Journal of Insect Physiology 106 (2018) 71-77

. . : : =
Contents lists available at ScienceDirect T
Insect Physiology

Journal of Insect Physiology

journal homepage: www.elsevier.com/locate/jinsphys

Appetitive olfactory learning and memory in the honeybee depend on sugar | M)

Check for

reward identity e

Nicola K. Simcock, Helen Gray, Sofia Bouchebti, Geraldine A. Wright*

Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom

ARTICLE INFO ABSTRACT

Keywords: One of the most important tasks of the brain is to learn and remember information associated with food. Studies
Memory in mice and Drosophila have shown that sugar rewards must be metabolisable to form lasting memories, but few
Reward other animals have been studied. Here, we trained adult, worker honeybees (Apis mellifera) in two olfactory tasks
Gluco_se (massed and spaced conditioning) known to affect memory formation to test how the schedule of reinforcement
?{Zﬁ:;;ie and the nature of a sugar reward affected learning and memory. The antennae and mouthparts of honeybees

were most sensitive to sucrose but glucose and fructose were equally phagostimulatory. Whether or not bees
could learn the tasks depended on sugar identity and concentration. However, only bees rewarded with glucose
or sucrose formed robust long-term memory. This was true for bees trained in both the massed and spaced
conditioning tasks. Honeybees fed with glucose or fructose exhibited a surge in haemolymph sugar of greater
than 120 mM within 30 s that remained elevated for as long as 20 min after a single feeding event. For bees fed
with sucrose, this change in haemolymph glucose and fructose occurred with a 30 s delay. Our data showed that
olfactory learning in honeybees was affected by sugar identity and concentration, but that olfactory memory was
most strongly affected by sugar identity. Taken together, these data suggest that the neural mechanisms involved
in memory formation sense rapid changes in haemolymph glucose that occur during and after conditioning.

Nutrient sensor
Post-ingestive

1. Introduction

The brain has been shaped by natural selection to learn to associate
cues that predict the occurrence of nutritiously valuable food. Sensory
input is organized to produce memory traces for food that are stored for
retrieval when animals are hungry, so that animals can identify signals
associated with nutritional rewards and avoid signals that are irrelevant
or that are associated with intoxication. An important mechanism for
assessing food value and forming lasting memories of sensory cues is
through post-ingestive signalling. This was first studied in the context of
aversion learning; within one trial, animals can learn to associate tastes
and smells with the post-ingestive consequences of ingesting toxins in
foods (Bernays and Lee, 1988; Garcia et al., 1955; Wright et al., 2010).
More recently, experiments with mice and fruit flies have shown that
post-ingestive signals are important for assessing the nutritional value
of food; memories last longer when foods have metabolic value (Burke
and Waddell, 2011; de Araujo et al., 2008; Dus et al., 2011; Fujita and
Tanimura, 2011; Sclafani and Ackroff, 2016). For example, insects
trained in an olfactory learning task with a non-metabolisable sugar
such as arabinose can learn to associate an odour with the taste of this
sugar, but they do not form long-lasting memories of the odour (Burke

* Corresponding author.
E-mail address: jeri.wright@ncl.ac.uk (G.A. Wright).

http://dx.doi.org/10.1016/j.jinsphys.2017.08.009

and Waddell, 2011).

Memories of food should reflect food value: learning should happen
faster and memories should be stronger and longer lasting for high
valence rewards (Pavlov, 1927). Few studies have tested how reward
quality affects learning and memory, and whether all metabolisable
sugars are equally rewarding to animals. Mice are more likely to learn
and remember when they are rewarded with sugars metabolised into
glucose-units but not when rewarded with fructose (Matsumura et al.,
2010; Sclafani and Ackroff, 2016). In contrast, studies in Drosophila
indicate that flies form lasting memories for several metabolisable su-
gars including fructose and glucose (Burke and Waddell, 2011; Dus
et al., 2013, 2011; Miyamoto et al., 2012; Musso et al., 2015; Perisse
et al., 2013). This could indicate that the mechanisms of post-ingestive
nutrient detection or memory formation in insects and mammals are
different.

