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Abstract 

This study aims to develop a practical methodology based on Eigenfunction Expansion Method (EEM) to 

assess the effects of simultaneous action of vertical earthquake excitation and moving vehicle loads in single-

span and multi-span simply supported bridges. While the effects of vertical earthquake ground motions are 

generally ignored in common design practice, it is shown that the influence of simultaneous vertical 

earthquake excitation and vehicle loads can considerably affect the structural response of the bridge, 

especially in near field earthquakes with high amplitude vertical components. To address this issue, a novel 

vibration suppression system is proposed using steel pipe dampers and the reliability of the system is 

investigated for a wide range of bridge flexural rigidity under seven different earthquake records. The results 

indicate that the proposed system can significantly (up to 75%) supress the vertical vibrations generated in 

the bridge, especially for the systems with lower flexural rigidity. It is also shown that, in general, the 

efficiency of the pipe dampers is improved by increasing the nM
 
and )/(30 smVs of the input earthquake. 

For the same maximum deflection limits, application of pipe dampers could reduce (up to 50%) the required 

flexural rigidity of the bridge, and therefore, lead to a more economic design solution with lower structural 

weight.  

Keywords: Bridge Vibration, Vibration Suppression, Vertical Earthquake Excitation, Moving Inertial 

Loads, Steel Pipe Damper 

 

1. Introduction  
Currently, most bridge design guidelines (e.g. The European Standard EN1991-2 1991; American Railway 

Engineering and Maintenance-of-Way Association (AREMA) 1997; Union Internationale des Chemins de 

Fer 2002) rely heavily on static analysis methods to account for the impact of vehicle and train loads. While 

such simplified approaches can be acceptable for conventional train systems, previous studies have 

demonstrated that more sophisticated methods may be required to obtain accurate results, especially in case 
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of long-span bridges traversed by high-speed loads (Nikkhoo et al. 2007; Kiani and Nikkhoo 2012; Maximov 

2014; Karimi and Ziaei-Rad 2015; Salcher and Adam 2015; Yang et al. 2017; He 2018).  

The structural response of linear continuous beams (representing conventional bridge systems) under 

dynamic loads has been a topic of many investigations (Ahmadi 1978; Su and Ahmadi 1988; Frýba 1999; 

Leissa and Qatu 2011; Ouyang 2011; Beskou and Theodorakopoulos 2011; Pi and Ouyang 2015; Zhu et al. 

2015). However, most of these studies were limited to the beam vibrations caused exclusively by a single 

dynamic load case (i.e. under a single moving load or a specific seismic event).  

While the interaction between moving loads and bridge systems has been widely investigated (e.g. Ichikawa 

et al. 2000; Xia et al. 2003; Xu et al. 2010; Salcher and Adam 2015; Ticona Melo et al. 2018; Xia et al. 2018; 

Zhang J et al. 2018), there are very limited studies on the structural response of bridge systems under 

simultaneous effects of moving loads and earthquake excitations (Wibowo et al. 2013; Nguyen 2015; 

Paraskeva et al. 2017). In one of the early studies, Yau (2009) developed a method to obtain the dynamic 

response of suspended beams subjected to simultaneous actions of moving vehicles and support excitations 

by decoupling the response into the pseudo-static and inertia-dynamic components. Using a similar 

approach, Frýba and Yau (2009) as well as Liu et al. (2011) studied the effects of simultaneous actions of 

moving loads and seismic excitations on the vibration of suspension bridges. It was shown that the 

interaction between the moving force and the vertical support excitation could considerably amplify the 

dynamic response of the bridge, especially in the event of high vehicle speeds. Emphasizing on the 

importance of incorporating the effects of vertical components of ground motions, Legeron and Sheikh 

(2009) proposed a methodology to determine the response of the bridge supports under vertical seismic 

loads. In contrast to the general design code requirements, they demonstrated that the effects of vertical 

seismic excitations should not be disregarded in the design process of bridges. This conclusion is in 

agreement with the results presented by other researchers (Saadeghvaziri and Foutch 1989; Papazoglou and 

Elnashai 1996; Wang T et al. 2105; Chen et al. 2016; Yang et al. 2015; Shrestha B 2015).  

