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ABSTRACT: The Capitanian (Guadalupian) witnessed one of the major crises of the Phanerozoic and, 

like many other extinctions, it coincided with the eruption of large igneous province, in this case the 

Emeishan Traps of Southwest China. However, the timing and causal relationships of this event are in 

dispute. This study concentrates on the deep-water chert-mudstone strata of the Gufeng Formation and 

its transition to the Yinping Formation at Chaohu. Zircons from tuffs in the uppermost Gufeng Formation 

yield a U-Pb age of 261.6 ± 1.6 Ma, and comparison with sections around Emeishan suggests that they 

appeared in the Jinogondolella altudaensis conodont zone and persisted to the Jinogondolella 

xuanhanensis zone. This coincides with the Emeishan eruptions, and suggests that they probably derived 

from this province. Mineralogical and geochemical characteristics also show the tuffs are of acid 

volcanogenic origin and have a geochemical fingerprint of the ELIP. Our dating show that a crisis amongst 

radiolarians and a subsequent productivity decline occurred during the middle Capitanian, prior to the 

Guadalupian-Lopingian boundary. The Emeishan eruptions began immediately before this, indicating a 

likely causal relationship between these events. Major regression and marine anoxia/euxinia are two 

other important extinction-relevant environmental changes that occurred during this critical interval. 

 

The late Guadalupian crisis was of comparable magnitude to other mass extinctions (e.g., 

end-Triassic or end-Ordovician, Stanley and Yang 1994; Clapham et al. 2009; Wignall 2015; Stanley et al., 
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2016) with nearly 62 % species and 34 % marine genera extinction (Stanley et al., 2016) and was originally 

named ƚŚĞ ͞GƵĂĚĂůƵƉŝĂŶ-Lopingian boundary (G-LBͿ ĞǀĞŶƚ͟ ;Stanley and Yang 1994) and is now more 

often known as the Capitanian mass extinction (Bond et al. 2010a). It is considered to mark the start of 

the Paleozoic-Mesozoic transition in the marine realm (Isozaki 2009b; Bond et al. 2015). The age of the 

crisis is currently debated with estimates ranging from the Wordian-Capitanian transition (Gand and 

Durand 2006; Lucas 2009; Shen and Shi 2009; Groves and Wang 2013) to the early Lopingian (Nielsen and 

Shen 2004; Kaiho et al. 2005), with most favouring either an end-Guadalupian (end-Capitanian, Wang and 

Sugiyama 2000; Leven 2003; Yang et al. 2004; Retallack et al. 2006; Isozaki 2009a,b) or mid-Capitanian 

(Wignall et al. 2009a; Bond et al. 2010a,b; De la Horra et al. 2012; Wignall et al. 2012; Isozaki & Servais, 

2018) age. In order to be consistent and clear in the following text, from herein we refer to this event as 

ƚŚĞ ͚͛CĂƉŝƚĂŶŝĂŶ ŵĂƐƐ ĞǆƚŝŶĐƚŝŽŶ͛͛͘  

The cause of the Capitanian mass extinction is equally debated with several mechanisms proposed: 

regression and consequent shallow-marine habitat loss (e.g., Jin et al. 1994; Shen and Shi 2002; Clapham 

et al. 2009; Bond and Wignall 2009; Wignall et al. 2009b), explosive eruptions of the Emeishan large 

igneous province (ELIP, e.g., Ali et al. 2002; Zhou et al. 2002; He et al. 2007; Wignall et al. 2009a; Bond et 

al. 2010b; Huang et al., 2019), oceanic anoxia (e.g., Isozaki 1997; Saitoh et al. 2013a,b; Yan et al. 2013; 

Saitoh et al. 2014; Bond et al. 2015; Zhang et al. 2015) a proposed end-Capitanian cooling phase known 

as the Kamura event (e.g. Isozaki et al. 2007). 

Previous stratigraphic research on the Capitanian mass extinction event focused on fossiliferous, 

shallow marine Tethyan carbonates (e.g. Penglaitan and Tieqiao sections; Wang et al. 2004; Shen et al. 

2007; Shen and Shi 2009; Zhang et al. 2015), the mid-superocean Panthalassa (e.g., Gujohachiman and 

Kamura sections, Japan; Ota and Isozaki 2006; Isozaki et al. 2007; Wignall et al. 2010; Nishikane et al. 

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

 by guest on February 17, 2019http://jgs.lyellcollection.org/Downloaded from 

http://jgs.lyellcollection.org/


 

2014) and mid-high latitude, Boreal shelf sections (Bond et al. 2015). The study of this interval is hindered 

by the major regression in the late Guadalupian (Haq and Schutter 2008; Wignall et al. 2009b), which 

resulted in worldwide erosion and the development of unconformities on shelves and platforms (Jin et al. 

2006; Wignall et al. 2012). Consequently, many sections have a major hiatus around the key extinction 

level (e.g., Ota and Isozaki 2006; He et al. 2007; Lai et al. 2008; Saitoh et al. 2013a; Yuan et al. 2017). In 

addition, a proposed pre-eruptive crustal uplift of the ELIP likely promoted increased weathering and 

erosion rates (Hu 1993; He et al. 2003, 2009). In contrast, the deep-water slope/basin facies offer more 

complete sedimentary records due to their greater water depth and can preserve a more detailed record 

of events at this time. 

During the Guadalupian, a biostratigraphically complete, deep-water slope/basin succession with 

bedded chert-mudstone sequences was deposited on the northern margin of the Yangtze platform in 

South China. However, due to poor biostratigraphic resolution and lack of precise geochronological ages 

for stratigraphic boundaries, research on the Capitanian mass extinction event in this region is limited. 

Fortunately, due to recent mining and excavation, we have been able to study a relatively complete, 

newly exposed Guadalupian section at Pingdingshan, Chaohu City, Anhui Province.  

In this paper, we present a multidisciplinary study that includes stratigraphic, palaeontological, 

geochronological and geochemical data from the Pingdingshan section in order to evaluate the horizon of 

the Capitanian mass extinction and related geological events (ELIP eruption, regression and marine 

anoxia), enable comparison with other sections around the world and discuss kill mechanisms. 

Geological setting 

Palaeogeographic setting 

As a large northeast-southwest trending carbonate platform, the Yangtze area in South China was 
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located in the equatorial eastern Paleo-Tethys Ocean (Enkin et al. 1992; Wang and Jin 2000) and is 

postulated to have experienced intensive, periodic trade wind upwelling during the Guadalupian 

(Kametaka et al. 2005; Yao et al. 2015; Zhang et al., 2018) (Fig. 1a). The chert-mudstone rhythms of the 

Gufeng Formation accumulated in widespread, deep-water shelf basins in the northern and southern 

margins of the Yangtze Platform, and were laterally equivalent to the carbonate-dominated Maokou 

Formation on the platform (Fig. 1b). The Chaohu area was in a transition zone on the northern outer shelf 

of the Yangtze Platform (Kametaka et al. 2005, 2009; Fig. 1b). In the late Guadalupian, a large-scale 

regression led to shallow water deposition in the lower Yangtze area recorded by the Yinping Formation. 

This shallowing coincides with a huge decline in benthos and plankton, leaving only small bivalves, 

brachiopods and ammonoids (Bureau of Geology and Mineral Resources of Anhui Province 1989). 

Stratigraphy and Chronology 

Guadalupian strata are mainly composed of the Gufeng (Kuhfeng) Formation and Yinping Formation. 

The Gufeng Formation unconformably overlies the shallow-marine limestones of the Qixia (Chihsia) 

Formation and is composed of bedded, black chert, siliceous mudstone and carbonaceous mudstone. It is 

subdivided into three members: Lower Phosphate Nodule-bearing Mudstone Member (LPMM), Middle 

Chert-Mudstone Member (MCMM) and Upper Mudstone Member (UMM) (Wu et al. 2015). The Gufeng 

Formation contains abundant fossils, including radiolaria, sponge spicules, ammonoids, bivalves, 

brachiopods and conodonts (Jin and Hu 1978; Zhao et al. 1983; Bureau of Geology and Mineral Resources 

of Anhui Province 1989; Kametaka et al. 2009; Ito et al. 2013). Three regional radiolarian assemblage 

zones, spanning the Roadian-Capitanian stages, have been established in the Gufeng Formation of the 

Chaohu area (Kametaka et al. 2009; Ito et al. 2013), and deposition may have spanned at least 4.7 Myr 

(Yao et al. 2015). The overlying Yinping Formation consists of shallow-water black to pale-grey mudstone, 
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shale and siltstone with trace fossils (Bureau of Geology and Mineral Resources of Anhui Province 1989) 

and is, in turn, succeeded by the Longtan sandstone. Neomisellina fusulinids in the Yinping Formation 

indicate a late Capitanian age (Kametaka et al. 2009), but more precise biostratigraphic dating is needed. 

Study section 

The study section is located on the north limb of the Pingdingshan syncline in the Chaohu area (GPS 

31°37഻51.5഼ N, 117°49഻21.8഼ E) and contains a complete Permian section (Fig. 1c, d). As reported in 

Kametaka et al. (2005), the Gufeng Formation of this study section is approximately 31 m thick and its 

three members can be recognized (Fig. 2). Of the Yinping Formation, only its lower shale member (LSM, 

Fig. 2) is well exposed along with parts of the middle and upper members (MSM and USM). Here we focus 

on the transition from the Gufeng to Yinping Formations (the upper MCMM, UMM, LSM and lower MSM). 