The honeybee learns to associate floral signals with reward very
quickly, and is an important insect model for studying learning and
memory (Bitterman et al., 1983; Eisenhardt, 2014; Stollhoff et al.,
2008). Our previous work indicated that like Drosophila, honeybees
also require a metabolic reward to form a lasting olfactory memory of
odours associated with food (Wright et al., 2007). Specifically, we

Received 10 March 2017; Received in revised form 21 August 2017; Accepted 23 August 2017

Available online 24 August 2017

0022-1910/ © 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/).


http://www.sciencedirect.com/science/journal/00221910
http://www.elsevier.com/locate/jinsphys
http://dx.doi.org/10.1016/j.jinsphys.2017.08.009
http://dx.doi.org/10.1016/j.jinsphys.2017.08.009
mailto:jeri.wright@ncl.ac.uk
https://doi.org/10.1016/j.jinsphys.2017.08.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jinsphys.2017.08.009&domain=pdf

N.K. Simcock et al.

found that the taste of the reward was not sufficient for long-term
memory: only honeybees that had been fed with a sucrose reward ex-
hibited memories that lasted longer than 10 min. This work implied
that to form olfactory memories, the bee brain also requires a post-
ingestive, metabolic reward, but this has not been explicitly shown.

Previous work in honeybees also showed that time interval between
conditioning trials also affects the formation of long-term memory
(Menzel et al., 2001). When bees are trained in a ‘massed’ conditioning
task (i.e. inter-trial interval of 30 s) and rewarded with sucrose, they are
less likely to remember the conditioned odour than bees trained in a
‘spaced’ conditioning task (i.e. inter-trial interval of 3-10 min). Fur-
thermore, single conditioning trial where an odour stimulus lasts ~4 s
and is paired with an equally brief, but metabolisable food reward does
not produce a lasting memory in bees (Stollhoff et al., 2008). Instead,
several trials with inter-trial intervals of > 1 min are necessary (Menzel
et al., 2001; Stollhoff et al., 2008). This suggests that the neurons en-
coding long-term olfactory memory must receive sensory input on a
time scale that overlaps or occurs soon after a period of flux in hae-
molymph nutrients. The fact that bees form lasting memories when they
receive several conditioning trials with long inter-trial intervals could
indicate that memory formation depends on the timing of post-ingestive
reinforcement relative to sensory input but this has not yet been tested
in any animal.

Here, we tested whether long-term olfactory memory in honeybees
depends upon the nature of the metabolisable sugar, its value/con-
centration, and the inter-trial interval. Bees were conditioned to as-
sociate an odour stimulus with a food reward in a spaced (5 min in-
tertrial interval) or massed (30 s intertrial interval) task for conditioned
proboscis extension response (PER). After training, all bees were tested
for their short-term (10 min) and long-term (24 h) olfactory memory
with the conditioned odour and a novel odour (NO). With the aim of
identifying how haemolymph sugar flux could influence learning and
memory, we also measured the amount of time necessary for post-in-
gestive changes in haemolymph sugars to occur.

2. Methods

Animals: Worker honey bees (Apis mellifera var carnica or Apis
mellifera var buckfast) were captured during April-August 2011 and
2012 from a hive located at Newcastle University (UK) as they returned
from foraging. A plastic blockade was placed over the hive entrance to
ensure only returning foragers were captured. Each bee was collected in
a plastic vial and restrained in a harness as described in Wright et al.
(2007). Bees were used either for the gustatory assays, haemolymph
collection or for olfactory conditioning; each bee was fed to satiety with
1.0 M sucrose and left for 18-24 h at room temperature (RT) in a hu-
midified plastic box.

2.1. Gustatory assays

Bees from this experiment were captured during April-May 2011.
Antennal assay: The antennae of each honeybee was stimulated with an
ascending concentration series (0.3, 0.6, 1.0, 1.3, 1.6 and 2.0 M) of
sucrose, fructose, or glucose to elicit the PER. Between each stimula-
tion, each bee was tested for its response to water as described in (Page
et al., 1998). Stimuli were applied such that an interval of 3-5 min
occurred between each stimulus to avoid producing habituation to the
test stimuli. All bees were tested with each series of each sugar. A total
of 140 bees were tested; 50 of them did not respond to any of the sti-
muli. Mouthparts assay: Each bee was tested with a water stimulus and
one concentration of each sugar as using the assay for proboscis sen-
sitivity previously described in Wright et al. (2010). We tested in-
dividual bees with one concentration of each sugar; this was done to
avoid alterations to motivation state that could confound the experi-
ments when the bees ate the solutions. (Note: motivation state to re-
spond to the solution is not altered in bees who have had their antennae
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touched with the solution only, as in the antennal assay). To accomplish
the application of the solution to the mouthparts, the antennae were
first stimulated with the test solution to elicit proboscis extension. The
test stimulus was then applied to the mouthparts. Whether or not the
bee consumed the solution was recorded as a binary variable. Bees that
did not respond to antennal stimulation were not used in the experi-
ment. Between 0 and 50% of the subjects did not respond during this
assay, depending on the stimulus used as the test stimulus (total N/
treatment = 20, only data for bees that responded to antennal stimu-
lation is plotted).

