UNIVERSITY OF LEEDS

This is a repository copy of *Smithian platform-bearing gondolellid conodonts from Yiwagou Section, northwestern China and implications for their geographic distribution in the Early Triassic.*

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/148042/

Version: Accepted Version

Article:

Li, H, Jiang, H, Chen, Y et al. (6 more authors) (2019) Smithian platform-bearing gondolellid conodonts from Yiwagou Section, northwestern China and implications for their geographic distribution in the Early Triassic. Journal of Paleontology, 93 (3). pp. 496-511. ISSN 0022-3360

https://doi.org/10.1017/jpa.2018.93

© 2019, The Paleontological Society. This article has been published in a revised form in Journal of Paleontology [http://doi.org10.1017/jpa.2018.93]. This version is free to view and download for private research and study only. Not for re-distribution, re-sale or use in derivative works.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Smithian platform-bearing gondolellid conodonts from Yiwagou Section, northwestern China and implications for their geographic distribution in the Early Triassic

Journal:	Journal of Paleontology
Manuscript ID	JPA-RA-2018-0050.R3
Manuscript Type:	Regular Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Lai, Xulong; China University of Geosciences, School of Earth Sciences Li, Hanxiao; China University of Geosciences, School of Earth Science Jiang, Haishui; China University of Geosciences, School of Earth Science Chen, Yanlong; Northwest University, Department of Geology Wignall, Paul; University of leeds, School of Earth & Environment Wu, Baojin; China University of Geosciences, School of Earth Science Zhang, Zaitian; China University of Geosciences, College of Marine Science & Technology Zhang, Muhui; China University of Geosciences, School of Earth Science Ouyang, Zhumin; China University of Geosciences, School of Earth Science
Taxonomy:	Conodonta
Broad Geologic Time:	Triassic < Mesozoic
Detailed Geologic Time:	Smithian (Early Traissic), Smithian
Subject area Geographic Location:	Asia (eastern)

SCHOLARONE[™] Manuscripts

1	Smithian platform-bearing gondolellid conodonts from Yiwagou
2	Section, northwestern China and implications for their geographic
3	distribution in the Early Triassic
4	
5	Hanxiao Li ¹ , Haishui Jiang ^{1,2} , Yanlong Chen ³ , Paul B. Wignall ⁴ , Baojin Wu ¹ , Zaitian Zhang ⁵ ,
6	Muhui Zhang ^{1,2} , Zhumin Ouyang ¹ and Xulong Lai ^{1,2} *
7	
8	¹ School of Earth Science, China University of Geosciences, Wuhan, Hubei 430074, China
9	<1241636995@qq.com> <jiangliuis@163.com> <baojinwu@hotmail.com></baojinwu@hotmail.com></jiangliuis@163.com>
10	<zhmhcug@163.com> <1159418491@qq.com></zhmhcug@163.com>
11	² State Key Laboratory of Geobiology and Environmental Geology, China University of
12	Geosciences, Wuhan, Hubei 430074, China
13	³ Department of Geology, Northwest University, North Taibai Road 229, Xi'an 710069, China
14	<chenyanlong4304103@hotmail.com></chenyanlong4304103@hotmail.com>
15	⁴ School of Earth & Environment, University of Leeds, Leeds, LS2 9JT, UK
16	<p.b.wignall@leeds.ac.uk></p.b.wignall@leeds.ac.uk>
17	⁵ College of Marine Science & Technology, China University of Geosciences, Wuhan, Hubei
18	430074, China <zhang11tian15@163.com></zhang11tian15@163.com>
19	
20	Abstract.—Abundant platform-bearing gondolellid conodonts including: Scythogondolella

2

21	mosheri (Kozur and Mostler), Sc. phryna Orchard and Zonneveld, Scythogondolella cf. milleri
22	(Müller) have been discovered from the Yiwagou Section of Tewo, together with Novispathodus
23	waageni waageni (Sweet), Nv. w. eowaageni Zhao and Orchard. This is the first report of
24	Smithian platform-bearing gondolellids from the Paleo-Tethys region. In addition,
25	Eurygnathodus costatus Staesche, E. hamadai (Koike), Parafurnishius xuanhanensis Yang et al.,
26	and the genera Pachycladina Staesche, Parachirognathus Clark, Hadrodontina Staesche have
27	also been recovered from Dienerian to Smithian strata at Yiwagou Section. Three conodont zones
28	are established, in ascending order: Eurygnathodus costatus-E. hamadai Assemblage Zone,
29	Novispathodus waageni-Scythogondolella mosheri Assemblage Zone, and the
30	Pachycladina-Parachirognathus Assemblage Zone.
31	The platform-bearing gondolellids were globally distributed just after the end-Permian mass
32	extinction, but the formerly abundant Clarkina Kozur disappeared in the late Griesbachian.
33	Platform-bearing gondolellids dramatically decreased to a minimum of diversity and extent in
34	the Dienerian before recovering in the Smithian. Scythogondolella Kozur, probably a
35	thermophilic and eurythermic genus, lived in all latitudes at this time whilst other genera did not
36	cope with Smithian high temperatures and so become restricted to the high-latitude regions.
37	However, the maximum temperature in late Smithian likely caused the extinction of almost all
38	platform-bearing gonodlellids. Finally, the group returned to equatorial regions and achieved
39	global distribution again in the cooler conditions of the late Spathian. We conclude that
40	temperature (and to a lesser extent oxygen levels) exerted a strong control on the geographical

Cambridge University Press

41 distribution and evolution of platform-bearing gondolellids in the Early Triassic.

42

43 Introduction

45	The end-Permian mass extinction was the most severe in geological history and saw the
46	disappearance of the majority of marine organisms (e.g. Wignall, 2015). Ecosystem recovery
47	took several million years and was hindered by the Smithian-Spathian extinction around two
48	million years after the main crisis. Early Triassic sea surface temperatures were especially high
49	and reached their zenith in the late Smithian (Sun et al., 2012; Romano et al., 2012). Black shales
50	and other anoxic facies were also widespread, especially in the late Smithian, although oxic
51	marine red beds (MRBs) became common in the early Spathian (Sun et al., 2015; Song et al.,
52	2017). Thus, high seawater temperatures and anoxia in late Smithian may have caused the
53	second order extinction event at this time as seen amongst conodonts (Orchard, 2007; Stanley,
54	2009), ammonoids (Hallam and Wignall, 1997; Brayard et al., 2009; Stanley, 2009) and bivalves
55	(Chen, 2004). The small size of organisms (the Lilliput Effect), such as conodonts (Chen et al.,
56	2013; Maekawa and Komatsu, 2014) and gastropods (Piestch et al., 2014) may also be
57	attributable to the high temperatures.
58	The term 'gondolellid' derives from the Family Gondolellidae and is composed of two
59	groups, segminiplanate, platform-bearing genera (eg. Neogondolella, Scythogondolella), and
60	segminate, platform-less genera (eg. Neospathodus, Novispathodus). The fate of

4

61	platform-bearing gondolellid conodonts during the vicissitudes of the Early Triassic is unclear.
62	They were globally prosperous prior to the end-Permian mass extinction and once again
63	successful in the Middle Triassic. However, in Early Triassic, conodonts in low latitude regions,
64	such as South China, were mostly dominated by blade-shaped (or segminate) instead of
65	platform-bearing gondolellids. By comparison, in northern high latitude areas and the southern
66	margin of Neo-Tethys, the platform-bearing gondolellids become more common (e.g., Orchard
67	and Zonneveld, 2009, Konstantinov et al., 2013; Bondarenko et al., 2015). Attempts to elucidate
68	conodont biogeographic realms in the Early Triassic (e.g., Yang et al., 2001; Klets, 2008) are
69	currently hampered by incomplete data from some regions. In this paper, we report newly
70	discovered and abundant Smithian platform-bearing gondolellid conodonts from the Yiwagou
71	Section of Tewo County, Gansu Province, northwestern China that enables us to advance
72	discussions of the evolution of this important Triassic group. In addition a taxonomic description
73	is provided for some of the less well known conodonts (Parafurnishius xuanhanensis and several
74	Scythogondolella species).
75	
76	Geological setting and stratigraphy

77

The Early Triassic Qinling Basin was a major seaway between the South China and Northern
China blocks that narrowed to the east and opened to Paleo-Tethys in the west (Lai et al., 1992,
1995, Yin and Peng, 1995, Feng et al., 1994). The studied Yiwagou Section was located in a

5

81	shallow-water, carbonate platform at the northern margin of South China Block and on the
82	southern side of the Basin (Fig. 1). There has been little research in the region because of its
83	inaccessibility and high altitude (but see Yin et al., 1988, 1992; Yin and Peng, 1995; Lai et al.,
84	1992, 1994, 1995). The Yiwagou Section lies along a ravine near Zhagana village, Tewo County
85	(start point GPS 34.256N, 103.204E, Fig. 1). The Section is about 1500 meters long, with the
86	highest point reaching 4060 m above the sea-level, and consists of continuous strata from Upper
87	Permian to Lower Triassic composed of the Changhsing Formation (P ₃ ch), the Zhalishan
88	Formation (T_1z) and the Maresongduo Formation (T_1m) . The Changhsing Formation is mostly
89	grey, thick-bedded limestone and oolitic limestone. The Zhalishan Formation (Griesbachian to
90	Smithian) is 565.5m thick, consisting of grey to dark grey, thin to medium-bedded micritic and
91	bioclastic limestone with intercalations of calcareous, reddish to purple-red, fine-grained sandy
92	limestone (Fig. 2). The Maresongduo Formation (Spathian) consists of red to purple-red,
93	thick-bedded crystallized dolomite, dolomitic limestone and micritic limestone. Overall, red beds
94	first appear within the lower Zhalishan Formation and increase in importance upwards, until they
95	dominate the upper part of the Zhalishan Formation and the entire Maresongduo Formation.
96	Marine Red Beds (MRBs) are more typically found in deeper offshore environment (Song et al.,
97	2017), but are rare in shallow-water carbonate platform settings such as the Yiwagou Section.
98	The MRB horizons likely record fluctuating oxygen concentration and water depth in the
99	southern Qinling Basin (Lai et al., 1992).
100	Conodont assemblages in this area are typically high diversity but low abundance (Lai,

Cambridge University Press

101	1992). Six Early Triassic conodont zones have been established at the Yiwagou Section, in
102	ascending order, they are: Hindeodus parvus Zone, Neospathodus dieneri Zone, Neospathodus
103	pakistanensis Zone, Pachycladina-Parachirognathus Assemblage Zone, Neospathodus
104	triangularis Zone, Neospathodus homeri-Neospathodus hungaricus Assemblage Zone (Lai, 1992,
105	Fig. 3). Biogeographically, the assemblages at Yiwagou has been thought to have characteristics
106	transitional between South China and North China, albeit with a greater affinity to South China
107	faunas (Lai et al., 1992, 1995). In addition to conodonts, the section also yields many
108	foraminifers and bivalves, such as the foraminifers Colaniella media and Reichelina tenuissima
109	in the Changhsing Formation, the bivalves Claraia concentrica, C. hubeiensis, C. aurita,
110	Eumorphotis sp., Entolium sp. and Pteria sp. in the Zhalishan Formation and the bivalve
111	Chlamys weiyuanensis in the Maresongduo Formation (Yang et al., 1992).
112	
113	Materials and methods
114	
115	A total of 153 samples (each one weighting about 3-4 kg) were collected from the upper
116	Changhsing, Zhalishan and lower Maresongduo formations at Yiwagou. All samples were
117	crushed into 1–2 cm ³ fragments, then dissolved in an 8 % solution of acetic acid, followed by
118	heavy liquid separation. A stereoscopic binocular microscope was used to find conodonts in the
119	residues, and a scanning electron microscope (SEM) was used for photography.
120	