Samples and analytical methods  

A total of 102 chert, mudstone and shale samples, and 11 tuff samples were collected from the Upper 

Gufeng Formation and the Lower-Middle Yinping Formation of the Pingdingshan section. Despite 

attempts to preferentially collect unweathered rock samples, some tuffs show weathering to varying 

degrees as evidenced by the presence of white to light grey soft clay. These weathered surfaces and 

visible post-depositional veins were trimmed off, each sample was cut into small chips and pulverized to ~ 

200 mesh size in an agate mortar. 

To determine the age of the tuffs, two samples (CH-3, PDS-5) from the top of the Gufeng Formation 

were selected for zircon U-Pb dating. The zircons were separated using conventional magnetic and 

density techniques to concentrate the non-magnetic, heavy fractions and were then mounted in epoxy 

resin and polished to expose the grain centres. The cathodoluminescence (CL) photos and zircon U-Pb 

isotopes were analyzed at the State Key Laboratory for Mineral Deposits Research, Nanjing University. The 
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CL photos were acquired using a Mono CL4 (Gatan, U.S.A.) attached to a field emission scanning electron 

microscope (Carl Zeiss Supra 55). The zircon U-Pb isotopes were analyzed using an Agilent 7500a ICP-MS 

attached to a New Wave 213 nm laser ablation system with an in-house sample cell. The U-Pb ages were 

calculated from the raw signal data using the on-line software package GLITTER (ver. 4.4). The detailed 

analytical procedures were similar to those described by Griffin et al. (2004) and Jackson et al. (2004). 

Because 
204

Pb could not be measured due to its low signal and interference from 
204

Hg in the gas supply, a 

common lead correction was carried out using the EXCEL program ComPbCorr#3_15G (Andersen 2002). 

The LA-ICP-MS U-Pb isotopic data are listed in Table 1. All of the U-Th-Pb age calculations and concordia 

diagram plots were made using the ISOPLOT program (ver. 3.76) of Ludwig (2012). 

Both the TOC and TS contents analyses were performed via combustion using an Elementar® Vario 

MACRO CHNS elemental analyzer at the Key Laboratory of Surficial Geochemistry of the Ministry of 

Education, with errors less than 1% and 5%, respectively. The samples were treated with 2 N HCl for 24 h 

to remove inorganic carbon, washed to neutral and dried for the final test on the machine. The identified 

bulk minerals and compositions of the major and trace elements of the tuffs were analyzed at the State 

Key Laboratory for Mineral Deposits Research, Nanjing University. The identification of bulk minerals was 

carried out on unoriented powder mounts by X-ray diffraction (XRD) using a Rigaku Rapid II X-ray 

diffraction system with a Mo target X-ray source and a 0.3 mm diameter beam. The major element 

concentrations were determined by wavelength-dispersive X-ray fluorescence spectrometry techniques 

(ARL9900 XRF) with an analytical precision of ± 1% for sample concentrations larger than 1.0 wt.% and ± 

10% for sample concentrations less than 1.0 wt.%. Loss on ignition (LOI) was calculated by the difference 

values of samples burned in a muffle at 1050 °C for 2 h. The trace elements were measured using a 

Finnigan Element 2 high-resolution inductively coupled plasma mass spectrometer (HR-ICP-MS) with an 
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analytical error of less than 5%.  

Results 

Lithology and mineralogy 

The upper MCMM is primarily composed of alternating beds of thin black chert, less than 10 cm 

thick, and brown, siliceous mudstone (Fig. 3a, c, d) with dozens of interbedded grey tuffs (Fig. 3c-e). The 

proportion of siliceous mudstone increases in the upper part of the MCMM. Petrographic examination of 

the chert shows that the composition is dominated by chalcedonic quartz, radiolarians and their debris 

(Fig. 4a). The matrix has contents of 20-30% and mainly consists of cryptocrystalline quartz and black 

organic matter, with small amounts of clay minerals. The thinly bedded siliceous mudstone is mainly 

composed of clay minerals, with a few radiolarians, and shows a compacted fabric but no lamination (Fig. 

4b). The interbedded tuff occurs as grey to light grey thin beds with average thicknesses of 0.5 - 1 cm (Fig. 

3 c-e, j). They are very fine grained and show sharp contacts with the overlying and underlying rock layers. 

In the UMM, the well-bedded, chert-mudstone sequences are replaced by poorly fossiliferous, 

carbonaceous mudstones (Fig. 3b, f) interbedded with grey tuffs. The tuff used for dating at the top of the 

UMM is approximately 7 cm thick (Fig. 3g, j). Detailed microscopic observations show that the tuff is 

composed of quartz, feldspar, zircon and muscovite grains in a clay mineral-rich matrix (Fig. 4c-e). The 

quartz consists of both corroded and embayed grains and euhedral, hexagonal bipyramidal crystals (Fig. 

4d-e). 

The LSM is mainly well-bedded, grey to grey-black, pyritic shale interbedded with grey mudstone (Fig. 

3h), whereas the MSM only consists of grey shale. The shales contain small, inflated bivalves (often 

packed in layers), ostracods and other fossils (Fig. 4g-i). The upper Yinping Formation is a greyish yellow 

silty mudstone interbedded with sideritic siltstone and siliceous nodules and has the same fauna albeit 
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much rarer (Fig. 4f). The lithological disconformity between the silty mudstone of the Yinping Formation 

and the overlying sandstone of the Longtan Formation (Fig. 3k) is considered to be the possible G-LB in 

the Lower Yangtze area (Bureau of Geology and Mineral Resources of Anhui Province 1989). 

Radiolarian palaeontology 

The record of microfossil abundance and evolutionary lineages of radiolarians in the Gufeng and 

Yinping formations is shown in figure 2 and is based on previous studies (e.g., Wang and Qi, 1995; He et 

al., 1999; Kametaka et al., 2009; Wang and Yang, 2011). Radiolarians are the most abundant microfossil in 

the Gufeng Formation, especially in the MCMM. The deeper dwelling Albaillellaria are abundant in the 

lower MCMM but decreases upward, whereas Entactinaria and Spumellaria, which inhabited relatively 

shallower waters, dominate the middle-upper MCMM (Fig. 2).  

Three radiolarian assemblage zones have been established: the Pseudoalbaillella (P.) longtanensis ʹP. 

fusiformis (Roadian-Wordian), Follicucullus (F.) monacanthus (Wordian-early Capitanian), and F. 

scholasticusʹRuzhencevispongus uralicus zones (early-middle Capitanian) (Wang and Qi, 1995; Kametaka 

et al., 2009; Fig. 2). These reflect the evolutionary clades of Pseudoalbaillella and Follicucullus: the P. 

ishigai-P. fusiformis-P. monacanthus lineage and the F. scholasticus-F. porrectus-F. ventricosus-F. charveti 

lineage (Wang and Yang, 2011). 

The UMM, a black carbonaceous mudstone, is barren of fossils (Fig. 2), which do not return until the 

grey shales at the bottom of the LSM (~0.5 m above the dated tuff) where small bivalves, brachiopods and 

ostracods occur concentrated in layers (Fig. 2, Fig. 4 f - i).  

Zircon U-Pb dating 

Zircon CL images and the results of U-Pb isotopic analyses from the Pingdingshan section are 

presented in figure 5. The zircons are clear, pale, euhedral crystals with well-developed tetragonal 
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dipyramids and magmatogenic oscillatory zoning, which suggest a typical igneous origin. This is further 

supported by their relatively high Th/U ratios (0.52-1.30), which had U contents of 89.7-613.7 ppm and Th 

contents of 55.7-528.5 ppm (Table 1). The Th/U ratios of the magmatogenic zircon grains normally 

exceeded 0.4 (Belousova et al. 2002; Rubatto 2002). These zircons are well suited for dating analyses (Wu 

et al. 2004). Spreading along the concordia line, both samples (CH-3 and PDS-5) yielded weighted mean 

206
Pb/

238
U ages of 261.6 ± 1.6 Ma (MSWD = 0.37) and 261.5 ± 1.6 Ma (MSWD = 0.84), respectively. These 

ages represent the crystallization age of the zircons and the corresponding eruption time of the tuffs, 

which also can be used to limit the stratigraphic boundary age of the Gufeng and Yinping Formations. 

XRD results 

Representative XRD diagrams are shown in figure 6. The XRD data indicate that most of the tuffs 

have been altered into clay minerals, which are mainly composed of illite, illite-smectite mixed-layers (I/S) 

and kaolinite, and also contain quartz, muscovite and zircon. In the clay fraction of the tuff layers, the 

major component is an illite-smectite mixed-layer (I/S), which is typical of most Paleozoic K-bentonites, 

which are a diagenetic product of smectite alteration. Under a moderate to high intensity of diagenesis, 

the smectite-rich claystones would also have gradually transformed to interstratified I/S and illite, and 

some would have been altered to kaolinite. Quartz and zircon with contents of less than 5% indicate that 

the tuff can be derived from airborne acid volcanic ash (e.g., He et al., 2010, 2014; Fang et al., 2016; Liao 

et al., 2016). 

Major elements 

The major elemental compositions of the tuffs in the Pingdingshan section are listed in Table 2. All of 

the samples had high LOI values of 9.8-13.15 wt.%, which is consistent with the high percentage of clay 

minerals in these rocks. The bulk rock analyses were characterized by high Al2O3 (26.51-37.42 wt.%) and 
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low total alkali (K2O + Na2O) contents (0.93-3.54 wt.%). With an average value of 51.55 wt.%, the 

relatively stable SiO2 content had a strong negative correlation with Al2O3, indicating that the SiO2 had 

experienced losses during weathering. Due to the relatively low contents of TiO2 (0.126-0.41 wt.%), the 

high Al2O3/TiO2 ratios (65-270) were greater than the values of the tuff and its altered compositions (~40, 

Zhang et al. 2005), also suggesting a volcanic origin.  

