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Abstract 
The description of intertwined ecological processes in surface waters requires a holistic approach that 

accounts for spatially distributed hydrological/water quality processes. This study describes a new approach 

to model dissolved oxygen (DO) based on linked hydrodynamic and closed nutrient cycle ecological models.  

Long term datasets from the River Dommel (Netherlands) are used to determine: 1) if this methodology is 

suitable for modelling DO concentrations, 2) the model sensitivity to various levels of nutrients input, and 3) 

the DO production and consumption processes and their response to nutrient input changes. Results show 

that seasonal dynamics of DO are well quantified at long timescales; the sensitivity of DO to different 

pollutant sources exhibits significant seasonal variation and the largest influences on DO are aeration and 

mineralization of organic material. The approach demonstrates an ability to consider the impacts of nutrient 

input and long term vegetation maintenance on ecological quality.  

Software Requirements  
• Wageningen Lowland Runoff Simulator (WALRUS) developed by Brauer et al. (2014) available 

through the following website https://github.com/ClaudiaBrauer/WALRUS 

• SOBEK River one-dimensional (1D) and D-Water Quality module delivered by Deltares Software 

Center  

• PCDitch is available through STOWA (Acronym for Foundation for Applied Water Research). More 

information on PCDitch and PCLake can be found at: 

https://www.stowa.nl/onderwerpen/waterkwaliteit/realiseren-van-ecologische-

waterkwaliteitsdoelen-krw/pclake-en-pcditch 

• MATLAB for data analysis of PCDitch results, Jupyter Notebook and ARCGIS for data results 

presentation, R-Studio for model implementation and parameter optimization of WALRUS model  

https://github.com/ClaudiaBrauer/WALRUS
https://www.stowa.nl/onderwerpen/waterkwaliteit/realiseren-van-ecologische-waterkwaliteitsdoelen-krw/pclake-en-pcditch
https://www.stowa.nl/onderwerpen/waterkwaliteit/realiseren-van-ecologische-waterkwaliteitsdoelen-krw/pclake-en-pcditch
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1  Introduction 
The European Union (EU) Water Framework Directive (WFD) requires that a ͚good ecological status͛ should 

be achieved and maintained in all surface water and groundwater (Council of European Commission, 2000). 

A good ecological status is established by the biological, chemical and hydrological characteristics of the 

water body. Moreover, EU member states have specific interpretations of what is considered ͚good 

ecological status͛. For example, in the Netherlands key ecological factors and water system analyses are used 

as a method to understand ecological water quality processes and to define goals and measures for water 

bodies. These key ecological factors cover a ͚crossing͛ between human pressures on a water body (e.g. 

channelization, vegetation maintenance or diffuse pollution) and environmental factors (e.g. temperature 

regime, substrate variation or nutrient concentration) (STOWA, 2015). Water quality modelling can be used 

at different spatial and temporal scales to understand relationships between human pressures on a water 

body and environmental factors as well as enabling discussions amongst stakeholders of potential 

intervention, management or maintenance strategies. As catchments are complex systems encompassing a 

vast quantity of processes and components, integrated water quality modelling is currently the preferred 

choice (Tscheikner-Gratl et al., 2018) for determining the best management practices to address both urban 

and rural pressures for the improvement of the water body.  

Modelling river water quality has generally been conducted using the advection-dispersion-reactions 

approach (which may also include terms for transient storage, biota uptake, groundwater and lateral flows, 

sediment deposition or uptake). The advection and dispersion processes are usually described within the 

hydrological/hydrodynamic model and the biochemical and physical conversion processes are described 

within reactions equations (Rauch et al., 1998). Most surface water quality studies have focused separately 

on these processes and over various time scales. For instance, solute transport using advection-dispersion 

equations with point source pollution have been widely applied in river systems (Ani et al., 2009; van Mazijk 

and Veling, 2005; Wallis et al., 2014) More detailed modelling approaches including the effects of transient 

storage and hyporheic exchange have also been developed such as the Transient Storage Model (Ge and 

Boufadel, 2006; Runkel, 1998). Dissolved oxygen and biochemical models represent the dynamics of 

reaeration and decomposition of organic matter (Streeter et al., 1925). Important additional oxygen 

production and consumption processes such as the removal of Biological Oxygen Demand (Dobbins, 1964), 

oxygen production and uptake due to periphyton biomass (Welch et al., 1989) and the dynamics of nutrient 

cycling and algae have been incorporated in other water quality models such as the QUAL2 family of models 

(Brown, 1987) and the River Water Quality Model no. 1 (Reichert et al., 2001). Moreover, eutrophication 

models in varying degrees of complexity (e.g. modelling nutrient enrichment due to various processes) can 

be used over longer time scales to study interactions between macrophytes, phytoplankton and nutrients in 

the ecosystem. However, to date eutrophication models have been primarily applied to lake systems or to 

study the nutrient transport to the destination ecosystems such as estuaries or oceans (Nijboer and 

Verdonschot, 2004). 