7

121	Repositories and institutional abbreviations.—All conodonts in this study are stored in the
122	School of Earth Science, China University of Geosciences (CUG) in Wuhan City, Hubei
123	Province, China.
124	
125	Results
126	
127	A total of 2100 conodont specimens (221 P ₁ elements) were obtained from the Yiwagou samples
128	and this study focuses on those obtained from the upper Zhalishan Formation (Dienerian and
129	Smithian, Figs. 4–7). Most samples were productive, including the sample no. ZLS-30 from the
130	Zhalishan Formation which yielded abundant Scythogondolella, (38 P1 elements in total). This
131	conodont fauna has rarely been found in the Qinling Basin or in South China before. The sample
132	no. ZLS-30 included 30 Scythogondolella mosheri, one Sc. phryna and one Sc. cf. milleri. The
133	remaining specimens are difficult to be identified because of poor preservation. Only one
134	segminiplanate conodont with a deformed platform, assigned to Neogondolella cf. milleri was
135	found in Zhalishan Formation before this study (Lai, 1992). Other than Scythogondolella, 13
136	Novispathodus and some ramiform elements were also recovered from this sample, including six
137	Novispathodus waageni waageni and three Novispathodus waageni eowaageni. All specimens in
138	this sample have a Conodont Alteration Index (CAI) around five (i.e. a black in color).
139	

140 *Conodont zones at Yiwagou Section.*—In addition to *Scythogondolella mosheri, Sc. phryna, Sc.*

141	cf. milleri and Novispathodus waageni mentioned above, Eurygnathodus costatus, E. hamadai
142	and Parafurnishius xuanhanensis were also discovered for the first time from the Yiwagou
143	Section (Fig. 3). Three conodont zones are established in the Dienerian to Smithian interval, in
144	ascending order they are: Eurygnathodus costatus-Eurygnathodus hamadai Assemblage Zone,
145	Novispathodus waageni-Scythogondolella mosheri Assemblage Zone, and the
146	Pachycladina-Parachirognathus Assemblage Zone.
147	Eurygnathodus costatus-Eurygnathodus hamadai Assemblage Zone.—
148	Lower limit: first occurrence of E. costatus and E. hamadai
149	Upper limit: first occurrence of Novispathodus waageni
150	Associated conodonts include Pa. xuanhanensis and some ramiform elements. At the
151	Yiwagou Section, 31 Eurygnathodus costatus and 29 E. hamadai specimens were recovered
152	from the sample no. ZLS-9. Both E. costatus and E. hamadai are widely distributed in the world,
153	and are often co-occur in the late Dienerian or Smithian (e.g., Chen et al., 2016). Parafurnishius
154	xuanhanensis was found in Induan strata from the Panlongdong Section, Sichuan Province,
155	southwest China (Yang et al., 2014). This is the second discovery of this species, which indicates
156	a connection between Yiwagou and northeastern Sichuan.
157	Novispathodus waageni-Scythogondolella mosheri Assemblage Zone.—
158	Lower limit: First occurrence of Nv. waageni and Sc. mosheri
159	Upper limit: First occurrence of Pc. obliqua
160	Associated conodonts include Sc. phryna, Sc. cf. milleri (Müller) and ramiform elements.

161	Both Nv. w. waageni and Nv. w. eowaageni occur in the sample no. ZLS-30. Nv. waageni is a
162	cosmopolitan species found in diverse facies (Tong et al., 2003) [although it is not known from
163	southern European sections (Chen et al., 2016)], and its first appearance indicates the beginning
164	of the Smithian. Goudemand et al. (2012) re-allocated this species from Neospathodus to
165	Novispathodus based on its multi-element apparatus. Zhao et al. (2007) differentiated Nv. w.
166	eowaageni from Nv. w. waageni by its more upright denticles and subdivided the original Nv.
167	waageni Zone into two subzones, a lower Nv. w. eowaageni and an upper Nv. w. waageni
168	subzone. The Nv. w. waageni and Nv. w. eowaageni from Yiwagou Section have the ratio of
169	length to width about 3:1, and their basal cavities are not developed, a typical feature of small
170	elements (Sweet, 1970a). Nv. w. eowaageni has been found in South China, Malaysia, Kashmir,
171	Spiti, Canada and Western Australia and ranges from the Smithian to the early Spathian (e.g.,
172	Zhao et al., 2013; Chen et al., 2015).
173	Scythogondolella is a cosmopolitan Smithian conodont that lived in relatively deep-water
174	environments. Kozur (1989) named the genus, later Orchard (2005, 2007, 2008), Orchard and
175	Zonneveld (2009) reconstructed its apparatus and added some new species. Several Smithian
176	conodont zones were established by Orchard and Zonneveld (2009) in the Wapiti Lake area of
176 177	conodont zones were established by Orchard and Zonneveld (2009) in the Wapiti Lake area of western Canada, including the <i>Sc. lachrymiformis</i> Zone, and the <i>Sc. mosheri</i> Zone which could
176 177 178	conodont zones were established by Orchard and Zonneveld (2009) in the Wapiti Lake area of western Canada, including the <i>Sc. lachrymiformis</i> Zone, and the <i>Sc. mosheri</i> Zone which could be subdivided into the <i>Sc. phryna</i> and <i>Sc. milleri</i> subzones. Compared with segminate conodont
176 177 178 179	conodont zones were established by Orchard and Zonneveld (2009) in the Wapiti Lake area of western Canada, including the <i>Sc. lachrymiformis</i> Zone, and the <i>Sc. mosheri</i> Zone which could be subdivided into the <i>Sc. phryna</i> and <i>Sc. milleri</i> subzones. Compared with segminate conodont zones (such as <i>Novispathodus</i> and <i>Neospathodus</i> zones), platform-bearing gondolellid zones
176 177 178 179 180	conodont zones were established by Orchard and Zonneveld (2009) in the Wapiti Lake area of western Canada, including the <i>Sc. lachrymiformis</i> Zone, and the <i>Sc. mosheri</i> Zone which could be subdivided into the <i>Sc. phryna</i> and <i>Sc. milleri</i> subzones. Compared with segminate conodont zones (such as <i>Novispathodus</i> and <i>Neospathodus</i> zones), platform-bearing gondolellid zones could be more refined, and have great potential to improve the precision of the correlation of

- 181 Smithian strata worldwide. In conclusion, the *Novispathodus waageni-Scythogondolella mosheri*
- 182 Assemblage Zone at Yiwagou is considered to be of Smithian age.
- 183 Pachycladina-Parachirognathus Assemblage Zone.—
- 184 Lower limit: First occurrence of *Pc. obliqua*
- 185 Upper limit: undefined
- 186 Hundreds of ramiform elements occur in this zone, and their sizes vary substantially from
- 187 bed to bed (and will be subject to future study). This zone is characterized by the bloom of
- 188 Pachycladina and Parachirognathus, including Pachycladina obliqua, Pc. qinlingensis, Pc. sp.,
- 189 Parachirognathus delicatulus, Pa. semicircnelus and Pa. sp.. The conodont Hadrodontina
- 190 *anceps* also occurs. *Pachycladina* and *Parachirognathus* are widely distributed in South China
- 191 (Jiang et al., 2000; Wang et al., 2005; Yan et al., 2013; Chen et al., 2015), Qinling areas (Lai,
- 192 1992), Tibet (Xia and Zhang, 2005) and western USA (Clark et al., 1979; Solien, 1979).
- 193 Pachycladina and Hadrodontina are common in the Dinarides (Perri, 1991; Kolar-Jurkovšek and
- 194 Jurkovšek, 2015; Kolar-Jurkovšek et al., 2017), whereas *Parachirognathus* is not very frequent.
- 195 This zone corresponds to the *Pachycladina-Parachirognathus* Assemblage Zone in the Beibei
- Area, Chongqing (Jiang, 1982) and the Bianyang Section, Guizhou (Yan et al., 2013), South
- 197 China, and is also equivalent to the *Parachirognathus-Fumishius* Assemblage Zone and upper
- 198 Parachirognathus ethingtoni Zone in the Great Basin, western USA (Clark et al., 1979; Solien,
- 199 1979), where they were all assigned to the Smithian Substage.
- 200

201	Parafurnishius xuanhanensis also occurs below the Eurygnathodus costatus-Eurygnathodus
202	hamadai Assemblage Zone (Fig. 3), but its age could not be well constrained because of the few
203	reports about this species. Our conodont study has not allowed us to discern the level of the
204	Dienerian/Smithian boundary at Yiwagou Section although it is probably below the sample no.
205	ZLS-30. Further study, including a C isotope analysis may help locate this level.
206	
207	Discussion
208	
209	Global geographical distribution of Early Triassic platform-bearing gondolellid
210	conodonts.—Ten platform-bearing gondolellid conodont genera (Clarkina, Neoclarkina
211	Henderson, Borinella Budurov and Sudar, Scythogondolella, Neogondolella Bender and Stoppel,
212	Gladigondolella müller, Paullella Orchard, Columbitella Orchard, Magnigondolella Golding and
213	Orchard, Spathogondolella Jiang) occur in the Early Triassic. The evolution of platform-bearing
214	gondolellids in Early Triassic remains controversial. Klets and Kopylova (2007) suggested an
215	evolutionary lineage consisting of: - Mesogondolella - Clarkina - Neospathodus - Neogondolella
216	- Scythogondolella. However, we consider that Neogondolella is unlikely to have evolved from
217	Neospathodus. The opinion we tentatively support is as follows: Clarkina survived the
218	end-Permian mass extinction in low abundance until disappearing in the late Griesbachian. A few
219	Neogondolella, Neoclarkina and Borinella species evolved from Clarkina during this time.
220	Clarkina, Neogondolella and Neoclarkina have very similar P1 elements, but the latter two can

221	be distinguished from <i>Clarkina</i> with their different S_0 elements (Henderson and Mei, 2007). In
222	this paper, Clarkina is used for those conodonts that originated in the Permian and extended into
223	Early Triassic. As for Scythogondolella, Orchard (2007) proposed an evolutionary lineage
224	consisting of: - Cl. nassichuki - Cl. krystyni - Cl. discreta - Sc.? sp. A - Smithian
225	Scythogondolella. Sc.? sp. A in the early Dienerian (Orchard, 2007, Orchard and Zonneveld,
226	2009) and Ng. sp. B in the late Dienerian (Hatleberg and Clark, 1984, pl. 1, fig. 3) might be the
227	ancestor of Smithian Scythogondolella. Its multielement apparatus of 15 elements differs from
228	Neogondolella in both the P and S elements (Orchard, 2005, 2007; Goudemand et al., 2012).
229	However, since the multielement apparatuses have not been completely established, the genera
230	of some species might be corrected in the future.
231	The geographical distribution of platform-bearing gondolellids (Fig. 8), based on published
232	records and our new findings, are discussed below.
233	Griesbachian.—Some Clarkina species [Cl. carinata (Clark), Cl. planata (Clark), Cl.
234	orchardi (Mei), Cl. kazi (Orchard), Cl. meishanensis Zhang et al., Cl. zhejiangensis (Mei), Cl.
235	nassichuki (Orchard), Cl. taylorae (Orchard), Cl. tulongensis (Tian), Cl. deflecta (Wang and
236	Wang), Cl. changxingensis (Wang and Wang), Cl. prediscreta Wu et al., Cl. postwangi (Tian), Cl.
237	hauschkei Kozur] survived the end-Permian mass extinction and lived alongside newly evolved
238	species [Neogondolella griesbachensis (Orchard), Ng. lehrmanni (Chen et al.) and Neoclarkina
239	krystyni (Orchard), Nc. discreta (Orchard and Krystyn)] in the Griesbachian. They have been
240	reported from northern low-latitude regions: South China (e.g., Zhang et al., 2007; Jiang et al.,