Trace elements 

The analytical results of the trace elements and relevant parameters are given in Table 2. The 

primitive-mantle-normalized trace element patterns of the tuffs (Fig. 7) display positive anomalies of large 

ion lithophile elements (e.g., Rb, Th, U and Pb) and negative anomalies of high field strength elements 

(e.g., Nb, Zr and Ti). In addition, a significant negative Ba anomaly was observed. Rare earth elements are 

useful for tracing diagenetic processes and are commonly used to distinguish lithological features 

(Rollinson 1993). The total rare earth eůĞŵĞŶƚ ;є‘EEͿ ĐŽŶĐĞŶƚƌĂƚŝŽŶƐ ŽĨ ƚŚe samples vary from 41.5 to 

610.5 ppm, with a mean value of 242 ppm. All the samples show pronounceĚ ŶĞŐĂƚŝǀĞ EƵ ĂŶŽŵĂůŝĞƐ ;ɷEƵ 

= 0.41ʹ0.60, mean = Ϭ͘ϰϴͿ ĂŶĚ ǁĞĂŬ CĞ ĂŶŽŵĂůŝĞƐ ;ɷCĞ = 0.88ʹ1.12, mean = 1.00). In the chondrite 

normalized REE distribution patterns (Fig. 8), all the samples have typical fractionated patterns, strong 

enrichments of light rare earth elements (LREEs) and a relatively weak, fractionated flat pattern of heavy 

rare earth elements (HREEs). 

TOC and TS 

The total organic carbon (TOC) and total sulfur (TS) contents of the 102 samples are shown in Table 3 

and figure 2. The Gufeng Formation samples have extremely high TOC contents (2.46 - 27.56 wt.%, mean 

13.82 wt.%) and relatively low TS contents (0.26-3.54 wt.%, mean 1.07 wt.%). The LSM of the Yinping 

Formation shows upward decrease of TOC contents from 17.47 wt.% to 0.88 wt.%, whilst TS contents are 
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higher than seen in the underlying Gufeng Formation and range from 2.54 wt.% to 10.31 wt.%. The lower 

MSM is characterized by relatively low TOC contents (mean 0.95 wt.%) and TS contents (mean 0.36 wt.%). 

The positive correlation between TOC and TS of the MCMM and the UMM (Fig. 9) indicates a marine 

depositional environment where the intensity of sulfate reduction is dependent on the availability and 

abundance of metabolizable organic matter (Berner 1984; Berner and Raiswell 1984). The TS content of 

LSM increase significantly, yielding no correlation with TOC (Fig. 9), which suggests a main sulfide source 

for TS (Fig. 2). In addition, both the MCMM and the UMM have low TS/TOC ratios, which ranging from 

0.03 to 0.16 and had a mean of 0.07, whereas the LSM had high TS/TOC ratios that ranging from 0.2 to 

4.85 and had a mean of 2.37 (Fig. 2). The lower MSM have relatively consistent TS/TOC ratios (mean 0.39) 

with modern marine environment (~0.36, Berner and Raiswell 1984). 

Discussion 

Volcanic activity of the ELIP 

Geochronology significance of the tuffs 

The temporal relationship between the onset of ELIP volcanic activity and Capitanian extinction 

losses is well established and began at least two conodont zones prior to the G-LB in the Jinogondolella (J.) 

altudaensis zone (~263 Ma, Sun et al. 2010) of the mid-Captianian (Wignall et al. 2009a; Bond et al. 

2010b). The eruptions became more extensive and large-scale in the J. xuanhanensis zone (~262 Ma, Sun 

et al. 2010, Fig. 10). Based on the high-resolution floating point time scale of the Capitanian Stage 

established at the Tieqiao section, Xue et al. (2015) estimated that the onset and peak of the ELIP 

eruptions occurred at ~262.67 Ma (at the top of J. altudaensis zone) and at 261.86 Ma (J. xuanhanensis 

zone, Fig. 10), respectively. In this study, the 
206

Pb/
238

U ages of the two tuffs at the top of the Gufeng 

Formation were 261.6 ± 1.6 Ma and 261.5 ± 1.6 Ma and so are concordant with the reported eruption 
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time of the ELIP (262~259Ma; He et al. 2007, 2010; Xu et al. 2008; Wignall et al. 2009a; Zheng et al. 2010; 

Zhong et al. 2014) and are probably close to its peak. It is noteworthy that the upper part of MCMM also 

has numerous tuff horizons (Fig. 2, 11), which occurred prior to 261.6 ± 1.6 Ma. The dated tuff at the top 

of the UMM (~7 cm thick) is the thickest example and so could tentatively be regarded as a record of peak 

volcanism.  

The Milankovitch cyclostratigraphy, recorded by the chert-mudstone couplets of the Gufeng 

Formation, indicates an average sedimentation rate of 4.8 m/Ma in the Chaohu region during the 

Guadalupian (Yao et al. 2015). Given stable sedimentation rates, this indicates that the tuffs of the upper 

Gufeng Formation formed over ~2 Myr. Using a top tuff age of 261.6 Ma as a baseline, we further 

estimate that the onset time of the tuffs was approximately in the J. altudaensis zone, which is in 

accordance with the beginning time of the ELIP eruption seen in south-west China (Wignall et al. 2009a). 

In addition to the basaltic volcanic rocks, many sections (e.g., Pingdi, Qingyin, and Xiongjiachang) 

within the ELIP were also found to have multiple layers of grey and white volcanic ash (Fig. 10) in their 

middle-late Capitanian strata (Bond et al. 2010b; Sun et al. 2010). The Guadalupian-Lopingian boundary 

stratotype at the Penglaitan section near the ELIP margin also has thin pale cream ash beds interbedded 

with cherts below the Laibin Limestone and sand-grade pyroclastic debris in the Laibin Limestone (Wignall 

et al. 2009b). Such common and widely distributed ash beds and pyroclasts indicate an unusually violent 

eruptive style for the ELIP that was capable of lofting them a considerable distance (Wignall et al. 2009a).  

Based on the studies of high-resolution biostratigraphy of conodonts, lithostratigraphy and 

chronostratigraphy in South China (Fig. 10), we compared the Pingdingshan section with sections near the 

ELIP and found that the tuffs first appeared in the J. altudaensis zone and consistently continued to the J. 

xuanhanensis zone, whereas the volcanic debris first appeared in the basal part of the J. granti zone 
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(Penglaitan Section) and continued to the earlier C. postbitteri zone (Tieqiao Section) (Wignall et al. 

2009a). These findings suggest that the volcanic products have a temporal link and are likely to be 

sourced from the eruption of the ELIP (J. altudaensis zone to J. granti zone, Sun et al. 2010; Zhong et al., 

2013). 

Volcanogenic origin of the tuffs  

According to their mineralogical characteristics, the tuffs in the upper Gufeng Formation have an acid 

volcanogenic origin. Bona fide air-borne tuffs generally contain illite and montmorillonites with 1-10% 

quartz (Altaner and Grim 1990; Zhou 1999). Therefore, the high contents of illite, illite-smectite 

mixed-layers (I/S) and kaolinite with relatively low contents of quartz, muscovite and zircon (less than 5%) 

shown by the XRD results and microscopic observations indicate that our samples are typical acid tuffs or 

volcanic ashes. These illite, illite-smectite mixed-layers (I/S) and kaolinite are thought to be originated 

from the diagenetic alteration of volcanic breccia sediments or volcanic ash. In addition, large amounts of 

ŚŝŐŚ ƚĞŵƉĞƌĂƚƵƌĞ ƋƵĂƌƚǌ ;ɴ ƋƵĂƌƚǌ ĂŶĚ ĂŶŐƵůĂƌ ƋƵĂƌƚǌͿ are characteristic of felsic tuff (e.g., Zhang et al. 

2007). Fine crystallographic hexagonal double cone-like high-ƚĞŵƉĞƌĂƚƵƌĞ ɴ-quartz, such as found in our 

samples (Fig. 4e), is the typical product of the rapid condensation of acid volcanic eruptions. The angular 

quartz grains, including corroded and embayed examples, may have been formed due to the influence of 

high-temperature volcanism. The volcanogenic origin is further confirmed by the euhedral zircons with 

well-developed tetragonal dipyramids and magmatogenic oscillatory zoning (Fig. 5), which yielded 

uniform ages. 

Integrated analysis of geochemical proxies also helps determine the source of the tuffs. First, the 

Al2O3/TiO2 ratio remains virtually constant during surface weathering, hydrothermal alteration and 

volcanic process (i.e., from volcanic eruption to ash-deposition) (Zhou 1999; He et al. 2010) and is the 
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most useful indicator for the provenance of sedimentary rocks (Taylor and McLennan 1985) and acid tuffs 

(Zhou and Kyte 1988). For acidic tuffs and their alteration products, the ratio is typically greater than 40 

(Spears and Kanaris-Sotiriou 1979; Zhou et al. 1982) and so the relatively high Al2O3/TiO2 ratios of all the 

samples, which ranged from 65 to 270, indicates they are acidic tuff (Spears and Kanaris-Sotiriou 1979; 

Zhou et al. 1982; Zhou and Kyte 1988; Zho, 1999). Second, the TiO2 (wt.%)-Al2O3 (wt.%) bivariate diagram 

(Fig. 11a), which is widely used to determine the compositions of source rocks (McLennan et al. 1980), 

also shows its felsic characteristics, which indicate a felsic ELIP source. In addition, it can be seen from the 

Zr/TiO2-Nb/Y diagram (Fig. 11b) that, with the exception of one sample falling in the trachyandesite field 

due to the migration of Y in the process of alteration into clay minerals (Christidis 1998), almost all of the 

samples are rhyodacite-rhyolites. Third, the Th-Co diagram effectively identifies altered and strongly 

weathered volcanic and volcanic clastic rocks (Hastie et Al. 2007; Eyuboglu 2015). With the exception of 

one sample, the samples plot within the high-K calc-alkaline and shoshonite series of rocks (Fig. 11c) due 

to their high Th contents (7.3-47.8 ppm) and the dacite-rhyodacite series of rocks due to their lower Co 

contents (0.8-2.7 ppm). Finally, with the exception of CH-ash-8 (651.72), the Ti/Th ratios (24.13-199.89) of 

the samples were approximately the same as those of acid volcanic rocks (30-400). The higher 

concentrations of both Th (mean 23.4 ppm) and U (mean 9.6 ppm) also suggest an acidic or felsic origin 

(e.g., Liao et al., 2016). In addition, the typical fractionated and strong enrichment of LREEs and the 

relatively weak fractionated flat pattern of HREEs with strong Eu negative anomalies ;ɷEƵ с Ϭ͘ϰϭ-0.60, 

mean 0.48) also show that these tuffs have a felsic origin (Fig. 8). 

