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ABSTRACT 

A novel optimisation method is developed for optimum strengthening design of 2D multi-story steel moment 
resisting frames using buckling restrained brace (BRB) dampers and externally welded steel plates in 
compliance with ASCE 41-06. The proposed method is based on the concept of Uniform Distribution of 
Deformation (UDD), in which structural materials are redistributed from strong to weak parts of a structure 
until the material capacity is fully exploited. For the first time, an adaptive power function is introduced to 
improve the computational efficiency and convergence speed of the UDD optimisation method. The results of 
the proposed optimisation method are compared with metaheuristic optimisation methods using Genetic 
Algorithm (GA) and Particle Swarm Optimisation (PSO) for a three story and a nine story frame. The demand 
to capacity ratios of deformation-controlled and force-controlled structural members based on ASCE 41-06 are 
considered as design constraints in the optimisation process. The results demonstrate the efficiency of the 
proposed optimisation method in finding the optimum design solution with significantly less computational 
costs (up to 300 times less number of analyses) compared to both GA and PSO methods. It is shown that, in 
general, a more suitable distribution of dampers is accompanied by a more uniform distribution of demand to 
capacity ratios, which confirms the concept of UDD optimisation method.      
 
KEYWORDS: Optimum Seismic Rehabilitation, BRB Dampers, Genetic Algorithm, Particle Swarm 
Optimisation, Uniform Distribution of Deformation (UDD) Optimisation, Demand to capacity ratio. 
 
1. INTRODUCTION 

 
Significant human and financial losses caused by severe earthquakes in the last decade (e.g. Kashmir, 2005; 

China, 2008; Indonesia, 2009; Haiti, 2010; Turkey, 2011; Nepal, 2015) have highlighted the high seismic 
vulnerability of the existing building stock especially in developing countries. To improve the seismic 
performance of structures, either for new building design or strengthening purposes, different types of passive 
control systems have been introduced such as viscous, viscoelastic, friction and hysteretic dampers. To reduce 
human and economic losses in future earthquakes using limited available resources, it is crucial to assess the 
cost and benefit of any strengthening intervention [1]. This highlights the importance of developing efficient 
methods to obtain more cost effective design solutions. In one of the early attempts in this direction, Gurgoze 
and Muller [2] developed an energy-based method to identify the best position of viscous dampers in a linear 
multi-story shear model. Maximum displacement demand has been also used by several researchers (e.g. Zhang 
and Soong [3], Shukla and Datta [4] and Tsuji and Nakamura [5]) to find the best design of viscous dampers, 
where a greater damping coefficient is usually obtained for the stories with higher relative inter-story drift 
ratios.  

As the new generation of optimisation methods, metaheuristic algorithms have been also used for optimum 
strengthening/rehabilitation design of different types of structural systems. While earlier studies mainly applied 
Genetic Algorithm (e.g. [6-13]), other methods such as Artificial Bee Colony Algorithm [14], Backtracking 
Search Optimisation Algorithm [15], and Hybrid methods [16] were also adopted. In general, metaheuristic 
algorithms are suitable to obtain the best global optimum solution for non-linear systems. However, their 
convergence speed is relatively low and they are computationally expensive especially for more complicated 
problems. Therefore, these methods are not suitable for practical optimisation of non-linear passive control 
systems under dynamic earthquake excitations. 

Gradient-based algorithms are also applied to find the best design solutions for different passive control 
systems. Takewaki [17] developed a procedure to find the best placement of viscous dampers to reduce a 
transfer function related to the maximum inter-story drifts. It was shown that to improve the seismic 
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performance of the system, viscous dampers should be concentrated mainly in the stories with higher transfer 
function amplitude. In a follow up study, Takewaki et al. [18] used the steepest direction search method to 
obtain the best distribution of viscous dampers. In general, it has been shown that gradient-based algorithms can 
lead to optimum results in less number of iterations compared to the metaheuristic optimisation algorithms (e. g. 
[19-24]). However, they have some drawbacks such as convergence to local optimal solutions, difficult 
implementation, high computational effort needed to calculate derivatives of the objective functions at each 
load step and susceptibility to numerical noise [25, 26]. More recently, Nabid et al. [27, 28] developed a 
practical method for more efficient design of friction-based wall dampers and showed that the energy 
dissipation capacity of the dampers can be significantly increased by using a more appropriate distribution of 
friction forces. Altieri et al. [29] also used a linear approximation method (COBYLA) for reliability-bases 
optimal design of nonlinear viscous dampers for enhancing the seismic performance of steel moment resisting 
frames. They minimised the sum of the damper forces to reduce the damper cost, while the probability of 
structural failure was controlled under a stochastic earthquake input.  