Cambridge University Press

241	2007, 2011; Chen et al., 2009; Zhao et al., 2013), western USA (Clark et al., 1979); northern
242	high-latitude areas: British Columbia (Mosher, 1973; Henderson, 1997; Orchard and Zonneveld,
243	2009; Golding et al., 2014), Canadian Arctic (Mosher, 1973; Henderson, 1997; Orchard, 2007;
244	Orchard, 2008), Svalbard (Nakrem et al., 2008), Greenland (Teichert and Kummel, 1976); south
245	margin of Neo-Tethys: Oman (Krystyn et al., 2003), West Pakistan (Sweet, 1970a), Kashmir
246	(Sweet, 1970b), India (Krystyn and Orchard, 1996; Goel, 1977; Orchard and Krystyn, 1998;
247	Krystyn et al., 2004), Nepal (Hatleberg and Clark, 1984), Tibet (Tian, 1982; Orchard et al., 1994;
248	Wang and Wang, 1995; Orchard and Krystyn, 1998; Wu et al., 2014); Panthalassa: Japan (Igo,
249	1989; Koike, 1996). Borinella megacuspa Orchard that originated in the late Griesbachian has
250	been reported from Canadian Arctic (Orchard, 2008).
251	Overall, the distribution of platform-bearing gondolellids was still global following the
252	end-Permian extinction but they were only common in high-latitude regions, such as Svalbard
253	and Canadian Arctic (Klets, 2008), whilst they were no longer flourishing in the low-latitudes.
254	However, <i>Clarkina</i> became extinct at the end of Griesbachian.
255	Dienerian.—The diversity of platform-bearing gondolellids fell to a minimum in the
256	Dienerian and they disappeared from equatorial regions. The last appearance of Neoclarkina
257	discreta, Neogondolella griesbachensis and Borinella megacuspa was in the Canadian Arctic
258	(Orchard, 2008), whilst several new species of Borinella [B. nepalensis (Kozur and Mostler), B.
259	chowadensis (Orchard), B. sweeti (Kozur and Mostler)] have been reported from British
260	Columbia, West Pakistan, India (Orchard, 2007; Orchard and Krystyn, 2007) and Svalbard

261	(Hatleberg and Clark, 1984, orignally assigned to Ng. elongata). And the new species
262	Neogondolella mongeri (Orchard) was reported from British Columbia (Orchard, 2007, Orchard
263	and Zonneveld, 2009).
264	Smithian.—Orchard et al. (2007) considered the middle Smithian to be the heyday of Early
265	Triassic conodonts. In additon to Borinella, three new genera Scythogondolella, Neogondolella
266	and <i>Paullella</i> , probably evolved in the late Dienerian or early Smithian have been found in
267	Smithian. Amongst these, Scythogondolella was a dominant and cosmopolitan genus (Orchard,
268	2008; Klets, 2008). In contrast, other platform-bearing gondolellids were rarer and less
269	widespread. Scythogondolella is represented by seven species [Sc. mosheri, Sc. milleri, Sc.
270	phryna, Sc. lachrymiformis Orchard, Sc. rhomboidea Orchard and Zonneveld, Sc. ellesmerensis
271	Orchard, Sc. crenulata (Mosher)] and five other species in open nomenclature (Sc.? sp. A
272	Orchard and Sc. B-E Orchard), distributed across northern high-latitude regions: Siberia (Dagis,
273	1984; Klets and Yadrenkin, 2001; Konstantinov, 2013), Canadian Arctic (Mosher, 1973; Kozur
274	and Mostler, 1976; Orchard, 2007, 2008 and Orchard and Zonneveld, 2009; Beranek et al., 2010),
275	British Columbia (Mosher, 1973; Orchard, 2008; Orchard and Zonneveld, 2009; Golding et al.,
276	2014, 2015; Henderson et al., 2018), Svalbard (Weitschat and Lehmann, 1978; Hatleberg and
277	Clark, 1984; Nakrem et al., 2008), South Primorye (Kozur and Mostler, 1976; Buryi, 1979;
278	Bondarenko et al., 2015), Qinghai, China (part of the Tarim Plate, Fang et al., 2013); the south
279	margin of Neo-Tethys: Tibet (Tian, 1982; Tian et al., 1983; Zhao and Zhang, 1991; Wang and
280	Wang, 1995; Zou et al., 2006), India (Matsuda, 1984), Timor Island (Nogami, 1968; Berry et al.,

Cambridge University Press

281	1984), West Pakistan and Nepal (Kozur and Mostler, 1976; Hatleberg and Clark, 1984). Some
282	also occurred in relatively low-latitude (about 10N°) regions: western USA (Müller, 1956; Clark
283	and Mosher, 1966; Solien, 1979; Clark et al., 1979; Orchard, 2008), Chaohu, South China (Liang
284	et al., 2011), Qinling Basin, northwestern China (this paper) and Panthalassa: Japan (Nogami,
285	1968).
286	Newly evolved Neogondolella (Ng. altera Klets and Yadrenkin, Ng. composita Dagis, Ng.
287	jakutensis Dagis, Ng. sibirica Dagis) occurred in high-latitude Siberia (Dagis, 1984; Klets and
288	Yadrenkin, 2001) and Svalbard (Dagis and Korchinslaya, 1989). Borinella species (B. buurensis
289	Dagis, B. chowadensis, B. nepalensis) and Paullella meeki (Paull) are known from high northern
290	latitudes regions: Siberia (Dagis, 1984), Canadian Arctic (Beranek et al., 2010), British
291	Columbia and western USA (Orchard, 2007, 2008, Orchard and Zonneveld, 2009; Golding et al.,
292	2014, 2015; Henderson et al., 2018), Svalbard (Hatleberg and Clark, 1984, orignally assigned to
293	Ng. elongata; Nakrem et al., 2008), and southern Neo-Tethys: India (Orchard and Krystyn, 2007;
294	Orchard, 2010) and Nepal (Dagis, 1984).
295	Spathian.—The bloom of Scythogondolella species was terminated in the late Smithian
296	extinction along with Borinella and Paullella, leaving Neogondolella as the sole
297	platform-bearing gondolellid survivor (although no species of this genus are known to have
298	survived). The Spathian saw several new Neogondolella species appear [Ng. jubata Sweet, Ng.
299	amica Klets, Ng. captica Klets, Ng. taimyrensis Dagis, Ng. paragondolellaeformis Dagis, Ng.
300	shevyrevi (Kozur and Mostler), Ng. dolpanae Balini, Gavrilova and Nicora]. They were joined

301	by another four genera [Gladigondolella (Gl. malayensis Nogami, Gl. carinata Bender),
302	Columbitella (Sweet), Magnigondolella regalis Golding and Orchard and Spathogondolella
303	jiarongensis Jiang and Chen] that originated in the late Spathian and ranged into Middle Triassic.
304	By the late Spathian platform-bearing gondolellids had returned to equatorial regions and
305	thus they re-attained a global distribution. They occurred in equatorial regions: South China
306	(Jiang, 1982; Wang, 1982; Wang et al., 2005; Chen et al., 2015) and Transcaucasia (Orchard,
307	2007); in the northern hemisphere: Siberia (Dagis, 1984; Klets, 1998), Canadian Arctic (Mosher,
308	1973), Svalbard (Weitschat and Lehmann, 1978; Hatleberg and Clark, 1984), British Columbia
309	(Mosher, 1973; Orchard and Tozer, 1997; Orchard, 2008), Western USA (Clark et al., 1979;
310	Solien, 1979; Carey, 1984; Orchard and Tozer, 1997; Orchard, 2005), Greece (Gaetani et al.,
311	1992), South Primorye (Buryi, 1979) and Romania (Orchard et al., 2007); in the southern
312	hemisphere: Oman (Orchard, 1994), West Pakistan (Sweet, 1970a), India (Matsuda, 1984), Tibet
313	(Tian, 1982, 1983; Zhao and Zhang, 1991; Wang and Wang, 1995) and Nepal (Hatleberg and
314	Clark, 1984).

315

Controls on the evolution of Early Triassic platform-bearing gondolellid conodonts.—Some
platform-bearing gondolellids were a deep-water, nektobenthic group, such as *Clarkina* and *Neogondolella* (Lai et al., 2001), but others possibly prefer pelagic environments, such as *Borinella* and *Gladigondolella* (Orchard, 2007; Kozur et al., 2009; Zhang et al., 2017). The
former are likely to have been affected by the substantial temperature and seafloor oxygenation

321	fluctuations known to have affected Early Triassic marine habitats, and the latter have probably
322	been mainly affected by the seawater temperature. In particular, the diversity and evolution of
323	platform-bearing gondolellids appear to have closely followed the temperature record of the time
324	(Sun et al., 2012). The disappearance in late Griesbachian of <i>Clarkina</i> that was dominant in end
325	Permian strata coincides with a temperature rise that began at the Permo-Triassic boundary and
326	peaked at the late Griesbachian. The rise saw the platform-bearing gondolellids of low diversity
327	and abundance contract to relatively high latitude regions in the Dienerian (Fig. 8). The
328	subsequent cooling trend in the Dienerian, that peaked at the Dienerian/Smithian boundary,
329	coincided with the appearance of new taxa including Scythogondolella, Paullella and several
330	Neogondolella species. Temperature then rose again through the Smithian, peaking late in the
331	substage. It appears that many conodonts could not cope with these high temperatures, especially
332	in tropical latitudes, causing genera such as Neogondolella and Borinella to become restricted to
333	high-latitude regions (Fig. 8). In contrast Scythogondolella was tolerant of a broad range of
334	temperatures and was found in all latitudes. However, the latest Smithian temperature peak
335	coincides with the extinction of all platform-bearing gondollelids, except for Neogondolella that
336	saw a turnover amongst its constituent species. Finally, platform-bearing gondolellids returned to
337	the equatorial regions and achieved global distribution again during late Spathian cooling.
338	Early Triassic marine oxygenation tracks the temperature oscillations reasonably closely
339	with peak intensity of anoxia during the warmest intervals (Griesbachian/earliest Dienerian and
340	late Smithian) whilst the anoxicity of the Spathian appears to have been more regionally variable

(Song et al., 2012; Sun et al., 2015; Wignall et al., 2016; Huang et al., 2017). Thus, the crises in

341

18

342	platform-bearing gondolellid fortunes correspond with widespread anoxic episodes although
343	their subsequent Spathian radiation was at a time when anoxia was reasonably widespread.
344	However, the extent of anoxia in Spathian may not have been sufficient to hinder radiation, and it
345	is noteworthy at Yiwagou that this interval is represented by marine red beds.
346	
347	Conclusions
348	
349	Smithian platform-bearing gondolellid conodonts Scythogondolella mosheri, Sc. phryna and Sc.
350	cf. milleri have been discovered at Yiwagou, northwestern China, together with Novispathodus
351	waageni waageni, Nv. w. eowaageni in the same sample. This is the first report of Smithian
352	platform-bearing gondolellid conodonts in Paleo-Tethys. Additionally, Eurygnathodus costatus,
353	E. hamadai, Parafurnishius xuanhanensis are also here reported from the Dienerian to Smithian
354	interval at the Yiwagou Section. Three conodont zones have been established from Dienerian to
355	Smithian, they are in ascending order: Eurygnathodus costatus-Eurygnathodus hamadai
356	Assemblage Zone, Novispathodus waageni-Scythogondolella mosheri Assemblage Zone,
357	Pachycladina-Parachirognathus Assemblage Zone.
358	The fluctuating fortunes of the platform-bearing gondolellids closely follow the seawater
359	temperature record with low diversity related to peaks of temperature in Early Triassic seas.

