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Abstract

We study for the first time the ill-posed backward problem for a contaminated nonlinear predator-
prey system whose velocities of migration depend on the total average populations in the considered
space domain. We propose a new regularized problem for which we are able to prove its unique
solvability in Theorem 1. Moreover, under some mild assumptions on the true solution, we give useful
and rigorous error estimates and convergence rates in both the L2− and H1−norms in Theorems 2
and 3, respectively. Furthermore, numerical simulations are performed to illustrate the accuracy and
stability of the regularized solution.

1 Introduction

Studying the way predator-prey species interact and their mechanisms for survival represent a very impor-
tant topic in the subject of population biology and ecology. In [20], the authors considered a degenerate
predator-prey nonlinear system with homogeneous Dirichlet boundary conditions to describe the local
interactions of prey and predator species where there is a direct movement of predators caused by a
variation in prey. As far as numerical simulations are concerned, in [3], the authors studied numerical
methods for obtaining spatio-temporal patterns described by a predator-prey model with time delay and
diffusion.

More recently, the change in environment caused by pollution has affected the long term survival of
species, human life style and biodiversity of habitat, and studying the effects of toxicant on populations
attracted much attention. In the 80’s, Hallam et al. [15, 16, 17] assessed the effects of a pollutant on an
ecological system. In those works, the authors studied a single-species population by assuming that its
growth rate density decreases linearly with the concentration of toxicant but the corresponding carrying
capacity does not depend upon the concentration of toxicant present in the environment. Later on, Freed-
man and Shukla [14] studied a single species and on a predator-prey system by taking into account the
introduction of toxicant from an external source, whilst Shukla and Dubey [21] studied the simultaneous
effect of two toxicants, one being more toxic than the other, on a biological species. Dubey and Hussain
[11] proposed a Lotka-Volterra diffusion model to study the interaction(namely, cooperation, competition

∗Corresponding author: amt5ld@maths.leeds.ac.uk Email of other authors: nguyenhuytuan@tdtu.edu.vn (Nguyen Huy
Tuan), khanhvanphan@hcmut.edu.vn (Phan Thi Khanh Van).
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and predator-prey) of two biological species in a polluted environment.
In this paper, although included, we shall not study the effect of toxicants from a contaminated/polluted

environment but instead address a novel formulation and investigation of the backward contaminated
problem for such a nonlinear predator-prey system with locally Lipschitz coupling interactions. There-
fore, consider a two species predator-prey model with toxicant effect in a connected bounded domain
Ω ⊂ R

d (d = 2, 3) with smooth boundary ∂Ω over a time span (0, T ), where T > 0, with nonlocal
diffusion terms. The forward model was introduced by [2], as follows:







ut −D1

(∫

Ω
udx

)

∆u+ div(uK1) = F (u, v, C1), (x, t) ∈ QT ,

vt −D2

(∫

Ω
vdx

)

∆v + div(vK2) = G(u, v, C2), (x, t) ∈ QT ,

(1)

and 





∂tC1 = k1C3 − χ1C1 −m1C1, (x, t) ∈ QT ,

∂tC2 = k2C3 − χ2C2 −m2C2, (x, t) ∈ QT ,

∂tC3 = −hC3, (x, t) ∈ QT ,

(2)

where QT = Ω × (0, T ), with the initial value data

{

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

C1(x, 0) = C1,0(x), C2(x, 0) = C2,0(x), C3(x, 0) = C3,0(x), x ∈ Ω,
(3)

and the boundary conditions

u(x, t) = v(x, t) = 0, x ∈ ∂Ω × (0, T ). (4)

The homogeneous Dirichlet boundary conditions (4) express that the physical system is self-contained
and that no populations at the boundary ∂Ω exist for any time t ∈ (0, T ), [20]. Other types of boundary
conditions can also be considered.

In (1), u and v represent the density of the prey and the predator populations, respectively, depending
on space x ∈ Ω and time t ∈ (0, T ), Di, i = 1, 2, represent the nonlocal diffusivities (velocities) of migration
and the nonlinear sources

F (u, v, C1) = ru
(

1 − u

K

)

− β1C1u− pu

1 + qu
v, G(u, v, C2) = −av − β2C2v + e

pu

1 + qu
v, (5)

where a > 0 is the rate of decay of the predator population, e is the conversion rate from prey to predator,
r > 0 is the rate of logistical growth of the prey population, K > 0 is the carrying capacity, p is the
reciprocal of the time spent by predator to catch prey and q/p is the manipulation time. The non-
negative constants β1 and β2 represent the rates of the intrinsic growth rate associated with the uptake
and toxicant, respectively. The functions C1(x, t), C2(x, t) and C3(x, t) represent the concentrations of
toxicant/pollutant present in the prey species, predator species and environment, respectively. In (2), the
terms kiC3, −χiCi and −miCi, i = 1, 2, represent the absorbing rate of the toxicant from the environment,
excretion and depuration rates of the toxicant in the species, respectively, and −hC3 is the loss rate of
the toxicant due to self-volatilization. In the third equation in (2), it was assumed that the capacity
of environment is large enough for the toxicant/pollutant in the environment, caused by excretion and
uptake by both predator-prey polutations, to be neglected [24]. The convection terms div(uK1) and
div(vK2) describe the change of the concentration at a given location due to the flows of velocities Ki,
i = 1, 2.
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A simpler version of (1), when K1 = K2 = 0 and F (u, v, C1), G(u, v, C2) are independent of C1, C2,
is given by







ut −D1

(∫

Ω
udx

)

∆u = F (u, v), (x, t) ∈ QT ,

vt −D2

(∫

Ω
vdx

)

∆v = G(u, v), (x, t) ∈ QT .

(6)

For existence, uniqueness and long time behavior of some classes of nonlocal nonlinear parabolic
equations and systems, we refer to [1, 6, 7, 8, 13, 25].

One practical issue with the above direct model arises when the initial condition (3) at t = 0 is not
available and the population dynamics is already evolving at t > 0. In such a situation, instead of (3),
we prescribe/measure the population densities and toxicant concentrations at the later final time,

u(x, T ) = g1(x), v(x, T ) = g2(x), x ∈ Ω, (7)

C1(x, T ) = C1,T (x), C2(x, T ) = C2,T (x), C3(x, T ) = C3,T (x), x ∈ Ω. (8)

Notice that the backward problem (1), (2), (4)-(8) is not well-posed in the sense that the solution for u
and v does not depend continuously on data (7), i.e. from the small noise made in measurement data (7),
the corresponding solution may generate itself large and undesired errors, and standard computational
procedures are not stable. One more important thing to remark is that for final data (8) in L2(Ω) the
problem given by the linear system (2) of ODEs with ”frozen” x subject to (8) has a unique solution
C1, C2, C3 ∈ C([0, T ];L2(Ω)) which depends continuously on the input data (8). For example, the
third equation in (2) can be solved independently of the other two to result in the unique solution
C3(x, t) = e−h(t−T )C3,T (x). Therefore, in the system (1) we only need to consider u and v as unknowns
and recast (1) as







ut −D1

(∫

Ω
udx

)

∆u+ div(uK1) = F (x, t, u, v), (x, t) ∈ QT ,

vt −D2

(∫

Ω
vdx

)

∆v + div(vK2) = G(x, t, u, v), (x, t) ∈ QT ,

(9)

where the dependence on Ci(x, t) have been embedded in the right-hand side terms of (9) by rewriting
F (u, v, C1(x, t)) = F (x, t, u, v) and G(u, v, C2(x, t)) = G(x, t, u, v). Furthermore, where no confusion
arises, we shall write F (u, v) and G(u, v) instead of F (x, t, u, v) and G(x, t, u, v), respectively.

Although there are many works on the backward heat parabolic equation, results on backward
parabolic systems are rather scarce. For the backward problem given by the system (6) subject to
(4) and (7), in principle, we can express the solution (u, v) by Fourier series with given data (g1, g2)
and apply some spectral methods such as the Fourier truncation method for solving this problem. This
method has recently been adopted in [23], where the backward problem for the system (6) with D1 and
D2 positive constants and homogeneous Neumann boundary conditions has been solved. However, the
use of spectral methods is not feasible when the convection terms div(uK1) and div(vK2) are present in
(9). So, our problem is much more challenging. To the best of our knowledge, our problem given by (4),
(7) and (9) has never been formulated or investigated before, though it is worth mentioning that in [22],
the authors considered the backward in time nonlocal nonlinear problem for the population density u of
a single migration species whose velocity of migration D depends on the total average population

∫

Ω udx,
given by [7, 9],







ut −D
(∫

Ω
udx

)

∆u = F (u), (x, t) ∈ QT ,

∂u

∂η
(x, t) = 0, (x, t) ∈ ∂Ω × [0, T ],

u(x, T ) = g(x), x ∈ Ω,

(10)
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where η denotes the outward unit normal to the boundary ∂Ω, and a regularization method was applied
to construct a stable solution. The main idea of the method is stabilizing the ill-posed problem by using
a small regularization parameter in the governing partial differential equation (PDE), and we follow this
idea in equations (18) and (19) of subsection 3.2 below.

The outline of this paper is as follows. Section 2 gives some notations and assumptions used throughout
the paper. Section 3 focuses on the construction of approximate problem by a regularization approach.
We give an approximation for the locally Lipschitz reaction functions (5) and prove the existence of the
unique regularized solution by using the Faedo-Galerkin method and Aubin-Lions lemma. In section 4,
we give error estimates in both the L2− and H1−norms. In section 5, a numerical example is illustrated
to corroborate our theoretical results. Finally, the conclusions are presented in Section 6.

2 Preliminaries

For a Banach space X, we denote by Lp(0, T ;X), L∞(0, T ;X) and C([0, T ];X) the usual Banach spaces
with the norms

‖u‖Lp(0,T ;X) =

(∫ T

0
‖u(·, t)‖p

Xdt

)1/p

<∞, 1 ≤ p <∞, ‖u‖L∞(0,T ;X) = ess sup
t∈(0,T )

‖u(·, t)‖X <∞,

‖u‖C([0,T ];X) = sup
t∈[0,T ]

‖u(·, t)‖X <∞.

Let {λp}∞p=1 be the eigenvalues of the Laplacian operator −∆ on the connected bounded domain Ω with
homogeneous Dirichlet boundary condition (4), which satisfy 0 < λ1 ≤ λ2 ≤ λ3 ≤ ... ≤ λp ≤ ..., with
λp → ∞ when p → ∞. Let {φp}∞p=1 ⊂ H1

0 (Ω) be the corresponding eigenfunctions, which form an

orthonormal basis of L2(Ω). Throughout this paper, we denote the inner product in L2(Ω) by 〈·, ·〉, and
〈u(·, t), φp〉 by up(t). We also denote by ‖ · ‖ the norm ‖ · ‖L2(Ω). For σ ≥ 0, we introduce the Gevrey
space

Gσ(Ω) =






U ∈ L2(Ω) : ‖U‖Gσ(Ω) =

√
√
√
√

∞∑

p=1

eσλpU2
p < +∞






,where Up := 〈U, φp〉. (11)

Given u(x, t) and v(x, t) : Ω × [0, T ] → R, we denote (u, v) : Ω × [0, T ] → R
2 defined by (u, v)(x, t) :=

(u(x, t), v(x, t)). Here, the norm of (u, v) ∈ X × X (for any Banach space X) is defined as ‖(u, v)‖(X)2 :=
‖u‖X + ‖v‖X. For X = L2(Ω), we also denote by ‖ · ‖ the norm ‖ · ‖(L2(Ω))2 .