In severe earthquakes, generally the deformation demand in some parts of the structures does not reach the 
maximum allowable level [30], which means the material capacity is not fully exploited. Therefore, it can be 
assumed that a status of uniform deformation demand is a direct consequence of the optimum use of material. 
The concept of Uniform Distribution of Deformation (UDD) can be easily adopted to find the optimum seismic 
design of different types of structural systems. In this method, to achieve the best design solution, inefficient 
material is gradually shifted from strong parts to weak parts of a structure until a state of uniform deformation 
or damage prevails. UDD algorithms have been used in different studies to find the optimum seismic design of 
shear buildings [31-35], concentrically braced frames [36], eccentrically braced frames [37, 38], reinforced 
concrete frames [39], and truss-like structures [26]. In the present study, for the first time, a Modified Uniform 
Distribution of Deformation (MUDD) algorithm is introduced for optimum strengthening design of multi-story 
steel moment resisting frames with buckling restrained brace (BRB) dampers by using adaptive convergence 
factors. While earlier studies on optimum strengthening mainly considered global responses such as inter-story 
drift or acceleration of stories as the performance measure, in this study the demand to capacity ratio (DCR) of 
the members is considered as the key performance criterion as per ASCE41-06 [40]. To show the efficiency of 
the proposed method, the results of the MUDD algorithm for optimum strengthening design of three-story and 
nine-story 2D steel moment resisting frames are compared with Genetic Algorithm (GA) and Particle Swarm 
Optimisation (PSO) metaheuristic optimisation methods.    

 
2 OPTIMISATION PARAMETERS 

 
2.1 Design Parameters 

 
The cross section of the adopted buckling restrained brace (BRB) damper is depicted in Fig. 1. The steel tube 

and the encasing mortar can prevent the buckling of BRB by confining the steel core. Since only the steel core 
carries the axial forces, the un-bonding material between the mortar and the steel core can cause relative 
displacements between these sections (see Fig. 1). The width of the steel core is considered a constant value of 
150 mm, while the thickness of the core is one of the design variables varying between 4 mm and 100 mm. For 
practical purposes, in each story the thicknesses of all BRB dampers are considered to be similar. It should be 
noted that the optimum design method proposed in this study is general and can be easily applied on other 
shapes of BRB dampers such as square or circular hollow tubes.  

 
Fig.1. Employed BRB cross-section 
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To increase the capacity of the structural members, additional plates are also welded to the beam and column 
elements when required. Fig. 2 shows the configuration of the welded plates in beam and column sections. The 
thickness of the welded plates considered in this study are 0 (no plate), 8, 10, 12, 14, 16, 18, 20, 22 or 24 mm.  

For a frame with the number of stories equal to SN , the variables vector (I) can be expressed according to 
Equation (1): 

 
 

es NjNi TTTTttttI ,...,,,,,,...,,,, 2121                          (1) 

 
where, it is the thickness of the steel core for the dampers in i th story, eN  represents the number of frame 

elements and jT   is the thickness of the externally welded steel plates for j th element. Considering that the 

width of the steel core in the BRB elements used in this study is assumed to be 0.15 m (see Fig. 1), the cross-
sectional area of the BRB core can be directly calculated based on the thickness of the steel core ( it ) using the 
following equation.  

 
tiAi  15.0                                                                                  (2) 

 
where, Ai is the cross-sectional area of the BRB core for the dampers in i th story in m2.  
 
 

 
Fig.2. Details of externally welded steel plates to frame elements: a) beams b) columns 

 
 
 

2.2 Design Constraints 
 
In this paper the demand to capacity ratio (DCR) limits of the structural members in compliance with 

ASCE41-06 [40] is considered as the design constraints. According to this standard, the chord rotation is the 
primary criterion to calculate the DCR of the deformation-controlled elements. Therefore, for the DCR of the 
beam elements (which are always considered to be deformation-controlled due to their flexural action) can be 
defined by Equation (3): 

 




beampbeamy
beam

beamDCR
,, 

                                               (3)
 

 
where  beam  is the total chord rotation of the beam,  beamy , is the yield rotation of the beam and  beamp , is 
the permissible plastic rotation of the beam determined in accordance with ASCE41-06 [40]. 

According to ASCE41-06 [40], the columns with the axial load, P, less than 50% of the lower-bound axial 
column strength, PCL, are deformation-controlled, while the columns with higher axial loads (i.e. P > 0.5PCL) 
shall be considered as force-controlled. Therefore, in this study the following equation is used to calculate the 
DCR of the force-controlled and deformation-controlled columns: 
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where  column  is the total chord rotation of the column,  columny , is the yield rotation of the column, and 

 columnp , is the permissible plastic rotation of the column determined in accordance with ASCE41-06 [40]. 

M x and M y  denote the bending moment in the column about x-axis and y-axis, respectively. Similarly, 

M xCL , and M yCL ,  show the lower-bound flexural strength of the column about the principal axes.   
In this study, a Nonlinear Static Procedure (NSP) is used to evaluate the design constraints in the above 

equations. The frames are subjected to gradually increasing lateral load with a load pattern based on the first 
mode until the target displacement calculated in accordance with ASCE41-06 [40] is achieved for seismic 
hazard levels of BSE-1 and BSE-2 as shown in Fig. 3. 