Several research studies have investigated the dynamic behaviour of single-span bridge systems under 

seismic ground motions by mainly focusing on the horizontal acceleration components (e.g. Ahmadi 1978; 

Su and Ahmadi 1988; Legeron and Sheikh 2009; Wang T et al. 2105; Yang et al. 2015; Shrestha B 2015; 

Chen et al. 2016). Zarfam et al. (2013) developed a method to assess the influence of the weight and velocity 

of traversing masses on the dynamic response of a beam subjected to horizontal support excitations at 

different frequencies. In other relevant studies, Konstantakopoulos et al. (2012) and Nguyen et al. (2017) 

analysed the vertical and horizontal dynamic response of suspension bridges subjected to earthquake and 

moving loads acting either separately or simultaneously. They concluded that the structural responses are 

significantly affected by the simultaneous effects of moving and seismic loads, especially when the moving 

loads are relatively small. However, the convective accelerations and the inertial acts of the moving vehicles 

were disregarded in most of the above-mentioned studies.  
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Elias and Matsagar (2017) developed a modified modal analysis approach to investigate the effectiveness of 

tuned mass dampers on isolated RC bridges including soil-structure interaction under horizontal earthquake 

excitations. A similar approach was then adopted by Matin et al. (2019) to study the effectiveness of 

distributed multiple tuned mass dampers in seismic response control of bridges under two horizontal 

components of earthquake ground motions. The main advantage of the modified modal analysis approach is 

that it can be used to obtain the response of non-classically damped systems. 

Agrawal et al. (2009) and Tan and Agrawal (2009) presented the problem definition of a comprehensive 

benchmark structural control problem for the highway bridges under seismic excitations simultaneously 

applied in two directions. While different passive, semi-active and active devices and algorithms can be used 

to study the response of the benchmark model, the effects of moving masses (or vehicales) are not taken into 

account. Also the benchmark control systems are based on 3D detailed finite-element models, and therefore, 

can be computationally expensive.   

Since the occurrence of an earthquake during the operational time of a bridge (i.e. whilst carrying moving 

loads) is highly likely, the structural response of the bridge system under such loading condition has to be 

adequately assessed during the design process. However, existing studies on the interaction between the 

vertical earthquake excitations and vehicle loads are commonly limited to the investigation of suspension 

bridges under moving forces (Frýba and Yau 2009; Liu et al. 2011; Konstantakopoulos et al. 2012; Nguyen 

et al. 2017). Therefore, more studies are required to extend the results to the general bridge systems. This is 

particularly important for the case where the moving mass is significant or is travelling at a high velocity 

(Nikkhoo et al. 2015).  

In this paper dynamic behaviour of bridges under the simultaneous effects of moving inertial loads/vehicles 

and excitation due to the vertical component of earthquake excitations is investigated by adopting a modal 

analysis approach on simply-supported beams representing typical bridge systems. In addition, it is 

attempted to assess the efficiency of pipe dampers, originally proposed by Maleki and Bagheri (2010), to 

mitigate the vibrations induced by simultaneous actions of earthquake and vehicle loads on the beam-type 

bridge systems. To this end, the vertical acceleration component of seven near field earthquake ground 

motions with different frequency contents is applied to a simply supported Euler-Bernoulli beam subjected to 

vehicle loads (or lumped masses) travelling at uniform intervals. The pipe dampers are then employed in the 

locations where maximum deflections commonly occur, aiming to evaluate their efficiency for mitigation of 

the vertical vibrations the bridge systems with different flexural rigidities. It is shown that if the number and 

configuration of the pipe dampers are optimally selected, the required structural weight of the main load-

bearing components to satisfy a predefined preference target can be significantly reduced. 