360 Compilation of global platform-bearing gondolellid occurrences show that high temperatures in

361	the late Griesbachian-early Dienerian and in the Smithian saw their retreat to higher, cooler
362	latitudes. Scythogondolella is shown to be both a thermophilic and eurythermic genus which was
363	successful during the high temperatures of the Smithian, when other platform-bearing
364	gondolellids disappeared from tropical latitudes. However, the peak temperatures late in the
365	Smithian may have been too much for even Scythogondolella to survive.
366	Closely linked oxygenation trends may have also played a role in controlling diversity.
367	However, the occurrence of marine red beds in the Smithian (and to an even greater extent in the
368	Spathian) suggest oxygenation levels were frequently extremely good in the shallow-water
369	carbonate platform at Yiwagou (cf. Lai and Xu, 1992).
370	
371	Systematic paleontology
372	
373	Class Conodonta Eichenberg, 1930
374	Order Conodontophorida Eichenberg, 1930
375	Family Ellisoniidae Clark, 1972
376	Genus Parafurnishius Yang et al., 2014
377	
378	Type species.—Parafurnishius xuanhanensis Yang et al., 2014 from the Feixianguan Formation
379	at the Panlongdong Section in Xuanhan County, northeastern Sichuan Province, southwest
380	China.

381	
382	Parafurnishius xuanhanensis Yang et al., 2014
383	Figure 4.1–4.21
384	
385	2014 Parafurnishius xuanhanensis Yang et al., p. 269, pl. 3. figs. A–J, pl. 7. pl. A–O.
386	
387	Holotype.—NIGP161300, from the Feixianguan Formation at the Panlongdong Section in
388	Xuanhan County, northeastern Sichuan Province, southwest China (Yang et al., 2014, pl. 3, fig.
389	J).
390	
391	Occurrence.—from the Zhalishan Formation at the Yiwagou Section in Tewo County, Gansu
392	Province, northwestern China, in Dienerian or Smithian.
393	
394	Description.—The P1 element has a variable shape platform with the width:length ratio about
395	1:2. In upper view, a relatively small cusp lies in the centre, surrounded by 8–10 high and strong
396	irregularly distributed denticles. Generally, it has an anterior process with 1-2 denticles and a
397	roughly triangular posterior process with 3–4 denticles, between which there is a broad platform
398	with 2–7 denticles and a cusp. In lateral view, the basal margin is almost straight, but sometimes
399	upturned posteriorly in juvenile elements. Denticles generally erect or inclined posteriorly in the
400	posterior part. In lower view, a large basal cavity is approximately diamond-shaped with a basal

pit located in the centre. A basal furrow extends from the basal pit to the anterior end, but always

21

402	no furrow or a very shallow one to the posterior end.
403	
404	Materials.—71 specimens.
405	
406	<i>Remarks.</i> —The specimens at Yiwagou Section are much smaller than those recorded from the
407	Panlongdong Section, Sichuan Province, southwest China (Yang et al., 2014). The juvenile
408	individual has only one row of denticles in the anterior part that separates into two rows from
409	middle to posterior part, which indicates that this species may develop from blade shaped
410	conodonts.

Another conodont *Platyvillosus corniger* is very similar to this species, but is of Olenekian 411 age. It is found in Spathian strata at Žiri-sortirnica 28 Section, in the Idrija–Žiri area of Slovenia 412 (Chen, et al., 2016) and Olenekian strata in Mokrice locality, eastern Slovenia (Kolar-Jurkovšek 413 and Jurkovšek, 2015; Kolar-Jurkovšek et al., 2017). Although Kolar-Jurkovšek and Chen et al. 414 have highlighted the subtle morphological differences (Chen et al., 2016; Kolar-Jurkovšek et al., 415 2017), it is still difficult to distinguish these two species with specimens from the Yiwagou 416 Section although they probably have different apparatuses (Yang et al., 2014; Kolar-Jurkovšek et 417 al., 2017). Here we assign them to Pa. xuanhanensis because they appear in a range of samples 418 and are accompanied by Hindeodus postparvus in the first few samples in Induan (not shown in 419 Fig. 3), but this taxon needs further research. 420

421	
422	Order Ozarkodinida Dzik, 1976
423	Family Gondolellidae Lindström, 1970
424	Subfamily Scythogondolellinae Orchard, 2007
425	Genus Scythogondolella Kozur, 1989
426	
427	Type species.—Gondolella milleri Müller, 1956 from the Lower Triassic Meekoceras bed, Dinner
428	Springs Canyon, northeastern Nevada, USA.
429	
430	Remarks.—Compared with Neogondolella, Scythogondolella is characterized by a very
431	prominent blade-carina which extends beyond the posterior end to form a free blade in most
432	cases.
433	
434	Scythogondolella mosheri (Kozur and Mostler, 1976)
435	Figure 5.1–5.21
436	
437	1973 Neogondolella nevadensis Clark in Mosher, p. 169, pl. 19, figs. 17, 18, 24.
438	1973 Neogondolella elongata Sweet in Mosher, p. 166, pl. 19, fig. 19.
439	1976 Gondolella mosheri Kozur and Mostler, p. 8, pl. 1, figs. 9–12.
440	1978 Neogondolella planata Clark in Weitschat and Lehmann, pl. 14, figs. 1-5.

- 441 1978 *Neogondolella nevadensis* Clark in Weitschat and Lehmann, pl. 14, figs. 6–10.
- 442 1982 Neogondolella elongatus Sweet in Tian, pl. 1, 11.
- 443 1983 *Neogondolella elongatus*; Tian et al., pl. 94. fig. 1.
- 444 1984 *Neogondolella nevadensis*; Berry et al., pl. 1, figs. 22–25.
- 445 1984 *Neogondolella nevadensis*; Hatleberg and Clark, pl. 2, figs. 14, 15.
- 446 1991 Neogondolella nevadensis; Zhao and Zhang, pl. 1, figs. 17, 18.
- 447 2005 Scythogondolella mosheri; Orchard, p. 97–98, fig. 23A–H.
- 448 2008 Scythogondolella mosheri; Orchard, p. 410, pl. 5, figs. 1–4.
- 449 2008 *Scythogondolella mosheri*; Nakrem et al., pl. 5, figs. 4–6, 12, 13.
- 450 2014 *Scythogondolella mosheri*; Golding et al., p. 173, pl. 1, figs. 7–9.
- 451 2015 *Scythogondolella mosheri*; Golding et al., p. 167–168, pl. 12, figs. 19–21.
- 452 2018 *Scythogondolella mosheri*; Henderson et al., pl. 1. figs. 35–37.
- 453
- 454 *Holotype.*—from Dolpo, Nepal (Kozur and Mostler, 1976, pl. 1, figs. 9–12).

455

- 456 Occurrence.—from the Zhalishan Formation at the Yiwagou Section in Tewo County, Gansu
- 457 Province, northwestern China, in Smithian.

- 459 *Description.*—This species has a wedge-shaped platform, with the maximum width occurring
- 460 posteriorly. The posterior margin is typically constricted and indented inwards from the large

461	cusp which projects posteriorly beyond the platform margin. Consequently, some specimens
462	have a heart-shaped plan view. The platform with smooth upturned margins tapers progressively
463	to the anterior end, leaving a free blade of variable length. The blade-carina is typically high with
464	relatively large, discrete denticles, of uniform height in lateral view. In lower view, the rounded
465	expanded basal cavity loop surrounds a small basal pit. Juvenile specimens typically have a more
466	developed carina than platform, with a very prominent cusp projecting posteriorly beyond the
467	platform margin.
468	
469	Materials.—30 specimens.
470	
471	Remarks.—Mosher (1973) recovered Neogondolella nevadensis from the Romunduri and Tardus
472	zones (ammonoid zones of lower and upper Smithian) and Ng. elongata from the Tardus Zone in
473	the Canadian Arctic and British Columbia. However, these occurrences are reassigned to Sc.
474	mosheri based on more recent study. Kozur and Mostler (1976) defined Sc. mosheri (=
475	Gondolella mosheri) from the Tardus Zone (upper Jakutian) of Dolpa, Nepal. Some of the
476	elements illustrated as Neogondolella planata and Ng. nevadensis (Weitschat and Lehmann,
477	1978, pl. 14, figs. 1–10) clearly belong to Sc. mosheri. In addition, Ng. elongatus in Tian (1982,
478	pl. 1, 11) and Tian et al. (1983, pl. 94. fig. 1), Ng. nevadensis in Berry et al. (1984, pl. 1, figs.
479	23–25), Hatleberg and Clark (1984, pl. 2, figs. 14, 15) and Zhao and Zhang (1991, pl. 1, figs. 17,

480 18) can also be considered reassigned to *Sc. mosheri*.

481	Sc. mosheri has often been confused with Ng. nevadensis, Ng. planata and Ng. elongata, but
482	it can be distinguished by its relatively high bladed carina with large denticles and strong cusp.
483	Both Ng. nevadensis and Ng. planata have lower nodular denticles and a smaller cusp. The name
484	of Ng. elongata (or elongatus) is not used any longer, and has been changed to Columbitella
485	elongata (Orchard, 2005) that also has a strong cusp and carina, but a more rounded and
486	expanded loop surrounding its basal pit (Orchard, 2007). Compared with the specimens in
487	Canadian Arctic, Sc. mosheri from Yiwagou are much smaller, with no more than nine denticles,
488	and so are probably juveniles.
489	
490	Scythogondolella cf. milleri (Müller, 1956)
491	Figure 5.22–5.23
492	
492 493	Holotype.—Lower Triassic Meekoceras bed, Dinner Springs Canyon, northeastern Nevada, USA
492 493 494	<i>Holotype.</i> —Lower Triassic <i>Meekoceras</i> bed, Dinner Springs Canyon, northeastern Nevada, USA (Müller, 1956, p. 823, pl. 95, figs. 4–6).
492 493 494 495	<i>Holotype.</i> —Lower Triassic <i>Meekoceras</i> bed, Dinner Springs Canyon, northeastern Nevada, USA (Müller, 1956, p. 823, pl. 95, figs. 4–6).
492 493 494 495 496	 Holotype.—Lower Triassic Meekoceras bed, Dinner Springs Canyon, northeastern Nevada, USA (Müller, 1956, p. 823, pl. 95, figs. 4–6). Occurrence.—from the Zhalishan Formation at the Yiwagou Section in Tewo County, Gansu
492 493 494 495 496 497	 <i>Holotype</i>.—Lower Triassic <i>Meekoceras</i> bed, Dinner Springs Canyon, northeastern Nevada, USA (Müller, 1956, p. 823, pl. 95, figs. 4–6). <i>Occurrence</i>.—from the Zhalishan Formation at the Yiwagou Section in Tewo County, Gansu Province, northwestern China, in Smithian.
 492 493 494 495 496 497 498 	 <i>Holotype.</i>—Lower Triassic <i>Meekoceras</i> bed, Dinner Springs Canyon, northeastern Nevada, USA (Müller, 1956, p. 823, pl. 95, figs. 4–6). <i>Occurrence.</i>—from the Zhalishan Formation at the Yiwagou Section in Tewo County, Gansu Province, northwestern China, in Smithian.
 492 493 494 495 496 497 498 499 	 <i>Holotype.</i>—Lower Triassic <i>Meekoceras</i> bed, Dinner Springs Canyon, northeastern Nevada, USA (Müller, 1956, p. 823, pl. 95, figs. 4–6). <i>Occurrence.</i>—from the Zhalishan Formation at the Yiwagou Section in Tewo County, Gansu Province, northwestern China, in Smithian. <i>Description.</i>—This large broken specimen has subparallel upturned platform margins

moderate-sized cusp projects posteriorly beyond the platform margin. In the lower view, the keel
with basal groove is broad.