 

 

 

 

 

 

 

 

 

Fig.3. Design response acceleration spectrums for seismic hazard levels BSE-1 and BSE-2 

2.3 Objective Function 

In general, the main cost for seismic strengthening of steel structures with BRB dampers is determined by the 
cost of steel material used in the dampers and externally welded plates as well as the associated construction 
and installation costs. In this study, for simplicity, the total amount of the required material is considered as the 
objective function (F) of the optimisation process using the following equation: 

 
10021    PenaltyPenaltyBRBfF

                                                         (5) 
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where totA represents the sum of all BRB dampers’ cross-sectional area; BRBN is the total number of BRB 

dampers; minA and maxA are the minimum and maximum cross-sectional area of a single damper, respectively; 
PlateV is the total volume (or weight) of additional externally welded plates to the total volume (or weight) of 

the structural elements; and DCRi  is the demand to capacity ratio of ith element. To calculate minA and maxA  

(based on Equation 2), mint and maxt are assumed to be 4 mm and 100 mm, respectively. 

In the proposed objective function, f BRB , is the total area of the BRB dampers that is scaled based on the 

minimum and maximum possible area of dampers that can be practically used in the structure. This parameter 
varies from 1 to 2, for the case with minimum and maximum possible area of BRB dampers, 

respectively. 1Penalty  is a penalty factor corresponding to the use of externally welded plates due to their 

relatively higher construction and installation costs.  2Penalty  is a penalty factor that is used to ensure the 

optimum design solution satisfies the predefined performance target. 

 
3 MUDD ALGORITHM 

In this study, a Modified Uniform Distribution of Deformation (MUDD) algorithm is introduced to find the 
best thicknesses of the BRB dampers at different story levels that can satisfy the prescribed performance targets 
using minimum amount of structural material. In the proposed method, first the smallest thickness ( mint ) is 
assigned to all BRB dampers. The maximum demand to capacity ratio (DCR) of all beam and column elements 
at each floor is then calculated to identify the most critical stories. For example, the DCR of the second story in 
the frame shown in Fig. 4 is equal to the largest DCR of the specified members. 

  

 
Fig.4. Relevant members to the second story. 

 
Subsequently, the thickness of the BRB dampers at the stories with DCR values higher and lower than the 

allowable performance limit is increased and decreased, respectively, by using an iterative method. To have 
good convergence, the following equation is suggested to modify the thickness of the BRB dampers at each 
step: 

 

nettDCRniDCRnettDCR
nettDCRniDCR

ninini tt
,arg,,arg

,arg,

,1,,1




                              (10) 

 



 

6 
 

where
 nit , is the thickness of BRB damper used at nth story in ith iteration; niDCR , is the DCR of nth story in ith 

iteration; nettDCR ,arg is the target DCR of nth story, and ni ,1  is the adjustment coefficient for nth story in 
(i+1)th iteration. Parameter   can directly control the convergence speed of the optimisation process. Fig. 5 
shows that using higher   values results in more significant changes in the thickness of dampers at each step. 
Therefore, this factor plays an important role in the convergence of the proposed optimisation process. In this 
study, a constant  value of 1.2 is utilized to provide a balance between accuracy and convergence speed. 

 
Fig.5. Influence of    on the variation of the thickness of dampers at each step 

 
 
While according to ASCE41-06 [40], all columns with P/PCL <0.5 are considered to be deformation-controlled, 
the allowable plastic rotation capacity is considerably higher for the columns with P/PCL<0.2. It means that 
increasing the axial load may reduce the deformation capacity of the column elements. While an increase in the 
thickness of the dampers can reduce the lateral displacements and rotation demands of the structural elements, 
the additional stiffness will increase the axial loads in the BRB dampers and their adjacent columns. This can 
thereby reduce the deformation capacity of these members and hence increase their DCR. To address this issue, 
if the axial load in a column with the largest DCR in a story changes the ASCE41-06 acceptance criteria, the 
DCR of the column is reduced by using externally welded plates as discussed in previous section (see Fig. 2). 
Using MUDD algorithm, the following procedure is suggested for optimum strengthening design of multi-story 
steel structures: 

1. Analysing the vulnerable structure under the design earthquake to calculate the DCR of all structural 
elements using the Nonlinear Static Procedure (NSP) based on ASCE41-06 [40]. At this stage a 
minimum thickness is assigned to all BRB dampers. 

2. Modifying the thickness of the BRB dampers at each story according to Equation (10). 
3. Adding externally welded plates to the required elements according to ASCE41-06 acceptance criteria. 
4. Analysing the structure under the design earthquake according to the changes occurred in Steps 2 and 

3. 
5. If at least one of the conditions defined in Equations (11) and (12) is satisfied, the optimisation 

procedure will be terminated. Otherwise, the optimisation procedure will be repeated from Step 2. 
 

005.0,arg,  nettni DCRDCR                                                          (11) 

, 

min,1 tt ni  , nettni DCRDCR ,arg,                                                    (12) 

 
The first condition is to check if the DCR at all stories is close enough to the target value. It should be noted 
that in some cases (e.g. if the thickness of the BRB dampers is minimum) the DCR at some stories may be 
lower than the target value. In this case, the latter condition is considered to end the optimisation process. In this 
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study, the target DCR for all stories was considered to be 0.995 (i.e. 995.0,arg nettDCR ). It should be 
noted that in the proposed optimisation method, the externally welded steel plates are only used when the 
maximum size of BRB dampers cannot satisfy the ASCE41-06 [40] design requirements. This ensures that the 
minimum amount of steel plates is utilised in the final design solution, due to the additional construction costs 
required to weld the external plates.   
 