2.2. Olfactory conditioning

Bees from this experiment were captured during June-August 2012.
After 24 h, each bee was trained in a protocol for olfactory conditioning
of the PER (Bitterman et al., 1983). Methods for odour stimulus de-
livery are described in Wright et al. (2007). Only subjects that re-
sponded with PER to antennal stimulation with 1.0 M sucrose were
selected for conditioning. Bees were conditioned for 6 trials with an
inter-trial interval (ITI) of 30 s (massed conditioning) or 5 min (spaced
conditioning). The conditioned stimulus (CS) was 1-hexanol (Sigma-
Aldrich) and was presented for 4 s. The unconditioned stimulus (food
reward, US) presented on each trial was a 0.4 pl droplet of reagent-
grade fructose, glucose or sucrose delivered using a Gilmont syringe
(Cole Parmer). We also tested 3 concentrations of each sugar: 0.3 M,
1.0 M, and 2.0 M. Any bee that responded with a conditioned response
on the first trial was removed from the experiment during the experi-
ment. Two unreinforced olfactory memory tests were administered
10 min and 24 h after olfactory conditioning: one with the CS odour
and one with a novel odour (2-octanone, Sigma-Aldrich). The order of
presentation of the test odours was randomized across subjects. Each
treatment group was randomized across the course of the study; on any
given day, at least 3 treatment groups were trained and tested.

2.3. Haemolymph analysis

Honeybees were individually harnessed as described above and a
small incision was made above the median ocellus using a
1.1 mm X 40 mm needle (BD Microlance). Honeybees were split into
one of four experimental groups and fed: 5 ul of 1.0 M sucrose, 1.0 M
glucose, or 1.0 M fructose or fed to satiety with 1.0 M sucrose. (Note:
for the bees fed to satiety, the time taken for each bee to feed to satiety
was recorded in order to gauge the change in sugar levels from the
initiation and termination of feeding). At a specific time point post-
feeding, haemolymph was collected using a 10 pl capillary tube
(Hirschmann) from the incision above the median ocellus. The hae-
molymph was sampled at one of the following time points: 30 s, 1 min,
3 min, 5 min, 10 min and 20 min post-feeding. Each capillary tube was
placed in the head capsule for a total of 2 min after the specified time
point. Haemolymph was also collected from a subset of bees prior to
feeding (time point zero). A minimum of 1 ul of haemolymph was
collected for each bee and immediately added to 1 ul 0.1 M perchloric
acid; any volume greater than 1 ul was matched with an equal volume
of 0.1 M perchloric acid and subsequently stored at —20 °C until fur-
ther processing. Samples less than 1 pl were discarded, as was any
haemolymph available after the 2 min collection time in order to
standardise all samples. Haemolymph samples were taken from 10 bees
per treatment group and analysed using HPLC.

Haemolymph samples were centrifuged for 10 min at 14,000 rpm
(Eppendorf model no. 5424), and 1 pl of the haemolymph supernatant
was removed and diluted 1:200 with nanopure water (Fisher Scientific).
Diluted samples were filtered through a syringe filter (Puradisc sample
preparation nylon 0.45pm pore, 4 mm diameter, Whatman). High
performance liquid chromatography (HPLC) was used to measure
concentrations of specific sugars (glucose, fructose, sucrose and treha-
lose) in each sample. HPLC analysis was conducted by injecting 20 pl of
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diluted sample via a Rheodyne valve onto a Carbopac PA-100 column
(Dionex, Sunnyvale, California, USA). Sample components were eluted
from the column isocratically using 100 mM NaOH flowing at 1 ml/
min. The chromatographic profile was recorded using pulsed ampero-
metric detection (ED40 electrochemical detector, Dionex). Elution
profiles were analysed using PeakNET software package (Dionex,
Breda, The Netherlands). Daily reference curves were obtained for
glucose, fructose, sucrose and trehalose by injecting calibration stan-
dards with concentrations of 10 ppm for each sugar.