Possible relationship of tuffs with the ELIP 

Although the loss of movable elements may result from strong tuff alteration, stable elements (e.g., 

Zr, Hf, Nb, Ta, Th, U, Y, Sc, REY) usually remain constant and are useful for determining the sources of 
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volcanic ash (e.g. Spears and Kanaris-sotiriou 1979; Zhou 1999; Spears 2012). In the K2O-SiO2 

discrimination diagrams (Fig. 11d), all of the samples fell within the field of the calc-alkaline to high-K 

calc-alkaline series of volcanic rocks, suggesting that they are relatively rich in potassium and may show 

both crustal and mantle geochemical features. The chondrite-normalized REE distribution pattern 

diagram (Fig. 8) and primitive-mantle-normalized trace element spider diagram (Fig. 7) also show strong 

depletions of Eu, Nb, Ba, P, Sr and Ti, and remarkable enrichments of LREE, Th, U and Pb, which indicate 

that the formation of the tuffs may have been affected by the assimilation of crustal materials (Anh et al. 

2011; Ernst 2014). This may suggest a similar source with the Emeishan silicic volcanic rocks, which were 

formed by fractional crystallization-dominated magmatic processes from basaltic parent magmas with 

crustal assimilation (Shellnutt and Jahn 2010; Xu et al. 2010; Yang et al. 2015). In addition, the 

peraluminous feature, as indicated by high Al2O3 but low K2O + Na2O and CaO contents, may be related to 

the contamination of small amounts of crustal melts (Anh et al., 2011). All of the above data suggest that 

these acidic felsic tuffs were produced from a lithospheric mantle that was contaminated by crustal 

material. This result is compatible with previous studies made on the silicic volcanic rocks in the ELIP  

(Shellnutt and Jahn 2010; Xu et al. 2010). Furthermore, in the Hf-(Rb/10)-(Ta×3) and Hf-(Rb/30)-(Ta×3) 

tectonic discrimination diagrams (Fig. 12), most of the tuffs fall in the WPG field, which is consistent with 

the tectonic background of the ELIP. Previous studies suggest that tuffs, with these characteristics, could 

also be derived from subduction-zone volcanic arcs around the South China Block during the Middle 

Permian (e.g., Li et al., 2006; Zhong et al., 2013). However, such sources were considerable distances from 

the study area (>1200 km) making such sources unlikely. Instead, we suggest that our studied tuffs are 

probably derived from the ELIP. 

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

 by guest on February 17, 2019http://jgs.lyellcollection.org/Downloaded from 

http://jgs.lyellcollection.org/


 

The mid-Capitanian biotic crisis 

The Capitanian crisis was first identified from a literature meta-analysis that showed major 

extinctions in the Guadalupian that were assumed to have happened at the end of this series (Jin et al. 

1994; Stanley and Yang 1994). However, subsequent research on biostratigraphically constrained sections 

in SW China showed that the losses occurred within the J. altudaensis-J. prexuanhanensis conodonts zone 

of the mid-Capitanian Stage, and coincided with the onset of the ELIP volcanic activity significantly before 

the G-LB (Wignall et al. 2009a; Bond et al. 2010b; Wignall et al. 2012; Wignall 2015). Fossil records from 

the Tieqiao and Penglaitan sections of SE China indicate a slightly younger extinction age beginning in the 

J. xuanhanensis zone to the G-LB (Jin et al. 1994, 2006; Mei et al. 1998; Shen and Shi 2009; Wang and 

Sugiyama 2000). 

A possible biotic crisis of radiolarian? 

The chert-mudstone rhythmic sequence of the Pingdingshan section is rich in radiolarian fossils, and 

three radiolarian assemblage zones were established (e.g., Wang and Qi, 1995; He et al., 1999; Kametaka 

et al., 2009; Ito et al., 2013; Fig. 2). Study of their record in the Gufeng Formation at Chaohu (e.g., 

Kametaka et al. 2009), shows that the abundance of radiolarians does not change greatly from the 

bottom to top, but all died out abruptly coincidental with the disappearance of chert at the end of the 

MCMM (Fig. 2). Our dating shows this level is within the Capitanian and coincides with ELIP volcanism (Fig. 

2 and 10). A similar rapid decline in the abundance of radiolarian also occurred in the Maocaojie (Shi et al. 

2016) and Luojiaba (Ma and Feng, 2012; Ma et al., 2016) section of the Middle Yangtze. In addition, 

spumellarians in the F. scholasticus zone of the Luojiaba section also declined in average body size (Ma 

and Feng, 2012). Despite the lack of a precise lithological and biostratigraphical correlation with the 

Chaohu area, the broadly concurrent decreases indicate that radiolarians of the Paleo-Tethys Ocean 
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experienced a serious and regional crisis within the mid-Capitanian, which led to absence radiolarians in 

the F.bipartitus—F.charveti zone during the upper Capitanian strata (e.g., He et al., 1999; Kametaka et al., 

2009; Ma and Feng, 2012; Ito et al., 2013; Shi et al., 2016; Ma et al., 2016).  

A radiolarian biotic crisis likely also had occurred in the Panthalassa Ocean (e.g., Japan) and its 

periphery (e.g., west Texas of USA and Guangxi area of South China) somewhat later albeit still before the 

G-LB. In the Panthalassa sections of Japan, radiolarians experienced rapid turnover during the Capitanian 

(Isozaki, 2009b). Pseudoalbaillella, a long-lived genus that diversified and dominated in the Late 

Carboniferous to Middle Permian, became relatively smaller in body size and less abundant in the 

Follicucullus monacanthus zone (Isozaki, 2009b), and then experienced global extinction before the G-LB 

(Wang and Yang, 2011). Follicucullus, a dominant genus that appeared in the Capitanian (Isozaki, 2009b; 

Wang and Yang, 2011; Ito et al., 2016; Xiao et al., 2018), also became less dominant at the end of the 

Capitanian but survived into the Lopingian (Isozaki, 2009b). In west Texas (USA), these Middle Permian 

radiolarians all disappeared before the end Capitanian (e.g., Nestell and Nestell, 2010). In the 

Dachongling section of Guangxi area, albaillellarian (e.g., Follicucullus spp.) diversity and abundance 

clearly decreased in the uppermost part of the F.charveti Zone (Sun and Xia, et al., 2006). Although 

Albaillella spp. (e.g., Albaillella cavitata) occurred after a quiet of time, their abundance was still low (Sun 

and Xia, 2006). In addition, Follicucullus also shows faster turnover speeds in the Capitanian (F. 

scholasticus-F. porrectus-F. ventricosus-F. charveti) than other stage of the Permian (Xiao et al., 2018), 

suggesting possibly rapid environmental changes. In summary, we speculate that a global radiolarian 

biotic crisis could have occurred in both Panthalassa Ocean and Paleo-Tethys Ocean during the 

middle-late Capitanian. 
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Collapse of high primary productivity 

The radiolarian crisis occurs during a phase of exceptionally high organic carbon accumulation (mean 

15.1 wt.% TOC in the upper MCMM and mean 18.8 wt.% TOC in the UMM). Similarly high organic 

enrichment has also been reported in the Upper (e.g., the Shangsi section, Saitoh et al. 2013) and Middle 

(e.g., the Maocaojie section, Shi et al. 2016) Yangtze region. This suggests that there was no productivity 

collapse linked with the radiolarian crisis. The abrupt decline of TOC occurs during the transition to the 

Yinping Formation indicates a possible collapse of this high primary productivity. It is noteworthy that 

more powerful volcanisms, as indicated by the 7 cm boundary tuffs, predated this productivity collapse, 

which suggests a possible causal relationship between them. 

The fossil content of the grey shales at the bottom of the LSM is mainly composed of small bivalves 

and ostracods (Zhao et al. 1983; Fig. 2), which are similar to the post-extinction survival communities seen 

after the Permo-Triassic mass extinction (Isozaki 2009b). The impoverished benthic fauna may reflect 

oxygen-poor conditions, as implied by the high TS contents and TS/TOC ratio. Furthermore, the relatively 

low TOC contents (mean 0.95 wt. %, Fig. 2) of the lower MSM suggest that a relatively low productivity 

was sustained in the aftermath of the extinction.  

The mid-Capitanian Regression 

The Guadalupian-Lopingian transition has long been recognized as a first-order eustatic lowstand, 

(Ross and Ross 1985; Hallam and Wignall 1999; Haq and Schutter 2008). More recent work indicates this 

regression likely occurred somewhat before the boundary in the early J. xuanhanensis zone in South China, 

as well as in Texas and Pakistan (Fig. 10) (Bond et al. 2010a; Sun et al. 2010), and probably also in Greece 

(Wignall et al. 2012). Thus, regression and consequent loss of shallow-marine habitat is a popular 

mechanism for the Capitanian mass extinction (e.g., Jin et al. 1994; Hallam and Wignall 1997, 1999; Wang 
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and Sugiyama 2000; Shen and Shi 2002; Yang et al. 2004; Bond and Wignall 2009).  

