of a Critical 

Pair Lemma. Moreover, the confluence test can also be used for term rewriting 

and as such extends the classical test of Knuth and Bendix since it applies not 

only to terminating systems but also to those non-terminating systems that  be- 

come terminating under graph rewriting. Finally it is shown that  term graph 

rewriting allows to decide equivalence of terms for a larger class of systems than 

in the case of term rewriting. 

A distinctive feature of the present approach to term graph rewriting is the 

incorporation of folding steps which identify common subexpressions. Folding 

allows to handle non-left-linear rewrite systems and is necessary to make term 

graph rewriting a complete method for equational deduction. Moreover, it causes 

a vast speed-up of the evaluation process in certain examples. 

In this paper, proofs are omitted for lack of space; they can be found in [16]. 

2 Term Graph Rewriting 

Let ~ be a signature, i.e. a set of function symbols, and X be a set of variables 

disjoint from E. Each function symbol f comes with an integer ar i ty ( f )  > 0; 

for each variable x, let arity(x) = O. 

A hypergraph G is a system (VG, EG, SG, ta,  IG), where VG and EG are finite 

sets of nodes (or vertices) and (hyper-)edges, SG: EG --+ VG and tG: EG --~ V~ 

are mappings that  assign a source node and a string of target nodes to each edge, 

and IG: EG -+ ~ U X  is a mapping that labels each edge e such that  arity(lG(e)) 

is the length of tG(e). 
Given two nodes v and v', write v >1  v' if there is an edge e with source 

node v and v' occuring in tG(e). The transitive (reflexive-transitive) closure of 

>~ is denoted by >G (>_G). G is acyelic if >G is irreflexive. 

A hypergraph G is a term graph if (1) there is a node rootG such that  

root6 >_G v for each node v, (2) G is acyclic, and (3) each node has a unique 

outgoing edge. 

Figure 1 shows three term graphs with function symbols +, • s, and 0, where 

arity(+) = ari ty(•  = 2, arity(s) = 1, and arity(O) = O. Edges are depicted 

as boxes with inscribed labels, and circles represent nodes. A line connects each 

edge with its source node, while arrows point to target nodes. The order in a 

target string is given by the left-to-right order of the arrows leaving a box. 

Terms over Z and X are defined as usual (see e.g. [3]). A node v in a term 

graph G represents the term termG(v)  = lG(e ) ( t e rmG(v l ) , . . . , t e rmG(vn) ) ,  

where e is the unique edge with source v, and tG(e) = v l . . . v , .  In the fol- 

lowing t erm(G)  stands for termG(roota) .  As an example, if G is the left term 

graph in Figure 1, then t erm(G)  = +(s(0), x (s(0), +(0, 0))). 

A rewrite rule l ---* r consists of two terms I and r such that  i is not a 

variable and all variables in r occur also in l. A set ~ of such rules is a term 

rewriting system. The reader is assumed to be familiar with basic concepts of 

term rewriting (see e.g. [3, 10, 14]). The rewrite relation associated with ~ is 

denoted by --*R. 
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For every term t, let 0f be a "tree with shared variables" representing t, i.e., 

0t  is a term graph such that  (1) term(Of)  = t, (2) indegree(v) <_ 1 for each node 

v with lo~(v ) ~ X ,  1 and (3) v = v' for all nodes v,v' with lot(v ) = lot(v' ) E X .  

For every term graph G, let _G be the hypergraph that  is obtained from G 

by removing all edges labelled with variables. 

Given two hypergraphs G and H, a hypergraph morphism g: G --+ H is a pair 

of mappings (gy: VG -* V~t,gE: EG --~ E t t )  that  preserve sources, targets, and 

labels, i.e., s H o  gE = gv o SG, tH o gE = g~ o tG, and IH o gE = IG .2 

What  follows are constructions of the hypergraph and term graph rewrite 

steps used in this paper. Exact definitions based on hypergraph pushouts a r e  

given in [16]. 