To obtain a complete physical, chemical and ecological description of the river catchment for ecological 

status evaluation, integrated modelling approaches covering both urban and rural catchments, have gained 

popularity over the past years (Holguin-Gonzalez et al., 2013; Mouton et al., 2009). Mouton et al. (2009) 

used the Water Framework Directive (WFD)-Explorer Toolbox to evaluate the ecological status of the Zwalm 

River in Belgium. Their study integrated a hydraulic model, with a mass balance module to assess ecological 

pressures based on expert knowledge. However, the approach oversimplified water quality processes, and 

had a coarse catchment scale (Holguin-Gonzalez et al., 2013). Holguin-Gonzalez et al. (2013) developed a 

framework integrating a MIKE 11 hydraulic and physicochemical water quality model with two ecological 

models based on habitat suitability and ecological assessment with an emphasis on macroinvertebrates. 

However, the QUAL2E and MIKE11 models lack the ability to represent sediment processes as biological 
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conversions. This disables their capability to model closed nutrient cycles (Trinh Anh et al., 2006) which is 

beneficial to account for the nutrient ratios at the various trophic levels. 

A holistic ͚combined modelling approach͛ incorporating the long term intertwined dynamics of flow, 

nutrients and aquatic biota and physical and ecological interactions is still lacking in the literature. More 

specifically, the capability to model closed nutrient cycles, plant competition, organisms, water and 

sediment processes using an extensive ecological model coupled to a hydrologic and hydrodynamic model is 

still pending. Therefore, in this study, we adopt such ͚combined modelling approach͛ to represent the 

medium to long-term hydrological processes of a catchment (precipitation, evapotranspiration and runoff), 

transport and mixing processes from both urban (pollution loadings of CSOs and WWTP) and rural areas, and 

ecological processes in a slow flowing river system. This combined approach is illustrated in Figure 1 where 

the three main rainfall-runoff, hydrodynamic and ecological models are shown with their corresponding data 

requirements. The main objectives of the study are: 1) to evaluate the capability of the combined modelling 

approach to simulate DO for medium to long term time scales (months to years), 2) to determine the 

sensitivity of DO model predictions a in the river system given uncertainty in the input boundary conditions, 

and 3) to determine the dominant oxygen production and consumption processes and their sensitivity to the 

changes in input boundary conditions. The novelty of this study is the combination of a hydrodynamic and 

ecological model which include urban and rural components and their interactions within the ecological 

closed nutrients cycles. This can also include the effects of river management practices such as vegetation 

clearance and dredging. In addition, this methodology can include the effects of nutrient inputs and cycling 

from rural areas, Combined Sewer Overflows (CSOs) and a Wastewater Treatment Plant (WWTP) on oxygen, 

nutrient and biota concentrations in the river system. Inclusion of both rural and urban inputs has been 

recognized as the ideal modelling approach. However, to date, few studies have successfully implemented 

such methodology (Honti et al., 2017; Tscheikner-Gratl et al., 2018). 

The nutrient and vegetation model for ditches PCDitch was used in this study. Originally developed for lakes 

(PCLake), PCDitch was selected because it is among the most extensive ecosystem models to date which can 

include the competition for nutrients, light and temperature and can model production by plants, algae, 

reaeration and oxygen consumption due to different water and sediment processes (Janse, 2005; Trolle et 

al., 2014). In addition, PCDitch is a dynamic model that describes the dominant biological components in the 

river using closed nutrient cycles. The closed mass balance approach is implemented through nutrient-to-dry 

weight ratios. This allows the stoichiometry of organisms to change with trophic level (Mooij et al., 2010). 

Management practices such as mowing and dredging can also be implemented in PCDitch allowing water 

managers to identify target measures on specific processes that assist to improve the quality of the river 

system. However, the capability of PCDitch to simulate ecological conditions in rivers has not been tested, 

neither has its capability to predict changes in dissolved oxygen (DO) concentration as a by-product of the 

various biochemical and ecological processes (e.g. mineralization of organic material, respiration and 

production of macrophytes). For this to be attempted, coupling with rainfall runoff and hydrodynamic 

models is required.  
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Figure 1. Combined modelling diagram. WALRUS model inputs: precipitation (P), potential evapotranspiration (ETp), 

river discharge (Q), and model parameters used in calculation of surface and groundwater runoff (QRural Runoff). Sobek 

inputs: Combined Sewer Overflows discharge (QCSO), Wastewater Treatment Plant Discharge (QWWTP), river 

morphology, and river structures used in calculation of total river discharge (Qriver), depth (Hriver), and velocity (Vriver). 