2. Problem Formulations 
It is assumed that a uniform undamped single-span Euler-Bernoulli beam of length L  undergoes a dynamic 

excitation ),( txf . The Cartesian system adopted for the analysis is illustrated in Figure 1. Given ),( txD  as 
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the function describing the vertical displacement along the beam at time t , the governing vibration equation 

is written as follows (Frýba 1999): 
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where EI  and A  are the flexural rigidity and the mass per unit length of the beam, respectively. ),( txf  is 
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where, by letting )/()()( vLttHttHtH kk  , 

  .)(.)( tHttvxU kk    (3) 

Here,  and (.)H denote the Dirac delta and the unit step function, respectively. kt  represents the arrival 

time of the kth mass at the beam (i.e. vdktk /)1(  ), and N is the total number of moving masses. The 

action of the kth moving mass is considered via )( kttH  function when the load enters the beam and 

deactivated through )/( vLttH k   when the load departures the beam. In Equation (2), )(0 tD  represents 

the vertical displacement of a moving mass. Given the fact that the moving masses are not separated from the 

beam surface during the course of vibration (i.e., )),(()(0 tttvxDtD k ), the following equation is 

obtained:  

.),(
.

),(2),(
d

)(d

)(
2

2
2

2

2

2

2
0

2

kttvxx
txDv

tx
txDv

t
txD

t
tD





















  (4) 

 

 



5 

 

 

Figure 1. Schematic view of the steel pipe dampers along the main beam 

 

3. Formulation of the Steel Pipe Damper System 

3.1. Definitions, assumptions and governing equations  

In structural engineering, dampers are widely used to mitigate maximum vibrations under dynamic loads 

(e.g. moving load, wind or earthquake events) by dissipating the input energy transmitted to the structure. 

While different types of dampers have been successfully utilized for vibration control of bridges, 

experimental and analytical studies conducted by Maleki and Bagheri (2010) indicated that steel pipe damper 

can provide very efficient design solutions by offering a stable hysteresis behaviour and high energy 

absorption through metallic yielding. Therefore, in this study this type of damper is selected to mitigate the 

effects of simultaneous action of vertical earthquake excitation and vehicle loads in bridges. The 

mathematical formulation for application of steel pipe dampers is developed in the following section. 

Figure 1 shows the schematic view of the steel pipe dampers installed along the main bridge beam. Stiffness 

factor of each pipe ( pipeK ) in elastic and plastic deformation zones varies in proportional to the selected 

pipe. Maleki and Bagheri (2010) showed that the damping ratio of the system is defined as 

)4(/ SD EE   . DE  is the overall energy absorbed by the dampers, which is equal to the area under the 

hysteresis load-displacement curve for one complete cycle. Finally, SE  represents the elastic strain energy of 

the pipes. Hence, damping factor of each pipe damper could be obtained as 2/1
pipepipepipe )(2 KMC   , 
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where pipeM  is the mass of each pipe in kilograms ( kg ). At each loading phase, the pipe dampers may enter 

the plastic phase while the beam itself is designed to remain in the elastic regime under the design load 

conditions. The experimental and analytical studies conducted by Maleki and Bagheri (2010) have 

demonstrated the good hysteresis behaviour and energy dissipation capacity of the steel pipe dampers. It 

should be noted that the dynamic systems solved in this study are considered to be classically damped since 

the damping matrix is orthogonal with respect to the modal vectors, and the stiffness and damping of the 

steel pipe dampers are only applied in one direction (Warburton and Soni 1977; Veletsos and Ventura 1986). 

3.2. Configuration of the pipe damper system 

As illustrated in Figure 1, the pipe damper system is a rigid box with length L , which is located at the mid-

span of the bridge. The box comprises of a number of pipes with exterior diameter piped   connected to the 

main bridge beam by a European rolled steel section IPE. Placement of the pipe damper system is based on 

the fact that maximum deflection of a simply-supported beam under the assumed loading condition is 

expected to occur at the mid-span. The rigid box is assumed to respond completely isolated from the main 

beam, and therefore, does not impose any constraints on the beam deformation response under external 

excitation. For practical applications, depending on the location of the dampers and type of the bridge, the 

rigid box can be connected to the ground using a structural system such as a truss, pylon, concrete pad or 

pre-tensioned cables. It should be noted that while connecting the rigid box to the ground can slightly 

increase the constructional costs of the pipe damper system, the proposed system generally provides a more 

flexible and economic design solution than creating a structural pylon to convert the single span bridge to a 

multi-span system (Maleki and Bagheri (2010)). 