 
4 GENETIC AND PARTICLE SWARM OPTIMISATION ALGORITHMS  

Genetic Algorithms (GA) [41] and Particle Swarm Optimisation (PSO) [42] are two popular stochastic search 
methods that have been widely used to obtain the global optimum solution of complex nonlinear problems. In 
the first step, these methods generate a population of candidate solutions. Subsequently, according to the 
objective function and the adopted method, they produce better solutions over successive generations whereby 
the fittest individuals survive and reproduce. In general, GA methods have three primary operators including 
Selection, Crossover and Mutation. A penalty resulting from violating a design constraint in GA results in a 
reduced opportunity for parent properties to be passed on to the next generation. On the other hand, PSO is a 
population-based algorithm, which is inspired by the swarming behaviour of biological populations such as 
flocks of birds or schools of fish. Unlike GA, solutions are optimised by updating generations without any 
evolution operators such as crossover or mutation.  

In this study, the GA and PSO metaheuristic algorithms were used to assess the adequacy of the proposed 
MUDD algorithm. The Optimisation Toolbox in Matlab [43] was used to perform GA optimisation, while the 
methodology developed by Perez and Behdinan [44] was adopted for PSO. For GA optimisation, the Roulette, 
Heuristic and Uniform functions in Matlab [43] were utilised for Selection, Crossover and Mutation operators, 
respectively. The Roulette selection function chooses the parents by assuming that the area of the section 
corresponding to an individual is proportional to its expectation. The algorithm is then uses a random number to 
select one of the sections with a probability equal to its area. The Heuristic cross over function returns a child a 
small distance away from the better parent (i.e. better fitness value) in the direction away from the parent with 
the worse fitness value. The Uniform mutation function creates a random initial population with a uniform 
distribution. The most important setting parameters to control the convergence of PSO algorithm are cognitive 
parameter, social parameter and Inertia Weight. Using inappropriate parameters can result in destabilization of 
the optimisation process or lead to premature convergence. In this study, the cognitive and social parameters 
were set to be equal to 2 as recommended by Perez and Behdinan [44]. The Inertia Weight was also changed 
between 1.2 to 0.9 with each iteration using the dynamic decrease function proposed by Fourie and Groenwold 
[45]. 

 
 
 

5 MODELLING AND ASSUMPTIONS 

A three-story and a nine-story moment resisting steel frame are designed as case study examples to 
investigate the efficiency of the proposed optimisation method in this study. In this study, the analyses were 
conducted on 2D frame models. The geometry, loading condition and material characteristics of the frames are 
similar to the FEMA-SAC buildings located in Los Angeles [46]. Figs. 6 and 7 show the frame layout, location 
of BRB dampers, and beam and column section sizes of the three-story and the nine-story frames, respectively. 
The utilized lateral load resisting system in these buildings consists of four independent moment resisting 
frames in perpendicular directions separated by hinge connections. According to ASCE41-06 [40], the seismic 
performance of these frames was evaluated under the following load combination:  

ELLDL  1.11.1                                                                    (13) 
 
where DL, LL and E represent the design “Dead Loads”, “Live Loads” and “Earthquake Loads”, respectively. 

Opensees software [47] was used for nonlinear static analyses of the frames under seismic loads. To model 
BRBs damper, the Corot Truss element in Opensees [47] was used. The steel core was modelled using fiber 
elements with the Yield stress of 36 ksi (24.83 kN/cm2). The P-delta effects were considered in the pushover 
analyses by taking into account all leaning columns as suggested by Foutch and Yun [48]. 
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Fig.6. The frame layout, location of dampers, and beam and column section sizes, three-story frame 

 
 
 

 
Fig.7. The frame layout, location of dampers, and beam and column section sizes, nine-story frame 
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6 RESULTS AND DISCUSSIONS 

6.1 Three-story frame 

The performance (or strengthening) target for the three-story frame was to achieve Immediate Occupancy 
(IO) for the seismic hazard level of BSE-1 [40]. As shown in Fig. 6, the selected frame has 15 column and 12 
beam elements and 8 BRB dampers. The design variables in this case where the thickness of the steel core for 
the dampers at each story and the is the thickness of the externally welded steel plates for the beam and column 
members (i.e. 30 design variables in total). Fig. 8 shows the variation of the objective function, F, during the 
optimisation process using MUDD algorithm. While the selected objective function was not directly used in the 
MUDD optimisation algorithm, its descending trend clearly shows the efficiency of the proposed method to 
reduce the required structural weight by using the concept of uniform distribution of deformation demands. It is 
shown in Fig. 8 that the convergence was practically achieved after only 70 steps. The local increments in the 
objective function in Fig. 8 are mainly associated to the changes in the permissible plastic rotation of columns 
due to the variation of the axial loads during the optimisation process. As mentioned before, according to 
ASCE41-06 [40], the permissible plastic rotation of the deformation-controlled columns, columnp, , is different 

for the columns with P/PCL>0.2 and P/PCL<0.2. 