2.4. Statistics

All data were analysed using SPSS v 23. All modelling was done
such that only significant factors in the analysis are reported; when
higher order terms in models were not significant, they were removed
from the model in a stepwise manner. Taste assays: Data for the an-
tennal assay were analysed using generalized estimating equations
(GEE) for repeated-measures logistic regression because each bee was
stimulated multiple times. Bees that did not respond to any trial were
not included in the analysis (50 out of 140 subjects). Data for the
mouthparts assay was analysed as a generalized linear model (GLM)
using binary logistic regression because each bee was tested with one
solution only and could be treated as an independent case. For the taste
assays, the independent variables were sugar type and concentration;
the response variable was scored as a binary variable. Conditioning and
memory assays: The number of bees that responded with a conditioned
response (CR) on at least one trial were defined as ‘responders’ or ‘non-
responders’ (a binary variable) and also analysed via logistic regression
in GLM. Bees that did not exhibit a learned response (i.e. did not re-
spond with a conditioned PER on any of the trials) were excluded from
the analysis of the rate of learning and the memory recall test. This filter
was applied to permit an accurate assessment of the performance of the
honeybees that learned, because the inclusion of ‘non-responding’ bees
biases the memory data and does not accurately reflect ‘memory’ - i.e.
that bees learned the task and did not remember vs. bees that simply
did not learn or respond (see Williamson and Wright, 2013; Wright
et al., 2015)). The conditioning data was analysed as a sum of responses
over 6 trials using a linear model in GLM. The test data were analysed
as a binary response variable using logistic regression in GLM. For the
test data, the CS-only data were analysed separately for the massed and
spaced tasks for ease of interpretation; three-way models including
sugar, concentration, and time of the test were originally fitted to the
data, with non-significant higher order interactions removed in a step-
wise manner. All post hoc comparisons were performed using a least-
squares pairwise comparison (Isd). Data for the proportions of the re-
sponses during the test with the CS and NO were analysed using a
Wilcoxon’s signed-rank test. Haemolymph data were analysed using a
2-way MANOVA.

3. Results
3.1. Sucrose is a stronger phagostimulant than fructose or glucose

We tested the antennae and mouthparts of individual honeybees for
their response to a concentration series of sucrose, glucose and fructose
to identify the phagostimulatory strength of each type of sugar. The
antennae were assessed by applying an ascending concentration series
of a stimulus to the antennae and measuring whether it evoked the PER.
In the antennal assay, the stimulus-response function depended both on
the sugar used as the stimulus and its concentration (Fig. 1A, Table S1,
conc X sugar: ng = 4141, P < 0.001). The antennae were most sen-
sitive to sucrose, then glucose, then fructose (Fig. 1A, Isd, all
P < 0.05). The stimulus-response function to the water control sti-
mulus was the same over trials for all three sugars tested (data not
shown, Table S1, conc X sugar: s> = 8.38, P = 0.397), though the
average value of the response was greatest for bees tested with fructose,
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Fig. 1. Gustatory sensitivity assays for the (A) antennae or (B) the mouthparts of adult
worker honeybees. A. Honeybees were most likely to extend the proboscis when stimu-
lated on the antennae with sucrose, then glucose, then fructose (Isd, all pairwise com-
parisons, P < 0.05). Note: the average response to the water stimulus over all the trials is
represented; the x-axis for the water response corresponds to the test with water that
occurred prior to the test with the stimulus at each concentration. All subjects were tested
with all stimuli, N = 90. B. Honeybees were more likely to consume droplets of sucrose
solution than fructose (Isd, P = 0.018) or glucose (Isd, P = 0.002). Most bees consumed
droplets of solution at concentrations greater than 1.3 M of all three sugars. All bees were
tested with water (0 M) prior to testing with a sugar stimulus. Sample size for each sugar
for each concentration: Ngyerose: 0.3M =17, 0.6 M =17, 1.0M = 20, 1.3 M = 19,
1.6 M = 19, 2.0M = 20; Ngyctose: 0.3M =12, 0.6 M =17, 1.0M = 11, 1.3M = 14,
1.6 M = 13, 2.0 M = 20; Ngjycose: 0.3M =12, 0.6 M =12, 1.0M =12, 1.3M = 10,
1.6 M = 13,2.0M = 13.

then glucose, then sucrose (Table S1, sugar: x> = 7.51, P = 0.023, all
Isd, P < 0.05).