Next, we introduce the following assumptions:

(A1) There exist positive constants m and M such that

m ≤ Di(ξ) ≤M, ∀ ξ ∈ R; i = 1, 2.

(A2) There exists positive constants Li, i = 1, 2, such that for any ξ1, ξ2 ∈ R, we have

|Di (ξ1) −Di (ξ2)| ≤ Li |ξ1 − ξ2| .

At this point, we remark that for fixed t ∈ [0, T ], i = 1, 2 and for any u1(·, t), u2(·, t) ∈ L2(Ω), we have

∣
∣
∣
∣
Di

(∫

Ω
u1(x, t)dx

)

−Di

(∫

Ω
u2(x, t)dx

)∣
∣
∣
∣
≤ Li

∣
∣
∣
∣

∫

Ω
(u1(x, t) − u2(x, t))dx

∣
∣
∣
∣
≤ Li |Ω|

∥
∥ (u1 − u2) (·, t)

∥
∥,

i = 1, 2. Denote L := max {L1,L2} |Ω|.
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(A3) Let gε
i ∈ L2(Ω), i = 1, 2, be noisy data which satisfy ‖gε

1 − g1‖ + ‖gε
2 − g2‖ ≤ ε, where ε ≥ 0

represents the noise level.
(A4) For sufficiently small ε, gε

i (x) ≥ 0 a.e. x ∈ Ω, i = 1, 2.
(A5) K1,K2 : Ω → R

d belong to L∞(Ω).

Definition 1. A pair (u, v) ∈
[
L2(0, T ;H1

0 (Ω)) ∩C([0, T ];L2(Ω))
]2

is called a weak solution to the
problem (4), (7) and (9) if (u, v) satisfies (7) and

d

dt

〈

u(·, t), ϕ
〉

+ D1

(∫

Ω
udx

)〈

∇u(·, t),∇ϕ
〉

−
〈

u(·, t)K1,∇ϕ
〉

=

〈

F (·, t, u, v), ϕ
〉

, (12)

d

dt

〈

v(·, t), ψ
〉

+ D2

(∫

Ω
vdx

)〈

∇v(·, t),∇ψ
〉

−
〈

v(·, t)K2,∇ψ
〉

=

〈

G(·, t, u, v), ψ
〉

, (13)

for all ϕ, ψ ∈ H1
0 (Ω) and for all t ∈ [0, T ].

Remark 1. To illustrate the ill-posedness of the backward problem given by equations (4), (7) and (9),
we consider a simpler version without the convection terms, K1 = K2 = 0, and with globally Lipschitz
reactions (F,G) satisfying F (0, 0) = G(0, 0) = 0 and max {‖F (u, v), ‖G(u, v)‖} ≤ K(‖u‖ + ‖v‖) for
some K ≥ 0. First, we consider the forward problem given by equations (1)-(4). Let u0 = v0 = 0
and un

0 = vn
0 = nφn, where φn is the n−th eigenfunction of −∆ in Ω with homogeneous Dirichlet

boundary conditions on ∂Ω. According to Theorem 1.2 ([2]), we have that the forward system (1)-(4)
has unique weak solutions (uex, vex) : uex = vex = 0 and (un, vn) with the initial data (u0, v0) and
(un

0 , v
n
0 ), respectively. In (12), by choosing u = un, v = vn and ϕ = φp, multiplying both sides by

eλp

R t

0
D1(

R

Ω
undx)ds, integrating the resulting equations from 0 to t, and summing up from p = 1 to ∞, we

obtain

un(x, t) =nφn(x) exp

(

−λn

∫ t

0
D1

(∫

Ω
undx

)

ds

)

︸ ︷︷ ︸

H1

+

∞∑

p=1

φp(x)

t∫

0

exp

(

−λp

∫ t

s
D1

(∫

Ω
undx

)

dω

)
〈
F (un, vn), φp

〉
ds

︸ ︷︷ ︸

H2

With the assumption (A1), we have that

‖H1‖2 = n2 exp

(

−2λn

∫ t

0
D1

(∫

Ω
undx

)

ds

)

≤ n2e−2mtλn .

Using Parseval’s relation and Hölder’s inequality, we obtain:

‖H2‖2 ≤
∞∑

p=1

T

t∫

0

〈
F (un, vn), φp

〉2
ds = T

t∫

0

∥
∥F (un, vn)

∥
∥2
ds ≤ TK2

t∫

0

(‖un‖ + ‖vn‖)2ds.

With the above estimates, in the same manner for vn, we have:

‖un(·, t)‖2 + ‖vn(·, t)‖2 ≤ 4n2e−2mtλn + 8TK2

∫ t

0

(
‖un‖2 + ‖vn‖2

)
ds.

Using Grönwall’s inequality we obtain

‖un(·, t)‖2 + ‖vn(·, t)‖2 ≤ 4n2e−2mtλne8TK2t,
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and choosing t = T , we have

‖un
T ‖2 + ‖vn

T ‖2 ≤ 4n2e−2mTλne8T 2K2 → 0,

as n → ∞. Now, returning to the backward problem, let uT = 0 and vT = 0 be the exact final data,
which are perturbed by un

T and vn
T , satisfying un

T → uT and vn
T → vT , as n tends to ∞. Suppose that

the backward problem is well-posed, then with the above exact and noisy final data, there exist unique
weak solutions with exact initial values u0 = 0, v0 = 0 and perturbed initial values un

0 , vn
0 . But since

‖un
0 − u0‖ = ‖vn

0 − v0‖ = n→ ∞, this shows the instability of the backward problem given by equations
(4), (7) and (9).

3 The regularized problem

3.1 Setting the regularized problem

In this subsection, we present a regularized problem using a new quasi-reversibility type method. First,
for technical reasons, we need to extend the source functions F and G in (5) so that they become defined
for all u, v ∈ R, by setting

F (u, v, C1) =







ru(1 − u
K ) − β1C1u− pu

1+quv, if u ≥ 0, v ≥ 0,

ru(1 − u
K ) − β1C1u, if u ≥ 0, v < 0,

0, if u < 0,

(14)

G(u, v, C2) =







−av − β2C2v + e pu
1+quv, if u ≥ 0, v ≥ 0,

−av − β2C2v, if u < 0, v ≥ 0,

0, if v < 0.

(15)

It is easy to show that F and G are locally Lipschitz functions with respect to u, v, i.e. for any R > 0,
there exist Lipschitz non-negative constants KF (R), KG(R) such that

∣
∣
∣
∣
F

(
u1, v1, C1(x, t)

)
− F

(
u2, v2, C1(x, t)

)
∣
∣
∣
∣
≤ KF (R)

(

|u1 − u2| + |v1 − v2|
)

,

∣
∣
∣
∣
G

(
u1, v1, C1(x, t)

)
−G

(
u2, v2, C1(x, t)

)
∣
∣
∣
∣
≤ KG(R)

(

|u1 − u2| + |v1 − v2|
)

,

for all
{
(ui, vi) ∈ R

2
∣
∣ |ui| + |vi| ≤ R

}
, i = 1, 2, and (x, t) ∈ QT = Ω × [0, T ]. Notice that these Lipschitz

constants tend to ∞ when R → ∞, we cannot give the error estimate when the data (7) are noised,
and standard regularization techniques are thus not applicable. To overcome these issues, we employ two
sequences of globally Lipschitz functions Fε and Gε (with ε > 0) to approximate F and G, as follows:

Fε(u, v) =







F (u, v, C1), if |u| + |v| ≤ Rε,

F

(
Rεu

|u| + |v| ,
Rεv

|u| + |v| , C1

)

, if |u| + |v| > Rε,
(16)

Gε(u, v) =







G(u, v, C2), if |u| + |v| ≤ Rε,

G

(
Rεu

|u| + |v| ,
Rεv

|u| + |v| , C2

)

, if |u| + |v| > Rε.
(17)

For the sake of brevity, we write Fε(u, v), Gε(u, v) instead of Fε(u, v, C1), Gε(u, v, C2) or Fε(x, t, u, v),
Gε(x, t, u, v). Here Rε in (16) and (17) satisfies that Rε(ε) → ∞ when ε→ 0, and will be chosen later to
obtain the convergence of the regularized solution to the true one.

The next lemma shows the globally Lipschitz property of Fε and Gε.
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Lemma 1. The functions Fε and Gε given in (16) and (17), respectively, are globally Lipschitz functions
with respect to u, v, i.e. there exist non-negative constants KF (Rε) and KG(Rε) such that for all (x, t) ∈
QT and (ui, vi) ∈ R

2, i = 1, 2, we have
∣
∣Fε(u1, v1) − Fε(u2, v2)

∣
∣ ≤ 2KF (Rε)

(∣
∣u1 − u2

∣
∣ +

∣
∣v1 − v2

∣
∣
)
,

∣
∣Gε(u1, v1) −Gε(u2, v2)

∣
∣ ≤ 2KG(Rε)(

∣
∣u1 − u2

∣
∣ +

∣
∣v1 − v2

∣
∣).

Moreover, Fε and Gε satisfy
∥
∥Fε(u1, v1)(·, t) − Fε(u2, v2)(·, t)

∥
∥ ≤

√
8KF (Rε)

∥
∥((u1, v1) − (u2, v2))(·, t)

∥
∥,

∥
∥Gε(u1, v1)(·, t) −Gε(u2, v2)(·, t)

∥
∥ ≤

√
8KG(Rε)

∥
∥((u1, v1) − (u2, v2))(·, t)

∥
∥,

for any fixed t ∈ [0, T ] and for any ui(·, t), vi(·, t) ∈ L2(Ω), i = 1, 2.

Proof. Because of the similarity between Fε and Gε, we need to consider only Fε.
Case 1. |u1| + |v1| ≤ Rε, |u2| + |v2| ≤ Rε. Using (16) gives

∣
∣Fε(u1, v1) − Fε(u2, v2)

∣
∣ =

∣
∣F (u1, v1) − F (u2, v2)

∣
∣ ≤ KF (Rε)

(
|u1 − u2| + |v1 − v2|

)
.