503

504 *Material.*—One specimen.

505

Remarks.—This specimen closely resembles Sc. milleri, but it is broken and so we assign it to Sc. 506 cf. milleri. Sc. milleri, defined by Müller (1956) in the Meekoceras Bed of Nevada, is the most 507 widespread and extensively studied species of its genus. Typically, it has uneven upturned 508 platform margins ornamented with nodes or small denticles, which is thought to have evolved 509 from older Sc. mosheri with slightly waved platform margins. Nogami (1968) identified 510 numerous Sc. milleri ranging from juvenile to gerontic stages in Timor and Japan. The large 511 elements have distinctive, denticulated platform margins, but the juvenile elements closely 512 resembles Sc. mosheri with slightly sculptured platform margins. It seems that juvenile elements 513 of Sc. milleri and Sc. mosheri have very similar early growth stages but become differentiated in 514 later stages. We also note that one Gondolella milleri illustrated by Nogami (1968, pl. 10, fig. 11) 515 is Neogondolella nevadensis rather than Sc. milleri because of its low carina. Additionally the 516 specimen illustrated by Liang et al. (2011, pl. 3, fig. 10) from Chaohu, South China should be 517 assigned to Sc. milleri, making it the first report of Smithian platform-bearing gondolellid 518 conodonts in South China. 519

520 *Sc. milleri* is a cosmopolitan species; it has been found in Siberia (Dagis, 1984;

521	Konstantinov, 2013), Nevada (Müller, 1956; Clark and Mosher, 1966), Utah (Clark et al., 1979),
522	Canadian Arctic (Orchard, 2008), British Columbia (Mosher, 1973, Orchard and Tozer, 1997,
523	Solien, 1979), Dolpo, Nepal (Kozur and Mostler, 1976), Spiti, India (Orchard, 2007), Timor
524	Island (Berry et al., 1984), Japan (Nogami, 1968), Spitzbergen (Nakrem et al., 2008) and
525	Southern Primorye (Bondarenko et al., 2015). In China, it has been reported from Tibet (Tian,
526	1982; Tian et al., 1983; Wang and Wang, 1995; Zou et al., 2006), Qinghai Province (Fang et al.,
527	2013), and as noted above, Chaohu, South China (Liang et al., 2011).
528	
529	Scythogondolella phryna Orchard and Zonneveld, 2009
530	Figure 5.24–5.26
531	
532	2009 Scythogondolella phryna Orchard and Zonneveld, p. 786, pl. 16, figs. 10–16, 20–24.
533	2010 Scythogondolella phryna; Beranek et al., pl. 6, figs. 37–39.
534	2014 Scythogondolella phryna; Golding et al., p. 173, pl. 1, figs. 4-5.
535	
536	Holotype.—GSC 132549 from GSC loc. no. C-103866 (213E), in the Toad Formation on Toad
537	River, northeast British Columbia (Orchard and Zonneveld, 2009, pl. 16, figs. 16, 23, 24).
538	
539	Occurrence.—from the Zhalishan Formation at the Yiwagou Section in Tewo County, Gansu
540	Province, northwestern China, in Smithian.

E	л	1
5	4	T

542	Description.—This specimen has a narrow biconvex platform, tapering anteriorly and posteriorly
543	uniformly, with a short free blade occurring in the anterior end. The platform is roughly
544	symmetrical and flat, broadest around the middle. The large cusp and high blade-carina with 10
545	large discrete denticles that all lean posteriorly. Although they are all broken, the height still
546	apparently surpasses the platform width.
547	
548	Material.—One specimen.
549	
550	Remarks.—This species was originally described from the Wapiti Lake and Toad River areas in
551	northeast British Columbia (Orchard and Zonneveld, 2009). Sc. phryna seems like an
552	intermediate form between segminiplanate and segminate conodonts with an atrophic platform. It
553	may be a cosmopolitan species, but needs more research.
554	
555	Acknowledgments
556	
557	This work was supported by the Natural Sciences Foundation (grant nos. 41572002,
558	41661134047). We thank H.X.S. Dong, Y.C. Li, X.H. Niu, H. Song, P.F. He, L.F. Li, H.Y. Ma,
559	Z.J. Ma, L. Kang and M.Y. Wang for their great help in field assistance. Special thanks to Z.Y.
560	Sun, Y. Chen for their personal communication about this paper. We thank two anonymous

561	reviewers for their helpful comments and constructive suggestions.
562	
563	References
564	
565	Beranek, L.P., Mortensen, J.K., Orchard, M.J., and Ullrich, T., 2010, Provenance of North
566	American Triassic strata from west-central and southeastern Yukon: correlations with coeval
567	strata in the Western Canada Sedimentary Basin and Canadian Arctic Islands: Canadian
568	Journal of Earth Sciences, v. 47, p. 53–73.
569	Berry, R., Burrett, C., and Banks, M., 1984, New Triassic faunas from East Timor and their
570	tectonic significance: Geologica et Palaeontologica, v. 18, p. 127–137.
571	Bondarenko, L.G., Zakharov, Y.D., Guravskaya, G.I., and Safronov, P.P., 2015, Lower Triassic
572	zonation of southern Primorye. Article 2. First conodont findings in Churkites cf. syaskoi
573	beds at the western coast of the Ussuri Gulf: Russian Journal of Pacific Geology, v. 9, p.
574	203–214.
575	Brayard, A., Escarguel, G., Bucher, H., and Brühwiler, T., 2009, Smithian and Spathian (Early
576	Triassic) ammonoid assemblages from terranes: Paleoceanographic and paleogeographic
577	implications: Journal of Asian Earth Sciences, v. 36, p. 420-433.
578	Buryi, G.I., 1979, Lower Triassic Conodonts of Southern Primor'e: Nauka, Moscow, 142 p. [in
579	Russian]
580	Carey, S.P., 1984, Conodont biofacies of the Triassic northwestern Nevada: Geological Society

581	of America Special	Papers, v. 196, j	 295–306.
-----	--------------------	-------------------	------------------------------

582 Chen, J.H., 2004, Macroevolution of Bivalvia after the end-Permian Mass Extinction in South China: University of Science and Technology of China Press, p. 647–700. 583 Chen, J., Beatty, T.W., Henderson, C.M., and Rowe, H., 2009, Conodont biostratigraphy across 584 the Permian-Triassic boundary at the Dawen section, Great Bank of Guizhou, Guizhou 585 Province, South China: Implications for the Late Permian extinction and correlation with 586 Meishan: Journal of Asian Earth Sciences, v. 36, p. 442–458. 587 Chen, Y.L., Twitchett, R.J., Jiang, H.S., Richoz, S., Lai, X.L., Yan, C.B., Sun, Y.D., Liu, X.D., 588 and Wang, L.N., 2013, Size variation of conodonts during the Smithian-Spathian (Early 589 Triassic) global warming event: Geology, v. 41, p. 823–826. 590 Chen, Y.L., Jiang, H.S., Lai, X.L., Yan, C.B., Richoz, S., Liu, X.D., and Wang, L.N., 2015, Early 591 Triassic conodonts of Jiarong, Nanpanjiang Basin, southern Guizhou Province, South China: 592 Journal of Asian Earth Sciences, v. 105, p. 104-121. 593 Chen, Y.L., Jurkovšek, T.K., Jurkovšek, B., Aljinović, D., and Richoz, S., 2016, Early Triassic 594 conodonts and carbonate carbon isotope record of the Idrija–Žiri area, Slovenia: 595 Palaeogeography, Palaeoclimatology, Palaeoecology, v. 444, p. 84–100. 596 Clark, D.L., 1972, Early Permian crisis and its bearing on Permo-Triassic conodont taxonomy: 597 Geologica et Palaeontologica, Sonderband, v. 1, p. 147–158. 598 Clark, D.L., and Mosher, L.C., 1966, Stratigraphic, geographic, and evolutionary development of 599 the conodont Genus Gondolella: Journal of Paleontology, v. 40, p. 376–394. 600

Clark, D.L., Paul, R.K., Solien, M.A., and Morgan, W.A., 1979, Triassic conodont
biostratigraphy in the Great Basin, in Sandberg, C.A., and Clark, D.L., eds., Conodont
Biostratigraphy of the Great Basin and Rocky Mountains, Brigham Young University
Geology Studies, v. 26, p. 179–183.
Dagis, A.A., 1984, Early Triassic Conodonts from Northern Middle Siberia: Nauka, Moscow, 69
p. [in Russian]
Dagis, A., and Korchinskaya, M.V., 1989, Triassic conodonts from Svalbard: in upper Paleozoic
and Triassic of Siberia: Nauka, Novosibirsk, p. 109–121.
Dong, Y.P., Zhang, X.N., Liu, X.M. Li, W., Chen, Q., Zhang, G.W., Zhang, H.F., Yang, Z., Sun,
S., and Zhang, F.F., 2015, Propagation tectonics and multiple accretionary processes of the
Qinling Oragen: Journal of Asian Earth Sciences, v. 104, p. 84–98.

- Dzik, J., 1976, Remarks on the evolution of Ordovician conodonts: Acta Palaeontologica 612
- Polonica, v. 21, p. 395-455. 613
- Eichenberg, W., 1930, Conodonten aus dem Culm des Harzes: Palaontologische Zeitschrift, v. 12, 614 p. 177-182. 615
- Fang, Q., Zhang, H.J., Wang, X.L., and Wang, J.Y., 2013, The discovery of Early Triassic 616
- conodont in the Huashixia Area of Maduo County, Qinghai Province, NW China and its 617
- significance: Acta Micropalaeontologica Sinica, v. 30, p. 423-425. [in Chinese with English 618
- abstract] 619
- Feng, Q.L., Du, Y.S., Zhang, Z.H. and Zeng, X.Y., 1994, Early Triassic radiolarian fauna of 620

621	Tongbai region in Henan and its geologic significance: Earth Science, v. 19, p. 787-794. [in
622	Chinese with English abstract]
623	Gaetani, M., Jacobshagen, V., Nicora, A., Kauffmann, G., Tselepidis, V., Sestini, N.F., Mertmann,
624	D., and Coroneou, V.S., 1992, The Early-Middle Triassic boundary at Chios (Greece):
625	Rivista Italiana Di Paleontologia E Stratigrafia, v. 98, p. 181–204.
626	Goel, R.K., 1977, Triassic conodonts from Spiti (Himachal Pradesh), India: Journal of
627	Paleontology, v. 51, p. 1085–1101.
628	Golding, M.L., Orchard, M.J., Zonneveld, JP., Henderson, C.M., and Dunn, L., 2014, An
629	exceptional record of the sedimentology and biostratigraphy of the Montney and Doig
630	formations in British Columbia: Bulletin of Canadian Petroleum Geology, v. 62, p. 157–176.
631	Golding, M.L., Orchard, M.J., Zonneveld, JP., and Wilson, N.S.F., 2015, Determining the age
632	and depositional model of the Doig Phosphate Zone in northeastern British Columbia using
633	conodont biostratigraphy: Bulletin of Canadian Petroleum Geology, v. 63, p. 143–170.
634	Goudemand, N., Orchard, M.J., Tafforeau, P., Urdy, S., Brühwiler, T., Brayard, A., Galfetti, T.,
635	and Bucher, H., 2012, Early Triassic conodont clusters from South China: revision of the
636	architecture of the 15 element apparatuses of the superfamily Gondolelloidea: Palaeontology,
637	v. 55, p. 1021–1034.
638	Hallam, A., and Wignall, P.B., 1997, Mass Extinction and Their Aftermath: Oxford University
639	Press, 320 p.
640	Hatleberg, W., and Clark, L.C., 1984, Lower Triassic conodonts and biofacies interpretations:

641	Nepal and Svalbard: Geologica et Palaeontologica, v. 18, p. 101-125.
642	Henderson, C.M., 1997, Uppermost Permian conodonts and the Permian-Triassic boundary in
643	the Western Canada Sedimentary Basin: Bulletin of Canadian Petroleum Geology, v. 45, p.
644	693–707.
645	Henderson, C.M., and Mei, S., 2007, Geographical clines in Permian and Lower Triassic
646	gondolellids and its role in taxonomy: Palaeoworld, v. 16, p. 190–201.
647	Henderson, C.M., Golding, M.L., and Orchard, M.J., 2018, Conodont sequence biostratigraphy
648	of the Lower Triassic Montney Formation: Bulletin of Canadian Petroleum Geology, v. 66, p.
649	7–22.
650	Huang, Y.G., Chen, Z.Q., Wignall, P.B. and Shao, L.S., 2017, Latest Permian to Middle Triassic
651	redox condition variations in ramp settings, South China: Pyrite framboid evidence:
652	Geological Society of America Bulletin, v. 129, p. 229–243.
653	Igo, H., 1989, Mixed conodont elements from Hachiman Town, Mino Terrane, Central Japan:
654	Trans. Proc. Palaeont. Soc. Japan, N.S., no. 156, p. 270–285.
655	Jiang, H.S., Lai, X.L., Luo, G.M., Aldridge, R., Zhang, K.X., and Wignall, P.B., 2007, Restudy
656	of conodont zonation and evolution across the P/T boundary at Meishan Section, Changxing,
657	Zhejiang, China: Global and Planetary Change, v. 55, p. 39–55.
658	Jiang, H.S., Lai, X.L., Yan, C.B., Aldridge, R.J., Wignall, P.B., and Sun, Y.D., 2011, Revised
659	conodont across the Permian-Triassic boundary at the Shangsi Section, Guangyuan, Sichuan,
660	South China: Global and Planetary Change, v. 77, p. 103–115.

661	Jiang, W., 1982, Upper Permian-Lower Triassic conodonts in Chongqing-Beibei Area and their
662	significance in exploring oil and gas: Southwest Petroleum Institute Journal, v. 4, p. 12–24.
663	[in Chinese with English abstract]
664	Jiang, W., Luo, Y.Q., Lu, T.Q., and Tian, C.R., 2000, The Lower Triassic conodonts and its
665	significance to oil and gas exploration in Sichuan Basin: Acta Micropalaeontologica Sinica,
666	v. 17, p. 99–109. [in Chinese with English abstract]
667	Klets, T.V., 1998, New conodont species from the Lower Triassic of the Kolyma River
668	Watershed: News in Paleontology and Stratigraphy, no. 1, p. 113–121 [in Russian].
669	Klets, T.V., 2008, Paleogeographic regionalization of Triassic seas based on Conodontophorids:
670	Stratigraphy and Geological Correlation, v. 16, p. 467–489.
671	Klets, T., and Kopylova, A., 2007, The problem of Triassic gondolellid conodont systematics
672	(conodontophorida, conodonta), in Lucas, S.G., and Spielmann, J.A., eds., The Global
673	Triassic. New Mexico Museum of Natural of Natural History and Science Bulletin, v. 41, p.
674	131–133.
675	Klets, T.V., and Yadrenkin, A.V., 2001, Conodonts from the Lower Triassic of the Kotel'nyi
676	Island (Taxonomic Composition, Correlation): News in Paleontology and Stratigraphy, no. 4,
677	p. 14–21. [in Russian]
678	Koike, T., 1982, Triassic conodont biostratigraphy in Kedah, West Malaysia: Geology and
679	Palaeontology of Southeast Asia, v. 23, p. 9–51.
680	Koike, T., 1996, The first occurrence of Griesbachian conodonts in Japan: Transactions and

681	Proceedings of the Palaeontological Society of Japan, no. 181, p. 337-346.
682	Kolar-Jurkovšek, T., and Jurkovšek, B., 2015, Conodont zonation of Lower Triassic strata in
683	Slovenia: Geologija, v. 58, p. 155–174.
684	Kolar-Jurkovšek, T., Chen, Y.L., Jurkovšek, B., Poljak, M., Aljinović, D., and Richoz, S., 2017,
685	Conodont biostratigraphy of the Early Triassic in Eastern Slovenia: Paleontological Journal,
686	v. 51, p. 687–703.
687	Konstantinov, A.G., Sobolev, E.S., and Yadrenkin, A.V., 2013, Triassic stratigraphy of the
688	Eastern Laptev Sea coast and New Siberian Islands: Sciencedirect, v. 54, p. 792-807.
689	Kozur, H.W., 1989, The taxonomy of the gondolellid conodonts in the Permian and Triassic:
690	Courier Forschunginstitut Senckenberg, v. 177, p. 409–469.
691	Kozur, H., and Mostler, H., 1976, Neue Conodonten aus dem Jungpaläozoikum und der Trias:
692	Geol. Palaont. Mitt. Innsbruck, v. 6, p. 1–33. [in German with English summary]
693	Kozur, H.W., Moix, P., and Ozsvart, P., 2009, New Spumellaria (Radiolaria) from the early
694	Tuvalian Spongotortilispinus moixi zone of southeastern Turkey, with some remarks
695	on the age of this fauna: Jahrbuch Der Geologischen Bundesanstalt, v. 149, p. 25–59.
696	Krystyn, L., and Orchard, M.J., 1996, Lowermost Triassic ammonoid and conodont
697	biostratigraphy of Spiti, India: Albertiana, v. 17, p. 10-21.
698	Krystyn, L., Richoz, S., Baud, A., and Twitchett, R.J., 2003, A unique Permian-Triassic boundary
699	section from the Neotethyan Hawasina Basin, Central Oman Mountains: Palaeogeography,
700	Palaeoclimatology, Palaeoecology, v. 191, p. 329-344.

701	Krystyn, L., Balini, M., and Nicora, A., 2004, Lower and Middle Triassic stage and substage
702	boundaries in Spiti: Albertinana, v. 30, p. 40-53.

- Lai, X.L., 1992, Conodont, in Yin, H.F., Yang F.Q., Huang, Q.S., Yang, H.S., and Lai, X.L., eds.,
- Triassic in Qinling and Adjacent Areas: China University of Geosciences Press, Wuhan, p.

705 66–68. [in Chinese]

- Lai, X.L., and Xu, X.R., 1992, Triassic lithofacies and biofacies in the western part of the
- southern Qinling Mountains, *in* Yin, H.F., Yang F.Q., Huang, Q.S., Yang, H.S., and Lai, X.L.,
- eds., Triassic in Qinling and Adjacent Areas: China University of Geosciences Press, Wuhan,

709 p. 96–104. [in Chinese]

- Lai, X.L., Yin, H.F., and Yang, F.Q., 1992, The character and evolution of ecostratigraphy and
- paleobiogeography of Triassic Qinling Basin: Earth Science, v. 17, p. 345–352. [in Chinese
- 712 with English abstract]
- Lai, X.L., Yang, F.Q., and Yin, H.F., 1994, Research of Permian-Triassic boundary strata, in west
- 714 Qinling Area: Geoscience, v. 8, p. 20–26. [in Chinese with English abstract]
- Lai, X.L., Yin, H.F., and Yang, F.Q., 1995, Reconstruction of the Qinling Triassic Paleo-ocean:
- Earth Science, v. 20, p. 648–656. [in Chinese with English abstract]
- Lai, X.L., Wignall, P.B., and Zhang, K.X., 2001, Palaeoecology of the conodonts *Hindeodus* and
- 718 *Clarkina* during the Permian-Triassic transitional period: Palaeogeography,
- Palaeoclimatology, Palaeoecology, v. 171, p. 63–72.
- Liang, D., Tong, J.N., and Zhao, L.S., 2011, Lower Triassic Smithian-Spathian Boundary at West

721	Pingdingshan Section in Chaohu, Anhui Province: Science China, Earth Sciences, v. 54, p.
722	372–379.
723	Lindström, M., 1970, A suprageneric taxonomy of the conodonts: Lethaia, v. 3, p. 427-445.
724	Maekawa, T., and Komatsu, T., 2014, Conodont succession, in Shigeta, Y., Komatsu, T.,
725	Maekawa, T., and Tran, H.D., eds., Olenekian (Early Triassic) Stratigraphy and Fossil
726	Assemblages in Northeastern Vietnam, National Museum of Nature and Science
727	Monographs, Tokyo, Japan, no. 45. p. 51–54.
728	Matsuda, T., 1984, Early Triassic conodonts from Kashmir, India. Part 4: Gondolella and
729	Platyvillosus: Journal of Geosciences Osaka City University, v. 27, p. 119–141.
730	Mosher, L.C., 1973, Triassic conodonts from British Columbia and the northern Arctic Islands:
731	Geological Survey of Canada, p. 141–193.
732	Muttoni, G., Gaetani, M., Kent, D.V., Sciunnach, D., Angiolini, L., Berra, F., Garzanti, E., Mattei,
733	M., and Zanchi, A., 2009, Opening of the Neo-Tethys Ocean and the Pangea B to Pangea A
734	transformation during the Permian: GeoArabia, v. 14, p. 17–48.
735	Müller, K.J., 1956, Triassic conodonts from Nevada: Journal of Paleontology, v. 30, p. 818-830.
736	Nakrem, H.A., Orchard, M.J., Weitschat, W., Hounslow, M.W., Beatty, T.W. and Mørk, A., 2008,
737	Triassic conodonts from Svalbard and their Boreal correlations: Polar Research, v. 27, p.
738	523–539.
739	Nogami, Y., 1968, Trias-Conodonten von Timor, Malaysien und Japan (Palaeontological Study
740	of Portuguese Timor, 5): Memoirs of the Faculty of Science, Kyoto University, Series of

741	Geology and Mineralogy, v. 34, p. 115–136. [in German with English abstract]
742	Orchard, M.J., 1994, Conodont biochronology around the early-middle Triassic boundary: New
743	data from north America, Oman and Timor: Memoires de Geologie, p. 105-114.
744	Orchard, M.J., 2005, Multielement conodont apparatuses of Triassic Gondolelloidea: Special
745	Papers in Palaeontology, v. 73, p. 73–101.
746	Orchard, M.J., 2007, Conodont diversity and evolution through the latest Permian and Early
747	Triassic upheavals: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 252, p. 93–117.
748	Orchard, M.J., 2008, Lower Triassic conodonts from the Canadian Arctic, their intercalibration
749	with ammonoid-based stages and a comparison with other North American Olenekian faunas:
750	Polar Research, v. 27, p. 393–412.
751	Orchard, M.J., 2010, Triassic conodonts and their role in stage boundary definition: Geological
752	Society, London, Special Publications, v. 334, p. 139–161.
753	Orchard, M.J., and Krystyn, L., 1998, Conodonts of the lowermost Triassic of Spiti, and new
754	zonation based on Neogondolella successions: Rivista Italiana di Paleontologia e Stratigrafia,
755	v. 104, p. 341–368.
756	Orchard, M.J., and Krystyn, L., 2007, Conodonts from the Induan-Olenekian boundary interval
757	at Mud, Spiti: Albertiana, v. 35, p. 30–34.
758	Orchard, M.J., and Tozer, E.T., 1997, Triassic conodont biochronology, its calibration with the
759	ammonoid standard, and a biostratigraphic summary of the Western Canada Sedimentary