PCDitcht/D-Water Quality inputs: Input boundary concentrations for the rural runoff (CRural Runoff), Combined Sewer 

Overflows (CCSO), and Wastewater Treatment Plant (CWWTP) to calculate DO and ecological variables.   
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2 Methodology 

2.1 Study Area Description  

The Dommel River (shown in Figure 2) flows from the northeast of Belgium to the south of the Netherlands 

until it joins the Meuse River. The upstream region of the catchment is heavily influenced by agriculture, 

mainly livestock farming, while the downstream area runs through the city of Eindhoven (Netherlands). The 

river receives urban discharges from approximately 750,000 P.E. (population equivalent) from the Eindhoven 

WWTP and over 200 CSOs (Weijers et al., 2012). In the summer, the WWTP discharge on the river can 

account for up to 50% of the Dommel baseflow of 1.5 m3s-1 (Langeveld et al., 2013b). The geology is 

dominated by sandy deposits with small amounts of mica, feldspars and clay minerals (Petelet-Giraud et al., 

2009). Pollution sources include nitrogen and phosphates leaching from agriculture (mainly manure 

application) and urban inputs from CSOs and WWTP discharges. Figure 2 shows the main flow contributions 

to the Dommel River and the locations where measured daily flow, dissolved oxygen, total nitrogen, and 

total phosphorus concentrations are available. The flow contributions include surface and groundwater 

runoff sources which for simplicity in this paper are referred as ͚runoff͛, CSOs and the Eindhoven wastewater 

treatment plant (WWTP). These sources are described in more detail in section 3.4.1 

 

Figure 2. Model schematization and subcatchments of the Dommel River catchment 
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2.2 Rainfall-Runoff Modelling 

The study area was divided into six sub catchments (Figure 2). A rainfall-runoff model was created for each 

sub catchment using the Wageningen Lowland Runoff Simulator (WALRUS) model. WALRUS is a water 

balance model which considers various reservoirs (groundwater, vadose zone, and surface water) and fluxes 

between the reservoirs (Brauer et al., 2014). Precipitation can be transferred to the surface water reservoir 

directly, infiltrate into the vadose zone, or travel to the surface water reservoir via quickflow.  A quickflow 

reservoir is used to represent the accumulation of overland, macropore and drainpipe flow. The water level 

at the surface water reservoir with respect to time is found using the following equation presented in Brauer 

et al. (2014): 

 ݄݀ௌ݀ݐ ൌ  ௑݂ௌ ൅ ௌܲ െ ܧ ௌܶ ൅ ݂ீ ௌ ൅ ொ݂ௌ െ ܳௌܽௌ  

Where ௑݂ௌ is the surface water supply/extraction in (mmhr-1), ௌܲ is the precipitation into surface water 

reservoir (mmhr-1), ܧ ௌܶ is the potential evapotranspiration (mmhr-1),  ݂ீ ௌ is the groundwater 

drainage/surface water infiltration (mmhr-1), ொ݂ௌ is the inflow from the quickflow reservoir (mmhr-1), ܳௌ is 

the stageʹdischarge relationship (mmhr-1), and ܽௌ is the surface water area fraction (-). Discharge is 

ĐĂůĐƵůĂƚĞĚ ďǇ ƚŚĞ MĂŶŶŝŶŐ͛Ɛ ƐƚĂŐĞ-discharge relationship (Manning et al., 1890). 

WALRUS was selected because of its ability to account for dominant low-land areas processes such as 

couplings between the groundwater and unsaturated zone, flow routes that depend on wetness conditions, 

and interactions between groundwater and surface water (Brauer et al., 2014).  

 

The WALRUS model inputs include precipitation and evapotranspiration data. Measured discharge data was 

used for model calibration. Data was collected from January 1st, 2011 to December 31st, 2013. Hourly 

precipitation rates were obtained from merged radar and rain gauge data from the Dutch meteorological 

agency (KNMI) and the Dommel Water Board (Moreno-Ródenas et al., 2017). Daily Penman-Monteith 

evapotranspiration rates were obtained from the Foundation for Applied Water Research (Stichting 

Toegepast Onderzoek Waterbeheer) in the Netherlands (STOWA, 2013). Hourly discharge was available for 

the Keersop, Tongelreep and St. Michielsgestel sub catchments from the Dommel Water Board. The total 

observed runoff from the Keersop and Tongelreep catchments were separated into its rural and urban 

runoff components using the sub-flow separation technique suggested by Willems (2009) to account for 

contributing flows from combined sewer overflows (CSOs). The flow at Sint-Oedenrode (from the St. 

Michielsgestel sub catchment) was not subdivided into sub flows due to the large contribution of the 

wastewater treatment plant discharge. Therefore, this sub catchment was not used for calibration of the 

rainfall-runoff model. The Keersop and Tongelreep sub catchments were used to calibrate the model 

parameters (Table 1), which was then also applied to the other sub catchments. This calibration was carried 

out using the swarm optimization technique hydroPSO available in the WALRUS model. The parameters in 

Table 1 remained constant for the studied catchments including groundwater depths, surface water 

fractions, quickflow and groundwater reservoir constants and soil properties.  