Let G and H be hypergraphs. Then there is an evaluation step from G to 

H, denoted by G = ~  H, if there is a rewrite rule 1 ~ r in 7~ and a hypergraph 

morphism g: 0/--* G (determining the redex g(Ol)) such that  H is isomorphic 3 

to the hypergraph constructed from G as follows: 

(1) Remove g(e), where e is the edge with source rootoz, yielding a hypergraph 
G I . 

(2) Build the disjoint union G' + 0.__.rr and 

(2.1) identify g(rootoz ) with rootor , 

(2.2) for each pair (v ,v ' )  �9 Voz x Vor with lOl(v ) = 10r(v') �9 X, identify g(v) 

with v'. 

To turn =:~x into a relation on term graphs, evaluation steps are completed 

by a garbage collection phase. Given two term graphs G and J,  write G ~ e  J if 

there is an evaluation step G =r H such that  J is obtained from H as follows: 

(3) Remove all edges e (and their source nodes) satisfying root6 ~I~ SH(e). 

Figure 1 shows an evaluation step (with garbage collection) by the rewrite 

rule x x (y + z) ~ (x • y) + (x x z). Note that  the morphism locating 0x x (y + z) 

identifies the nodes representing y and z, and that  the +-edge with shared target 

nodes is removed by garbage collection. 

Besides evaluation steps, term graphs are manipulated by so-called folding 

steps which enhance the degree of sharing. This is to make term graph rewriting 

a complete proof method for first-order equations. Moreover, in certain cases 

folding steps speed up the evaluation process considerably (see [7] for an example 

in which an exponential number of steps is reduced to a linear number). 

A folding step G ~ y  G between two hypergraphs G and G is constructed 

by identifying two distinct edges e and e' in G that  satisfy Ia(e) = 1G(e') and 

ta (e )  = t v (e ' ) .  Note that  if G is a term graph, then so is G and t e rm(G)  = 

term(G).  An example of a folding step is shown in Figure 1. 

This paper deals with arbitrary sequences of evaluation and folding steps. 

Given two hypergraphs G and H, write G :=~ H if G = ~  H or G =r H.  For 

term graphs G and H, write G ~rr  H if G ~ e  H or G ::~, H.  

lindegree(v) is the number of occurrences of v in the target strings of all Or-edges. 
2Given a mapping f: A ---* B, f*: A* --* B* sends a string al ... an to ](al) . . .  ](an). 
3A hypergraph morphism g: G --* H is an isomorphism if gv and gE are bijective. In this 

case G and H are isomorphic. 
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Figure 1: An evaluation step followed by a folding step 

For every step G =~n H there is function tracka~H: VG --* VH which sends 

each node in G to its "descendant" in H (see [16] for the precise definition based 

on pushouts).  Track functions are extended to rewrite sequences by composing 

the track functions of the constituting rewrite steps. 

Given a binary relation --* on a set A, ---** and ~--** denote the transitive- 

reflexive and symmetric-transitive-reflexive closures of ---~. The relation ~ is 

(locally) confluent if for all a, b, e with b ,--* a ---** c (b ~-- a --~ c) there is some 

d such that  b ---** d ,---* c. The relation --* is terminating if there is no infinite 

sequence al ~ a2 --* a3 --* . . . .  An element a in A is a normal form if there is 

no b such that  a ~ b. Element a has a normal form if a ---** b for some normal  

form b. 

3 Cr i t i ca l  Pa ir s  an d  C o n f l u e n c e  

The goal of the following considerations is to give a sufficient condition for local 

confluence of te rm graph rewriting in form of a Critical Pair Lemma, analogously 

to the well-known result established by Knuth and Bendix [11] and Huet [8]. The 

idea is to infer local confluence of ~ n  from the confluence of so-called critical 

pairs, being certain divergent steps U1 r S ~ n  U2 in which S represents a 

"critical overlap" of the involved redexes. 