Case 2. |u1| + |v1| ≤ Rε, |u2| + |v2| > Rε (the same proof is used for the case
|u1| + |v1| > Rε, |u2| + |v2| ≤ Rε). Using (16), we obtain

∣
∣Fε(u1, v1) − Fε(u2, v2)

∣
∣ =

∣
∣
∣
∣
F (u1, v1) − F

(
Rεu2

|u2| + |v2|
,

Rεv2
|u2| + |v2|

)∣
∣
∣
∣

≤KF (Rε)

(∣
∣
∣
∣
u1 −

Rεu2

|u2| + |v2|

∣
∣
∣
∣
+

∣
∣
∣
∣
v1 −

Rεv2
|u2| + |v2|

∣
∣
∣
∣

)

≤KF (Rε)

[

|u1 − u2| + |v1 − v2| +
(
|u2| + |v2|

)
(

1 − Rε

|u2| + |v2|

)]

≤KF (Rε) (|u1 − u2| + |v1 − v2| + |u2| + |v2| − |u1| − |v1|)
≤2KF (Rε)

(
|u1 − u2| + |v1 − v2|

)
.

Case 3. |u1| + |v1| > Rε, |u2| + |v2| > Rε. Using (16), we have
∣
∣Fε(u1, v1) − Fε(u2, v2)

∣
∣

=

∣
∣
∣
∣
F

(
Rεu1

|u1| + |v1|
,

Rεv1
|u1| + |v1|

)

− F

(
Rεu2

|u2| + |v2|
,

Rεv2
|u2| + |v2|

) ∣
∣
∣
∣

≤KF (Rε)

(∣
∣
∣
∣

Rεu1

|u1| + |v1|
− Rεu2

|u2| + |v2|

∣
∣
∣
∣
+

∣
∣
∣
∣

Rεv1
|u1| + |v1|

− Rεv2
|u2| + |v2|

∣
∣
∣
∣

)

≤KF (Rε)

[
Rε(|u1 − u2| + |v1 − v2|)

|u1| + |v1|
+
Rε(|u2| + |v2|)
|u1| + |v1|

−Rε

]

≤2KF (Rε)
(
|u1 − u2| + |v1 − v2|

)
.

Next, we will prove the second statement of the lemma. From the previous inequality, we have
∫

Ω

∣
∣Fε(u1, v1) − Fε(u2, v2)

∣
∣2dx ≤ 4K2

F (Rε)

∫

Ω

(∣
∣u1 − u2

∣
∣ +

∣
∣v1 − v2

∣
∣
)2

dx

≤ 8K2
F (Rε)

(∥
∥u1 − u2

∥
∥2

+
∥
∥v1 − v2

∥
∥2) ≤ 8K2

F (Rε)
∥
∥(u1, v1) − (u2, v2)

∥
∥2
.

The proof of Lemma 1 is completed.

Throughout this paper, denote

KRε := max

{√
8KF (Rε),

√
8KG(Rε)

}

.
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3.2 The well-posedness of the regularized problem

Next, we introduce a well-posed approximate problem to the ill-posed backward problem (4), (7) and (9)
given by the following perturbed regularized problem:







uε
t −D1

(∫

Ω
uεdx

)

(t)∆uε + div(uεK1) −Qα(uε) = Fε(u
ε, vε), (x, t) ∈ QT ,

vε
t −D2

(∫

Ω
vεdx

)

(t)∆vε + div(vεK2) −Qα(vε) = Gε(u
ε, vε), (x, t) ∈ QT ,

uε(x, T ) = gε
1(x), vε(x, T ) = gε

2(x), x ∈ Ω,

uε(x, t) = vε(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ).

(18)

Here α = α(ε) > 0 is the regularization parameter which satisfying α(ε) → 0 when ε → 0, and will be
chosen later. The operator Qα : L2(Ω) → H1

0 (Ω) is defined by

Qα(w) =
1

T

∞∑

p=1

ln(1 + αeTM0λp)〈w,φp〉φp(x), ∀w ∈ L2(Ω), (19)

where M0 is a positive constant such that M0 > M with M given in (A1). This operator was also
introduced in [22]. We prove the existence of a weak solution to the problem (18) in the following
theorem. The main tools used here are the Faedo-Galerkin method and the Aubin-Lions lemma [19].

Theorem 1. Suppose that the assumptions (A1) − (A5) hold. Then, the problem (18) has a unique

solution

(uε, vε) ∈
[
C([0, T ];L2

+(Ω)) ∩ L2(0, T ;H1
0 (Ω))

]2

in the weak sense, i.e.

d

dt

〈

uε(·, t), ϕ
〉

+ D1

(∫

Ω
uεdx

)〈

∇uε(·, t),∇ϕ
〉

−
〈

uε(·, t)K1,∇ϕ
〉

=

〈

Qα(uε)(·, t), ϕ
〉

+

〈

Fε(u
ε, vε), ϕ

〉

, (20)

d

dt

〈

vε(·, t), ψ
〉

+ D2

(∫

Ω
vεdx

)〈

∇vε(·, t),∇ψ
〉

−
〈

vε(·, t)K2,∇ϕ
〉

=

〈

Qα(vε)(·, t), ψ
〉

+

〈

Gε(u
ε, vε), ψ

〉

, (21)

for all ϕ, ψ ∈ H1
0 (Ω) and for all t ∈ [0, T ].

Proof. Define the following operators:

Pαw = Qαw +M0∆w,

B1

(∫

Ω
udx

)

= M0 −D1

(∫

Ω
udx

)

, B2

(∫

Ω
vdx

)

= M0 −D2

(∫

Ω
vdx

)

.

Notice that, from (A1) and (A2), we have:

0 < M0 −M ≤ Bi

(∫

Ω
udx

)

≤M0 −m,

∣
∣
∣
∣
B1

(∫

Ω
u1dx

)

− B1

(∫

Ω
u2dx

)∣
∣
∣
∣
=

∣
∣
∣
∣
D1

(∫

Ω
u1dx

)

−D1

(∫

Ω
u2dx

)∣
∣
∣
∣
≤ L

∥
∥(u1 − u2)(·, t)

∥
∥,
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and
∣
∣
∣
∣
B2

(∫

Ω
u1dx

)

− B2

(∫

Ω
u2dx

)∣
∣
∣
∣
=

∣
∣
∣
∣
D2

(∫

Ω
u1dx

)

−D2

(∫

Ω
u2dx

)∣
∣
∣
∣
≤ L

∥
∥(u1 − u2)(·, t)

∥
∥,

for any fixed t ∈ [0, T ] and u(·, t), u1(·, t), u2(·, t) ∈ L2(Ω). The system (20) and (21) can be rewritten as

d

dt

〈

uε(·, t), ϕ
〉

−B1

(∫

Ω
uεdx

)〈

∇uε(·, t),∇ϕ
〉

−
〈

uε(·, t)K1,∇ϕ
〉

=

〈

Pα(uε)(·, t), ϕ
〉

+

〈

Fε(u
ε, vε), ϕ

〉

, (22)

d

dt

〈

vε(·, t), ψ
〉

−B2

(∫

Ω
vεdx

)〈

∇vε(·, t),∇ψ
〉

−
〈

vε(·, t)K2,∇ϕ
〉

=

〈

Pα(vε)(·, t), ψ
〉

+

〈

Gε(u
ε, vε), ψ

〉

. (23)

We first state and prove the following technical lemma.

Lemma 2. (i) For any w ∈ Gσ(Ω) with σ ≥ 2M0T , we have

∥
∥Qα(w)

∥
∥ ≤ α

T
‖w‖Gσ(Ω).

(ii) For any w ∈ L2(Ω) and 0 < α sufficiently small, we have

∥
∥Pα(w)

∥
∥ ≤ 1

T
ln

(
1

α

)

‖w‖.

Proof. Using Parseval’s equality and the inequality ln(1 + a) ≤ a,∀a > 0, we get

∥
∥Qα(w)

∥
∥2

=
1

T 2

∞∑

p=1

ln2
(

1 + αeTM0λp

)

〈w,φp〉2 ≤ α2

T 2

∞∑

p=1

e2TM0λpw2
p ≤ α2

T 2
‖w‖2

Gσ(Ω).

For the second statement, using Parseval’s equality, it follows

∥
∥Pα(w)

∥
∥2

=
1

T 2

∞∑

p=1

(

ln
(

1 + αeTM0λp

)

− ln
(

eTM0λp

))2
〈w,φp〉2

=
1

T 2

∞∑

p=1

ln2
(

α+ e−TM0λp

)

〈w,φp〉2 ≤ 1

T 2
ln2

(
1

α

)

‖w‖2.

We now divide the remaining proof of Theorem 1 into four parts.
Part 1. Existence of the Galerkin approximate solution

Let us consider the correspondingly n−dimensional space Un = span〈φ1, ..., φn〉 ⊂ H1
0 (Ω).

For each n ∈ N
∗, we find the approximate solution (uε,n, vε,n) of the problem (22) and (23) in the following

form:

uε,n(x, t) =

n∑

p=1

wε
np(t)φp(x), vε,n(x, t) =

n∑

p=1

ωε
np(t)φp(x), (24)
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where (uε,n, vε,n) satisfy

d

dt

〈

uε,n(·, t), ϕ
〉

− B1

(∫

Ω
uε,ndx

)〈

∇uε,n(·, t),∇ϕ
〉

−
〈

uε,n(·, t)K1,∇ϕ
〉

=

〈

Pα(uε,n)(·, t), ϕ
〉

+

〈

Fε(u
ε,n, vε,n), ϕ

〉

, (25)

d

dt

〈

vε,n(·, t), ψ
〉

− B2

(∫

Ω
vε,ndx

)〈

∇vε,n(·, t),∇ψ
〉

−
〈

vε,n(·, t)K2,∇ϕ
〉

=

〈

Pα(vε,n)(·, t), ψ
〉

+

〈

Gε(u
ε,n, vε,n), ψ

〉

, (26)

for all ϕ, ψ ∈ Un, and the final conditions

uε,n(x, T ) =

n∑

p=1

〈gε
1, φp〉φp(x) =: gε,n

1 (x), vε,n(x, T ) =

n∑

p=1

〈gε
2, φp〉φp(x) =: gε,n

2 (x). (27)

Here gε,n
1 → gε

1, g
ε,n
2 → gε

2 strongly in L2(Ω). Introducing (24) into (25) and(26), we obtain that the
coefficients wε

np(t) and ωε
np(t) are the solution of the system of 2n nonlinear ODEs:

dwε
np

dt
− λpB1

(∫

Ω
uε,ndx

)

wε
np(t) −

〈

uε,n(·, t)K1,∇φp

〉

=

〈

Pα(uε,n)(·, t), φp

〉

+

〈

Fε(u
ε,n, vε,n), φp

〉

,

dωε
np

dt
− λpB2

(∫

Ω
vε,ndx

)

ωε
np(t) −

〈

vε,n(·, t)K2,∇φp

〉

=

〈

Pα(vε,n)(·, t), φp

〉

+

〈

Gε(u
ε,n, vε,n), φp

〉

,

for p = 1, n. Due to the continuity of D1, D2 and of F , G, by Peano’s theorem, the system (25)-(27) has
a local solution (uε,n, vε,n) in some interval [Tm, T ] for 0 ≤ Tm < T . We now give an a priori estimate
for (uε,n, vε,n), which is needed to extend [Tm, T ] to the whole interval [0, T ]. In (25), for fixed t, taking
ϕ = uε,n(·, t), we have

1

2

d

dt

∥
∥uε,n(·, t)

∥
∥2 − B1

(∫

Ω
uε,ndx

)
∥
∥∇uε,n(·, t)

∥
∥2

=

〈

uε,n(·, t)K1,∇uε,n(·, t)
〉

+

〈

Pα(uε,n)(·, t), uε,n(·, t)
〉

+

〈

Fε(u
ε,n, vε,n), uε,n(·, t)

〉

.