A major regressive episode is also seen in the Lower Yangtze area at the sharp transition from the 

deep-water, basinal Gufeng Formation to the shallower mudstones and siltstones of the Yinping 

Formations. The dated boundary tuff has a relatively precise age of 261.6 ± 1.6 Ma, which indicates it is 

probably very close in age to the base of the J. xuanhanensis zone (Fig. 10). This regression was slightly 

later than the episodic volcanic activity of the ELIP and may have occurred when it was close to its peak, 

which is consistent with findings of Sun et al. (2010). In addition, the decrease and/or disappearance of 

radiolarian occurred earlier than the great regression in the east margin of the Paleo-Tethys Ocean during 

the middle Capitanian, which can be confirmed in both Chaohu and Maocaojie section (Shi et al., 2016). 

This indicates that facies change may not be the main cause of radiolarian disappearance (e.g., Kuwahara 

et al., 2007; Kametaka et al., 2009; Ito et al., 2013). Thus, the regression occurred after the radiolarian 

turnover which supports the viewpoint of Bond et al. (2010a) that it is younger than the extinction event 

(in the J. altudaensis Zone). Therefore, the regression is unlikely to have triggered the biotic crisis (Bond et 

al. 2010a).  

The mid-Capitanian marine anoxia 

Redox conditions 

Based on sedimentological and geochemical evidence, Kametaka et al. (2005) argued that the 

Gufeng Formation was deposited mainly on a suboxic-anoxic outer continental shelf with an oxygen 

minimum zone (OMZ) developed at intermediate water depths. The depletion of TS in comparison to high 

TOC values is an attribute seen in modern sediments beneath high-productivity upwelling regions (Morse 

and Emeis 1990; Smolarek et al. 2017) but not for sediments from normal marine depositional conditions 

(Berner and Raiswell 1984; Smolarek et al. 2017). Therefore, the higher TOC and lower TS in the MCMM 
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(Fig. 2) indicate an anaerobic-anoxic seawater column with a more regularly ventilated seafloor, whereas 

the relatively increased TS and TOC in the UMM (Fig. 2) suggest increased sulfide deposition and a 

relatively anoxic water column. In the LSM, the extremely high TS contents with lower TOC contents 

indicate an anoxic/euxinic marine environment, although the presence of bivalves and ostracods point to 

brief oxygenation events.  

The TS/TOC ratio is also commonly used as a palaeoredox proxy (Leventhal, 1979; Berner and 

Raiswell 1983): the ratio of normal marine sediments under non-euxinic conditions is 0.36, whereas those 

of euxinic and anoxic marine sediments (e.g., the Black Sea) exceed 0.36 (Berner and Raiswell 1984; 

Raiswell and Berner 1986). In completely anoxic marine environments, TS/TOC ratios tend to plot above 

ƚŚĞ ͞ŶŽƌŵĂů ŵĂƌŝŶĞ ůŝŶĞ͟ ďĞĐĂƵƐĞ ƉǇƌŝƚĞ ŝƐ ĨŽƌŵĞĚ ďǇ ďĂĐƚĞƌŝĂů ƐƵůĨĂƚĞ ƌĞĚƵĐƚŝŽŶ ǁŝƚŚŝŶ ƚŚĞ ǁĂƚĞƌ ĐŽůƵŵŶ 

and at the sea floor. The low TS/TOC ratios of both the MCMM and the UMM (Fig. 2) suggest a normal 

marine sediments under non-euxinic conditions while the high TS/TOC ratios of the LSM plot above the 

͞ŶŽƌŵĂů ŵĂƌŝŶĞ ůŝŶĞ͟ indicate excess sulfur possibly due to euxinic depositional conditions. It is 

noteworthy that the relatively low TS contents of the lower MSM and the relatively consistent TS/TOC 

ratios with normal marine environment, indicates that the lower Yangtze basin had recovered to normal, 

oxic marine conditions by this level. 

Global comparisons and links 

In addition to our Lower Yangtze study area, the deep-water sections (e.g., Chaotian) of the Upper 

and Middle Yangtze also record anoxic/sulfidic waters in the early-middle Capitanian (Fig. 10) (Lai et al. 

2008; Saitoh et al. 2013a; Shi et al. 2016), suggesting anoxia prevailed for at least several hundred 

kilometers along the northern Yangtze platform. Other contemporary basins (e.g., in North American, 

Europe, and Russia) have similar sedimentary characteristics to the Gufeng Formation (Kametaka et al. 
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2005), suggesting that OMZs were well developed during the late Guadalupian. However, in South China 

shallow water sections (e.g. Penglaitan) were well ventilated before the mid-Capitanian mass extinction 

(Wignall et al. 2009a, 2010), and oxygen-deficient waters only developed in the J. granti conodonts zone 

(Fig. 10) after the onset of extinction (Bond et al. 2010a,b). This redox change may also be responsible for 

the dramatic negative shift in sulfur isotopes in the upper Laibin limestone (from the upper J. granti zone 

to the lowest C. postbitteri postbitteri zone) of the Tieqiao section (Yan et al. 2013). In addition, sulfur 

isotopes data from other sections (Penglaitan, Teiqiao and EF sections) suggest that sulfidic waters 

developed sporadically in several shallow water sections (Zhang et al. 2015). Thus, the temporal-spatial 

record in South China shows that sulfidic waters expanded from relatively deep water in the early-middle 

Capitanian into shallower waters in the late Capitanian. 

Within the Panthalassa Ocean the transition from red to grey-coloured chert has been used to infer 

the onset of a global anoxic episode that began in the mid-Capitanian and persisted into the Triassic 

(Isozaki, 1997, 2009b). However, the grey chert lacks pyrite, shows no signs of organic enrichment (TOC 

remains below 0.09 %) and is well biouturbated indicating that seafloor conditions are likely to have been 

only weakly dysoxic until the end of the Permian (when pyrite-rich strata develop) (Wignall et al. 2010). 

Nonetheless, the mid-Capitanian oceanic changes were sufficient to drive a change in radiolarian faunas 

from ones dominated by Pseudoalbaillela to populations of Follicucullus.  

Relationship of redox changes with the extinction 

Changing oceanic redox conditions could have played a major role in the radiolarian crisis as it did 

during the Permian-Triassic transition (e.g., Wignall et al. 2010; Feng and Algeo, 2014). The disappearance 

of radiolarian chert coincided with the increase in the TS values and TS/TOC ratios in the basal UMM (Fig. 

2), suggesting a causal relationship between intensified anoxia and radiolarian crisis. A similar scenario 
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that enhanced anoxic condition caused the decrease of radiolarian, also occurred in the upper 

Follicucullus scholasticus zone in the Maocaojie section of the Middle Yangtze area (Shi et al., 2016). The 

radiolarian faunal changes in South China during the Capitanian coincided with the expansion of oceanic 

anoxia on the eastern margin of the Paleo-Tethys Ocean (e.g., Saitoh et al. 2014). In addition, the 

disappearance of radiolarian was also accompanied by intensified anoxic conditions in the Panthalassa 

Ocean and its periphery (e.g., west Texas of USA, Zhang et al., 2015).  

It is also clear that the beginning of this enhanced marine anoxic condition during the earlier UMM 

was also concordant with the decline in the biological community in the J. altudaensis zone (Fig. 10). The 

enhanced euxinia during deposition of the shallower water Yinping Formation suggests redox-related 

stress also affected inner shelf seas. The oceanic record thus indicates a link between extinction and 

redox change, albeit in a more subdued fashion. 

Implications for the mid-Capitanian mass extinction 

Although further palaeontological studies of the late Guadalupian in the Lower Yangtze area are still 

needed, evidence from the Chaohu area suggests that the Capitanian mass extinction commenced in the 

middle Capitanian (the end of the F. scholasticusʹR. uralicus zone) before the end of the stage. This timing 

is indicated by the 
206

Pb/
238

U dating age (261.6 ± 1.6 Ma) of the boundary tuff of the Gufeng and Yinping 

Formations. We therefore conclude that a biotic crisis could have begun in deep basinal settings during 

the early-middle Capitanian, and then peaked in the middle Capitanian, at the time of the 

well-constrained shallow-water extinction (J. altudaensis-J. prexuanhanensis conodonts zone) in the 

Upper Yangtze area (Wignall et al. 2009a; Bond et al. 2010b). 

The frequent explosive felsic volcanic activity during the eruption of the ELIP resulted in the release 

of voluminous amounts of CO2, SO2 and acid volcanic ash, which could have led to climatic and 
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environmental changes, and then resulted in severe survival pressures on marine organisms. The great 

regression and marine anoxia-euxinia during the mid-Capitanian slightly postdate the onset of ELIP 

eruptions and accompanied the peak eruption phase. These environmental phenomena could have 

contributed to the deterioration of the marine environment via the loss of shallow-marine habitats due to 

emergence and spread of uninhabitable anoxic areas. 

 6. Conclusions 

In this study, the mid-Capitanian mass extinction and related geological events have been evaluated 

using new evidence from the deep water slope/basin deposits of the Lower Yangtze region that reveals: 

(1) Tuffs in the uppermost Gufeng Formation yield an age (J. altudaensis zone to J. xuanhanensis 

zone, ~263-261.5 Ma) that correlates with the initial eruption of the Emeishan flood basalts, suggesting 

that this province was their source. This is also confirmed by their mineralogical and geochemical 

characteristics. 