As a prerequisite for the Critical Pair Lemma,  one has to show tha t  ~ n  is 

already locally confluent if for each two steps of the form H1 ~ G ~ g  H2 

there is a term graph M with H1 ~ M ~ H2. Since folding is confluent, 

this amounts  to showing that  for each divergent si tuation H1 ~ e  G :=~, H~ 

there is also such an M. The crucial case is given when the edge removed in 
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G ~ z  H1 is one of the two edges identified in G ::~y H2; constructing M in this 

constellation makes up the main part of the proof of the following theorem. 

T h e o r e m  3.1 The relation ~ is locally confluent if and only if for all steps 
H1 ~-z G ~ z  H2 there is a term graph M such that H1 ~ M ~'7r H2. 

By this result, testing term graph rewriting for local confluence reduces to the 

problem of checking that every pair of divergent evaluation steps is confluent 

under ~ .  The Critical Pair Lemma established below provides a sufficient 

condition for the latter showing that it suffices to consider only those divergent 

steps U1 r S :=~ U2 for which _S results from superposing the redexes. The 

requirement is then that there are derivations U1 ==~ X1 and U2 ==~ X2 such 

that X1 and X2 are isomorphic up to certain garbage by an isomorphism that 

is compatible with the track functions of the derivations _S =re U1 = ~  X1 and 

When evaluation steps are embedded into a (graph-)context, edges may be 

attached to nodes that become garbage. Therefore critical pairs have to be de- 

fined for evaluation steps without garbage collection. In the following definition, 

the first condition puts a bound on the size of hypergraphs in critical pairs if the 

given set 7~ of rewrite rules is finite, while the second condition expresses that 

redexes overlap in a critical way. 

Def in i t ion  3.2 (cri t ical  pair)  Let S be a term graph and S :=~z Ui be an 

evaluation step by a rewrite rule li ---* r~ and a hypergraph morphism gi: 01_A ---* _S, 

for i -- 1, 2. Then U1 ~:s S ==~s U2 is a critical pair (over 7~) if 

(1) _S = gl(Oll) U g2(~12) and 

(2) gl(el) �9 g2(01___22) or g2(e2) �9 gl(Ol_..!), where ei is the edge outgoing from 

rootot ~ for i = 1, 2. 

Moreover, gl r g2 is required for the case (il --, rl) = (12 ~ r2). 

In what follows, critical pairs that differ only by renaming of nodes and edges 

are not distinguished. As a consequence, only finitely many critical pairs need 

to be considered whenever T~ is finite. 

Ex ample  3.3 The rewrite rules 

g(f(a,x)) ---, g(b) 

f(x, y) ~ c 

(with x,y being variables) give rise to the two critical pairs shown in Figure 2 

(the nodes are numbered to indicate the track functions). 

Given a hypergraph derivation G =:~ H, let Track(G ~ H) be the subhy- 

pergraph of H with node set {w e VH I trackG:~*u(V) ~H W for some v e VG} 

and edge set {e e EH I sti(e) �9 VTrack(G=~H) }. 
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Figure 2: Two critical pairs 

Def ini t ion 3.4 ( joinabi l i ty)  A critical pair U1 ~ c  S :=r U2 is joinable if 

there are derivations U1 :=~ X1 and U2 : : ~  X2 such that there is an isomor- 

phism iso: Track (S =r U1 :=r X1) ---* Track (S_ ==~e U2 = ~  X~) satisfying 

isov(tracks_=~u,=~.x, (v)) = tracks_=~u==~.x2(v) for each v E Vs. 

Note that the joining derivations Ui :=r Xi are allowed to contain folding steps 

and that garbage in XI and X2 is ignored as far as it consists of items not 

reachable from the descendant of any node in S. Requiring that X1 and X2 are 

isomorphic would be too restrictive, as can be seen in the following example. 

Ex ample  3.5 After adding the rewrite rule g(b) ---* g(c) to the two rules of 

Example 3.3, the second critical pair in Figure 2 is joinable by the derivation 

shown in Figure 3. Observe that the resulting hypergraph contains garbage (the 

constant b) which does not occur in the right-hand hypergraph of the critical 

pair. The first critical pair in Figure 2 is joinable by a similar derivation. 