Cambridge University Press

760	Basin, in Moslow, T.F., and Wittenberg, J., eds., Triassic of the Western Canada Sedimentary
761	Basin: Bulletin of Canadian Petroleum Geology, v. 45, p. 675–692.
762	Orchard, M.J., and Zonneveld, JP., 2009, The Lower Triassic Sulphur Mountain Formation in
763	the Wapiti Lake area: lithostratigraphy, conodont biostratigraphy, and a new biozonation for
764	the lower Olenekian (Smithian): Canadian Journal of Earth Sciences, v. 46, p. 757–790.
765	Orchard, M.J., Nassichuk, W.W., and Rui, L., 1994, Conodonts from the lower Griesbachian
766	Otoceras Latilobatum Bed of Selong, Tibet and the position of the Permian-Triassic
767	boundary: Canadian Society Petroleum Geologists Memoir, v. 17, p. 823-843.
768	Orchard, M.J., Grădinaru, E., and Nicora, A., 2007, A summary of the conodont succession
769	around the Olenekian-Anisian Boudary at Deşli Caira, North Dobrogea, Romania, in Lucas,
770	S.G. and Spielman, J.A., eds., The Global Triassic: New Mexico Museum of Natural History
771	and Science Bulletin, v. 41, p. 341–346.
772	Perri, M.C., 1991, Conodont biostratigraphy of the Werfen Formation (Lower Triassic), Southern
773	Alps, Italy: Bollettino della Società Paleontologica Italiana, v. 30, p. 23–46.
774	Piestch, C., Mata, S.A., and Bottjer, D.J., 2014, High temperature and low oxygen perturbations
775	drive contrasting benthic recovery dynamics following the end-Permian mass extinction:
776	Palaeogeography, Palaeoclimatology, Palaeoecology, v. 399, p. 98-113.
777	Romano, C., Goudemand, N., Vennemann, T.W., Ware, D., Hermann, E.S., Hochuli, P.A.,
778	Brühwiler, T., Brinkmann, W. and Bucher, H., 2012, Climatic and biotic upheavals following
779	the end-Permian mass extinction: Nature geoscience, v. 6, p. 57-60.

- Solien, M.A., 1979, Conodont biostratigraphy of the Lower Triassic Thaynes Formation, Utah.
- Journal of Paleontology, v. 53, p. 276–306.
- Song, H.J., Wignall, P.B., Tong, J.N., Bond, D.P.G., Song, H.Y., Lai, X.L., Zhang, K.X., Wang,
- H.M., and Chen, Y.L., 2012, Geochemical evidence from bio-apatite for multiple oceanic
- anoxic events during Permian-Triassic transition and the link with end-Permian extinction
- and recovery. Earth and Planetary Science Letters, v. 353-354, p. 12–21.
- Song, H.J., Jiang, G.Q., Poulton, S.W., Wignall, P.B., Tong, J.N., Song, H.Y., An, Z.H., Chu,
- D.L., Tian, L., She, Z.B., and Wang, C.S., 2017, The onset of widespread marine red beds
- and the evolution of ferruginous oceans: Nature, v. 8, p. 1–7.
- 789 Staesche, U., 1964, Conodonten aus dem Skyth von Südtirol: Neues Jahrb. Geol. Paläontol. Abh.,
- v. 119, p. 247–306. [in German]
- 791 Stanley, S.M., 2009, Evidence from ammonoids and conodonts for multiple Early Triassic mass
- extinctions: Proceedings of the National Academy of Sciences of the United States of
- 793 America, v. 106, p. 15264–15267.
- Sun, Y.D., Joachimski, M.M., Wignall, P.B., Yan, C.B., Chen, Y. L., Jiang, H.S., Wang, L.N., and
- Lai, X.L., 2012, Lethally hot temperatures during the Early Triassic greenhouse: Science, v.
- 796 338, p. 366–370.
- Sun, Y.D., Wignall, P.B., Joachimski, M.M., Bond, D.P.G., Grasby, S.E., Sun, S., Yan. C.B.,

798	Wang, L.N., Chen, Y.L., and Lai, X.L., 2015, High amplitude redox changes in the Late
799	Early Triassic of South China and the Smithian-Spathian extinction: Palaeogeography,
800	Palaeoclimatology, Palaeoecology, v. 427, p. 62–78.
801	Sweet, W.C., 1970a, Uppermost Permian and Lower Triassic conodonts of the Salt Range and
802	Trans-Indus ranges, West Pakistan: Stratigraphic Boundary Problems: Permian and Triassic
803	of West Pakistan, v. 4, p. 207–275.
804	Sweet, W.C., 1970b, Permian and Triassic conodonts from a section at Guryul Ravine, Vihi
805	District, Kashmir: The University of Kansas Paleontological Contributions, v. 49, p. 1–10.
806	Teichert, C., and Kummel, B., 1976, Permian-Triassic Boundary in the kap Stosch Area, East
807	Greenland: Medd. Grönland, v. 5, p. 3–54.
808	Tian, C.R., 1982, Triassic conodonts in the Tulong section from Nyalam County, Xizang (Tibet),
809	China: Contribution to Geology of Qinghai-Xizang (Tibet) Plateau, v. 10, p. 153–165. [in
810	Chinese with English abstract]
811	Tian, C.R., 1983, Triassic conodont zones, in Chengdu Institute of Geology and Mineral
812	Resources, ed., Paleontological Atlas of Southwest China Volume of Microfossils
813	(Pt. 4, Micropaleontology): Geoscience Press, p. 407-411. [in Chinese]
814	Tian, C.R., Dai, J.Y., and Tian, S.G., 1983, Triassic conodonts, in Chengdu Institute of Geology
815	and Mineral Resources, ed., Paleontological Atlas of Southwest China Volume of
816	Microfossils (Pt. 4, Micropaleontology): Geoscience Press, P. 345–398. [in Chinese]
817	Tong, J.N., Zakharov, Y.D., Orchard, M.J., Yin, H.F. and Hansen, H.J., 2003, A candidate of the

818	Induan-Olenekian boundary stratotype in the Tethyan region: Science in China (Series D), v.
819	46, p. 1182–1200.
820	Wang, Z.H., 1982, Discovery of Early Triassic Neospathodus timorensis fauna in Ziyun of
821	Guizhou: Acta Palaeontologica Sinica, v. 21, p. 584–587. [in Chinese with English abstract]
822	Wang, Z.H., and Cao, Y.Y., 1981, Early Triassic conodonts from Lichuan, Western Hubei: Acta
823	Geologica Sinica, v. 20, p. 363–375. [in Chinese with English abstract]
824	Wang, Z.H., and Wang, Y.G., 1995, Permian-Lower Triassic conodonts from Selong Xishan of
825	Nyalam, S. Tibet, China: Acta Micropalaeontologica Sinica, v. 12, p. 333–348.
826	Wang, H.M., Wang, X.L., Li, R.X., and Wie, J.Y., 2005, Triassic conodont succession and stage
827	subdivision of the Guandao Section, Bianyang, Luodian, Guizhou: Acta Palaeontologica
828	Sinica, v. 44, p. 611–626. [in Chinese with English abstract]
829	Weitschat, W., and Lehmann, U., 1978, Biostratigraphy of the uppermost part of the Smithian
830	Stage (Lower Triassic) at the Botneheia, W-Spitsbergen: Mitteilungen Geologisch-
831	Paläontologischen Institut Universität Hamburg, v. 48, p. 85–100.
832	Wignall, P.B., 2015, The Worst of Times: How Life on Earth Survived Eighty Million Years of
833	Extinctions: Princeton University Press, 199 p.
834	Wignall, P.B., Bond, D.P.G., Sun, Y.D., Grasby, S.E., Beauchamp, B., Joachimski, M.M. and
835	Blomeier, D.P.G., 2016, Ultra-shallow-marine anoxia in an Early Triassic shallow-marine
836	clastic ramp (Spitsbergen) and the suppression of benthic radiation: Geological Magazine, v
837	153, p. 316–331.

Cambridge University Press

838	Wu, G.C., Ji, Z.S., Trotter, J.A., Yao, J.X., and Zhou, L.Q., 2014, Conodont biostratigraphy of a
839	new Permo-Triassic boundary section at Wenbudangsang, north Tibet: Palaeogeography,
840	Palaeoclimatology, Palaeoecology, v. 411, p. 188–207.
841	Xia, F., and Zhang, F., 2005, Conodont, in Sha, J.G., Wang, Q.F., and Lu, H.N., eds.,
842	Micropalaeontology of the Qiangtang Basin: Science Press, Beijing, p. 172-198.
843	Yan, C.B., Wang, L.N., Jiang, H.S., Wignall, P.B., Sun, Y.D., Chen, Y.L., and Lai, X.L., 2013,
844	Uppermost Permian to Lower Triassic conodonts at Bianyang Section, Guizhou Province,
845	South China: Palaios, v. 28, p. 509–522.
846	Yang, B., Yuan, D.X., Henderson, C.M., and Shen, S.Z., 2014, Parafurnishius, an Induan (Lower
847	Triassic) conodont new genus from northeastern Sichuan Province, southwest China and its
848	evolutionary implications: Sciencedirect, v. 23, p. 263–275.
849	Yang, H.S., Yang, F.Q., and Wu, L.F., 1992, Yiwagou Section, Tewo County, Gansu Province,
850	in Yin, H.F., Yang F.Q., Huang, Q.S., Yang, H.S., and Lai, X.L., eds., Triassic in Qinling and
851	Adjacent Areas: China University of Geosciences Press, Wuhan, p. 12–20. [in Chinese]
852	Yang, S.R., Hao, W.C., and Jiang, D.Y., 2001, Palaeoenvironmental and palaeogeographic
853	significance of the Triassic conodonts: Journal of Palaeogeography, v. 3, p. 78-84. [in
854	Chinese with English abstract]
855	Yin, H.F., and Peng, Y.Q., 1995, Evolution of the Phanerozoic Paleo-ocean of Qinling: Earth
856	Science, v. 20, p. 605–611. [in Chinese with English abstract]
857	Yin, H.F., Yang F.Q., Huang, Q.S., Yang, H.S., and Lai, X.L., 1992, Triassic in Qinling and

858	Adjacent Areas: China University of Geosciences Press, Wuhan, 200 p. [in Chinese]
859	Yin, H.F., Yang, F.Q., and Lai, X.L., 1988, Triassic belts and Indosinian development of the
860	Qinling Mountains: Geoscience, v. 2, p. 355–365. [in Chinese with English abstract]
861	Zhang, K.X., Tong, J.N., Shi, G.R., Lai, X.L., Yu, J.X., He, W.H., Peng, Y.Q., and Jin, Y.L., 2007,
862	Early Triassic conodont-palynological biostratigraphy of the Meishan D Section in
863	Changxing, Zhejiang Province, South China: Palaeography, Palaeoclimatology,
864	Palaeoecology, v. 252, p. 4–23.
865	Zhang, Z.T., Sun, Y.D., Lai, X.L., Joachimski, M.M., and Wignall P.B., 2017, Early Carnian
866	conodont fauna at Yongyue, Zhenfeng area and its implication for Ladinian-Carnian
867	subdivision in Guizhou, South China: Palaeogeography, Palaeoclimatology, Palaeoecology, v.
868	486, p. 142–157.
869	Zhao, L.S., Orchard, M.J., Tong, J.N., Sun, Z.M., Zuo, J.X., Zhang, S.X., and Yun, A.L., 2007,
870	Lower Triassic conodont sequence in Chaohu, Anhui Province, China and its global
871	correlation: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 252, p. 24–38.
872	Zhao, L.S., Chen, Y.L., Chen, Z.Q., and Cao, L., 2013, Uppermost Permian to Lower Triassic
873	conodont zonation from Three Gorges Area, South China: Palaios, v. 28. p. 523–540.
874	Zhao, X.W., and Zhang, K.X., 1991, Triassic conodonts from the Ngari Area, Xizang (Tibet),
875	China: Acta Micropalaeontologica Sinica, v. 8, p. 433-440. [in Chinese with English
876	abstract]
877	Zou, G.F., Mao, Q., Chen, Y.M., and Rao, R.B., 2006, A research into Triassic biostratigraphy of