As shown in Figure 1, the number of pipes attached above and below the main beam can be calculated as 

2/pipenq  , where pipen  is total number of pipes used in the box. Length of the rigid box is given by 

 pipeIPE dhqL  , where IPEh  is depth of the IPE section used to connect the dampers to the main beam. 

Based on the bi-linear model presented by Maleki and Bagheri (2010), the response of the steel pipe damper 

system (rigid box) is simulated using a spring-dashpot by assuming )()()( 1 qxxHxxHxH  , 

where 1x  and qx  are the distance between centre of the first and last pipe-couple from the assumed origin, 

respectively (see Figure 1). 
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The stiffness and damping of the steel pipes directly contribute to the beam vibration formula (Eq. (1)) as 

follows: 
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in which, the equivalent stiffness and damping factors of the steel pipe system are calculated by the 

equations below: 
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Based on the above equation, eKpipe and eCpipe  are the function of the stiffness and damping factors of steel 

pipes. Thus, they change proportionally to the pipe’s elasto-plastic behaviour and do not possess a constant 

value during the course of vibration in the beam. 

3.3. Spatial and time discretization of the governing equations  

In this study, the Eigenfunction Expansion Method (EEM) is adopted to solve the above mentioned 

differential equation, as follows: 
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where )(xi  and )(xai  respectively denote the orthogonal shape function related to the ith beam vibration 

mode (in this study: );/(sin/2)( LxinLxi   n number of spans of the simply supported beams), and 

the corresponding ith time-dependent amplitude. p is the total number of shape functions required to reach 

the predefined target accuracy. By substituting Eq. (8) into Eq. (6), multiplying both sides of the resulting 

equation by )(xj , and lastly, integrating them over the length of the beam, the following equation is 

attained: 

    .d)(.)(.)(
d

)(d
d)(.)(.)(

)()()()(2)()(

)()(d)()()()(d)()(

)(d)()()(d)()(

11 0
2

2

1 1 1 0
2

2
2

2

2

1 11 1

1 1 0
4

4

2

2

1 1 0

11

pipepipe

xtHttvxmAx
t

tU
xtHttvxx

ta
x

x
v

t
ta

x
x

v
t

ta
xgm

t
taxHxxxCtaxHxxxK

taxx
x

x
EI

t
ta

xxxA

N

k
kk

p

j

L

j
g

kj

N

k

p

i

p

j

L

i
iiii

ik

p

i

i
p

j

x

x
ji

p

i
i

p

j

x

x
ji

i

p

i

p

j

L

j
ii

p

i

p

j

L

ji

qq

ee









































































































 

    

  



  

  

  













 (9) 

By defining i  as the ith beam’s natural frequency, the beam’s free vibration equation can be presented as: 
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According to the orthogonality of the modes, i.e. 
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and by substituting the Eq. (10) into the Eq. (9), the matrix form of Eq. (9) is rewritten as: 
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By transforming Eq. (12) into a state-space form, the second order ODEs set in Eq. (12) could be reduced to 

a first order set of equations via the following reformulation: 
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A number of methods are available to solve Eq. (14) in the time domain. In this paper, the matrix-

exponential method, proposed by Brogan (1985) and utilized by a number of other researchers (e.g. 

Ebrahimzadeh Hassanabadi et al. 2014; Niaz and Nikkhoo 2015; Nikkhoo 2014; Nikkhoo et al. 2014) is 

adopted for calculation of the displacement field. In the following section, the efficiency of the method is 

demonstrated through a benchmark numerical example. 