L e m m a  3.6 (Cr i t ica l  Pa i r  Lemma)  If  all critical pairs over Tr are joinable, 

then ~7~ is locally confluent. 

The proof of the Critical Pair Lemma in [16] is based on two results from graph 

grammar theory stating a commutation property for independent rewrite steps 

(where independence corresponds to absence of critical pairs) and the possibility 

of embedding derivations into context. 
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Figure 3: A joining derivation for Example 3.3 

The Critical Pair Lemma allows to characterize confluence in the presence of 

termination, analogously to the well-known result for term rewriting [11]. 

T h e o r e m  3.7 Suppose that ~ is terminating. Then ~ is confluent if and 

only if all critical pairs over Tr are joinable. 

One direction of this result follows directly from the Critical Pair Lemma by the 

fact that local confluence together with termination implies confluence [8]. The 

proof of the converse direction exploits that ~ R  is terminating if and only if = ~  

is, and that "fully collapsed" term graphs (i.e. normal forms of ~ y )  are---up to 

isomorphism--uniquely determined by the terms they represent. 

Example  3.8 Let ~ be the following system: 

f(x) --* g(x,x) 

a ---* b 

g(a,b) --* f(a) 

To see that ~rr is terminating, observe that no evaluation or folding step in- 

creases the number of g-labelled edges with distinct target nodes. Therefore 

an infinite sequence G1 ~ n  G2 ~ . . .  had to contain a term graph Gk such 

that the number of these edges remains constant in all Gn with n >__ k. So the 

sequence Gk ~ n  Gk+l ~ n  . . .  could not contain evaluation steps with the third 

rewrite rule. But an infinite sequence without these steps is impossible (assign to 

a term graph G the sum IIaX(f)l + IIGX(a)l + IEal which decreases in each step). 

Thus, as there is only one critical pair which is easily shown to be joinable, ~Tz 

is confluent by Theorem 3.7. 

From the proof of Theorem 3.7 a test can be derived which--in the presence 

of termination--decides whether ~ is confluent or not. 

T h e o r e m  3.9 The procedure in Figure 4 solves the following problem: 

Instance: A term rewriting system 7~ with finitely many rules such that ~ 

is terminating. 

Question: ls ~ confluent? 



563 

inpu t :  a term rewriting system 7~ with finitely many rules such that ~ u  is 

terminating 

begin  

for each critical pair (]1 r S ::~e (]2 do 
extend S to S by appending variable;edges, and construct ex- 

tended evaluation stems UI ~::~ S ::~z U~; 

starting with UI and U~, perform evaluation and folding steps as 

long as possible to obtain derivations UI ::~ XI and 0"2 ::~ X2 

such that )~I and -~2 are normal forms; 

V : =  Vs; 
repea t  

choose some node v in V; 

if  t erms ,  (track s ~ ~.  ~, ' ( v ) ) = terms, 2 (track s=~=~. ~, 2 ( v ) ) 

then V := V - {v} else r e t u r n ( " ~ z  is not confluent") 

un t i l  V = 0 

endfor;  

wrlte("~Tz is confluent") 

end  

Figure 4: Decision procedure for confluence 

4 The Relation to Term Rewrit ing 

This section clarifies the relation between term graph and term rewriting. In 

particular, the class of systems 7~ for which ~ R  is confluent and terminating 

is shown to be a proper superclass of those systems that are confluent and 

terminating under --~7r Moreover, it turns out that the decision procedure in 

Figure 4 yields a confluence test for term rewriting that extends the classical 

one of Knuth and Bendix. 

By the following principal result, term graph rewriting is sound and complete 

for equational deduction in the same sense as term rewriting is. 

T h e o r e m  4.1 (Comple teness  Theo rem [15]) For all term graphs G and H, 

a ~*n  H if and only if term(G) ~-*~ term(H). 

With the well-known equivalence of confluence and the Church-Rosser prop- 

erty [8] one obtains the following corollary. 