Integrating both sides of the above equation from t to T and using (27), we obtain

‖uε,n(·, t)‖2 + 2

∫ T

t
B1

(∫

Ω
uε,ndx

)

‖∇uε,n(·, s)‖2ds

= ‖gε,n
1 ‖2 − 2

∫ T

t

〈

uε,n(·, s)K1,∇uε,n(·, s)
〉

ds

︸ ︷︷ ︸

J1

− 2

∫ T

t

〈

Pα(uε,n)(·, s), uε,n(·, s)
〉

ds

︸ ︷︷ ︸

J2

− 2

∫ T

t

〈

Fε(u
ε,n, vε,n), uε,n(·, s)

〉

ds

︸ ︷︷ ︸

J3

.

Consequently,

‖uε,n(·, t)‖2 + 2(M0 −M)

∫ T

t
‖∇uε,n(·, s)‖2ds ≤ ‖gε,n

1 ‖2 + 2|J1| + 2|J2| + 2|J3|. (28)
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We first estimate |J1| by using Hölder’s inequality, Cauchy’s inequality, and (A5) to yield

2|J1| ≤
1

M0 −M

∫ T

t
‖uε,n(·, s)K1‖2ds+ (M0 −M)

∫ T

t
‖∇uε,n(·, s)‖2ds

≤ K2
0

M0 −M

∫ T

t
‖uε,n(·, s)‖2ds+ (M0 −M)

∫ T

t
‖∇uε,n(·, s)‖2ds, (29)

where K0 := max
i=1,2

∥
∥Ki

∥
∥

[L∞(Ω)]d
. The term |J2| is estimated by applying Hölder’s inequality and Lemma

2 as follows:

|J2| ≤
∫ T

t

∥
∥Pα(uε,n)(·, s)

∥
∥
∥
∥uε,n(·, s)

∥
∥ds ≤ 1

T
ln

(
1

α

)∫ T

t

∥
∥uε,n(·, s)

∥
∥2

ds. (30)

For |J3|, using Hölder’s inequality and the globally Lipschitz property of Fε from Lemma 1, it yields

|J3| ≤
∫ T

t

∥
∥Fε(u

ε,n, vε,n)(·, s)
∥
∥
∥
∥uε,n(·, s)

∥
∥ds

≤
∫ T

t

(∥
∥Fε(0, 0)

∥
∥ +KRε

∥
∥(uε,n, vε,n)(·, s)

∥
∥
) ∥
∥uε,n(·, s)

∥
∥ds

= KRε

∫ T

t

∥
∥(uε,n, vε,n)(·, s)

∥
∥
∥
∥uε,n(·, s)

∥
∥ds. (31)

Combining (28)-(31), it follows

∥
∥uε,n(·, t)

∥
∥2

+ (M0 −M)

∫ T

t

∥
∥∇uε,n(·, s)

∥
∥2

ds

≤
∥
∥gε,n

1

∥
∥2

+

(
2

T
ln

(
1

α

)

+
K2

0

M0 −M

) ∫ T

t

∥
∥uε,n(·, s)

∥
∥2

ds+ 2KRε

∫ T

t

∥
∥(uε,n, vε,n)(·, s)

∥
∥
∥
∥uε,n(·, s)

∥
∥ds.

(32)

By a similar argument with v, adding the resulting inequality to (32), we have

∥
∥(uε,n, vε,n)(·, t)

∥
∥2

+ (M0 −M)

∫ T

t

∥
∥(∇uε,n,∇vε,n)(·, s)

∥
∥2

ds

≤ 2
∥
∥gε

1

∥
∥2

+ 2
∥
∥gε

2

∥
∥2

+

(
4

T
ln

(
1

α

)

+
2K0

M0 −M
+ 4KRε

) ∫ T

t

∥
∥(uε,n, vε,n)(·, s)

∥
∥2

ds

= C1 + C2

∫ T

t

∥
∥(uε,n, vε,n)(·, s)

∥
∥2

ds. (33)

Therefore,

∥
∥(uε,n, vε,n)(·, t)

∥
∥2 ≤ C1 + C2

∫ T

t

∥
∥(uε,n, vε,n)(·, s)

∥
∥2

ds.

Applying Gronwall’s inequality, we arrive at
∥
∥(uε,n, vε,n)(·, t)

∥
∥2 ≤ C1e

(T−t)C2 ≤ C1e
TC2 . (34)

On the other hand, from (33), we have

∫ T

t

∥
∥(∇uε,n,∇vε,n)(·, s)

∥
∥2

ds ≤ 1

M0 −M

(

C1 + C2

∫ T

t

∥
∥(uε,n, vε,n)(·, s)

∥
∥2

)

ds ≤ C3. (35)
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From (34) and (35), we deduce that

(uε,n, vε,n) is bounded in
[
L∞(0, T ;L2(Ω))

]2
, (36)

(uε,n, vε,n) is bounded in
[
L2(0, T ;H1

0 (Ω))
]2
. (37)

Thus, from the theory of ODEs, we can extend the solution to the whole interval [0, T ].

Part 2. Convergence of the Galerkin approximate solutions to the regularized solution

From (25) we have that

uε,n
t = −B1

(∫

Ω
uε,ndx

)

∆uε,n − div(uε,nK1) + Pα(uε,n) + Fε(u
ε,n, vε,n),

where we have used Green’s formulae
〈

− B1

(∫

Ω
uε,ndx

)

∆uε,n(·, t), ϕ
〉

= B1

(∫

Ω
uε,ndx

)〈

∇uε,n(·, t),∇ϕ
〉

,

〈

− div(uε,n(·, t)K1), ϕ

〉

=

〈

uε,n(·, t)K1,∇ϕ
〉

,

for all ϕ ∈ H1
0 (Ω). Thanks to (36), (37), Lemma 2, the globally Lipschitz property of Fε, Gε, and Bi,

(i = 1, 2), assumption (A5) and the similarity between u, v, we obtain that

(uε,n
t , vε,n

t ) is bounded in
[
L2(0, T ;H−1(Ω))

]2
. (38)

From (36)-(38), by Banach-Alaoglu theorem, we can extract subsequences uε,n
k = uε,n and vε,n

k = vε,n

(which we denote by the same symbols) such that

uε,n ⇀ uε, vε,n ⇀ vε *-weakly in L∞(0, T ;L2(Ω)), (39)

uε,n ⇀ uε, vε,n ⇀ vε weakly in L2(0, T ;H1
0 (Ω)), (40)

uε,n
t ⇀ uε

t , vε,n
t ⇀ vε

t weakly in L2(0, T ;H−1(Ω)). (41)

On the other hand, H1
0 (Ω)

c→֒ L2(Ω) →֒ H−1(Ω). From (40) and (41), using the Aubin-Lions compactness
lemma, we have

uε,n → uε, vε,n → vε strongly in L2(0, T ;L2(Ω)). (42)

Hence, by Riesz-Fischer theorem, we can extract subsequences uε,n
k = uε,n and vε,n

k = vε,n (which we
denote by the same symbols) such that

uε,n → uε, vε,n → vε a.e. in QT . (43)

Due to the continuity of Bi, i = 1, 2, we have

B1

(∫

Ω
uε,ndx

)

→ B1

(∫

Ω
uεdx

)

strongly in L2(0, T ),

B2

(∫

Ω
vε,ndx

)

→ B2

(∫

Ω
vεdx

)

strongly in L2(0, T ).

Using Riesz-Fischer theorem, we have, up to some subsequences,

B1

(∫

Ω
uε,ndx

)

→ B1

(∫

Ω
uεdx

)

a.e. in QT , (44)

B2

(∫

Ω
vε,ndx

)

→ B2

(∫

Ω
vεdx

)

a.e. in QT . (45)
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From the linearity and boundedness of Pα, we have that

Pα(uε,n) → Pα(uε) strongly in L2(0, T ;L2(Ω)), (46)

Pα(vε,n) → Pα(vε) strongly in L2(0, T ;L2(Ω)). (47)

From the global Lipschitz property of Fε, Gε, we obtain

Fε(u
ε,n, vε,n) → Fε(u

ε, vε) strongly in L2(0, T ;L2(Ω)), (48)

Gε(u
ε,n, vε,n) → Gε(u

ε, vε) strongly in L2(0, T ;L2(Ω)). (49)

Combining (37), (38), (44)-(49), we can pass in (25), (26) to the limit n → ∞ to prove that (22), (23)
hold for all ϕ, ψ ∈ H1

0 (Ω). By (40), we have that uε(·, t), vε(·, t) ∈ H1
0 (Ω) a.e. t ∈ [0, T ]. For fixed t,

taking ϕ = uε(·, t) in (22), we obtain

1

2

d

dt

∥
∥uε(·, t)

∥
∥2 − B1

(∫

Ω
uεdx

)
∥
∥∇uε(·, t)

∥
∥2 −

〈

uε(·, t)K1,∇uε

〉

=

〈

Pα(uε)(·, t), uε(·, t)
〉

+

〈

Fε(u
ε, vε), uε(·, t)

〉

. (50)

Then, by analogous arguments as for (uε,n, vε,n), but taking the supremum, it yields that

uε, vε are bounded in C([0, T ];L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)). (51)

Therefore,

(uε, vε) ∈
[
C

(
[0, T ];L2(Ω)

)
∩ L2

(
[0, T ];H1

0 (Ω)
)]2

.

On the other hand, we have
〈

gε,n
1 , ϕ

〉

−
〈

uε,n(·, t), ϕ
〉

=

∫ T

t

〈

uε,n
s (·, s), ϕ

〉

ds, a.e. t ∈ [0, T ]. (52)

From (41), (42), and since gε,n
1 → gε

1 strongly in L2(Ω), we can pass in (52) to the limit n→ ∞, to obtain

〈

gε
1, ϕ

〉

−
〈

uε(·, t), ϕ
〉

=

∫ T

t

〈

uε
s(·, s), ϕ

〉

ds =

〈

uε(·, T ), ϕ

〉

−
〈

uε(·, t), ϕ
〉

, a.e. t ∈ [0, T ]. (53)

Thus, uε(x, T ) = gε
1(x). In a similar way, we have that vε(x, T ) = gε

2(x). This completes the proof of
Part 2.