The mouthparts of bees were much more sensitive to sucrose than to
fructose or glucose (Fig. 1B), with as many as 80% being willing to
consume a droplet of 0.3 M sucrose whereas < 20% of the bees would
consume a 0.3 M droplet of glucose or fructose (Fig. 1B, Table S2, sugar:
Xs> = 38.2, P < 0.001). Bees were more likely to consume each so-
lution when the concentration increased (conc: 7% = 11.8,
P = 0.003); at a concentration of =1.3 M, all the solutions were con-
sumed (Fig. 1B). None of the bees consumed the droplet of water.

3.2. Bees trained with glucose and sucrose are more apt to learn and learn
faster

We first examined the proportion of subjects that could perform the
massed or spaced learning task (Fig. 2). The number of honeybees that
could acquire the CS-US association depended on the task, the sugar
used as the US, and the US concentration (Fig. 2, Table S3, GLM:
task X conc X sugar: x42 =12.8, P = 0.012, Table 1). In general,
honeybees were more likely to learn to associate an odour with reward
when it was reinforced with glucose or sucrose (post hoc gluc vs fruct:
P < 0.001, suc vs fruct: P < 0.001, gluc vs suc: P = 0.269) and when
the US concentration was 1.0 M or greater (post hoc: 0.3 M vs 1 M:
P < 0.001; 0.3Mvs 2M: P < 0.001, 1M vs 2M: P = 0.451). Most
(~70%) of the bees trained with sucrose were able to perform the
massed learning task regardless of US concentration. In contrast, less
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Fig. 2. Proportion of honeybees that learned on at least 1 trial during a 6-trial, massed (A)
or spaced (B) olfactory conditioning task. Most bees trained with sucrose solution learned
the massed conditioning task, whereas most learned the spaced conditioning task if re-
warded with glucose. Massed-conditioned bees rewarded with low concentrations of
fructose or glucose were less likely to learn; reward concentration also affected perfor-
mance of the spaced-conditioned bees rewarded with fructose or sucrose. Letter differ-
ences indicate a pairwise-comparison with P < 0.05; subscripts refer to comparisons
made within a specific treatment. Numbers on each bar indicate sample size per group.

Table 1
Generalized linear model for performance during the conditioning task in Fig. 2.

Wald 2 df P-value
(Intercept) 22.4 1 < 0.001
sugar 40.6 2 < 0.001
conc 19.7 2 < 0.001
task 5.1 1 0.025
sugar * conc 7.7 4 0.102
sugar * task 16.0 2 < 0.001
conc * task 1.2 2 0.553
sugar * conc * task 12.8 4 0.012

than 50% of the bees trained with low concentrations of fructose (0.3 M
or 1.0M) or glucose (0.3 M) acquired the massed learning task
(Fig. 2A). More of the honeybees were able to acquire the spaced
learning task; at least 50% of the bees trained with 1.0 M or greater
concentrations of any of the sugars learned (Fig. 2B). Surprisingly, most
of the bees trained in the spaced learning task with glucose learned
(> 80%, Fig. 2B), regardless of its concentration. In both tasks, bees
trained with a fructose US were the least likely to learn.