4. Numerical Example 

In this benchmark example, it is assumed that a group of moving vehicles are crossing a simply-supported 

bridge with a span length of m60L  (Legeron and Sheikh 2009). The deck of the bridge is supported by a 

number of beams parallel to the direction of the bridge. To analyse the vibration and maximum deformation 

of the bridge, one of the main beams, as indicated in Figure 2, is considered. According to Legeron and 

Sheikh (2009), the mechanical properties of the beam section are assumed as 210 mN10467.3 EI and 

m/kg2956A . The moving vehicles consist of a group of kg50000m  masses travelling with a 

constant velocity of s/m30v  and effective distance of d. As illustrated in Figure 2, it is assumed that 

when a traversing mass reaches the mid-span, the next mass enters the beam (i.e. 2L/d  ). This system is 

analysed for the first 16 seconds implying that, in total, 15 masses traverse the beam. Additionally, it is 

assumed that as the first mass arrives at the beam (i.e., for 0t ), the beam undergoes a vertical excitation 

caused by an earthquake event. 

 

 

Figure 2. Schematic View of a simply-supported beam subjected to moving masses with uniform intervals 

To investigate the effects of input ground motion characteristics on the dynamic response of the case study 

bridge system, the vertical acceleration records of seven major near field earthquakes are considered. The 

characteristics of the selected earthquakes are presented in Table 1 (PEER center). The soil conditions 

corresponding to the selected earthquake records based on SEI/ASCE 7-16 classifications are also shown in 

Table 1. It can be seen that these earthquake records are chosen in a way to cover different soil types and 

fault mechanisms. Figure 3 compares the acceleration response spectrum of the selected earthquake records. 
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Table 1. Earthquake Characteristics 
Number 1 2 3 4 5 6 7 

Event L'Aquila, 
Italy 

Imperial 
Valley-02 

Kobe, 
Japan 

Mammoth 
Lakes-01 

Loma 
Prieta 

Northridge-
01 Tabas, Iran 

Year 2009 1940 1995 1980 1989 1994 1978 

Station GRAN 
SASSO 

El Centro 
Array #9 KJMA Convict 

Creek Corralitos Arleta - 
Nordhoff Tabas 

Magnitude 6.3 6.95 6.9 6.06 6.93 6.69 7.35 

Mechanism Normal Strike slip Strike slip Normal 
Oblique 

Reverse 
Oblique Reverse Reverse 

D5-95 (S) 8.9 24.2 9.5 9.6 7.9 13.5 16.5 
Rjb (km) 6.35 6.09 0.94 1.1 0.16 3.3 1.79 

Rrup (km) 6.4 6.09 0.96 6.63 3.85 8.66 2.05 
Vs30 (m/s) 488 213 312 382 462 298 767 
Soil type C D D C C D B 
PGA (H) 0.150g 0.281g 0.834 g 0.442g 0.645g 0.345g 0.862g 
PGA (V) 0.110g 0.178g 0.339g 0.387g 0.458g 0.552g 0.641g 

H/V Ratio 1.36 1.58 2.46 1.14 1.41 0.63 1.34 
PGV (H) cm/s 9.71 31.31 91.06 23.75 55.94 41.09 123.34 
PGV (V) cm/s 4.42 8.61 40.35 21.10 19.50 17.99 40.90 

 

 

 

 

 

 

 

 

 
 

Figure 3. Response Spectrum of the selected earthquake ground motions; a) Vertical Components, b) 
Horizontal Components 

4.1. Vertical Seismic Loads and their Interaction with Moving Inertial Loads 

The mid-span beam deflection response of the case study bridge (Figure 2) due to the moving masses (dash 

line) and the simultaneous effects of moving masses and earthquake excitations (solid line) are depicted in 

Figure 4. As observed, in most cases, the seismic loads amplified the effects of moving vehicles and resulted 

in deflections up to twice the case excluding seismic actions. This effect was especially evident in Kobe and 

Tabas nearfield earthquakes with large vertical components (see Figure 3). For better comparison, Table 2 

presents the maximum deflection at the beam’s mid-span locations under the two above loading conditions. 