Table 1. WALRUS Model parameters per sub catchment 

Parameter  Unit Abbreviation Value 

Surface water parameter bankfull discharge  (mm h-1) cS 4.0 

Initial groundwater depth  (mm) dG0 1200 

Channel depth  (mm) cD 2750-3250 

Surface water area fraction (-) aS 0.0090 

Soil type  (-) st loamy sand 

Wetness index parameter  (mm) cW 400 

Vadose zone relation time (h) cV 4 
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Groundwater reservoir constant  (mm h) cG 30,000,000 

Quickflow reservoir constant  (h) cQ 25 

 

2.3 Hydrodynamic Modelling 

A SOBEK-River one-dimensional (1D) model was provided by the Dommel Water Board containing the river 

network shown in Figure 2. SOBEK is based on the 1D Saint Venant equations (dynamic wave) and utilises 

the Delft numerical scheme (Deltares, 2014). This model was used to estimate the spatially distributed 

hydraulic characteristics of the river network including flow velocities, volumes and discharges. 6,214 

consecutive reaches ranging from 0.04m to 200m in length (with an average of 25m per reach) formed the 

river network. The model schematization includes 1,696 cross sections, 29 runoff inflows (shown as the 

Surface and Groundwater Runoff inflows), 2 boundary outflows, 27 lateral flows (shown as the CSOs), 146 

weirs and 211 bridges and 2018 Connection Nodes with Storage and Lateral Flow. Culverts were removed 

from the SOBEK model in order to accelerate the simulation and reduce instabilities, this was deemed 

acceptable as no flooding or culvert surcharge occurred during the simulated period. The bed friction was 

ƌĞƉƌĞƐĞŶƚĞĚ  ƵƐŝŶŐ SƚƌŝĐŬůĞƌ͛Ɛ ƌŽƵŐŚŶĞƐƐ ĐŽĞĨĨŝĐŝĞŶƚ KƐ ;ŵ1/3s-1) (Deltares, 2014). The Ks coefficient for the 

Dommel River was set to 25 m1/3s-1 based on previous studies and analysis as conducted by the Dommel 

Water Board. 

The Surface and Groundwater Runoff inflow boundary conditions were implemented in the SOBEK 

hydrodynamic model from the runoff generated using the WALRUS model. The flows at the outlet of the sub 

catchments were divided into sub flows according to hydrological areas based on the natural drainage as 

observed in (Langeveld et al., 2013a). The 27 clusters of CSOs were included in SOBEK to represent the urban 

inputs as lateral inflows in the river schematization, containing monitored discharge data with a frequency of 

every 15 minutes for the three years from Jan 1, 2011 to December 31, 2013. Similarly, hourly WWTP 

discharge was also included as a lateral inflow for the same period. A flow weir located between the 

Dommel Run and the Sint-Oedenrode subcatchments represented the flow control during summer (1.5 m3s-

1) and winter (0.75 m3s-1). 

2.4 Water Quality Modelling 

SOBEK conventionally describes mixing and dispersion processes using the 1D Advection Dispersion Equation 

(Taylor, 1954), which dispersion coefficient is defined as a linear function of the concentration gradient 

between the river reaches (Deltares, 2014). However, in this case, the daily temporal resolution of the model 

resulted in negligible concentration gradients and hence simulations based on the assumption of 

instantaneous mixing over each reach. The potential implications of this assumption are described further in 

Section 4.    

The model PCDitch was used to simulate the biochemical and ecological components in the river such as 

dissolved oxygen concentrations, dry organic matter, nutrient concentrations, Secchi depth and biomass 

coverage. PCDitch is a plant/nutrient based competition model that includes the water column and upper 

sediment layer incorporating the competition for nutrients from submerged rooted and non-rooted 

vegetation, floating duckweed, algae, Charophytes, Nymphaeids and Helophytes. Macrophytes groups are 

limited by light, nutrients and temperature. A more comprehensive description of PCDitch is found in (Janse, 

2005). 

PCDitch is used in conjunction with the water quality and transport package D-Water Quality (Deltares, 

2018). This platform uses the finite volumes method to solve the advection-dispersion-reaction equation. 

Furthermore, the hydrodynamic information (e.g. the river mean water depths, water inflows and retention 

times) was still retrieved from SOBEK and processed by D-Water Quality/PCDitch. The simulation was carried 

out for a period of three years from Jan 1st 2011 to Dec 31st 2013. Hourly monitored temperatures were 
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obtained from the Dommel Water Board and implemented in the model. The effects of in river mowing and 

dredging were included in the model. Mowing was set to twice per year removing 95% of the vegetation and 

dredging was set yearly with a removal of 1 cm of the bottom bed thickness.  

Sedimentation, settling and resuspension are included in the ecological model. The sediment top layer 

consisting of particulate matter (organic and inorganic) and pore water (with dissolved nutrients). Settling of 

small inorganic particles (humus and detritus) is described in the ecological model as a first-order equation 

where the settling velocity is inversely related to the water depth. The settling of bigger particles (> sand 

particles) is not included since these generally settle within the time scale of hours, which is shorter than the 

time resolution of PCDitch. Resuspension is modelled as a zeroth order process. As the settling rate 

decreases, the resuspension rate increases with the size of the water body. Resuspension is enhanced by 

sediment porosity, and mitigated by vegetation cover.  A process of burial is also included, where a top layer 

of sediment is added to the net increase of sediment material to maintain a fixed sediment thickness layer 

and closed nutrient cycle (Janse, 2005).   