Corol la ry  4.2 Suppose that ~T~ is confluent. Then for all term graphs G,H, 

term(G) ~-+~ term(H) if and only if G 3 "  i ~*  H for some term graph M.  

As a consequence, the relation ~-~ (which coincides with equality in the models 

of ~ )  is decidable (for finite'7~) whenever ~ u  is terminating: Given terms t 
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and u, choose term graph representations T and U and perform evaluation and 

folding steps as long as possible, obtaining normal forms T' and U'; then t ~ u 

if and only if T' and U' are isomorphic. 

From Corollary 4.2 and soundness of term graph rewriting (G ~ n  H implies 

term(G) ~ term(H)) one obtains the following relationship. 

Theor e m 4.3 ([15]) If  ~ x  is confluent, then so is ---~7~. 

The converse of this result does not hold, a counterexample is given in [15, 16]. 

Despite this relationship, term graph rewriting has unique normal forms if and 

only if term rewriting has. Recall that a binary relation ---, has unique normal 

forms if for all normal forms a and b, a ~-~* b implies a = b. 

T h e o r e m  4.4 The relation ~ n  has unique normal forms if and only if --+~ 

has. 

The proof rests on the Completeness Theorem 4.1, the fact that ~n-normal  

forms represent term normal forms, and the uniqueness of fully collapsed term 

graphs. As a consequence of this characterization, terminating term graph 

rewriting is confluent whenever term rewriting is. 

Coro l la ry  4.5 Suppose that ~ n  is terminating. Then ~ n  is confluent if and 

only if ~ is. 

Thus, the decision procedure in Figure 4 can be used as a confluence test for 

term rewriting. Since termination of --*~ carries over to ~ n  but not vice versa, 

the procedure applies to all terminating and also to certain non-terminating 

term rewriting systems. For instance, in Example 3.8 it is shown that ~ n  

is confluent and terminating for the system 7~ given there. So the procedure 

discovers that --*7~ is confluent. However, ---~ is non-terminating because of the 

infinite sequence 

f(a) g(a, a) g(a,b) f(a) - - . n  . . .  

and hence the confluence test of Knuth and Bendix [11] for terminating term 

rewriting systems does not apply. Their test reduces the terms in critical pairs 

(in the sense of term rewriting) to normal form and checks syntactical equality. 

But, in general, the joinability of all critical pairs does not guarantee confluence 

if --*~ is non-terminating. (Observe also that in this example normalization may 

fail because the term f(a) occurs in the only critical pair.) 

As term graph rewriting is terminating whenever term rewriting is, Corol- 

lary 4.5 yields also the following relationship. 

Coro l la ry  4.6 I f  --*~ is confluent and terminating, then so is ~ n .  

The converse does not hold, since --~n needs not be terminating when ~ n  is 

(see the above example). So confluent and terminating term rewriting systems 

form a proper subclass of the systems that enjoy this property under term graph 

rewriting. As a result, the term graph decision procedure for ~ described after 

Corollary 4.2 terminates for more systems than the corresponding procedure by 

term rewriting. 
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5 Concluding Remarks 

As pointed out to the author by If. Comon, it seems evident that the above 

results allow improved confluence criteria for equational term rewriting which 

comprises applications of both rules and equations. Previous criteria developed 

by Padawitz [12] and Jouannaud, Kirchner and Remy [9] are based on so-called 

parallel critical pairs in order to avoid the restriction that rules have to be 

right-linear. Using term graph rewriting instead of term rewriting should yield 

simplied conditions for an equational theory to be decidable. 

Another line of research related to the present approach deals with critical 

pairs over general graph rewrite rules [17]. This setting is more general in that 

rules operate on arbitrary (hyper-)graphs, and different in so far as rewrite steps 

do not include garbage collection. Here the joinability condition needed for 

critical pairs is not necessary for confluence, even in the presence of termination. 

In contrast to the situation for term graph rewriting, confluence of terminating 

graph rewrite systems turns out to be undecidable in general. 
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