As it is seen, the discrepancies in responses vary for different earthquakes. The increase in the beam vertical 

deflection response due to the vertical component of the input earthquake is represented by nM  factor. It can 

be noticed that, on average, the vertical deflections increased by over 40% under simultaneous effect of 

moving mass and earthquake vertical excitations. These results clearly demonstrate the importance of 

considering the interaction of the vertical components of earthquakes and moving masses in the design of 

beam-like structures as will be discussed further in the following sections.  

(a) (b) 
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Figure 4. Time-history deflection of the beam due to external excitations a) L'Aquila, b) Imperial Valley, c) 

Kobe, d) Mammoth Lakes, e) Loma Prieta, f) Northridge, g) Tabas. 
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Table 2. Impact of vertical earthquake excitation on maximum deflections at beam’s mid-span 

 
Number 

 
Earthquake Event 

Maximum mid-span beam 
deflection (m) Impact of vertical 

earthquake excitation on 
mid-span deflection nM (%) Moving mass Moving mass + 

Earthquake 

1 L'Aquila, Italy 0.133 0.138 3.8 

2 Imperial Valley-02 0.133 0.141 6.0 

3 Kobe, Japan 0.133 0.270 103 

4 Mammoth Lakes-01 0.133 0.177 33.1 

5 Loma Prieta 0.133 0.165 24.1 

6 Northridge-01 0.133 0.180 35.3 

7 Tabas, Iran 0.133 0.264 98.5 
 

4.2. Efficiency of Steel Pipe Dampers in Vibration Suppression  

The objective of this section is to assess the efficiency of the steel pipe dampers in mitigating the vibrations 

in the beam bridge system induced by simultaneous actions of moving masses and vertical seismic 

excitations. As in the study conducted by Maleki and Bagheri (2010), the exterior diameter of the pipe 

dampers was set to be mm 119pipe d , while it was assumed that mmkN173DE  and 

mmkN34SE . The stiffness factor of each pipe ( pipeK ) in elastic and plastic deformation zones are 

given by )mm/kN(0034.0 l and )mm/kN(00017.0 l , respectively. Moreover, according to the bi-linear 

empirical formulation presented by Maleki and Bagheri (2010), the yield strength of the pipe dampers was 

estimated as )kN(0088.0 lFy  , where l  is the length of each pipe in millimetres ( mm ). Based on these 

assumptions, the deformation corresponding to yF  is calculated as 2.6 mm. An IPE270 section with the 

depth and flange width of mm 702IPE h and mm 135IPE b (in accordance to European standard DIN) 

was used to connect the pipes to the main beam. 

It should be mentioned that in this study, the practical length of the pipe box L  was selected to be equal to 

the sitting length of the beam (proportional to the beam's length). Therefore, for a beam length of 60 m, L  
was considered to be maximum 3 m. Thus, the maximum number of pipe dampers for this case study 

example was set to be 16 (should be a multiple of four as shown in Figure 1).  

4.2.1. Single span bridge 

Figure 5 demonstrates the variations in the deflection of the beam’s mid-span as a function of the initial 

flexural rigidity factor ( EIKn }1...,,6.0,5.0{ ) for the single span bridge excluding dampers ( 0pipe n ) 

and the one including 4, 8, 12 and 16 steel pipe dampers ( 16,12,8,4pipe n ) under the seven different 

earthquake scenarios. The results in Figure 5 indicate that, as expected, in the bridge systems without 

dampers, the maximum deflection of the beam under all seven selected earthquakes decreases as the flexural 



13 

 

rigidity increases. In general, this effect is more prominent for the initial flexural rigidity factors, nK , 

smaller than 0.8. However, it is shown that the maximum deflection of the bridge systems with steel pipe 

dampers can be considered to be practically independent of the initial flexural rigidity factor of the bridge. It 

can be noted by using 16 pipe dampers (only across 5% of the total beam length), the maximum response 

amplitude of the bridge was significantly (up to 75%) reduced, particularly for the systems with low initial 

flexural rigidity factors.  

The base line in Figure 5 shows the maximum deflection at the beam’s mid-span without pipe dampers (i.e. 