 

 
Fig.8. Variation of the objective function for optimal strengthening of the three-story frame using MUDD 

algorithm 
 
Fig. 9 shows the variation of the DCR of all stories during the optimisation process using MUDD algorithm. 

As discussed before, the increase in the DCR of the first and second story in the fifth iteration is due to the 
changes in the  columnp,  of a few deformation-controlled columns. Fig. 10 illustrates the variation of the 
externally welded plates’ volume during the optimisation process. It can be seen that by increasing the DCR of 
the stories in the fifth iteration, MUDD algorithm added some externally welded plates to the weak columns in 
order to compensate the changes in their permissible plastic rotation. Consequently, it is shown in Figs. 8 and 9 
that this modification resulted in a decrease in the DCR of the first and the second story as well as the objective 
function in the sixth iteration. 

For comparison purposes, the above optimisation problem was solved again by using GA and PSO methods. 
The analyses were started with a population size of 100 individuals and the optimisation was run three times 
using each method. The best solution (i.e. with the minimum value of objective function) was then compared 
with the results of MUDD algorithm. The repeated optimisations are represented by GA-1, GA-2, GA-3 and 
PSO-1, PSO-2, PSO-3 for GA and PSO methods, respectively. The GA and PSO algorithms were terminated at 
an assigned maximum number of iterations equal to 350 (i.e. 35000 number of analyses). For better 
comparisons, Fig. 11 shows the variation of the objective functions at different iterations. 
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Fig.9. Variation of DCR of stories using MUDD algorithm 

 

 
Fig.10. Variation of externally welded plates’ volume using MUDD algorithm 

 
 
To compare the number of iterations required to reach the optimum design solution using different 

algorithms, the objective function one percent above the final answer was considered as the bench mark. Based 
on the results in Figs. 9 and 11, to achieve the optimum answer, MUDD, GA and PSO methods require around 
90, 27200 and 24000 iterations, respectively. This highlights the efficiency of the proposed MUDD method to 
converge to the optimum solution in significantly less number of iterations (or analyses) compared to both GA 
and PSO methods. Also it can be noted that the in general PSO algorithm converged to the optimum answer 
faster than GA.  

Figs. 12 and 13 show the sum of BRBs thicknesses at different stories as well as the thicknesses of the 
required externally welded plates (to control the DCR of the structural elements) using MUDD, PSO and GA. 
The element numbers are given in Fig. 6. Overall, the results indicate that the selected methods provided very 
similar design solutions with the additional plates mainly assigned to the elements 4, 5, 6, 9, 10, 11 and 12. It 
demonstrates the efficiency of the methodology used to obtain the required externally welded plates in MUDD 
algorithm that can significantly simplify the complex optimisation process.  
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Fig.11. Variation of the objective function for optimal strengthening of the three-story frame using: a) GA; b) 

PSO  

 

  
     Fig.12. Optimum distribution of BRBs cross-sectional areas using MUDD, PSO and GA, three-story 

frame 
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 Fig.13. Thickness of the additional externally welded plates required for optimum strengthening of structural 

elements, three-story frame 

For a better comparison, the final optimisation results obtained by different optimisation algorithms are listed 
in Table 1. It is shown that GA, PSO and MUDD methods led to the design solutions with the objective 
functions of 209.1, 207.5 and 208.3, respectively. The objective function of the MUDD algorithm was slightly 
better than GA and only 0.5% higher than that of the PSO method. This indicates that the MUDD algorithm was 
capable to converge to the optimum design solution with significantly lower computational efforts (i.e. up to 
300 times less number of analyses) compared to both GA and PSO methods.  

 
Table 1 Comparison of the optimum design solutions using GA, PSO and MUDD optimisation methods, 

three-story frame. 

Optimisation 
method 

Sum of BRB plate cross-
sectional areas (cm2) 

Volume of added 
plates (cm3) 

Number of 
analyses 

Objective 
function 

GA 712 268×103 27200 209.1 

PSO 588 317×103 24000 207.5 

MUDD 681 243×103 90 208.3 
 

Fig. 14 compares the distribution of DCRs of the stories for the three-story bare frame (before strengthening) 
with the frames optimised using different methods. While the initial structure did not satisfy the target 
performance-based design requirements, all three optimisation methods led to acceptable design solutions (i.e. 
DCRs <1). It is shown that GA, PSO and MUDD methods all led to the design solutions with uniform 
distribution of DCRs, where the maximum demand to capacity ratios of all stories reached the target value (i.e. 
DCR=0.995). This can verify the adequacy of the using the concept of uniform distribution of demands in 
obtaining the best design solutions using minimum structural weight. 
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Fig.14. Distribution of DCRs of the stories for the three-story bare frame and the frames retrofitted using 

different optimisation methods 
 
6.2 Nine-story frame 

 
In this section, the nine-story moment resisting steel frame shown in Fig. 7 is retrofitted to satisfy the 