2.5 Set-up of boundary conditions: Rural runoff, CSOs, WWTP and Connection Nodes 

External water quality concentrations were defined in PCDitch for the rural runoff, CSOs, WWTP flow and 

connection Nodes with Storage and Lateral Flow. Table 2 presents the PCDitch inputs required for each 

boundary including: the dry weights of detritus (mg DW l-1), inorganic matter and phytoplankton (mg DW l-1), 

the concentrations of nitrogen in detritus, ammonium, nitrate and phytoplankton (mgN l-1), the 

concentration of dissolved oxygen (mgO2 l-1) and the phosphorus concentrations in adsorbed inorganic 

matter, detritus, phosphate and phytoplankton (mgP l-1). Detritus concentrations were used to describe the 

total amount of organic matter. Detritus was used because it is the only available parameter in PCDitch to 

describe organic matter loads. The detritus and inorganic matter concentrations were approximated from 

the percentage of organic matter (OM) and concentrations of total suspended solids in the water column 

(TSS). Incoming amounts of phytoplankton were assumed to be negligible from the three external sources 

since rural runoff, CSO and WWTP outflows usually do not contain phytoplankton, apart from some 

remnants of biofilm, which are accounted for in the detritus concentrations. The nitrogen and phosphorus 

amounts in detritus were estimated using the relationships shown in Table 2. Adsorbed phosphorus was 

estimated as the remainder from subtracting phosphate (PO4) from total phosphorus (Ptot). Dissolved 

oxygen (O2), ammonium (NH4), nitrate (NO3) and phosphate (PO4) concentrations were obtained from 

collected field measurements by the Water Board. The water quality concentrations from the wastewater 

treatment plant discharge into the river were simulated. An explanation regarding the WWTP discharge 

simulation, and the description of the input concentrations for each boundary and how they were obtained 

is given in the following paragraphs. 

Table 2. PCDitch Boundary inputs and their estimation methods. Detritus and inorganic matter are estimated from 

the Total Suspended Solids (TSS) and Organic Matter percentage (OM). Adsorbed phosphorus is estimated from Total 

Phosphorus (Ptot) 

   Parameter Abbreviation Units Estimation method 

Detritus in water  Det mgDW l-1 Physical relation: TSS*OM /100 

Inorganic Matter (IM) in water IM mgDW l-1 Physical relation: TSS*(100-OM) /100 

Phytoplankton Phyt mgDW l-1 Negligible 

Nitrogen in detritus NDet mgN l-1 Standard assumption in PCDitch: Det* 0.025 

Ammonium in water NH4 mgN l-1 Measured, simulated for WWTP 

Nitrate in water NO3 mgN l-1 Measured, simulated for WWTP 

Nitrogen in phytoplankton NPhyt mgN l-1 Negligible 

Dissolved oxygen in water O2 mgO2 l-1 Measured, simulated for WWTP 
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Adsorbed phosphorus on IM in 

water 

PAIM mgP l-1 Physical relation: Ptot - PO4- PDet 

Phosphorus in detritus  PDet mgP l-1 Standard assumption in PCDitch: Det* 0.0025 

Phosphate in water PO4 mgP l-1 Measured, simulated for WWTP 

Phosphorus in phytoplankton  PPhyt mgP l-1 Negligible 

 

Rural runoff water quality characterization 

The rural inflows relate to surface and groundwater runoff from agricultural and natural areas. These flows 

were quantified using the WALRUS model. The mean concentrations in Table 3 were used for the input 

boundary conditions. Monthly water quality input concentrations were obtained from monitored data 

provided by the Dommel Water Board for the years 2011 to 2013. These include total nitrogen (TN), 

ammonium (NH4), total phosphorus (TP), phosphate (PO4), dissolved oxygen (O2) and total suspended solids 

(TSS). Nitrate concentrations (NO3) were estimated as half of the total nitrogen concentrations and Kjeldahl 

nitrogen (Nkj) as the other half. Nitrite was considered negligible. The organic matter content was estimated 

by subtracting ammonia (NH4) from Kjeldahl nitrogen and then dividing it by the total nitrogen 

concentration. 

CSOs water quality characterization 

Over 200 CSOs discharge on the Dommel River. Probability distributions for CSO pollutant concentrations 

were estimated from a monitoring campaign (Moens et al., 2009). The CSO concentrations were added as 

lateral flows with event mean concentrations. These event mean concentrations have shown to give 

acceptable model results despite the difficulty in capturing the high variability of CSOs water quality 

parameters (Moreno-Ródenas et al., 2017). 

Wastewater treatment plant water quality characterization 

The Dommel receives effluent of the central WWTP in Eindhoven. The Eindhoven WWTP is composed by 

three biological lines (primary clarifier, activated sludge tanks and secondary clarifiers) with a capacity of 

26,000 m3h-1 and a bypass storm settling tank with a capacity of 9,000 m3h-1. A fully detailed ASM2d bio-

kinetic model was created to simulate water quality processes in the WWTP (Benedetti et al., 2013). The 

influent quantity (sewer network - WWTP) was represented using observed data at the boundary 

connection. This was derived from three magnetic flow sensors located at three influent pressurised pipes. 