(2) The turnover of radiolarians in basinal settings, decline of initially very high primary productivity 

and demise of shallow water organisms all indicate that considerable disturbances of the oceanic food 

web and related biotic crisis occurred during the mid-Capitanian. The Guadalupian biotic crisis was thus 

within Capitanian Stage and not at its termination.  

(3) A major regression is seen in South China but it did not cause the deep water biotic crisis directly 

because it occurred later. However, the loss of the shallow-marine habitat area could have exacerbated 

the crisis for shallow water organisms. 

(4) The decline of the biological community was in accordance with the appearance of marine anoxic 

condition in the J. altudaensis zone and further intensified by enhanced euxinia in the later Capitanian. 
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 Figure captions 

 Fig. 1 Palaeogeography, geological setting and geographic location of the study area. (a)  

Paleogeographic map of the Late Guadalupian (based on Ziegler et al 1997 with modifications of  Ali et al. 

(2005), Isozaki (2009a), Isozaki et al. (2011), Kani et al. (2013), and Saitoh et al. (2013)  showing the 

relative position of the ELIP, Chaotian section, Chaohu section, Penglaitan and  Tieqiao Section, Deep 

ocean Chert Section, Atoll Carbonate Section. (b) Late Guadalupian  paleogeographic reconstructions of 

South China (modified from Sun et al. 2010; Yao et al. 2015).  (c) Location of Chaohu region in the Lower 

Yangtze area, South China. (d) Geological setting of  Chaohu region. Anmenkou Section is the research 

site of Kametaka et al. (2005, 2009). 

 Fig. 2 Lithostratigraphy, biostratigraphy and chemostratigraphy of the Gufeng and lower Yinping  

Formation in Chaohu region. The Gufeng Formation is divided into the Lower Phosphate Nodule bearing 

Mudstone Member (LPMM), Middle Chert-Mudstone Member (MCMM) and Upper  Mudstone Member 

(UMM). The Lower Yingping Formation includes the Lower Shale Member  (LSM) and lower part of the 

Middle Shale Member (MSM). The composite geological time is  based on Kametaka et al. 2005, 2009; 

Gradstein et al. 2012; Zhu et al. 2013; Yao et al. 2015; Ma  et al. 2016; Wu et al. 2017; Ramezani and 

Bowring 2017. The biostratigraphy and the relative  abundance of radiolarian assemblage is from Wang 

and Qi (1995), He et al. (1999), Kametaka et  al.(2009), Wang and Qun (2011) and Ito et al. (2013). The 

red dashed line show the average value  for normal marine TS/TOC values (Berner and Raiswell 1984). 

Abbreviations: Ser. = Series, Stg. =  Stage, Form. = Formation, Bioz. = Biozone, Dep. = Depth, Litho. = 

Lithology, Sam. = Sample. 

 Fig. 3 Field photographs of the Pingdingshan section. (a) Overview of the Gufeng Formation. 

Disconformity showing an irregular surface between limestone of the Qixia Formation (P1q) and 

mudstone of the Gufeng Formation (P2g). (b) A close view of conformity 23 between mudstone of the 

Gufeng Formation and shale of the Yingping Formation. Numbers 1 to 6 indicate the locations of the 

photographs shown in panels (c) to (h), respectively. (c-e, i) A close view of volcanic ash, black chert and 

siliceous mudstone of the upper MCMM. (f) Carbonaceous mudstone of the UMM. (h) Parallel bedding of 

grey shale of the LSM. (g, j) Volcanic ash (CH-3, PDS-5) of the top UMM. (k) A close view of disconformity 

between mudstone of the Yinping Formation (P2y) and sandstone of the Longtan Formation (P3l). The 

hammer is ~30cm long in b, f and k. 

 Fig. 4 Photomicrographs showing the lithological characteristics of the Pingdingshan strata. (a)  Black 

chert containing abundant spheroidal radiolarians (Sample CH-24 are from the MCMM). (b) Brown 

siliceous mudstone containing little spheroidal radiolarians (Sample CH-40 are from the MCMM). (c) Tuff 

composed of quartz, feldspar, zircon and sericite grains in a clay mineral-rich matrix. (d) Zircon grain is 

clear, pale and euhedral crystals with well-developed tetragonal dipyramids. (e) Corroded and embayed 

quartz (red arrows) and euhedral hexagonal bipyramid quartz (blue arrows). (f) Laminated grey shales 

with a few fossils (Sample CH-72 are from the  LSM). (g-h) Grey shale with abundant bivalves and 

ostracoda (Sample CH-64 are from the LSM).  (i) Beds of small bivalves in the grey shale (Sample CH-66 

are from the LSM). 

 Fig. 5 Cathodoluminescence images and LA-ICP-MS zircon U-Pb Concordia diagrams of zircons from 

sample CH-3 and PDS-5 in the Pingdingshan section, showing the analyzed spots and weighted mean 

206Pb/23841 U ages. 

 Fig. 6 Representative XRD patterns of tuff samples from the Pingdingshan section. Abbreviations: I=illite, 

I/S = mixed layer illite-smectite, K = kaolinite, Qz = quartz, Mus=muscovite, Zr=zircon, Py=pyrite. 

Fig. 7 Primitive mantle-normalized trace elements spider diagram 45 of tuffs from the Gufeng Formation 
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of the Pingdingshan section. Normalized values for primitive mantle are from Sun and McDonough 

(1989). 

 Fig. 8 Chondrite normalized REE patterns of tuffs from Gufeng Formation of the Pingdingshan section. 

Normalization values are from Sun and McDonough (1989). The field of ELIP felsic silicic rocks are after 

Anh et al. (2011), Shellnutt and Jahn (2010) and Xu et al. (2010). The field of GLB mudstones and tuffs are 

from He et al. (2007, 2010) and Zhong et al. (2013). 

 Fig. 9 Crossplot of TOC versus TS for samples from the upper Gufeng Formation and the lower middle 

Yingping Formation. The green line indicate the TS/TOC values of normal marine  (Berner and Raiswell 

1984). 

 Fig. 10 Correlation chart for sections with robust conodont age, zircon U-Pb age and high resolution 

floating point time scale control all over the world (modified from Sun et al. 2010; data  of deep sea 

chert section are from Wignall et al. 2010; data of atoll carbonate are from Isozaki et  al. 2007; data of 

West Texas are from Zhang et al. 2015). The figure is not to scale. 

 Fig. 11 (a) Bivariate plots of TiO2 (wt.%) and Al2O3 (wt.%) of tuffs (modified from Hayashi et al. 1997; He 

et al. 2010). Mafic and felsic area of the ELIP from Zhang et al. (1988) and Xu et al.  (2001). (b) TiO2/Zr 

versus Nb/Y diagram of tuffs (after Winchester and Floyd (1977)). The field of  ELIP felsic silicic rocks are 

after He et al. (2007, 2010), Shellnutt and Jahn (2010), Xu et al. (2010),  Anh et al. (2011) and Zhong et al. 

(2013). The field of ELIP basalts is after Huang et al. (2014). (c)  Th-Co classification diagrams for the 

felsic tuffs (after Hastie et al. 2007). (d) K2O-SiO2  classification diagrams for the felsic tuffs (after 

Rickwood 1989). 

 Fig. 12 (a) Hf-(Rb/10)-(Ta x 3) and (b) Hf-(Rb/30)-(Ta x 3) tectonic discrimination diagrams of the volcanic 

rocks (after Harris et al. 1986) showing the field of ELIP felsic rocks (He et al. 2007, 2010; Shellnutt and 

Jahn 2010; Xu et al. 2010; Anh et al. 2011; Zhong et al. 2013). 
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Tables 

Table.1 LA-ICP-MS zircon U-Pb dating data from the two tuffs in the Pingdingshan section 

Spot 

232Th 

(ppm) 

238U 

(ppm) 

232Th/238U 207Pb/206Pb 1ʍ 207Pb/235U 1ʍ  206Pb/238U 1ʍ  

206Pb/238U 

(Ma) 