We separated out the bees in Fig. 2 that learned on at least 1 trial
and examined the rate of acquisition over the 6 conditioning trials; the
speed of acquisition depended on the task and the US concentration
(Fig. S1, Table S4, GLM: task x conc: 52 = 8.82, P = 0.012).
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3.3. Bees remember learned odours when fed with glucose but not with

fructose

The nature of the reward affected how the bees performed during
the short-term memory (10 min) and long-term memory (24 h) tests
(Fig. 3). Because of the difficulty in interpreting a 4-way model, we
analysed the test data for massed and spaced conditioning separately. In
general, honeybees were more likely to respond to the CS odour when
the concentration of the US was above 1 M (Table S5, GLM: massed,
conc: 5% = 19.9, P < 0.001; spaced, conc: ¥,> = 11.9, P = 0.003),
the US was sucrose or glucose (Table S5, GLM: massed, sugar:
%2> = 24.6, P < 0.001; spaced, sugar: y,> = 24.9, P < 0.001), and
the test time was 10 min (Table S5, GLM: massed, when: x22 = 20.5,
P < 0.001; spaced, when: x22 = 6.29, P = 0.012). The long-term
memory for the CS was evaluated by comparing the response at 10 min
to the responses at 24 h. Whether or not the bees exhibited a long-term
olfactory memory depended on the sugar used as the US and the task.
For this reason, we further split the analysis for each task by sugar.
When sucrose was the US, massed conditioned bees were less likely to
recognize the CS odour 24 h later (Fig. 3A, when: X12 = 8.30,
P = 0.004), whereas those fed with sucrose in the spaced conditioning
task did not exhibit a significant drop in the response to the CS (Fig. 3B,
when: X12 = 0.38, P = 0.537). Bees fed with fructose did not exhibit
robust long-term memory: in both conditioning tasks, these bees were
less likely to respond to the CS during the 24 h test (Fig. 3C-D, massed,
when: ;2 = 5.78, P = 0.016; spaced, when: y;* = 5.05, P = 0.025).
In contrast, bees fed with glucose had a strong memory for the CS, as
these bees responded to the CS regardless of the task (Fig. 3E-F, massed,
when: x;% = 1.16, P = 0.281; spaced, when: ;% = 2.48, P = 0.115).

We also examined the specificity of the memories formed towards
the CS for bees conditioned in each task with each sugar (Fig. S3). In
general, bees fed with glucose during conditioning became more spe-
cific in their responses to the CS. Bees fed with sucrose had a strong
response to both odours, and bees fed with fructose were less likely to
respond to both odours.

3.4. Haemolymph sugars rise 5-40 fold within 150 s after feeding

To identify how haemolymph sugars change during conditioning,
we fed starved honeybees with a 5 pl droplet of 1.0 M sucrose, glucose,
or fructose and measured sucrose, glucose, fructose, and trehalose at
intervals starting 30 s after feeding (Fig. 4, note ‘0’ denotes animals in
the starved state). Bees fed with sucrose exhibited a change in hae-
molymph fructose and glucose within 1 min of feeding, whereas those
fed with fructose (Fig. 4B) or glucose (Fig. 4C) had changes in hae-
molymph sugars that occurred within 30 s of feeding. The change in
haemolymph sugars depended on the type of sugar fed to the bees
(Fig. 4, Table S6, MANOVA, sugarfed X time: sucrose: Fq5 159 = 2.70,
P = 0.002; fructose: Fqp 159 = 2.61, P = 0.003; glucose: Fqo
189 = 167, P= 0074, trehalose: F12, 189 = 156, P = 0105)

The flux in haemolymph glucose rose within 30 s of feeding and
remained elevated up to 3-5 min afterwards. This time course of glu-
cose flux was observed in bees fed fructose (Fig. 4B) as well as glucose
and sucrose (Fig. 4, Table S6, MANOVA, time: Fs 150 = 4.03,
P = 0.001), but it was greater in bees fed with sucrose (Fig. 4A) and
glucose (Fig. 4C, MANOVA, sugarfed: F, 159 = 10.7, P < 0.001; 1Isd
post hoc, suc vs fruct: P = 0.002, gluc vs fruct: P < 0.001, suc vs gluc:
P = 0.168). Haemolymph levels of fructose increased for bees fed with
either sucrose (Fig. 4A) or fructose (Fig. 4B), but did not change in bees
fed with glucose (Fig. 4C, 1sd post hoc, suc vs fruct: P = 0.429, suc vs
gluc: P < 0.001, gluc vs fruct: P < 0.001). On average, haemolymph
levels of sucrose were very low or near to baseline measurements (as
might be expected) with the exception of a small spike in haemolymph
sucrose that was observed 3 min post-feeding for bees fed with sucrose
(Fig. 4A). (Note: see Fig. S3, bees fed with a larger volume of sucrose
exhibit a rapid rise in haemolymph to 200 mM sucrose at 30 s that
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decays within 3 min post-feeding to > 40 mM). Likewise, haemolymph
trehalose did not vary over time after feeding (Table S6, MANOVA,
time: Fg 1590 = 1.26, P = 0.278), but the average concentration of
trehalose was greater in the bees fed sucrose (MANOVA, sugarfed: Fy,
180 = 8.31, P < 0.001; Isd post hoc, suc vs fruct: P = 0.005, suc vs
gluc: P < 0.001, gluc vs fruct: P = 0.275).