Influent water quality characteristics were estimated using a calibrated empirical influent generator 

(Langeveld et al., 2017). Effluent hourly series (Jan 01, 2011 to Dec 31, 2013) were derived from a forward 

uncertainty propagation scheme accounting for uncertainties in the influent water quality and quantity 

characteristics. This time series of WWTP water quality discharge were generated to include the dynamics of 

the treated wastewater quality characteristics during wet and dry weather conditions.  

2.5.1 Scenarios for Sensitivity Analysis  

To evaluate the effects of the rural runoff, CSOs and WWTP discharge and nutrient inputs on the dissolved 

oxygen concentrations, three nutrient levels for each of these boundaries were defined as shown in Table 3. 

The scenarios were selected based on the total phosphorus concentrations. Phosphorus was used as it is an 

indicator of eutrophication and  commonly assumed to be the limiting growth factor for phytoplankton and 

macrophytes in oligotrophic to mesotrophic waters (Janse, 2005; Newton and Jarell, 1999). Using the 

observed and simulated data described in section 3.4.1, the three scenarios (Table 3) were defined for each 

ďŽƵŶĚĂƌǇ ĂƐ ĨŽůůŽǁƐ͗ ϭͿ Ă ͚ďĂƐĞ͛ ƐĐĞnario representing average nutrient inputs observed͕ ϮͿ Ă ͚ŚŝŐŚ͛ ƐĐĞŶĂƌŝŽ 
representing higher levels of nutrient inputs, ĂŶĚ ϯͿ Ă ͚ůŽǁ͛ ƐĐĞŶĂƌŝŽ ƌĞƉƌĞƐĞŶƚŝŶŐ ůŽǁĞƌ ůĞǀĞůƐ ŽĨ ŶƵƚƌŝĞŶƚ 
inputs. For the rural runoff base scenario, average observed values of total phosphorus concentrations were 
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found with their corresponding water quality parameters (e.g. NO3, NH4, O2, TSS and PO4). Similarly, for the 

high and low scenarios, the maximum and minimum observed values of total phosphorus over the period of 

analysis (2011-2013) were selected with their corresponding datasets of water quality variables. Several 

datasets presented at Evers and Schipper (2015) were studied at various locations in the catchment to 

ensure that outliers in the data were not selected. Also, the selected input data was checked against 

monitored data from the Dommel River Water Board (2019) to ensure that the input concentrations 

selected were representative of regular water quality concentrations in the river. For the CSOs, the nature of 

rainfall driven sewer surcharge events results in skewed water quality distributions, with the mean value not 

providing a good representation of the water quality impacts on the river. Hence the modes of the water 

quality distributions were used for determining the water quality concentrations of the base scenario with 

their corresponding water quality parameters, except for the total suspended solids where monitored data 

was available from (Brouwer, 2012). The 2.5th and 97.5th and percentiles of the CSO frequency distributions 

were used for determining the high and low nutrient load scenarios. The WWTP scenarios were selected 

from a total of 99 samples drawn using a Latin Hypercube sampling scheme to describe the variability of the 

simulated WWTP output. The 2.5th and 97.5th percentiles were used to determine the low and high scenarios 

for the WWTP based on total phosphorus with their corresponding water quality parameters (Ptot, Kjeldahl 

Nitrogen, PO4, NO2, NH4, TSS, and NO3). Given the large quantity of WWTP data generated using the 

simulation described in Section 2.5, the WWTP low, high and base scenarios are given in Appendix A.  

Table 3. High, middle and low scenarios of rural runoff and CSO Water Quality concentrations 

       Rural Runoff CSOs inflows 

Parameter Low  

scenario 

Base 

scenario 

High 

scenario 

Low 

scenario 

Base 

scenario 

High 

scenario 

PO4 mg l-1 0.04 0.05 0.08 0.5 0.8 5.7 

Ptot mg l-1 0.1 0.2 0.3 0.5 2.1 34.6 

Chl-a µg l-1 30 35 40 0 0 0 

O2 mg l-1 6.3 6.8 4.4 3.4 4.6 6.2 

Ntot mg l-1 2.8 3.6 4.6 4.5 8.0 16.2 

NO2 mg l-1 0 0 0 0 0 0 

NO3 mg l-1 1.4 1.8 2.3 0.7 1.2 1.7 

NH4 mg l-1 0.1 0.6 1.7 1.6 2.2 4.9 

Nkj mg l-1 1.4 1.8 2.3 3.8 4.8 14.5 

TSS mg l-1 1 15 50 25.0 298 397.0 

OM % 13.0 33.3 48.2 48.9 50.9 59.3 
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3 Results  

The hydrological processes and runoff generation quantified using the WALRUS model for the calibrated 

catchments can be found in Appendix B. The results of the hydrodynamic simulation (flow versus time) can 

also be found in the Appendix C. The Nash Sutcliffe Coefficient (NSC) was used to determine the goodness of 

fit of the hydrodynamic simulation results and the observed flows. According to Moriasi et al. (2007), model 

performance is satisfactory when NSC is greater than 0.5. The NSC values from this study ranged from 0.5 to 

0.7 for the Sint-Oedenrode and Keersop subcatchment outlets, and downstream and upstream locations at 

the Tongelreep catchment. In the following sections, the results of the integration of the hydrological, 

hydrodynamic and ecological processes is shown by presenting first the evaluation of the combined 

modelling approach to assess its ability to simulate DO (section 4.1), followed by the sensitivity of DO to 

various nutrient input scenarios (section 4.2) and the decomposition of the dominant oxygen consumption 

and production processes along with the sensitivity of these processes to changes in input boundary 

conditions (section 4.3). 