1ʍ  

CH-3-1 139.9 267.7 0.52 0.05142 0.00136 0.29025 0.00782 0.04095 0.00063 259 4 

CH-3-2 274.1 420.9 0.65 0.05157 0.00104 0.30079 0.00649 0.0423 0.00063 267 4 

CH-3-3 186.7 243.9 0.77 0.05146 0.00128 0.29414 0.00757 0.04146 0.00064 262 4 

CH-3-4 152.9 166.0 0.92 0.05144 0.00145 0.2938 0.00847 0.04143 0.00066 262 4 

CH-3-5 109.7 175.5 0.63 0.05147 0.00174 0.2913 0.00995 0.04105 0.0007 259 4 

CH-3-6 184.7 234.6 0.79 0.05142 0.00186 0.29176 0.01058 0.04116 0.00074 260 5 

CH-3-7 263.5 481.3 0.55 0.05151 0.00108 0.30114 0.00681 0.0424 0.00066 268 4 

CH-3-8 307.5 351.8 0.87 0.05147 0.00114 0.29242 0.00684 0.04121 0.00063 260 4 

CH-3-9 173.0 181.7 0.95 0.05147 0.0015 0.29368 0.00874 0.04138 0.00066 261 4 

CH-3-10 364.0 328.0 1.11 0.05126 0.00248 0.28489 0.01332 0.04032 0.0008 255 5 

CH-3-11 135.2 252.5 0.54 0.05150 0.00176 0.29914 0.0103 0.04213 0.00075 266 5 

CH-3-12 400.6 595.8 0.67 0.05156 0.00112 0.29755 0.00691 0.04186 0.00066 264 4 

CH-3-13 180.2 317.1 0.57 0.05149 0.00166 0.29556 0.0095 0.04164 0.00068 263 4 

CH-3-14 267.3 362.7 0.74 0.05145 0.00123 0.29299 0.00727 0.04131 0.00064 261 4 

CH-3-15 212.9 246.2 0.86 0.05128 0.00197 0.28305 0.01075 0.04003 0.00071 253 4 

CH-3-16 148.2 248.4 0.60 0.05135 0.00126 0.28483 0.00722 0.04024 0.00061 254 4 

CH-3-17 362.1 399.0 0.91 0.05150 0.00217 0.29328 0.01216 0.04129 0.00079 261 5 

CH-3-18 358.2 399.7 0.90 0.05152 0.0012 0.29687 0.00725 0.0418 0.00064 264 4 

CH-3-19 313.5 396.4 0.79 0.05140 0.00112 0.28868 0.00665 0.04074 0.00061 257 4 

CH-3-20 210.4 383.0 0.55 0.05151 0.00117 0.29635 0.0071 0.04173 0.00064 264 4 

CH-3-21 249.1 318.6 0.78 0.05151 0.00124 0.29735 0.00748 0.04188 0.00065 264 4 

CH-3-22 301.1 545.1 0.55 0.05134 0.00118 0.29703 0.00722 0.04197 0.00066 265 4 

CH-3-23 178.8 193.6 0.92 0.05150 0.0015 0.29381 0.00865 0.04138 0.00066 261 4 

CH-3-24 337.4 491.0 0.69 0.05151 0.00122 0.29596 0.00725 0.04167 0.00063 263 4 

CH-3-25 169.2 320.9 0.53 0.05153 0.00213 0.29569 0.01199 0.04162 0.00079 263 5 

PDS-5-1 253.6 408.3 0.62 0.05157 0.00132 0.29844 0.00791 0.04198 0.00067 265 4 

PDS-5-2 463.0 613.7 0.75 0.05134 0.00394 0.29039 0.0215 0.041 0.00117 259 7 

PDS-5-3 289.5 424.2 0.68 0.05153 0.00108 0.30051 0.0067 0.0423 0.00063 267 4 

PDS-5-4 105.2 147.1 0.72 0.05145 0.00183 0.2969 0.0105 0.04185 0.00069 264 4 

PDS-5-5 403.8 382.6 1.06 0.05147 0.00127 0.29261 0.00741 0.04124 0.00063 261 4 

PDS-5-6 209.2 291.5 0.72 0.05153 0.00175 0.29654 0.01019 0.04174 0.00075 264 5 

PDS-5-7 76.6 123.4 0.62 0.0515 0.0019 0.29455 0.01085 0.04148 0.0007 262 4 

PDS-5-8 260.0 367.6 0.71 0.05147 0.00178 0.29478 0.01009 0.04154 0.0007 262 4 

PDS-5-9 395.8 604.6 0.65 0.05151 0.0015 0.29323 0.00879 0.04129 0.00072 261 4 

PDS-5-10 188.3 290.6 0.65 0.0514 0.00298 0.29393 0.0165 0.04152 0.00094 262 6 

PDS-5-11 350.3 385.9 0.91 0.05142 0.00231 0.29333 0.01292 0.04139 0.00082 261 5 

PDS-5-12 373.4 352.8 1.06 0.05149 0.00169 0.29202 0.00972 0.04113 0.00073 260 5 

PDS-5-13 273.9 256.9 1.07 0.0515 0.00284 0.29615 0.0159 0.04171 0.00093 263 6 

PDS-5-14 126.1 222.2 0.57 0.05156 0.00206 0.29698 0.01178 0.04178 0.00078 264 5 
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PDS-5-15 179.7 289.4 0.62 0.05144 0.00399 0.29391 0.022 0.04143 0.00113 262 7 

PDS-5-16 325.2 528.2 0.62 0.05145 0.00121 0.29399 0.00714 0.04144 0.00062 262 4 

PDS-5-17 282.0 318.3 0.89 0.05139 0.00144 0.28745 0.00814 0.04057 0.00064 256 4 

PDS-5-18 352.1 395.1 0.89 0.05151 0.00171 0.29893 0.01003 0.04209 0.00073 266 5 

PDS-5-19 198.0 276.5 0.72 0.05153 0.00235 0.29869 0.01349 0.04204 0.00086 265 5 

PDS-5-20 161.6 225.2 0.72 0.05153 0.00334 0.29435 0.01842 0.04144 0.00098 262 6 

PDS-5-21 528.5 405.5 1.30 0.05144 0.00179 0.29481 0.0101 0.04158 0.00071 263 4 

PDS-5-22 109.9 198.0 0.55 0.05145 0.00327 0.2926 0.01811 0.04124 0.00097 261 6 

PDS-5-23 55.7 89.7 0.62 0.05142 0.0027 0.2945 0.01519 0.04154 0.00081 262 5 

PDS-5-24 185.1 326.0 0.57 0.05144 0.00117 0.28977 0.00695 0.04086 0.00063 258 4 

PDS-5-25 82.2 125.7 0.65 0.05153 0.00226 0.29621 0.01279 0.0417 0.00076 263 5 

PDS-5-26 282.1 436.6 0.65 0.0514 0.00224 0.2883 0.01228 0.04069 0.00078 257 5 

PDS-5-27 131.8 129.5 1.02 0.05155 0.00323 0.29494 0.01778 0.0415 0.00093 262 6 

PDS-5-28 245.2 305.8 0.80 0.05133 0.00118 0.28644 0.00689 0.04048 0.00062 256 4 

PDS-5-29 127.9 214.2 0.60 0.05146 0.00154 0.29157 0.00887 0.0411 0.00068 260 4 

PDS-5-30 112.4 184.2 0.61 0.05142 0.00142 0.29384 0.00834 0.04145 0.00066 262 4 

PDS-5-31 358.2 329.8 1.09 0.05147 0.00125 0.29294 0.00741 0.04128 0.00065 261 4 
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Table. 2 Major and trace elements of the tuffs in the Pingdingshan section 

 

CH-ash-2 CH-ash-3 CH-ash-4 CH-ash-5 CH-ash-6 CH-ash-7 CH-ash-8 CH-ash-9 CH-ash-10 CH-3 PDS-5 

SiO2 51.67 49.71 46.84 54.51 53.38 53.4 48.19 53.04 48.96 54.91 53.98 

TiO2 0.183 0.156 0.268 0.306 0.209 0.172 0.206 0.191 0.126 0.41 0.408 

Al2O3 33.26 34.29 37.42 30.29 31.8 30.92 36.26 30.83 34.02 27.26 26.54 

Fe2O3 -0.26 0.64 0.37 0.15 0.13 0.49 0.8 1.47 -0.13 1.07 1.78 

MnO -0.004 -0.005 -0.004 -0.004 -0.005 -0.002 -0.005 -0.006 0.002 0.053 0.075 

MgO 1.77 1.29 0.65 1.32 1.29 1.52 0.85 1.47 1.19 1.54 1.53 

CaO 0.55 0.75 0.61 1 0.87 0.76 0.44 0.57 0.42 0.25 0.22 

Na2O 0.06 0.04 0.11 0.1 0.14 0.12 0.15 0.11 0.18 0.23 0.22 

K2O 1.56 1.21 0.82 1.01 0.95 1.05 0.81 1.14 2.19 3.31 3.19 

P2O5 0.052 0.067 0.098 0.095 0.146 0.112 0.066 0.145 0.471 0.4 0.315 

LOI 11.07 12.72 13.15 10.43 11.11 10.85 13.11 11.28 12.67 9.8 11.05 

TOTAL 99.91 100.87 100.33 99.2 100.03 99.39 100.88 100.24 100.1 99.23 99.31 

K2O+Na2O 1.62 1.25 0.93 1.11 1.09 1.17 0.96 1.25 2.37 3.54 3.41 

Al2O3/TiO2 181.75 219.81 139.63 98.99 152.15 179.77 176.02 161.41 270.00 66.49 65.05 