performance level of Life Safety (LS) under ASCE 41-06 BSE-2 seismic hazard level. The selected frame has 
54 column and 45 beam elements and 20 BRB dampers. Fig. 15 shows the variation of the objective function 
with the number of iterations using the MUDD optimisation algorithm. The results indicate that the MUDD 
algorithm reached a design solution with the objective function of 123.6 after 73 iterations. MUDD algorithm 
assigned externally welded plates with the thickness of 8 mm to the elements 46, 48, 49, and 50 (element 
numbers are given in Fig. 7). Considering the target objective function one percent above the final answer, it 
can be concluded that the convergence was practically achieved after only 72 steps. It should be noted that by 
considering the thicknesses of the externally welded plates as design variables for optimum strengthening of the 
nine-story frame, the search space would be up to 1099 times larger than the case where only the distribution of 
BRB dampers is considered. This makes it impractical to use computationally expensive optimisation methods 
such as GA and PSO. For this reason, the nine-story frame was designed in such a way that the BRB elements 
can satisfy the ASCE 41-06 design requirements without using externally welded plates. Therefore, the design 
variables in this case where the thickness of the steel core for the BRB dampers at each story. 

 For GA and PSO, the population size was set to be 60 and each algorithm was repeated three times, using 
different random initial populations, to obtain the best design solution with minimum BRB weight. The 
predefined iteration number for Genetic Algorithm and PSO method was considered to be 12000 (i.e. in total 
over 2 million analyses for each method). The repeated optimisations are represented by GA-1, GA-2, GA-3 
and PSO-1, PSO-2, PSO-3 for GA and PSO methods, respectively. 
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Fig.15. Variation of the objective function for optimal strengthening design of the nine-story frame using 

MUDD algorithm. 
 
Fig. 16 compares the objective function of GA and PSO methods for optimum design of the nine-story frame 

in different iterations. It is shown that, GA and PSO methods reached the optimum design solution after almost 
8700 and 4200 iterations, respectively. While the results demonstrate the faster convergence of PSO compared 
to GA, both methods are too computationally expensive to be practical when compared with MUDD method. 

Fig. 17 shows the height-wise distribution of the total BRB required thicknesses (proportional to the total 
BRB weight) for the nine-story frame optimised using MUDD, PSO and GA methods. The details of the final 
optimisation results are also provided in Table 2. The results indicate that MUDD algorithm led to the lowest 
objective function, which is 2% and 17% lower than that of GA and PSO methods, respectively. Furthermore, it 
is shown in Table 2 that the total BRB required thicknesses (or weight) for the GA and PSO design solutions 
are around 22% and 167% higher than the MUDD algorithm. This confirms again the capability of the proposed 
MUDD method to converge to the optimum global design solution (even better than GA and PSO) in only a few 
iterations. 

The height-wise distribution of DCR in the nine-story bare frame (before strengthening) and the optimum 
retrofitted design solutions using GA, PSO and MUDD methods are compared in Fig. 18. While the initial 
structure exceeded the maximum allowable demand to capacity ratios at the bottom six stories, all three 
optimisation methods led to acceptable design solutions (i.e. DCR<1). It can be noted that the optimised 
structures also exhibited a more uniform distribution of demand to capacity ratios compared to the initial frame. 
It is worth mentioning that BRBs at the top three stories of GA, PSO and MUDD optimum solutions have the 
minimum acceptable thickness (see Equation (12)), and therefore, it was not possible to reduce the DCRs of 
these stories to achieve a more uniform distribution.  
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Fig.16. Variation of the objective function for optimum strengthening design of the nine-story frame using: a) 

GA; b) PSO Algorithm 
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Fig.17. Optimum distribution of BRB required thicknesses using MUDD, PSO and GA methods, nine-story 

frame 
  

 
Fig.18. Distribution of DCRs of the stories for the bare frame and the frames retrofitted using GA, PSO and 

MUDD optimisation methods, nine-story frame 
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Table 2 Comparison of the optimum design solutions using MUDD, PSO and GA methods, nine-story frame. 
Optimisation 

method 
Sum of BRB plate cross-
sectional areas (cm2) 

Volume of added 
plates (cm3) 

Number of 
analyses 

Objective 
function 

GA 342 --- 8700 126.4 

PSO 340 --- 4200 126.2 

MUDD 281 --- 72 123.6 

 
 

7 CONCLUSIONS 

A novel performance-based optimisation method (MUDD) was introduced, based on the concept of uniform 
distribution of deformation demands, for strengthening design of multi-story steel moment frames using 
buckling restrained brace (BRB) dampers and externally welded steel plates. The proposed method was applied 
for optimum strengthening design of a three and a nine-story frame to satisfy Immediate Occupancy (IO) and 
Life Safety (LS) performance targets under BSE-1 and BSE-2 seismic hazard levels, respectively. The results 
were then compared with metaheuristic optimisation methods using Genetic Algorithms (GA) and Particle 
Swarm Optimisation (PSO). While the initial structures before strengthening did not satisfy the target design 
requirements, all three optimisation methods led to acceptable design solutions. The results indicated that the 
proposed MUDD method is capable of converging to the optimum global design solutions with the objective 
functions very close to those of GA and PSO methods, while it is significantly less computationally expensive. 
For example, it was shown that for the three-story frame GA and PSO methods require over 27000 and 24000 
number of analyses to converge to the optimum solution, respectively, while by using MUDD the optimum 
design solution is achieved only after 90 iterations. A similar trend was also observed for the nine-story frame. 
The descending trend of the objective function (total structural weight required for strengthening) during the 
MUDD optimisation process highlighted the efficiency of using the concept of uniform distribution of 
deformation demands to simplify the optimisation process. This conclusion was further confirmed by the 
observation that the methods with lower objective functions (i.e. less required structural weight) in general 
exhibit a more uniform distribution of demand to capacity ratios (DCRs). Therefore, the computationally 
efficient optimisation methodology proposed in this study should prove useful in performance-based 
strengthening design of multi-story steel structures. 