878	the Qomolongma Area in Southern Xizang (Tibet): Geological Review, v. 52, p. 386–395.
879	
880	Figure captions
881	
882	Figure 1. Geographic position of studied area. (1) Tectonic map of Qinling orogenic belt
883	(modified after Dong et al., 2015). Scale bar = 1000 km; (2) Location of the Yiwagou Section,
884	Tewo. Scale bar = 20 km; (3) Palaeogeography of Qinling Basin (modified after Lai et al., 1995).
885	1. National highway; 2. Main road; 3. Centre of an aulacogen; 4. Continental deposits; 5. Basinal
886	deposits; 6. Slope deposits; 7. Old land; 8. Offshore deposits.
887	
888	Figure 2. Photographs of marine red beds in Zhalishan Formation from Dienerian to Smithian,
889	Yiwagou Section. 13–17. Bed numbers. Scale bar = 10 m.
890	
891	Figure 3. Conodont distribution in the Lower Triassic strata at the Yiwagou Section, Tewo,
892	northwestern China. Scale bar = 10 m .
893	
894	Figure 4. SEM photos of conodonts obtained from the Yiwagou Section. (1–21) Parafurnishius
895	xuanhanensis Yang et al., 2014: (1–6) from sample ZLS-6, registration nos.
896	ZLS17006001–17006002; (7–12) from sample ZLS-7, registration nos.
897	ZLS17007001–17007002; (13–21) from sample ZLS-13, registration nos.

898	ZLS17013001–17013003.	(22 - 36)	Eurygnathodus	costatus Staesche	, 1964, from	sample ZLS-9	,
-----	-----------------------	-----------	---------------	-------------------	--------------	--------------	---

- registration nos. ZLS17009001–17009005. (37–45) Eurygnathodus hamadai (Koike, 1982),
- from sample ZLS-9, registration nos. ZLS17009006–17009008. Scale bar = $100 \mu m$.

- **Figure 5.** SEM photos of conodonts obtained from the Yiwagou Section. (1–21)
- 903 Scythogondolella mosheri (Kozur and Mostler, 1976), registration nos. ZLS17030001–17030007.
- 904 (22–23) Scythogondolella cf. milleri (Müller, 1956), registration nos. ZLS17030008. (24–26)
- 905 Scythogondolella phryna Orchard and Zonneveld, 2009, registration nos. ZLS17030009. All
- 906 come from sample ZLS-30. Scale bar = $100 \mu m$.
- 907
- 908 Figure 6. SEM photos of conodonts obtained from the Yiwagou Section. (1–6) Novispathodus
- 909 *waageni waageni* (Sweet, 1970a), from sample ZLS-30, registration nos.
- 910 ZLS17030039–17030041. (7–10) Novispathodus waageni eowaageni (Zhao and Orchard in
- 211 Zhao et al., 2007), from sample ZLS-30, registration nos. ZLS17030042–17030043. (11–12)
- 912 *Parachirognathus* n. sp. A, from sample ZLS-82, registration nos. ZLS17082001–17082002. (13)
- 913 *Pachycladina obliqua* Staesche, 1964, S₂ element, from sample ZLS-42, registration nos.
- 214 ZLS17042001. (14–19) Pachycladina qinlingensis Lai, 1992: (14) P₂ element, from sample
- 215 ZLS-88, registration nos. ZLS17088001; (15) P₂ element, from sample ZLS-85, registration nos.
- 916 ZLS17085001; (16) P₂ element, from sample ZLS-74, registration nos. ZLS17074001; (17) P₂
- element, from sample ZLS-53, registration nos. ZLS17053001; (18) S₁ element, from sample

47

918	ZLS-98, registration nos. ZLS17098001; (19) S_2 element, from sample ZLS-67, registration nos.
919	ZLS17067001. (20–22) Parachirognathus semicircnelus Tian and Dai in Tian et al., 1983: (20)
920	S_2 element, from sample ZLS-88, registration nos. ZLS17088002; (21, 22) S_1 elements, from
921	sample ZLS-88, registration nos. ZLS17088003–17088004. Scale bar = 100 μ m.
922	
923	Figure 7. SEM photos of conodonts obtained from the Yiwagou Section. (1–7) <i>Pachycladina</i>
924	qinlingensis: (1) M element, from sample ZLS-83, registration nos. ZLS17083001; (2) M
925	element, from sample ZLS-91, registration nos. ZLS17091001; (3) S ₃₋₄ elements, from sample
926	ZLS-98, registration nos. ZLS17098002; (4) S ₃ element, from sample ZLS-50, registration nos.
927	ZLS17050001; (5) S_1 element, from sample ZLS-50, registration nos. ZLS17050002; (6) S_3
928	element, from sample ZLS-67, registration nos. ZLS17067002; (7) S_2 element, from sample
929	ZLS-82, registration nos. ZLS17082003. (8–10) Pachycladina obliqua: (8) M element, from
930	sample ZLS-95, registration nos. ZLS17095001; (9) S_{3-4} elements, from sample ZLS-96,
931	registration nos. ZLS17096001; (10) S_1 element, from sample ZLS-98, registration nos.
932	ZLS17098003. (11) Parachirognathus delicatulus Wang and Cao, 1981, S ₁ element, from sample
933	ZLS-83, registration nos. ZLS17083002. (12, 13) <i>Hadrodontina anceps</i> Staesche, 1964: (12) P ₁
934	element, from sample ZLS-96, registration nos. ZLS17096002; (13) P ₁ element, from sample
935	ZLS-67, registration nos. ZLS17067003. Scale bar = 200 μ m.
936	

937 Figure 8. Global distribution of platform-bearing gondolellid conodonts in the Early Triassic

- 938 (palaeogeographic map is modified after Muttoni et al., 2009 and Sun et al., 2012; occurrences
- 939 are given in the text).

to periodo on the second

Figure 1. Geographic position of studied area. (1) Tectonic map of Qinling orogenic belt (modified after Dong et al., 2015). Scale bar = 1000 km; (2) Location of the Yiwagou Section, Tewo. Scale bar = 20 km; (3) Palaeogeography of Qinling Basin (modified after Lai et al., 1995). 1. National highway; 2. Main road; 3. Centre of an aulacogen; 4. Continental deposits; 5. Basinal deposits; 6. Slope deposits; 7. Old land; 8. Offshore deposits.

181x127mm (300 x 300 DPI)

Figure 3. Conodont distribution in the Lower Triassic strata at the Yiwagou Section, Tewo, northwestern China. Scale bar = 10 m.

131x199mm (300 x 300 DPI)

Figure 2. Photographs of marine red beds in Zhalishan Formation from Dienerian to Smithian, Yiwagou 17. L 186x65mm (L Section. 13–17. Bed numbers. Scale bar = 10 m.

 Figure 4. SEM photos of conodonts obtained from the Yiwagou Section. (1–21) Parafurnishius xuanhanensis Yang et al., 2014: (1–6) from sample ZLS-6, registration nos. ZLS17006001–17006002; (7–12) from sample ZLS-7, registration nos. ZLS17007001–17007002; (13–21) from sample ZLS-13, registration nos.
 ZLS17013001–17013003. (22–36) Eurygnathodus costatus Staesche, 1964, from sample ZLS-9, registration nos. ZLS17009001–17009005. (37–45) Eurygnathodus hamadai (Koike, 1982), from sample ZLS-9, registration nos. ZLS17009006–17009008. Scale bar = 100 μm.

209x297mm (300 x 300 DPI)

Figure 5. SEM photos of conodonts obtained from the Yiwagou Section. (1–21) Scythogondolella mosheri (Kozur and Mostler, 1976), registration nos. ZLS17030001–17030007. (22–23) Scythogondolella cf. milleri (Müller, 1956), registration nos. ZLS17030008. (24–26) Scythogondolella phryna Orchard and Zonneveld, 2009, registration nos. ZLS17030009. All come from sample ZLS-30. Scale bar = 100 µm.

209x297mm (300 x 300 DPI)

Figure 6. SEM photos of conodonts obtained from the Yiwagou Section. (1–6) Novispathodus waageni waageni (Sweet, 1970a), from sample ZLS-30, registration nos. ZLS17030039–17030041. (7–10) Novispathodus waageni eowaageni (Zhao and Orchard in Zhao et al., 2007), from sample ZLS-30, registration nos. ZLS17030042–17030043. (11–12) Parachirognathus n. sp. A, from sample ZLS-82, registration nos. ZLS17082001–17082002. (13) Pachycladina obliqua Staesche, 1964, S2 element, from sample ZLS-42, registration nos. ZLS17042001. (14–19) Pachycladina qinlingensis Lai, 1992: (14) P2 element, from sample ZLS-88, registration nos. ZLS17088001; (15) P2 element, from sample ZLS-88, registration nos. ZLS17088001; (15) P2 element, from sample ZLS-53, registration nos. ZLS17053001; (18) S1 element, from sample ZLS-98, registration nos. ZLS17098001; (19) S2 element, from sample ZLS-67, registration nos. ZLS17067001. (20–22) Parachirognathus semicircnelus Tian and Dai in Tian et al., 1983: (20) S2 element, from sample ZLS-88, registration nos. ZLS17088002; (21, 22) S1 elements, from sample ZLS-88, registration nos. ZLS17088004. Scale bar = 100 µm.

209x227mm (300 x 300 DPI)

Figure 7. SEM photos of conodonts obtained from the Yiwagou Section. (1–7) Pachycladina qinlingensis: (1) M element, from sample ZLS-83, registration nos. ZLS17083001; (2) M element, from sample ZLS-91, registration nos. ZLS17091001; (3) S3-4 elements, from sample ZLS-98, registration nos. ZLS17098002; (4) S3 element, from sample ZLS-50, registration nos. ZLS17050001; (5) S1 element, from sample ZLS-50, registration nos. ZLS17050001; (5) S1 element, from sample ZLS-50, registration nos. ZLS17050002; (6) S3 element, from sample ZLS-67, registration nos. ZLS17067002; (7) S2 element, from sample ZLS-82, registration nos. ZLS17082003. (8–10) Pachycladina obliqua: (8) M element, from sample ZLS-95, registration nos. ZLS17095001; (9) S3-4 elements, from sample ZLS-96, registration nos. ZLS17096001; (10) S1 element, from sample ZLS-98, registration nos. ZLS17098003. (11) Parachirognathus delicatulus Wang and Cao, 1981, S1 element, from sample ZLS-83, registration nos. ZLS17083002. (12, 13) Hadrodontina anceps Staesche, 1964: (12) P1 element, from sample ZLS-96, registration nos. ZLS17096002; (13) P1 element, from sample ZLS-67, registration nos. ZLS17067003. Scale bar = 200 µm.

209x158mm (300 x 300 DPI)

Figure 8. Global distribution of platform-bearing gondolellid conodonts in the Early Triassic (palaeogeographic map is modified after Muttoni et al., 2009 and Sun et al., 2012; occurrences are given in the text).

230x140mm (300 x 300 DPI)