            
Ti 1063.1 876.4 1462.3 1702.7 1132.5 956.5 1134.9 1057.5 792.5 2338.7 2290.4 

V 1784.9 1853.4 1731.4 2014.6 1421.1 2325.7 1431.4 1262.3 252.9 216.7 339.6 

Ga 38.2 27.4 15.9 23.8 17.5 15.3 10.4 12.2 14.7 24.1 22.1 

Rb 88.5 112.5 74.2 78.2 72.1 65.1 36.1 50.2 86.0 119.6 113.4 

Sr 136.2 152.9 298.0 277.4 482.0 364.0 156.9 474.6 783.1 488.3 360.5 

Y 12.0 11.6 20.0 13.0 13.2 75.8 8.8 13.9 29.2 58.3 57.1 

Zr 105.0 85.1 103.5 128.6 101.6 107.8 77.9 140.9 152.3 213.3 268.6 

Nb 4.0 4.1 3.9 10.0 5.0 4.0 2.5 5.5 9.7 21.0 15.4 

Mo 0.6 1.8 1.4 1.5 1.2 1.1 2.8 3.2 9.9 45.6 41.3 

Ba 49.3 69.0 73.3 68.8 76.7 80.1 62.3 107.4 235.1 474.9 362.6 

La 13.6 25.9 38.1 39.3 58.5 47.4 5.2 33.6 30.9 142.0 112.5 

Ce 28.5 59.1 74.0 81.0 115.8 93.0 10.3 66.1 54.6 233.6 182.6 

Pr 3.4 6.2 9.7 8.7 12.6 10.3 1.5 7.0 5.7 20.0 19.4 

Nd 12.6 21.7 39.3 31.3 45.7 35.3 7.1 25.9 20.8 95.0 72.8 

Sm 2.4 3.5 8.9 5.7 8.6 5.4 2.2 5.8 4.3 17.8 13.2 

Eu 0.3 0.4 1.2 0.8 1.1 0.7 0.4 0.8 0.7 2.2 1.6 

Gd 1.9 2.3 5.7 4.2 5.9 5.4 1.8 4.4 5.1 13.5 10.6 

Tb 0.3 0.3 0.8 0.6 0.8 1.2 0.3 0.7 1.1 2.0 1.8 

Dy 1.6 1.8 3.6 2.5 2.9 8.9 1.6 2.9 6.2 10.7 10.2 

Ho 0.4 0.4 0.7 0.5 0.5 2.4 0.3 0.5 1.2 2.4 2.3 

Er 1.2 1.3 2.0 1.4 1.5 7.2 0.9 1.5 3.1 6.7 6.6 

Tm 0.2 0.2 0.3 0.2 0.2 1.0 0.1 0.2 0.4 0.9 0.8 

Yb 1.1 1.1 1.6 1.3 1.1 5.9 0.8 1.2 2.7 4.8 4.7 

Lu 0.2 0.2 0.3 0.2 0.2 1.0 0.1 0.2 0.5 0.8 0.8 

Hf 9.2 5.4 3.5 5.7 5.8 5.6 3.7 5.6 7.1 8.8 10.3 

Ta 1.9 1.4 0.4 3.6 1.4 1.9 0.3 1.9 2.4 3.9 2.9 

Pb 18.7 28.9 26.0 27.4 33.9 20.6 11.3 38.9 91.3 107.5 84.3 
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Th 16.8 19.2 7.3 15.7 24.1 27.1 1.7 21.3 32.8 47.8 43.2 

U 4.3 4.6 5.6 6.8 5.5 8.3 4.1 7.0 10.5 26.6 22.4 

є‘EE 79.9 136.1 206.3 190.6 268.6 300.9 41.5 164.6 166.5 610.5 497.1 

ɷEƵ* 0.5 0.4 0.5 0.5 0.5 0.4 0.6 0.5 0.5 0.4 0.4 

ɷCĞ* 1.0 1.1 0.9 1.1 1.0 1.0 0.9 1.0 1.0 1.1 0.9 

Ti/Th 63.2 45.8 199.9 108.8 46.9 35.2 651.7 49.6 24.1 48.9 53.0 

Nb/Ta 2.1 3.0 9.0 2.8 3.4 2.2 7.9 2.9 4.0 5.4 5.3 

*ɷEƵ с EƵN/(SmN×GdN)
1/2͕ ɷCĞ с CĞN/(LaN×PrN)

1/2
, where subscript N denotes chondrite-normalized; normalization values are after Sun and 

McDonough (1989); є‘EE ŵĞĂŶƐ ƚŽƚĂů ƌĂƌĞ ĞĂƌƚŚ ĞůĞŵĞŶƚƐ͘ 
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Table. 3 The TOC, TS and TS/TOC ratios of the Gufeng and lower-middle Yinping Formation in the Pingdingshan section 

Sample 
Depth  

m 
Member 

TOC  

wt. % 

TS  

wt. % 
TS/TOC Sample 

Depth 

m  
Member 

TOC 

wt. %  

TS 

wt. %  
TS/TOC 

CSC-1 0.05  LPMM 2.91  2.94  1.01  CH-35 26.35  MCMM 22.11  0.88  0.04  

CSC-3 0.25  LPMM 6.13  2.53  0.41  CH-36 26.40  MCMM 10.17  0.54  0.05  

CSC-5 0.40  LPMM 7.96  2.26  0.28  CH-37 26.45  MCMM 14.97  0.57  0.04  

CSC-7 0.60  LPMM 11.67  0.92  0.08  CH-38 26.60  MCMM 18.50  0.63  0.03  

CSC-9 0.90  LPMM 13.49  0.89  0.07  CH-39 26.80  MCMM 6.60  0.42  0.06  

CSC-11 1.20  LPMM 13.06  2.65  0.20  CH-40 27.00  MCMM 9.83  0.43  0.04  

CSC-13 1.50  LPMM 11.70  3.54  0.30  CH-41 27.10  MCMM 13.20  0.53  0.04  

CSC-15 1.90  LPMM 6.83  1.72  0.25  CH-42 27.30  UMM 14.15  1.32  0.09  

CSC-17 2.30  LPMM 10.79  2.28  0.21  CH-43 27.50  UMM 13.28  1.71  0.13  

CSC-19 2.50  MCMM 9.95  0.75  0.08  CH-44 27.65  UMM 18.31  1.92  0.10  

CSC-21 3.20  MCMM 9.29  0.78  0.08  CH-45 27.80  UMM 15.19  1.12  0.07  

CSC-24 4.20  MCMM 2.46  0.26  0.11  CH-46 28.00  UMM 19.40  1.70  0.09  

CSC-27 5.10  MCMM 6.10  0.48  0.08  CH-47 28.30  UMM 23.66  2.23  0.09  

CSC-30 6.00  MCMM 4.46  0.49  0.11  CH-48 28.50  UMM 21.79  1.44  0.07  

CSC-33 7.00  MCMM 12.25  0.68  0.06  CH-49 28.65  UMM 23.75  2.39  0.10  

CSC-35 8.00  MCMM 13.02  0.64  0.05  CH-50 28.75  UMM 16.32  1.21  0.07  

CSC-37 9.00  MCMM 9.94  0.69  0.07  CH-51 28.90  UMM 19.41  1.75  0.09  

CSC-40 10.00  MCMM 6.32  0.81  0.13  CH-52 29.10  UMM 18.71  1.53  0.08  

CSC-43 10.90  MCMM 4.63  0.73  0.16  CH-53 29.30  UMM 20.73  0.88  0.04  

CSC-46 11.70  MCMM 9.06  1.06  0.12  CH-54 29.45  UMM 17.46  0.73  0.04  

CSC-49 12.70  MCMM 7.99  1.06  0.13  CH-55 29.70  UMM 15.50  0.77  0.05  

CSC-52 13.80  MCMM 7.97  1.04  0.13  CH-56 29.90  UMM 16.11  0.62  0.04  

CSC-54 14.60  MCMM 6.60  0.88  0.13  CH-57 30.00  UMM 13.86  0.64  0.05  

CSC-56 15.50  MCMM 6.58  0.80  0.12  CH-58 30.20  UMM 21.45  1.60  0.07  

CSC-58 16.40  MCMM 8.40  0.51  0.06  CH-59 30.60  UMM 27.56  1.73  0.06  

CSC-60 17.30  MCMM 18.90  1.16  0.06  CH-60 30.80  UMM 21.24  2.74  0.13  

CSC-62 18.00  MCMM 7.24  0.53  0.07  GS-1 31.00  LSM 17.47  1.19  0.07  

CSC-65 18.80  MCMM 15.06  0.74  0.05  CH-62 31.10  LSM 16.86  3.37  0.20  

CSC-67 19.60  MCMM 18.93  0.86  0.05  CH-63 31.20  LSM 13.87  4.38  0.32  

CSC-68 20.00  MCMM 24.73  1.07  0.04  CH-64 31.30  LSM 3.67  3.12  0.85  

CH-1 21.20  MCMM 14.84  0.75  0.05  GS-3 31.40  LSM 2.07  3.82  1.85  

CH-3 21.60  MCMM 12.93  0.77  0.06  CH-65 31.50  LSM 5.73  4.78  0.83  

CH-7 22.40  MCMM 11.85  0.55  0.05  CH-66 31.60  LSM 7.68  4.68  0.61  

CH-9 22.85  MCMM 9.90  0.54  0.05  CH-67 31.70  LSM 4.37  3.46  0.79  

CH-10 23.00  MCMM 18.37  0.93  0.05  GS-5 31.85  LSM 13.13  1.94  0.15  

CH-14 23.20  MCMM 15.47  1.02  0.07  CH-68 31.90  LSM 7.09  10.31  1.46  

CH-17 23.70  MCMM 8.76  0.67  0.08  CH-69 32.00  LSM 10.20  7.58  0.74  

CH-19 24.30  MCMM 21.65  1.36  0.06  GS-7 32.10  LSM 3.98  3.41  0.85  

CH-21 24.70  MCMM 18.66  0.89  0.05  CH-70 32.20  LSM 1.36  4.08  3.00  

CH-23 25.05  MCMM 20.80  0.84  0.04  CH-71 32.40  LSM 0.88  4.25  4.85  

CH-24 25.20  MCMM 5.66  0.38  0.07  GS-9 32.50  LSM 1.01  0.75  0.75  
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CH-25 25.25  MCMM 21.07  0.73  0.03  CH-72 32.70  LSM 0.94  4.02  4.26  

CH-26 25.30  MCMM 16.01  0.68  0.04  CH-73 32.90  LSM 1.00  4.35  4.33  

CH-27 25.45  MCMM 15.35  0.64  0.04  CH-74 33.20  LSM 1.03  4.35  4.24  

CH-28 25.65  MCMM 17.87  0.70  0.04  GS-11 33.40  LSM 2.39  1.68  0.70  

CH-29 25.70  MCMM 15.02  0.69  0.05  GS-13 33.80  LSM 1.16  3.38  2.91  

CH-30 25.85  MCMM 17.28  0.63  0.04  GS-15 34.40  MSM 0.67  0.13  0.20  

CH-31 25.90  MCMM 16.94  0.61  0.04  GS-18 35.30  MSM 0.73  0.11  0.15  

CH-32 26.00  MCMM 8.05  0.44  0.05  GS-21 36.10  MSM 1.94  0.75  0.39  

CH-33 26.10  MCMM 18.87  0.76  0.04  GS-25 37.50  MSM 0.58  0.43  0.74  

CH-34 26.20  MCMM 10.92  0.29  0.03  GS-28 38.50  MSM 0.80  0.38  0.47  
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