    

REFERENCES 

1. FEMA 255, Seismic rehabilitation of federal buildings: a benefit/cost model, Federal Emergency 
Management Agency, USA, 1994. 

2. M. Gurgoze & P.C. Muller, Optimal positioning of dampers in multi-body systems, Journal of Sound and 
Vibration, 158 (1992), 517-530. 

3. R.H. Zhang & T.T. Soong, Seismic design of viscoelastic dampers for structural applications, Journal of 
Structural Engineering, 118 (1992), 1375-1392. 

4. A.K. Shukla & T.K. Datta, Optimal use of viscoelastic dampers in building frames for seismic force, Journal 
of Structural Engineering, 125 (1999), 401-409. 

5. M. Tsuji & T. Nakamura, Optimum viscous dampers for stiffness design of shear buildings, The Structural 
Design of Tall Buildings, 5 (1996), 217-234. 

6. M.P. Singh & L.M. Moreschi, Optimal placement of dampers for passive response control, Earthquake 
Engineering and Structural Dynamics, 31 (2002), 955–976. 

7. L.M Moreschi & M.P. Singh, Design of yielding metallic and friction dampers for optimal seismic 
performance, Earthquake Engineering and Structural Dynamics, 32 (2003), 1291–1311. 

8. J.A. Bishop & A.G. Striz, On using genetic algorithms for optimum damper placement in space trusses, 
Structural and Multidisciplinary Optimization, 28 (2004), 136-145. 

9. A.G. Dargush & R.S. Sant, Evolutionary aseismic design and retrofit of structures with passive energy 
dissipation, Earthquake Engineering and Structural Dynamics, 34 (2005), 1601–1626. 

10. F. Farhat , S. Nakamura & K. Takahashi, Application of genetic algorithm to optimization of buckling 
restrained braces for seismic upgrading of existing structures, Computers and Structures, 87 (2009), 110-
119. 

11. G. Apostolakis & G.F. Dargush, Optimal seismic design of moment-resisting steel frames with hysteretic 
passive devices, Earthquake Engineering and Structural Dynamics, 39 (2010), 355–376. 



 

18 
 

12. L.F.F Miguel, L.F.F. Miguel & R.H. Lopez, Robust design optimization of friction dampers for structural 
response control, Structural Control and Health Monitoring, 21 (2014), 1240-1251. 

13. N.S.H. Muhammad, E.U. Mehmet, Investigating the optimal passive and active vibration controls of 
adjacent buildings based on performance indices using genetic algorithms, Engineering Optimization, 47 
(2015), 265-286.  

14. M. Sonmez, E. Aydin & T. Karabork, Using an artificial bee colony algorithm for the optimal placement of 
viscous dampers in planar building frames, Structural and Multidisciplinary Optimization, 48 (2013), 395–
409. 

15. L.F.F Miguel, L.F.F. Miguel & R.H. Lopez, Simultaneous optimization of force and placement of friction 
dampers under seismic loading, Engineering Optimization, 2015, 10.1080/0305215X.2015.1025774.  

16. F. Amini, P. Ghaderi, Hybridization of Harmony Search and Ant Colony Optimization for optimal locating 
of structural dampers, Applied Soft Computing, 13 (2013), 2272-2280. 

17. I. Takewaki, Optimal damper placement for minimum transfer functions, Earthquake Engineering and 
Structural Dynamics, 26 (1997), 1113-1124. 

18. I. Takewaki, S. Yoshitomi, K. Uetani & M. Tsuji, Non-monotonic optimal damper placement via steepest 
direction search, Earthquake Engineering and Structural Dynamics, 28 (1999), 655-670.   

19. M.P. Singh & L.M. Moreschi, Optimal seismic response control with dampers, Earthquake Engineering and 
Structural Dynamics, 30 (2001), 553-572. 

20. J.H. Park, j. Kim & K.W. Min, Optimal design of added viscoelastic dampers and supporting braces, 
Earthquake Engineering and Structural Dynamics, 33 (2004), 465–484. 

21. G.P. Cimellaro , Simultaneous stiffness–damping optimization of structures with respect to acceleration, 
displacement and base shear, Engineering Structures, 29 (2007), 2853–2870. 

22. E. Aydin, M.H. Boduroglu & D. Guney , Optimal damper distribution for seismic rehabilitation of planar 
building structures, Engineering Structures, 29 (2007), 176–185. 