Part 3. Non-negativity of the regularized solution

Define uε
− = max{−uε, 0}. Taking for fixed t, ϕ = −uε

−(·, t) in (22), we have

1

2

d

dt

〈
uε(·, t) − uε

−(·, t)
〉
− B1

(∫

Ω
uεdx

)
〈
∇uε(·, t) −∇uε

−(·, t)
〉

=

〈

uε(·, t)K1,−∇uε
−(·, t)

〉

+

〈

Pα(uε)(·, t),−uε
−(·, t)

〉

+

〈

Fε(u
ε, vε),−uε

−(·, t)
〉

.

Because of the fact that uε
−(x, t) 6= 0 only if uε(x, t) < 0 (then ε(x, t) = −uε

−(x, t)), using the linearity of
Pα, we deduce that

1

2

d

dt

∥
∥uε

−(·, t)
∥
∥2 − B1

(∫

Ω
uεdx

)
∥
∥∇uε

−(·, t)
∥
∥2

=

〈

uε
−(·, t)K1,∇uε

−(·, t)
〉

+

〈

Pα(uε
−)(·, t), uε

−(·, t)
〉

−
〈

Fε(u
ε, vε), uε

−(·, t)
〉

.

13



Integrating from t to T , it yields

‖uε
−(·, t)

∥
∥2 − ‖uε

−(·, T )
∥
∥2

+ 2B1

(∫

Ω
uεdx

)∫ T

t

∥
∥∇uε

−(·, s)
∥
∥2

ds

= −2

∫ T

t

〈

uε
−(·, s)K1,∇uε

−(·, s)
〉

ds

︸ ︷︷ ︸

B1

− 2

∫ T

t

〈

Pα(uε
−)(·, s), uε

−(·, s)
〉

ds

︸ ︷︷ ︸

B2

+ 2

∫ T

t

〈

Fε(u
ε, vε), uε

−(·, s)
〉

ds

︸ ︷︷ ︸

B3

.

Consequently,

∥
∥uε

−(·, t)
∥
∥2

+ 2(M0 −M)

∫ T

t

∥
∥∇uε

−(·, s)
∥
∥2

ds ≤
∣
∣B1

∣
∣ +

∣
∣B2

∣
∣ +

∣
∣B3

∣
∣,

where, from (A4) for ε sufficiently small we have that ‖uε
−(·, T )‖2 = 0.

Applying some similar estimations as in (29) and (30) of Part 1, we have that

∣
∣B1

∣
∣ ≤ K2

0

M0 −M

∫ T

t

∥
∥uε

−(·, s)
∥
∥2

ds+ (M0 −M)

∫ T

t

∥
∥∇uε

−(·, s)
∥
∥2

ds,

∣
∣B2

∣
∣ ≤ 2

T
ln

(
1

α

)∫ T

t

∥
∥uε(·, s)

∥
∥2

ds.

For B3, we have B3 = 0, due to the facts that

• If uε(x, t) > 0, then uε
−(x, t) = 0 ⇒ Fε(u

ε, vε)uε
−(x, t) = 0;

• If uε(x, t) < 0, from (14) and (16) then Fε(u
ε, vε) = 0 ⇒ Fε(u

ε, vε)uε
−(x, t) = 0.

Thus, we obtain

‖uε
−(·, t)

∥
∥2 ≤ C

∫ T

t
‖uε

−(·, s)‖2ds.

Applying Gronwall’s inequality, we have uε
− = 0 a.e. (x, t) ∈ QT . Following the same lines of the previous

proof, we also have vε
− = 0 a.e. (x, t) ∈ QT .

Part 4. Uniqueness of the solution

Suppose that

(uε
1, v

ε
1), (u

ε
2, v

ε
2) ∈

[
C([0, T ];L2

+(Ω)) ∩ L2(0, T ;H1
0 (Ω))

]2
(54)

are two weak solutions of the problem (18). Define

U(x, t) = (uε
1 − uε

2)(x, t), V (x, t) = (vε
1 − vε

2)(x, t).

Then,

U(x, T ) = V (x, T ) = 0.

14



From (22), we have
〈

(
∂tu

ε
1−∂tu

ε
2

)
(·, t), ϕ

〉

− B1

(∫

Ω
uε

1dx

)〈

∇uε
1(·, t),∇ϕ

〉

+ B1

(∫

Ω
uε

2dx

)〈

∇uε
2(·, t),∇ϕ

〉

=

〈

(uε
1 − uε

2)(·, t)K1,∇ϕ
〉

+

〈

Pα(uε
1)(·, t) − Pα(uε

2)(·, t), ϕ
〉

+

〈

Fε(u
ε
1, v

ε
1) − Fε(u

ε
2, v

ε
2), ϕ

〉

.

Consequently,
〈

Ut(·, t), ϕ
〉

−B1

(∫

Ω
uε

1dx

)〈

∇U(·, t),∇ϕ
〉

−
(

B1

(∫

Ω
uε

1dx

)

− B1

(∫

Ω
uε

2dx

))〈

∇uε
2(·, t),∇ϕ

〉

=

〈

U(·, t)K1,∇ϕ
〉

+

〈

Pα(U)(·, t), ϕ
〉

+

〈

Fε(u
ε
1, v

ε
1) − Fε(u

ε
2, v

ε
2), ϕ

〉

. (55)

For fixed t, taking ϕ = U(·, t), and integrating from t to T , we obtain

∥
∥U(·, T )

∥
∥2 − 2

∫ T

t
B1

(∫

Ω
uε

1dx

)
∥
∥∇U(·, s)

∥
∥2

ds− 2

∫ T

t

〈

U(·, t)K1,∇U(·, t)
〉

ds

︸ ︷︷ ︸

I4

=
∥
∥U(·, t)

∥
∥2

+ 2

∫ T

t

(

B1

(∫

Ω
uε

1dx

)

− B1

(∫

Ω
uε

2dx

))〈

∇uε
2(·, s),∇U(·, s)

〉

ds

︸ ︷︷ ︸

I1

+ 2

∫ T

t

〈

Pα(U)(·, s), U(·, s)
〉

ds

︸ ︷︷ ︸

I2

+ 2

∫ T

t

〈

Fε(u
ε
1, v

ε
1) − Fε(u

ε
2, v

ε
2), U(·, s)

〉

ds

︸ ︷︷ ︸

I3

. (56)

We first estimate I1 by using Hölder’s inequality and (A2) to yield

|I1| ≤ 2

∫ T

t

∣
∣
∣
∣
B1

(∫

Ω
uε

1dx

)

− B1

(∫

Ω
uε

2dx

)∣
∣
∣
∣

∥
∥∇uε

2(·, s)
∥
∥
∥
∥∇U(·, s)

∥
∥ds

≤ 1

M0 −M

∫ T

t

∣
∣
∣
∣
B1

(∫

Ω
uε

1dx

)

− B1

(∫

Ω
uε

2dx

)∣
∣
∣
∣

2 ∥
∥∇uε

2(·, s)
∥
∥2

ds

+ (M0 −M)

∫ T

t

∥
∥∇U(·, s)

∥
∥2

ds

≤ L2

M0 −M

∫ T

t

∥
∥U(·, s)

∥
∥2∥∥∇uε

2(·, s)
∥
∥2

ds+ (M0 −M)

∫ T

t

∥
∥∇U(·, s)

∥
∥2

ds. (57)

For I2, using Lemma 2, we have

|I2| ≤
2

T
ln

(
1

α

)∫ T

t

∥
∥U(·, s)

∥
∥2

ds. (58)

Next, we estimate I3 using Lemma 1 as

|I3| ≤ 2

∫ T

t

∥
∥
∥
∥
Fε(u

ε
1, v

ε
1) − Fε(u

ε
2, v

ε
2)

∥
∥
∥
∥

∥
∥U(·, s)

∥
∥ds ≤ 2KRε

∫ T

t

∥
∥(U, V )(·, s)

∥
∥
∥
∥U(·, s)

∥
∥ds. (59)

For I4, using Hölder’s inequality and (A5) gives

|I4| ≤
1

M0 −M

∫ T

t
‖U(·, s)K1‖2ds+ (M0 −M)

∫ T

t
‖∇U(·, s)‖2ds

≤ K2
0

M0 −M

∫ T

t
‖U(·, s)‖2ds+ (M0 −M)

∫ T

t
‖∇U(·, s)‖2ds. (60)
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Combining (56) - (60), we deduce that

∥
∥U(·, t)

∥
∥2 ≤ L2

M0 −M

∫ T

t

∥
∥U(·, s)

∥
∥2∥∥∇uε

2(·, s)
∥
∥2

ds+

(
K2

0

M0 −M
+

2

T
ln

(
1

α

))∫ T

t
‖U(·, s)‖2ds

+ 2KRε

∫ T

t

∥
∥(U, V )(·, s)

∥
∥
∥
∥U(·, s)

∥
∥ds. (61)

In a similar way, we have

∥
∥V (·, t)

∥
∥2 ≤ L2

M0 −M

∫ T

t

∥
∥V (·, s)

∥
∥2∥∥∇vε

2(·, s)
∥
∥2

ds+

(
K2

0

M0 −M
+

2

T
ln

(
1

α

))∫ T

t
‖V (·, s)‖2ds

+ 2KRε

∫ T

t

∥
∥(U, V )(·, s)

∥
∥
∥
∥V (·, s)

∥
∥ds. (62)

By adding (61) to (62), we arrive at

∥
∥(U, V )(·, t)

∥
∥2 ≤ 2

∥
∥U(·, t)

∥
∥2

+ 2
∥
∥V (·, t)

∥
∥2 ≤ C4

∫ T

t

∥
∥(U, V )(·, s)

∥
∥2

ds,

where the positive constant C4 depends on uε
2 and vε

2. Using Gronwall’s inequality, we obtain

∥
∥(U, V )(·, t)

∥
∥2 ≤ 0,

which implies that U = V = 0, or (uε
1, v

ε
1) = (uε

2, v
ε
2) a.e. (x, t) ∈ QT . This completes the proof of

Theorem 1.

4 Error estimates

Now, we shall prove some estimations for the error between the solution to problem (4), (7) and (9) and
the solution (uε, vε) to the regularized problem (18) in the L2− and H1−norms.