4. Discussion

Our previous research established that bees formed a lasting olfac-
tory memory when they were fed a reward during conditioning of the
PER (Wright et al., 2007). Work in Drosophila confirmed that food
rewards eaten during conditioning must be metabolically valuable to
produce long-term memories (Burke and Waddell, 2011; Musso et al.,
2015; Perisse et al., 2013). Our present set of experiments now reveals a
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new twist in this tale: unlike Drosophila, bees fed with fructose during
conditioning did not have robust long-term memories of the condi-
tioned odour. Sucrose was the most phagostimulatory sugar to honey-
bees, and bees rewarded with sucrose were more likely to learn to as-
sociate an odour with food. However, glucose and fructose were equally
phagostimulatory but bees fed with glucose were more likely to learn
and to remember. By comparing learning performance to the time
course of haemolymph flux in sugars, our data also indicate that
memories are more robustly formed when gustatory input arrives
during a period when haemolymph sugars are changing. Taken together
with previous studies of food nutritional value and olfactory learning in
Drosophila, our data suggest that the rapid change in haemolymph
glucose that occurs after feeding may act as a post-ingestive signal of
food value that is detected by the brain to influence learning and
memory.
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Fig. 4. Bees fed with 5 pl fructose or glucose experience a rapid increase in haemolymph
glucose and/or fructose from 30 s after feeding and within 1 min after feeding with su-
crose. Concentrations (mM) = SEM of haemolymph sugars (sucrose, glucose, fructose
and trehalose) at specified time points (30s, 1 min, 3 min, 5min, 10 min, 20 min,
60 min) post-feeding, time point zero indicates bees that received no food. Haemolymph
was extracted for 2 min at the indicated time point after the completion of feeding. Bees
were fed 5 pul of A. 1.0 M sucrose (N = 10 per time point), B. 1.0 M fructose (N = 10 per
time point). C. 1.0 M glucose (N = 10 per time point). For all three fed sugars, haemo-
lymph glucose and/or fructose remained elevated up to 20-70 mM at 20 min after
feeding.

Of the three sugars we used as stimuli (sucrose, fructose, and glu-
cose), sucrose has the greatest metabolic value per unit weight to a
foraging honeybee. It is also a major constituent of floral nectar and is
preferred by bees in free-flight tests of sugar preference (Wykes, 1952).
For this reason, it is not surprising that sucrose was the strongest
phagostimulant to elicit PER or feeding when contacted to the honey-
bee’s antennae or proboscis in our experiments. Recordings from the
galeal sensilla of the honeybee’s mouthparts also confirm that gustatory
neurons in this location have a lower detection threshold and respond
with a higher rate of spiking than either fructose or glucose (Whitehead
and Larsen, 1976). As predicted by learning theory (Rescorla and
Wagner, 1972), we found that a high concentration US was more likely
to be learned and learned more quickly. There were two cases, how-
ever, where the US concentration did not affect whether or not bees
learned the task: massed learning with a sucrose US and spaced learning
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with a glucose US.

The massed learning results with sucrose are consistent with a
previous report comparing massed and spaced learning using sucrose in
honeybees (Menzel et al., 2001). This group found that US concentra-
tion had little effect on whether or not bees learned the massed con-
ditioning task, but a very strong effect on bees in the spaced learning
task. Our data show that even very low concentrations of sucrose
(0.3 M) are still strong phagostimulants to the proboscis of the bee, as
~80% of the subjects in our study consumed a droplet of 0.3 M sucrose
in the gustatory test. A strong phagostimulant is likely to produce
greater sensitization (Hammer et al., 1994). In our experiments, bees
massed-conditioned with sucrose probably remain sensitized to any
stimulus within 30 s of application of the US. If this is true, then the
subjects fed with sucrose would still be sensitized to the stimulus after
the first conditioning trial for all subsequent trials. This change in state
caused by a sensitizing stimulus could make it easier for gustatory
signals to form learned representations in the bee brain (Hammer et al.,
1994).