1nK  and 0pipe n ). The aim is to find the Initial Flexural Rigidity Factor nK , at which the maximum 

deflection of the beam with pipe dampers reaches the base line level. The reduction of the nK  is mainly 

achieved by reducing the size of the beam sections (slenderness of the base beam is assumed to be constant). 

This implies that, for the same performance target, using pipe dampers can considerably reduce the required 

structural weight. It is worth mentioning that the weight of these dampers is generally less than 1% of the 

total beam’s weight.   

For better comparison, Table 3 shows the required initial flexural rigidity factor nK  for the bridge systems 

with 16 pipe dampers to exhibit the same maximum mid-span deflection as the initial beam ( nK =1, 

0pipe n ) under the seven earthquake records. It is shown that by using 16 pipe dampers, the flexural 

rigidity of the main beams can be reduced by up to 27% (on average 16%).  

According to Table 3, the performance of the pipe dampers seems to be dependent on the two main 

parameters nM and )/(30 smVs . In general, as expected, the efficiency of the dampers increased by 

increasing the effect of vertical earthquake excitation ( nM ). Similarly, in case of stiff soils with high values 

of  )/(30 smVs , the performance of pipe dampers seems to be more profound. Based on the results, these 

two parameters can affect the response of the system independently. For instance, in case of the L’Aquila 

earthquake, although the nM  is negligible, due to the soil type (high value of )/(30 smVs ), pipe dampers 

could reduce the required flexural rigidity by 14%. In the opposite situation, under the Kobe earthquake with 

small value of )/(30 smVs  and high value of nM , utilizing the pipe dampers resulted in 17% reduction in 

the nK . In case of the Imperial valley, where both )/(30 smVs and nM were small, the efficiency of 

dampers was considerably less than the other earthquake scenarios. On the contrary, the pipe dampers 

exhibited their maximum efficiency (27% reduction in nK ) under Tabas seismic event, where both 

)/(30 smVs and nM  values were maximum.  
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Figure 5. Effect of initial flexural rigidity factor nK  on the variations of the single span beam deflection with and 
without dampers a) L'Aquila, b) Imperial Valley, c) Kobe, d) Mammoth Lakes, e) Loma Prieta, f) Northridge, g) 

Tabas 
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The Fourier amplitude spectra curves illustrated in Figure 6 indicate that the dominant fundamental 

frequencies affecting the structural response of the beam system under different earthquake events do not 

change significantly after using pipe dampers. 

 

 

 

 
 

Figure 6. Effect of Frequency on the Fourier Amplitude of beam deflection with and without dampers a) L'Aquila 
nK =0.86, b) Imperial Valley nK =0.95, c) Kobe nK =0.83, d) Mammoth Lakes nK =0.83, e) Loma Prieta 

nK =0.90, f) Northridge nK =0.80, g) Tabas, nK =0.73 
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Table 3. Effects of using steel pipe dampers and different initial flexural rigidity nK on the maximum single span 
bridge deflection under the seven selected earthquakes 

Number Event Vs30 
(m/s) 

Effect of vertical 
earthquake Mn (%) Kn Number of pipe 

dampers 
Maximum mid-

span deflection (m) 

1 L'Aquila, Italy 488 3.8 1 0 0.138 0.86 16 

2 Imperial Valley 213 6.0 1 0 0.141 0.95 16 

3 Kobe, Japan 312 103 1 0 0.270 0.83 16 

4 Mammoth 
Lakes 382 33.1 1 0 0.177 0.83 16 

5 Loma Prieta 462 24.1 1 0 0.165 0.9 16 

6 Northridge 298 35.3 1 0 0.180 0.8 16 

7 Tabas, Iran 766 98.5 1 0 0.264 0.73 16 
 

4.2.2. Multiple span bridge 

As indicated in Figure 7, a three-span bridge with simple ends and total length of m180L (each span is 

m 60 ) and 6L/d   is assumed. The pipe damper system is installed at the mid-span of each span (see 

Figure 7). The rest of the properties are the same as was assumed for the single span example. 