4.1 Estimation in L
2-norm

Theorem 2. Suppose that the assumptions (A1) − (A5) hold and that the problem (4), (7) and (9) has

a unique weak solution (u, v) satisfying

(u, v) ∈
[
L2(0, T ;Gσ(Ω)) ∩ L∞(0, T ;H1

0 (Ω)) ∩ L∞(QT )
]2

with σ ≥ 2M0T . Choose α = α(ε) > 0 such that

lim
ε→0

ε

α
= l <∞. (63)

Then, there exists C0 = C0(u, v) ≥ 0 such that

∥
∥ ((uε, vε) − (u, v)) (·, t)

∥
∥ ≤ C0α

t/T e2KRεT , ∀t ∈ [0, T ]. (64)

Proof. Let us define

X (x, t) := eq(t−T )(uε − u)(x, t), Y(x, t) := eq(t−T )(vε − v)(x, t),
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where q = q(α) > 0 is a positive constant, which will be chosen later. From (12) and (20), we have
〈

(uε
t − ut)(·, t), ϕ

〉

+ D1

(∫

Ω
uε

)〈

∇uε(·, t),∇ϕ
〉

−D1

(∫

Ω
dx

)〈

∇u(·, t),∇ϕ
〉

=

〈

Qα(uε)(·, t), ϕ
〉

+

〈

Fε(u
ε, vε) − F (u, v), ϕ

〉

+

〈

(uε − u)(·, t)K1,∇ϕ
〉

,

which is equivalent to
〈

Xt(·, t), ϕ
〉

−B1

(∫

Ω
uεdx

)〈

∇X (·, t),∇ϕ
〉

+ eq(t−T )

(

D1

(∫

Ω
uεdx

)

−D1

(∫

Ω
udx

))〈

∇u(·, t),∇ϕ
〉

= q

〈

X (·, t), ϕ
〉

+ eq(t−T )

〈

Qα(u)(·, t), ϕ
〉

+

〈

Pα(X )(·, t), ϕ
〉

+ eq(t−T )

〈

Fε(u
ε, vε) − F (u, v), ϕ

〉

+

〈

X (·, t)K1,∇ϕ
〉

. (65)

For fixed t, taking ϕ = X (·, t) and integrating from t to T , we obtain

∥
∥X (·, T )

∥
∥2 −

∥
∥X (·, t)

∥
∥2 − 2

∫ T

t
B1

(∫

Ω
uεdx

)
∥
∥∇X (·, s)

∥
∥2

ds− 2

∫ T

t
q
∥
∥X (·, s)

∥
∥2

ds

= 2

∫ T

t
eq(s−T )

〈

Qα(u)(·, s),X (·, s)
〉

ds

︸ ︷︷ ︸

K1

+ 2

∫ T

t
eq(s−T )

〈

Fε(u
ε, vε) − F (u, v),X (·, s)

〉

ds

︸ ︷︷ ︸

K2

+ 2

∫ T

t

〈

Pα(X )(·, s),X (·, s)
〉

ds

︸ ︷︷ ︸

K3

+ 2

∫ T

t

〈

X (·, s)K1,∇X (·, s)
〉

ds

︸ ︷︷ ︸

K4

− 2

∫ T

t
eq(s−T )

(

D1

(∫

Ω
uεdx

)

−D1

(∫

Ω
udx

))〈

∇u(·, s),∇X (·, s)
〉

ds

︸ ︷︷ ︸

K5

. (66)

Applying Hölder’s inequality and Lemma 2, we have

|K1| ≤ 2

∫ T

t

∥
∥Qα(u)(·, s)

∥
∥
∥
∥X (·, s)

∥
∥ds ≤ 2α

T

∫ T

t

∥
∥u(·, s)

∥
∥

Gσ(Ω)

∥
∥X (·, s)

∥
∥ds

≤ α2

T 2

∫ T

t

∥
∥u(·, s)

∥
∥2

Gσ(Ω)
ds+

∫ T

t

∥
∥X (·, s)

∥
∥2

ds. (67)

Next, we estimate K2. Notice that since Rε → ∞ when ε→ 0, with the assumption u, v ∈ L∞(QT ), we
can choose a sufficiently small ε, such that (u, v) ∈ BRε , or F (u, v) = Fε(u, v). Thus, we obtain

|K2| ≤ 2

∫ T

t
eq(s−T )

∣
∣
∣
∣

〈

Fε(u
ε, vε) − Fε(u, v),X (·, s)

〉∣
∣
∣
∣
ds

≤ 2KRε

∫ T

t
eq(s−T )

∥
∥ ((uε, vε) − (u, v)) (·, s)

∥
∥
∥
∥X (·, s)

∥
∥ds = 2KRε

∫ T

t

∥
∥(X ,Y)(·, s)

∥
∥
∥
∥X (·, s)

∥
∥ds. (68)

For K3, using Lemma 2, it follows

|K3| ≤ 2

∫ T

t

∥
∥Pα(X )(·, t)

∥
∥
∥
∥X (·, s)

∥
∥ds ≤ 2

T
ln

(
1

α

)∫ T

t

∥
∥X (·, s)

∥
∥2

ds. (69)
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For K4, using Hölder’s inequality, Cauchy’s inequality and (A5), we deduce that

|K4| ≤ 2K0

∫ T

t
‖X (·, s)‖‖∇X (·, s)‖ds ≤ K2

0

M0 −M

∫ T

t
‖X (·, s)‖2ds+ (M0 −M)

∫ T

t
‖∇X (·, s)‖2ds.

(70)

Let us denote

E := max

{

‖(u, v)‖(L2(0,T ;Gσ(Ω)))2 , ‖(u, v)‖(L∞(0,T ;H1
0
(Ω)))2

}

.

Using (A2), Hölder’s inequality and Cauchy’s inequality, we obtain

|K5| ≤ 2L

∫ T

t
eq(s−T )

∥
∥ (uε − u) (·, s)

∥
∥
∥
∥∇u(·, s)

∥
∥
∥
∥∇X (·, s)

∥
∥ds

≤ 2L

∫ T

t

∥
∥X (·, s)

∥
∥
∥
∥∇u(·, s)

∥
∥
∥
∥∇X (·, s)

∥
∥ds

≤ L2

M0 −M

∫ T

t

∥
∥X (·, s)

∥
∥2∥∥∇u(·, s)

∥
∥2

ds+ (M0 −M)

∫ T

t

∥
∥∇X (·, s)

∥
∥2

ds

≤ L2E2

M0 −M

∫ T

t

∥
∥X (·, s)

∥
∥2

ds+ (M0 −M)

∫ T

t

∥
∥∇X (·, s)

∥
∥2

ds. (71)

Combining (66)-(71), and choosing q = 1
T ln( 1

α ), we have

∥
∥X (·, t)

∥
∥2

+ 2(M0 −M)

∫ T

t

∥
∥∇X (·, s)

∥
∥2

ds+
2

T
ln

(
1

α

)∫ T

t

∥
∥X (·, s)

∥
∥2

ds

≤
∥
∥X (·, t)

∥
∥2

+ 2

∫ T

t
B1

(∫

Ω
uεdx

)
∥
∥∇X (·, s)

∥
∥2

ds+
2

T
ln

(
1

α

)∫ T

t

∥
∥X (·, s)

∥
∥2

ds

≤ ε2 + |K1| + |K2| + |K3| + |K4| + |K5|,

or

∥
∥X (·, t)

∥
∥2 ≤ ε2 +

α2

T 2

∫ T

t

∥
∥u(·, s)

∥
∥2

Gσ(Ω)
ds+

(

1 +
K2

0

M0 −M
+

L2E2

M0 −M

)∫ T

t

∥
∥X (·, s)

∥
∥2

ds

+ 2KRε

∫ T

t

∥
∥(X ,Y)(·, s)

∥
∥
∥
∥X (·, s)

∥
∥ds. (72)

In a similar manner, we obtain the estimate for ‖Y(·, t)‖2, and summing with (72), it yields

∥
∥(X ,Y)(·, t)

∥
∥2 ≤ 2

∥
∥X (·, t)

∥
∥2

+ 2
∥
∥Y(·, t)

∥
∥2 ≤ 4ε2 + C5α

2 + (C6 + 4KRε)

∫ T

t

∥
∥(X ,Y)(·, s)

∥
∥2

ds. (73)

Applying Gronwall’s inequality, we arrive at

∥
∥(X ,Y)(·, t)

∥
∥2 ≤

(
4ε2 + C5α

2
)
exp

(
C6T + 4KRεT

)
,

which leads to

∥
∥ ((uε, vε) − (u, v)) (·, t)

∥
∥2

= e2q(T−t)
∥
∥(X ,Y)(·, t)

∥
∥2 ≤

(
C7ε

2

α2
+ C8

)

α
2t
T e4KRεT .

The proof of Theorem 2 is completed.
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Remark 2. We now give an example of parameter choice to obtain the convergence of the approximate
solution. Let us choose α = ε and Rε such that

KRε ≤ 1

4T
ln

(

ln2β

(
1

ε

))

for some β > 0.

Then,
∥
∥((uε, vε) − (u, v))(·, t)

∥
∥ is of order εt/T lnβ(1

ε ), which tends to 0, as εց 0, for all t ∈ (0, T ].

4.2 Estimation in H
1(Ω)-norm

We first state and prove the following lemma.

Lemma 3. Assume (A5) and (A6) : div(Ki) ∈ L∞(Ω), i = 1, 2. Then, there exist constants 0 ≤ b(Ki),
i = 1, 2, such that

∥
∥div(Kiw)

∥
∥2 ≤ b(Ki)

∥
∥w

∥
∥2

H1(Ω)
, ∀w ∈ H1(Ω). (74)

Proof. We have

∥
∥div(Kiw)

∥
∥2

=

∥
∥
∥
∥
∥
∥

div(Ki)w +

d∑

j=1

Kij∂xj
w

∥
∥
∥
∥
∥
∥

2

=
∥
∥div(Ki)w

∥
∥2

+ 2

〈

div(Ki)w,

d∑

j=1

Kij∂xj
w

〉

+

∥
∥
∥
∥
∥
∥

d∑

j=1

Kij∂xj
w

∥
∥
∥
∥
∥
∥

2

≤ b1
∥
∥w

∥
∥2

+ b2

〈

w,

d∑

j=1

∂xj
w

〉

+ b3
∥
∥

d∑

j=1

∂xj
w

∥
∥2 ≤ b

(∥
∥w

∥
∥2

+
∥
∥∇w

∥
∥2

)

= b
∥
∥w

∥
∥2

H1(Ω)
,

where we have used the Hölder inequality.

Now the following theorem gives an estimation for the error in the H1-norm.

Theorem 3. Suppose that the assumptions (A1), (A2), (A4) − (A6) hold. Furthermore, assume

(A7) : g1, g2, g
ε
1, g

ε
2 ∈ H1(Ω) satisfying

∥
∥gε

1 − g1
∥
∥

H1(Ω)
+

∥
∥gε

2 − g2
∥
∥

H1(Ω)
≤ ε.