3.1 Evaluation of combined modelling approach 

Figure 3 shows the simulated and observed DO concentrations at the four studied locations versus time. The 

Percent bias (PBIAS) and the Root Mean Square Error (RMSE) shown also in Figure 3 were used to give an 

indication of the match between observed and simulated DO concentrations. The PBIAS and RMSE equations 

are shown below: 

ܵܣܫܤܲ ൌ  σ ൫ ௜ܻை௕௦ െ ௜ܻௌ௜௠൯௡௜ୀଵ כ ͳͲͲσ ௜ܻை௕௦௡௜ୀଵ  

ܧܵܯܴ ൌ  ඩͳ݊ ෍൫ ௜ܻௌ௜௠ െ ௜ܻை௕௦൯ଶ௡
௜ୀଵ  

Where ௜ܻை௕௦ and ௜ܻௌ௜௠ are the observed and simulated daily average DO concentrations respectively. The 

PBIAS assists in determining whether the model has a positive or negative bias. Positive values indicate 

underestimation, negative PBIAS indicate overestimation and zero PBIAS indicates a perfect match (Moriasi 

et al., 2007). Sint-Oedenrode and Hooidonkse Watermolen have negative PBIAS, showing that the model is 

slightly over predicting, while Bovenstrooms Effluentgoot and Genneper Watermolen have positive PBIAS 

indicating under prediction. The RMSE compares simulated and observed data and expresses the spread 

in ௜ܻௌ௜௠ െ  ௜ܻை௕௦. The largest RMSE was obtained at Hooidonkse Watermolen while the smallest RMSE was 

obtained at Genneper Watermolen. 
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Figure 3. Simulated and observed dissolved oxygen concentrations versus time at various locations in the Dommel 

catchment (daily average) 

Figure 4 shows the empirical cumulative distribution functions (ECFD) for the errors between the observed 

and predicted DO concentrations. Overall, there is a good match between simulated and observed 

concentrations. 83.9%, 87.9%, 71.1% and 84.2% of Sint-Oedenrode, Hooidonkse Watermolen, Bovenstrooms 

Effluentgoot and Genneper Watermolen predicted values were less than 1mg l-1 of the observed values, 

respectively. The largest differences between simulated and observed concentrations are observed in the 

recovery period following the DO falls from CSO events. This is shown by Figure 4 where EFCDs have longer 

tales towards the negative values. The observed DO concentrations at the Bovenstrooms Effluentgoot 

location after March 2013 systematically increased, potentially due to a monitoring error. These results 

ƐƵŐŐĞƐƚ ƚŚĂƚ ƚŚĞ ͚ĐŽŵďŝŶĞĚ ŵŽĚĞůůŝŶŐ ĂƉƉƌŽĂĐŚ͛ ;ƌĞĨĞƌƌĞĚ ĂƐ ͚ƚŚĞ ŵŽĚĞů͛ ĨŽƌ ƐŝŵƉůŝĐŝƚǇͿ ĐĂŶ ǀŝƐƵĂůůǇ ŵĂƚĐŚ 
the observed seasonal dynamics of dissolved oxygen. However, whilst the DO falls (due to oxygen depletion 

from CSO events) can be observed, their recovery is not fully captured by the model.  
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Figure 4. Empirical Cumulative Distribution Function (ECDF) of the difference between observed and predicted DO 

values.  

3.2 Input Boundaries Sensitivity Analysis on Dissolved Oxygen Concentrations 

The flow contributions from the boundary conditions (Rural runoff, CSOs, WWTP) are shown in Figure 5. It is 

important to note that Figure 5 does not show a hydrograph separation. It displays the precipitation as the 

average catchment precipitation, the total modelled flow at the outlet (Sint-Oedenrode), the sum of the 

surface and groundwater rural runoff inflows, the WWTP outflow into the Dommel upstream of the 

Bovenstrooms Effluentgoot sampling location, and the CSOs discharge inputs at various locations within the 

catchment. Figure 5 shows that the largest contribution of base flow arises from the rural inflows. These 

flows which are the main water inflow of the Dommel river are formed of fast surface runoff (activated 

during and after rainfall events) and slow groundwater baseflow. The next largest contributor of flow is the 

WWTP which has a constant base discharge of approximately 1.5 m3s-1. The WWTP has an overflow bypass 
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storm settling tank which is activated during rainfall events, contributing additional flow to the river during 

and after rainfall events. The CSOs are significant contributors during precipitation events. 