23. Y. Daniel & O. Lavan, Gradient based optimal seismic retrofitting of 3D irregular buildings using multiple 
tuned mass dampers, Computers and Structures, 139 (2014), 84-97. 

24. O. Lavan, Optimal design of viscous dampers and their supporting members for the seismic retrofitting of 
3D irregular frame structures, Journal of Structural Engineering, 141 (2015): 04015026. 

25. D. Venter, Review of optimization techniques, in: Encyclopedia of Aerospace Engineering, Blockley R., 
Shyy W., John Wiley & Sons, UK, 5229–5238, 2010. 

26. I. Hajirasouliha, K. Pilakoutas & H. Moghaddam, Topology optimization for the seismic design of truss-like 
structures, Computers and Structures, 89 (2011), 702-711. 

27. N. Nabid, I. Hajirasouliha & M. Petkovski, A practical method for optimum seismic design of friction wall 
dampers. Earthquake Spectra, 33 (2017), 1-20. 

28. N. Nabid, I. Hajirasouliha & M. Petkovski, Performance-based optimisation of RC frames with friction wall 
dampers using a low-cost optimisation method. Bulletin of Earthquake Engineering, 16 (2018), 5017-5040. 

29. D. Altieri, E. Tubaldi, M.D. Angelis, E. Patelli, D. Asta, Reliability-based optimal design of nonlinear 
viscous dampers for the seismic protection of structural systems, Bull Earthquake Eng, 2017 (DOI 
10.1007/s10518-017-0233-4). 

30. A.K. Chopra, Dynamic of Structures: Theory and applications to earthquake engineering, 4th Edn, Prentice 
Hall Inc., London, UK, 2012. 

31. R. Karami Mohammadi, Effects of shear strength distribution on the reduction of seismic damage of 
structures, PhD thesis, Civil Engineering Dept., Sharif University of Technology, Tehran, Iran, 2001. (In 
Persian) 

32. R. Karami Mohammadi, M.H. El Naggar & H. Moghaddam, Optimum strength distribution for seismic 
resistant shear buildings, International Journal of Solids and Structures, 41 (2004), 6597–6612. 

33. H. Moghaddam & I. Hajirasouliha., Toward more rational criteria for determination of design earthquake 
forces, International Journal of Solids and Structures, 43 (2006), 2631–2645. 

34. H. Moghaddam & I. Hajirasouliha, Optimum strength distribution for seismic design of tall buildings, The 
Structural Design of Tall and Special Buildings, 17 (2008), 331-349.  

35. I. Hajirasouliha & H. Moghaddam, New Lateral Force Distribution for Seismic Design of Structures, 
Journal of Structural Engineering, 135 (2009), 906-915. 

36. H. Moghaddam, I. Hajirasouliha, A. Doostan, Optimum seismic design of concentrically braced steel 
frames: concepts and design procedures, Journal of Constructional Steel Research, 61 (2005), 151–166. 

37. R. Karami Mohammadi & Z.S. Moussavi Nadoushani, Optimum design of eccentrically braced frames 
using endurance time method, 15WCEE, Lisboa, Portugal, 2012. 

38. R. Karami Mohammadi & A.H. Sharghi, On the optimum performance-based design of eccentrically braced 
frames, Steel and Composite Structures, 16 (2014), 357-374. 

39. I. Hajirasouliha, P. Asadi & K. Pilakoutas, An efficient performanceǦbased seismic design method for 
reinforced concrete frames, Earthquake Engineering and Structural Dynamics, 41 (2012), 663–679. 



 

19 
 

40. ASCE41/SEI-06, Seismic rehabilitation of existing buildings, American Society of Civil Engineers, Reston, 
Virginia, 2007. 

41. W. Ma, J. Becque, I. Hajirasouliha & J. Ye, Cross-sectional optimization of cold-formed steel channels to 
Eurocode 3, Engineering Structures, 101 (2015), 641-651. 

42. J. Ye, I. Hajirasouliha, J. Becque & A. Eslami, Optimum design of cold-formed steel beams using Particle 
Swarm Optimisation method, Journal of Constructional Steel Research, 122 (2016), 80-93. 

43. Mathworks, Matlab R2011a, Mathworks, Inc., 2011. 
44. R.L. Perez and K. Behdinan, Particle swarm approach for structural design optimization, Computers and 

Structures, 85 (2007), 579-1588. 
45. P. Fourie, A. Groenwold, The particle swarm optimization algorithm in size and shape optimization. Struct 

Multidiscip Optimiz, 23 (2002), 259–67. 
46. SAC Joint Venture., State of art report on systems performance of moment resisting steel frames subject to 

earthquake ground shaking. SAC Report No. FEMA 355c, FEMA, Washington, DC, 2000. 
47. Opensees Development Team, OpenSees: Open System for Earthquake Engineering Simulations, Version 

2.4.0, Berkeley, CA, 2012. 
48. D.A. Foutch & S.Y. Yun, Modeling of steel moment frames for seismic loads, Journal of Constructional 

Steel Research, 58 (2002), 529–564. 