Choose α = α(ε) > 0 satisfying (63). Assume that the problem (4), (7) and (9) has a unique weak

solution

(u, v) ∈
[
L2(0, T ;Gσ(Ω)) ∩ L∞(0, T ;H2(Ω)) ∩ L∞(QT )

]2

with σ ≥ 2M0T . Then, there exists C∗
0 = C∗

0 (u, v) ≥ 0 such that

∥
∥ ((uε, vε) − (u, v)) (·, t)

∥
∥

[H1(Ω)]2
≤ C∗

0α
t/T exp

(

4KRεT +
8K2

Rε

M0 −M
T

)

, ∀t ∈ [0, T ]. (75)

Proof. We first prove that the solution to the problem (22) and (23) satisfies ∆uε, ∆vε ∈ L2([0, T ];L2(Ω)).
Since the basis {φp}∞p=1 ⊂ H1

0 (Ω), we have that

∆uε,n = −
n∑

p=1

λpw
ε
np(t)φp(x), ∆vε,n = −

n∑

p=1

λpω
ε
np(t)φp(x)
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also lie in H1
0 (Ω) a.e. t ∈ [0, T ], where (uε,n, vε,n) is the Galerkin approximate solution satisfying (25)

and (26).
For fixed t, taking ϕ = ∆uε,n(·, t) in (25) and integrating from t to T , we obtain

∥
∥∇uε,n(·, t)

∥
∥2

+ 2

∫ T

t
B1

(∫

Ω
uε,ndx

)
∥
∥∆uε,n(·, s)

∥
∥2

ds

=
∥
∥∇gε,n

1

∥
∥2

+ 2

∫ T

t

〈

Pα(uε,n)(·, s),∆uε,n(·, s)
〉

ds

+ 2

∫ T

t

〈

Fε(u
ε,n, vε,n),∆uε,n(·, s)

〉

ds− 2

∫ T

t

〈

div(uε,n(·, s)K1),∆u
ε,n(·, s)

〉

ds

≤
∥
∥∇gε

1

∥
∥2

+ 2

∫ T

t

(
∥
∥Pα(uε,n)(·, s)

∥
∥ +

∥
∥Fε(u

ε,n, vε,n)
∥
∥ +

∥
∥div (uε,n(·, s)K1)

∥
∥

)
∥
∥∆uε,n(·, s)

∥
∥ds

≤ C9 + C10

∫ T

t

(∥
∥(uε,n, vε,n)(·, s)

∥
∥2

+
∥
∥uε,n(·, s)

∥
∥2

H1(Ω)

)

ds+ (M0 −M)

∫ T

t
‖∆uε,n(·, s)‖2ds,

where we have used (A7), Hölder’s inequality, Cauchy’s inequality, Lemmas 2 and 3, and the Lipschitz
property of Fε. Hence, using (36) and (37) we arrive at ‖∆uε,n‖L2(0,T ;L2(Ω)) ≤ C12. Then, the limit func-
tion uε also satisfies this estimate. Using the same arguments for vε, we have ∆uε, ∆vε ∈ L2(0, T ;L2(Ω)).
From the hypothesis u, v ∈ L∞(0, T ;H2(Ω)), we obtain that ∆X , ∆Y ∈ L2(0, T ;L2(Ω)). For fixed t,
taking ϕ = λp〈X (·, t), φp〉φp(x) in (65), summing from p = 1 to ∞ and then integrating from t to T , we
get

∥
∥∇X (·, T )

∥
∥2 −

∥
∥∇X (·, t)

∥
∥2 − 2q

∫ T

t

∥
∥∇X (·, s)

∥
∥2

ds

− 2

∫ T

t
B1

(∫

Ω
uεdx

)

(s)
∥
∥∆X (·, s)

∥
∥2

ds

= − 2

∫ T

t
eq(s−T )

(

D1

(∫

Ω
uεdx

)

−D1

(∫

Ω
udx

))

(s)

〈

∆u(·, s),∆X (·, s)
〉

ds

︸ ︷︷ ︸

G1

− 2

∫ T

t
eq(t−T )

〈

Qα(u)(·, s),∆X (·, s)
〉

ds

︸ ︷︷ ︸

G2

+ 2

∫ T

t

〈

Pα(∇X )(·, s),∇X (·, s)
〉

ds

︸ ︷︷ ︸

G3

− 2

∫ T

t
eq(t−T )

〈

Fε(u
ε, vε) − F (u, v),∆X (·, s)

〉

ds

︸ ︷︷ ︸

G4

+ 2

∫ T

t

〈

div(X (·, s)K1),∆X (·, s)
〉

ds.

︸ ︷︷ ︸

G5

(76)

The above terms make sense because of the linearity of Pα, Qα, the Lipschitz property of Fε, and the
fact that ∆X , ∆Y, ∆u, ∆v, div(XK1) ∈ L2(0, T ;L2(Ω)). Using Hölder’s inequality, Cauchy’s inequality
and the assumption (A2), it yields

|G1| ≤ 2L

∫ T

t

∥
∥X (·, s)

∥
∥
∥
∥∆u(·, s)

∥
∥
∥
∥∆X (·, s)

∥
∥ds

≤ 2L2(E∗)2

M0 −M

∫ T

t

∥
∥X (·, s)

∥
∥2

ds+
M0 −M

2

∫ T

t

∥
∥∆X (·, s)

∥
∥2

ds, (77)

where

E∗ := max

{
∥
∥(u, v)

∥
∥

[L2(0,T ;Gσ(Ω))]2
,
∥
∥(u, v)

∥
∥

[L∞(0,T ;H2(Ω))]2

}

.
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Using Hölder’s inequality, Cauchy’s inequality and Lemma 2, we obtain

|G2| ≤ 2

∫ T

t

∥
∥Qα(u)(·, s)

∥
∥
∥
∥∆X (·, s)

∥
∥ds (78)

≤ 2

M0 −M

∫ T

t

∥
∥Qα(u)(·, s)

∥
∥2

ds+
M0 −M

2

∫ T

t

∥
∥∆X (·, s)

∥
∥2

ds

≤ 2α2

(M0 −M)T 2

∫ T

t

∥
∥u(·, s)

∥
∥2

Gσ(Ω)
ds+

M0 −M

2

∫ T

t

∥
∥∆X (·, s)

∥
∥2

ds

≤ 2α2(E∗)2

(M0 −M)T 2
+
M0 −M

2

∫ T

t

∥
∥∆X (·, s)

∥
∥2

ds.

Thanks to Lemma 2, we have

|G3| ≤ 2

∫ T

t

∥
∥Pα(∇X )(·, s)

∥
∥
∥
∥∇X (·, s)

∥
∥ds ≤ 2

T
ln

(
1

α

)∫ T

t

∥
∥∇X (·, s)

∥
∥2

ds. (79)

With an analogous argument as in section 4.1, we can choose a sufficiently small ε such that F (u, v) =
Fε(u, v) a.e. (x, t) ∈ QT . Therefore,

|G4| = 2

∫ T

t
eq(s−T )

∣
∣
∣
∣

〈

Fε(u
ε, vε) − Fε(u, v),∆X (·, s)

〉∣
∣
∣
∣
ds

≤ 2

∫ T

t
eq(s−T )

∥
∥Fε(u

ε, vε) − Fε(u, v)
∥
∥
∥
∥∆X (·, s)

∥
∥ds

≤ 2KRε

∫ T

t

∥
∥(X ,Y)(·, s)

∥
∥
∥
∥∆X (·, s)

∥
∥ds

≤
2K2

Rε

M0 −M

∫ T

t

∥
∥(X ,Y)(·, s)

∥
∥2

ds+
M0 −M

2

∫ T

t

∥
∥∆X (·, s)

∥
∥2

ds. (80)

For G5, using Hölder, Cauchy inequalities and Lemma 3, we obtain

|G5| ≤ 2

∫ T

t

∥
∥div(X (·, s)K1)

∥
∥
∥
∥∆X (·, s)

∥
∥ds

≤ 2

M0 −M

∫ T

t

∥
∥div(X (·, s)K1)

∥
∥2

ds+
M0 −M

2

∫ T

t

∥
∥∆X (·, s)

∥
∥2

ds

≤ 2b

M0 −M

∫ T

t

∥
∥X (·, s)

∥
∥2

H1(Ω)
ds+

M0 −M

2

∫ T

t

∥
∥∆X (·, s)

∥
∥2

ds. (81)

Choosing again q = 1
T ln

(
1
α

)
, from (76)-(81), we deduce

∥
∥∇X (·, t)

∥
∥2 ≤ ε2 + C11α

2 + C12

∫ T

t

∥
∥X (·, s)

∥
∥2

H1(Ω)
ds+

2K2
Rε

M0 −M

∫ T

t

∥
∥(X ,Y)(·, s)

∥
∥2

ds.

In a similar manner, we obtain the estimate for Y. Hence,

∥
∥(∇X ,∇Y)(·, t)

∥
∥2 ≤ 2

∥
∥∇X (·, t)

∥
∥2

+ 2
∥
∥∇Y(·, t)

∥
∥2

≤ 4ε2 + 4C11α
2 + 2C12

∫ T

t

∥
∥(X ,Y)(·, s)

∥
∥2

H1(Ω)
ds+

8K2
Rε

M0 −M

∫ T

t

∥
∥(X ,Y)(·, s)

∥
∥2

ds. (82)
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Combining (82) and (73), it yields
∥
∥(X ,Y)(·, t)

∥
∥2

[H1(Ω)]2
≤ 2

∥
∥(X ,Y)(·, t)

∥
∥2

+ 2
∥
∥(∇X ,∇Y)(·, t)

∥
∥2

≤ C13ε
2 + C14α

2 +

(

C15 + 8KRε +
16K2

Rε

M0 −M

)∫ T

t

∥
∥(X ,Y)(·, s)

∥
∥2

[H1(Ω)]2
ds.

Applying Gronwall’s inequality, we arrive at

∥
∥(X ,Y)(·, t)

∥
∥2

[H1(Ω)]2
≤

(
C16ε

2 + C17α
2
)
exp

(

8KRεT +
16K2

RεT

M0 −M

)

.

Thus, by taking q = 1
T ln( 1

α ), or

‖ ((uε, vε) − (u, v)) (·, t)‖2
[H1(Ω)]2 =

α2t/T

α2

∥
∥(X ,Y)(·, t)

∥
∥2

[H1(Ω)]2
,

we can deduce (75). This completes the proof of Theorem 3.

Remark 3. We can now give another example of parameter choice different from that in Remark 2. If
we choose α = ε and Rε such that

8KRε +
16K2

Rε

M0 −M
≤ 1

T
ln

(

ln2β

(
1

ε

))

for some β > 0,

then,
∥
∥((uε, vε) − (u, v))(·, t)

∥
∥

(H1(Ω))2
is of order εt/T lnβ

(
1
ε

)
, which again tends to 0 as ε ց 0, for all

t ∈ (0, T ].

Remark 4. Expressions (64) and (75) in Theorems 2 and 3, respectively, yield stability estimates for any
t ∈ (0, T ]. At t = 0, we can follow Theorem 13 of [22] step by step to obtain a logarithmic error estimate,
but then we need to add one more condition on the true solution (u, v), namely that u, v ∈ C1(0, T ;L2(Ω)).

Remark 5. In both Theorems 2 and 3 it is assumed that u and v belong to L2(0, T ;Gσ(Ω)), where
the Gevrey space of functions Gσ(Ω) has been defined in (11). At this stage, there are unknown to us
sufficient conditions on the data entering the problem given by equations (4), (7) and (9) to ensure that
the solution (u, v) ∈ (L2(0, T ;Gσ(Ω))2, but we point out to references [4, 5, 12] for some useful results on
Gevrey regularity for parabolic equations.