The performance of bees in the spaced learning task fed with a
glucose US was strong regardless of US concentration; this is not likely
to be a result of sensitization, as 0.3 M glucose did not evoke a strong
response from the mouthparts or antennae. Instead, we predict that
glucose improved the performance of bees in the spaced learning task
because it was readily mobilized into the haemolymph. Our measure-
ments of haemolymph sugars show that glucose flux occurs within 30 s
of feeding a bee with 5 pl of a solution. Bees that experienced spaced
conditioning received a reward every 5 min. Given how quickly glucose
entered the haemolymph of starved (and highly motivated) bees, this
suggests that the change in haemolymph glucose that occurred just
after a conditioning trial influenced the strength of the CS-US associa-
tion. While ingestion of sucrose also produced a haemolymph glucose
flux, this flux took longer to realize, presumably because of the extra
time needed for the enzymatic breakdown of sucrose into glucose and
fructose. This difference in time from ingestion to peak of haemolymph
concentration could be as long as 5 min, as see in the data for bees fed
to satiety with sucrose (Supplemental Fig. S3).

In contrast to action potentials from gustatory neurons that reach
the brain within 30-100 ms of contact with food (Getting, 1971; Reiter
et al., 2015), a post-ingestive signal caused by a change in haemolymph
sugar takes more time, as food must first be consumed, digested, and
pass across the gut to access the brain. In hungry bees, our data show
that sugars pass across the gut into the haemolymph relatively quickly
for monosaccharides, as the time needed for a sugars to reach the head
capsule was 30-150 s (i.e. 0.5-2.5 min) after food ingestion. Given the
speed of its incorporation into haemolymph, it is possible that the sugar
itself acts as the post-ingestive signal without the need for a peptide or
other signalling molecule (Burke and Waddell, 2011). Our data indicate
that haemolymph glucose flux in the range of 20-170 mM experienced
during conditioning acts a signal of the value of food. This change was
maintained for up to 20 min after 5 pl of food ingestion and remained
even higher when bees were fed to satiation. The time course of this
measurement is consistent with a previous report from honeybees in
which both glucose and fructose peaked in the haemolymph collected
from the abdomen within a 5 min measurement after feeding with su-
crose (Crailsheim, 1988).

Studies with adult Drosophila have found that fructose and glucose
are effective reinforcers of olfactory conditioned stimuli (Burke and
Waddell, 2011; Musso et al., 2015), but no one knows exactly what that
signal is. Our data indicate that the post-ingestive flux in haemolymph
glucose could be the change that the brain uses to detect that a meta-
bolic reward was eaten. In our experiments, fructose-fed honeybees had
more difficulty in learning the CS-US association. While fructose was
not as phagostimulatory as sucrose, most of the bees in the gustatory
assays would consume > 1 M fructose solutions. Bees rewarded with
2 M fructose performed the learning task at a level comparable to
glucose and sucrose-rewarded bees. As a post-ingestive signal, fructose
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has the potential to be a fast signal of food value; like glucose, it entered
the haemolymph quickly after starved bees consumed it. However, bees
reinforced with fructose during learning exhibited poor performance in
the 24 h memory test. For this reason, we conclude that fructose is not
as effective as glucose at producing long-term olfactory memories in
honeybees.

If glucose flux in haemolymph is the post-ingestive signal of meta-
bolic reward, then it must pass the blood-brain barrier to interact with
the neurons involved in learning and memory (see Volkenhoff et al.,
2017, this issue). This flux could be detected by gustatory receptors
expressed in neurons or glia in the brain (Miyamoto et al., 2012) that
interact with the neurons that encode rewarding memories (Burke
et al., 2012; Musso et al., 2015). Alternatively, the circuit that processes
olfactory information could sense intracellular levels of ATP that arise
due to intracellular nutrient flux caused by nutrient transport (Dus
et al., 2013; Levin et al., 2004; Musso et al., 2015). Future studies that
pinpoint specific metabolic pathways sensitive to glucose within spe-
cific neurons or circuits in the brain responsible for encoding long-term
memories will uncover a fundamental property of the brain’s neural
circuits.
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