 
Figure 7. Schematic view of a three-span beam equipped with the pipe dampers system 

Figure 8 illustrates the spectrum of the maximum deflection at the mid-span as a function of the initial 

flexural rigidity factor nK . In addition, Table 4 shows the effects of using different number of steel pipe 

dampers and nK on the maximum deflection of the three-span bridge example under the seven selected 

earthquakes. 
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Figure 8. Effect of Initial Flexural Rigidity Factor nK  on the variations of three-span beam deflection with and 
without dampers a) L'Aquila, b) Imperial Valley, c) Kobe, d) Mammoth Lakes, e) Loma Prieta, f) Northridge, g) 

Tabas 
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Table 4. Effect of using different number of steel pipe dampers and Initial Flexural Rigidity nK on the maximum 
deflection of three-span beam under seven selected earthquakes 

Number Event Vs30 
(m/s) 

Effect of vertical 
earthquake Mn (%) Kn Number of pipe 

dampers 
Maximum mid-

span deflection (m) 

1 L'Aquila, Italy 488 5.0 1 0 0.045 0.72 8 

2 Imperial Valley 213 8.8 1 0 0.049 0.83 8 

3 Kobe, Japan 312 113.5 1 0 0.097 0.54 8 

4 Mammoth 
Lakes 382 22.4 1 0 0.055 0.64 8 

5 Loma Prieta 462 35.5 1 0 0.061 0.77 8 

6 Northridge 298 28.1 1 0 0.058 0.56 8 

7 Tabas, Iran 766 140.4 1 0 0.109 0.5 8 
 

Similar to the single span bridge example, utilizing the pipe damper system could considerably improve the 

dynamic performance of the three-span bridge system in the range of variation of initial flexural rigidity 

factor nK .  However, it can be noticed that the efficiency of the pipe damper system was more prominent in 

the three-span bridge. This can be due to the higher values of nM  in the three span bridge compared to the 

single span example in most of the selected earthquake events, and also utilizing three packs of dampers for 

the three-span bridge system. The results in Table 4 indicate that by employing 8 pipe dampers, the flexural 

rigidity of the main beam can be reduced up to 50% (on average 35%) in the three-span bridge example. 

 
5. Summary and Conclusions  
This study aimed to thoroughly assess the vibration phenomenon and develop a mitigation technique for 

simply supported bridge systems subjected to simultaneous effects of moving vehicles and vertical 

earthquake ground motion. Through an extensive analytical study using the Eigenfunction Expansion 

Method (EEM), it was shown that if a near-field earthquake with a strong vertical component strikes while 

vehicles are travelling across the bridge, depending on the frequency content of the earthquake, displacement 

response of the bridge could be severely intensified (even by 100%).  While the effects of vertical earthquake 

loads are usually ignored in the current design guidelines, this highlights the importance of considering the 

simultaneous effects of vertical earthquake excitation and vehicle loads in the design process of bridge 

systems in seismic regions. Subsequently, the efficiency of using steel pipe dampers were examined as a 

novel technique to mitigate the vibrations induced in single and multi-span simply-supported bridges. It was 

shown that the proposed system can significantly reduce the maximum response amplitude of the bridge (up 

to 75%) especially for the systems with low initial flexural rigidity factors. Regardless of the input 

earthquake characteristics, the maximum deflection of the bridge appeared to be less sensitive to the 

variations of flexural rigidity (commonly ties to environmental variations) when pipe dampers are employed 
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maximum deflection of the bridge appeared to be less sensitive to the variation of flexural rigidity 

(commonly ties to design uncertainties and environmental variations) when pipe dampers are employed. The 

results of this study indicated that the efficiency of pipe dampers generally improved by increasing the nM
 

and )/(30 smVs of the input earthquake. For the same maximum mid-span deflection limit, application of 

pipe dampers in bridges could reduce the required flexural rigidity of the single-span and multi-span systems 

by up to 27% and 50%, respectively, under the set of seven selected earthquake records. This implies that the 

proposed vibration mitigation method can potentially reduce the constructional costs by reducing the 

structural weight of the bridge system.   
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