5 Numerical results and discussion

In this section, we consider some examples to show the instability of the backward problem and illustrate
the theoretical results of regularization. We implement the predator-prey model in the one-dimensional
domain Ω = (0, π) and T = 1. Let D1 = D2 = 1 and K1 = K2 = 0.02 and take the following ecological
parameters

r = 0.3, K = 2, a = 0.3, β1 = β2 = 0, e = 0.9, p = 0.9, q = 0.2. (83)

which are characteristic to a predator-prey system in a polluted environment [2, 24]. As we have
proved in section 3, the Galerkin approximate solution (uε,n, vε,n) satisfying (25) and (26) converges to
our regularized solution, so we choose (uε,n, vε,n) as our numerical regularized solution. Taking α(ε) = ε,
we have to find wε

np(t) and ωε
np(t) that are the solutions of the 2n system of ODEs







dwε
np

dt
+ D1λpw

ε
np −K1

〈

uε,n(·, t),∇φp

〉

=
ln

(
1 + εeTM0λp

)

T
wε

np +

〈

F (uε,n(·, t), vε,n(·, t)), φp

〉

,

dωε
np

dt
+ D2λpω

ε
np −K2

〈

vε,n(·, t),∇φp

〉

=
ln

(
1 + εeTM0λp

)

T
ωε

np +

〈

G(uε,n(·, t), vε,n(·, t)), φp

〉

,

(84)
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for p = 1, n, where uε,n and vε,n are given by (24). The Laplacian operator has eigenfunctions, satisfying

the homogeneous Dirichlet boundary condition: φp(x) =
√

2
π sin(px), with corresponding eigenvalues,

λp = p2, p ∈ N
∗. This sequence {φp(x)}∞p=1 forms an orthonormal basis of L2(Ω).

A uniform grid of mesh-points (xi, tk) is used to discretize the space and time intervals

∆x =
π

Nx
, xi = (i− 1)∆x, i = 1, Nx + 1,

∆t =
T

Nt
, tk = (k − 1)∆t, k = 1, Nt + 1.

The inner product in L2(0, π) can be approximated by the composite Simpson’s rule of numerical inte-
gration

∫ π

0
f(x)dx ≈ ∆x

3

Nx+1∑

i=1

cif(xi),

where ci =







1, if i = 1 or i = Nx + 1,

2, if i = 2l + 1,

4, if i = 2l

. Consequently, the discrete norm in L2(Ω), namely the ℓ2-

norm can be defined by

∥
∥w

∥
∥

ℓ2(Ω)
=

√
√
√
√∆x

3

Nx+1∑

i=1

ciw2(xi).

The absolute errors are evaluated by ǫu =
∥
∥uε,n − u

∥
∥

ℓ2(Ω)
and ǫv =

∥
∥vε,n − v

∥
∥

ℓ2(Ω)
.

We find the coefficients wε
np and ωε

np satisfying (84) by the finite difference method (FDM). Denoting by

wk
p and ωk

p the p−th coefficients at t = tk, we have the following relations:







wk+1
p −wk

p

∆t + D1λpw
k+1
p −K1

〈

uε,n(·, tk+1),∇φp

〉

ℓ2(Ω)

= 1
T ln(1 + εeTM0λp)wk+1

p

+

〈

F (uε,n(·, tk+1), v
ε,n(·, tk+1)) ,∇φp

〉

ℓ2(Ω)

,

ωk+1
p −ωk

p

∆t + D2λpω
k+1
p −K2

〈

vε,n(·, tk+1),∇φp

〉

ℓ2(Ω)

= 1
T ln(1 + εeTM0λp)ωk+1

p

+

〈

G (uε,n(·, tk+1), v
ε,n(·, tk+1)) ,∇φp

〉

ℓ2(Ω)

.

Example 1. Let the final data (7) be given by

g1(x) = g2(x) = 0, x ∈ (0, π), (85)

which is perturbed as

gε
i (x) =

εrand(size(x))

2
√
π

, i = 1, 2,

where rand(size(x)) is a random vector, having values in [0, 1] (so that the assumptions (A3) and (A4)
are satisfied), with the same size as the discretised vector x. Then, the problem (4), (7) and (9) admits
the trivial solution uex(x, t) = vex(x, t) = 0. Choose T = 1, Nx = Nt = 100 and M0 = 1.000002. We have
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Figure 1: The regularized solutions at t = 0.5 for ε = 10−4 with n = 5 (+++), n = 15 (—–) and n = 25
(− · −).

that n = 26 is the maximum number of Fourier coefficients that the term exp(TM0λn) can be computed
in Matlab program. The unregularized solution has been obtained to be very large and unbounded of
O(1040) and therefore is not presented. In order to alleviate this instability, the regularized solution
shown in Figure 1 illustrates the stabilizing effect with significantly reduced errors of the orders O(10−4)
to O(10−3) for n ∈ {5, 15, 25} for ε = 10−4 noise. The number of terms considered in the approximations
(24) has also a regularization character which can be inferred from Figure 1, where the numerical solutions
start to manifest instabilities for larger n.

Table 1 shows the errors ǫu and ǫv at various times t ∈ {0.25, 0.5, 0.75} for various amounts of noise
ε ∈ {10−5, 10−4, 10−3} with n = 10. From this table, we can observe that the errors at t = 0.5 are greater
than those at t = 0.75 and smaller than those at t = 0.25, as expected since the instability increases as
we proceed backwards in time. Furthermore, for smaller errors in input data, the results obtained are
more accurate, which verifies the theoretical stability result in Theorem 2.

Table 1: The errors at t ∈ {0.25, 0.5, 0.75} for various amounts of noise ε ∈ {10−5, 10−4, 10−3}, with
n = 10, for Example 1.

ε ǫu(0.25) ǫv(0.25) ǫu(0.5) ǫv(0.5) ǫu(0.75) ǫv(0.75)

10−5 0.0046 0.0076 0.0004 0.0003 1.6E-5 1.9E-5

10−4 0.0066 0.0120 0.0008 0.0014 1.1E-4 9.7E-5

10−3 0.0148 0.0298 0.0038 0.0029 5.8E-4 8.9E-4

Example 2. In case that the analytical solution for the problem (4), (7) and (9) is not available, we first
solve the forward problem given by the first equation in (3), (4) and (9) to numerically simulate the final
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data (7) at t = T =, perturb them as

gε
i (x) = gi(x)

(

1 +
ε(2rand(size(x)) − 1)

‖g1‖ + ‖g2‖

)

, i = 1, 2,

and then use this noisy data to construct the regularized solution of the inverse problem. We use the
fourth-order finite difference scheme to solve the forward problem as follows:

uk+1
i − uk

i

∆t
−D1

−uk+1
i−2 + 16uk+1

i−1 − 30uk+1
i + 16uk+1

i+1 − uk+1
i+2

12∆x2

+K1

uk+1
i−2 − 8uk+1

i−1 + 8uk+1
i+1 − uk+1

i+2

12∆x
= F (uk

i , v
k
i ),

vk+1
i − vk

i

∆t
−D2

−vk+1
i−2 + 16vk+1

i−1 − 30vk+1
i + 16vk+1

i+1 − vk+1
i+2

12∆x2

+K2

vk+1
i−2 − 8vk+1

i−1 + 8vk+1
i+1 − vk+1

i+2

12∆x
= G(uk

i , v
k
i ).

We take Nx = Nt = 100, n = 2 and M0 = 5, and consider two cases of input data, belonging or not
to the Gevrey space (11).

Case 1. Let the initial data (first equation in (3)) be

u(x, 0) = sinx, v(x, 0) = sinx, (86)

which belong to the Gevrey space (11) for any σ > 0. The errors between the forward and backward
solutions at t ∈ {0.25, 0.5, 0.75} for ǫ ∈ {10−1, 10−2, 10−3, 10−4} are given in Table 2. The approximated
forward and backward solutions are shown in Figures 2 and 3, and very good agreement can be observed.

Table 2: The errors at t ∈ {0.25, 0.5, 0.75} for various amounts of noise ε ∈ {10−4, 10−3, 10−2, 10−1}, for
Example 2, Case 1.

ε ǫu(0.25) ǫv(0.25) ǫu(0.5) ǫv(0.5) ǫu(0.75) ǫv(0.75)

10−4 0.0218 0.0325 0.0122 0.0167 0.0063 0.0079

10−3 0.0767 0.1087 0.0362 0.0599 0.0139 0.0244

10−2 0.4683 0.4807 0.2439 0.2902 0.0976 0.1279

10−1 0.7878 0.8779 0.4897 0.5962 0.2379 0.3107

Case 2. Let the initial data (first equation in (3)) be

u(x, 0) =
1

2
(π − x)x, v(x, 0) = x sinx, (87)

which does not belong to a Gevrey space (11) for any σ > 0. The errors between the forward and
backward solutions at t ∈ {0.25, 0.5, 0.75} for ǫ ∈ {10−1, 10−2, 10−3, 10−4} are given in Table 3. From
this table it can be seen that the errors eu and ev decrease monotonically, as ǫ decreases.

6 Conclusion

In this paper, the coupled nonlinear system of parabolic PDEs (9) governing the predator-prey species
interactions, with nonlinear sources, convection and diffusion depending nonlocally on the total average
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Figure 2: The solution to the forward problem corresponding to Example 2, Case 1.
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Figure 3: The regularized solution to the backward problem for ε = 10−4 for Example 2, Case 1.
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Table 3: The errors at t ∈ {0.25, 0.5, 0.75} for various amounts of noise ε ∈ {10−4, 10−3, 10−2, 10−1}, for
Example 2, Case 2.

ε ǫu(0.25) ǫv(0.25) ǫu(0.5) ǫv(0.5) ǫu(0.75) ǫv(0.75)

10−4 0.0552 0.2899 0.0276 0.1133 0.0118 0.0420

10−3 0.0907 0.3347 0.0405 0.1470 0.0154 0.0571

10−2 0.5648 0.8172 0.2696 0.4820 0.0997 0.2128

10−1 0.9312 1.4358 0.5382 0.9763 0.2447 0.5080

population densities has been investigated. In particular, the initial condition is not specified and has to
be determined from the knowledge of the predator and prey populations at a later time. The resulting
backward problem (4), (7) and (9) is ill-posed and we have proposed a new regularization method for
solving it in a well-posed manner. Furthermore, we have established rigorously the error estimates (64)
and (75) in the L2− and H1−norms, respectively.

The inclusion of stochasticity [10] in the backward model would make the model even more general
and practical, but this investigation is deferred to a future work. Also, the inverse problem of determining
the diffusivity/velocity D

(∫

Ω udx
)

(or their system counterpart D1

(∫

Ω udx
)

and D2

(∫

Ω vdx
)

in (10) (or
(6) or (9)) from the knowledge/measurement of the population density (or the flux) on a subportion
Γ ⊂ ∂Ω for all time t ∈ (0, T ), would be of much interest, see [18] for a particular theoretical study.
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