 

Figure 5. Daily flow average contributions in the River Dommel and Precipitation versus time 
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Figure 6. Sensitivity analysis results versus time. The yellow, red and blue ranges correspond to the low and high ranges for 

the rural, CSOs and WWTP respectively. 

The sensitivity analysis results are shown in Figure 6͘ TŚĞ ďĂƐĞůŝŶĞ ƐĐĞŶĂƌŝŽ ƌĞƉƌĞƐĞŶƚƐ ƚŚĞ ͚ďĂƐĞ͛ ŶƵƚƌŝĞŶƚ 
concentrations for the rural runoff, CSOs, and WWTP. The input concentrations for the rural and CSOs are 

shown in Table 3. The yellow, red, and blue ĂƌĞĂƐ ĚŝƐƉůĂǇ ƚŚĞ ƌĂŶŐĞƐ ďĞƚǁĞĞŶ ƚŚĞ ƐĞůĞĐƚĞĚ ͚ŚŝŐŚ͛ ĂŶĚ ͚ůŽǁ͛ 
scenarios of rural runoff, CSOs, and WWTP concentration levels, respectively. The seasonal influence of the 

rural runoff is observed in Figure 6 were the rural flows have a higher influence over the winter months. This 

effect is more noticeable in the upstream locations (Boverstrooms and Genneper Watermolen) where the 

catchment is less urbanized. Most of the connected urban area is located in the downstream sections at the 

Eindhoven city. The influence of the CSOs is visible during precipitation events. The short term CSO effects 

are expected since these occur due to excess of drainage capacity during rainfall events. Moreover, the 

oxygen depletion occurrences due to the CSOs have severe acute effects on the river ecology. The high and 

low scenarios of WWTP input concentrations have the lowest impact over the DO concentrations, and do 

not impact the Boverstrooms and Genneper Watermolen locations since these do not receive flow from the 

WWTP. 
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3.3 Dominant Processes in Oxygen Production and Consumption  

The sources and sinks of dissolved oxygen (DO) in the Dommel River at Sint-Oedenrode are shown in Figure 

7 and Figure 8. These illustrate the daily production and consumption of DO for the simulated period from 

2011 to 2013. The sum of these processes results in the daily concentration contribution that was produced 

or consumed. In addition, Figure 7 and Figure 8 show the ranges of concentrations obtained when the low 

and high scenarios of boundary conditions are analysed. The yellow, red and blue correspond to the low-

high ranges for the rural, CSOs and WWTP respectively.  

 

Figure 7 reveals that aeration is the main source of DO, followed by the production of oxygen by 

phytoplankton, and macrophytes production. The contribution of DO from aeration is higher than the 

contribution of DO from macrophytes production and production by NO3 uptake by macrophytes by several 

orders of magnitude. Aeration remains fairly constant throughout the simulation except for when CSOs 

occur when aeration may increase up to 7 mg l-1d-1. This is expected due to turbulent flows entering the river 

from the CSOs during and after rainfall events. 

 

Figure 8 shows that the dominant consumption processes consist of mineralization and nitrification of 

detritus (in water and the sediment) and respiration of macrophytes and phytoplankton.. Higher 

mineralization processes are expected in the Dommel due to the high organic loads coming from both rural 

runoff and CSOs.  

 

The macrophytes processes of production, and NO3 uptake display a seasonal pattern in which vegetation 

suddenly increases during the spring/summer. However, the effect of mowing is highly noticeable by the 

sudden drop in production and NO3 uptake on June 1st of each studied year (when mowing occurs). After 

mowing, the remaining vegetation starts to increase again until winter arrives, and the vegetation reduces 

once again. Moreover, the peaks of macrophytes production and NO3 uptake, and dips in macrophytes 

respiration become progressively smaller over the three years that were simulated, indicating that with the 

current simulated mowing regime the vegetation appears to be incapable of fully recovering after mowing. 

 

The sensitivity of the system to changes in input boundary conditions (low and high levels of nutrient 

scenarios) is visible in Figure 7 and Figure 8. The rural runoff (yellow range) has a constant impact over 

aeration throughout the studied time, while the CSOs (red range) have specific impacts on aeration which 

are evident by the aeration spikes which occur during and after precipitation events. The macrophytes 

processes are more sensitive to CSOs impacts than the other boundary conditions. This is expected to be due 

to the organic loads within CSOs. Although CSOs occur at daily or sub-daily timescales, the organic loads 

remain in the system and decompose throughout time, reducing the oxygen available for vegetation. 

Mineralization and nitrification processes are sensitive to all boundaries. Particularly, rural nutrient input is 

constantly reflected in nitrification. In addition, sudden drops in nitrification are also noticeable due to 

WWTP input.  
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Figure 7. Dissolved Oxygen production processes versus time and sensitivity of boundary input scenarios. The yellow, 

red and blue ranges correspond to the low and high ranges for the rural, CSOs and WWTP respectively.  
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Figure 8. Dissolved Oxygen consumption processes versus time and sensitivity of boundary input scenarios. The 

yellow, red and blue ranges correspond to the low and high ranges for the rural, CSOs and WWTP respectively. 
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4 Discussion  
This study combined a rainfall-runoff model, hydrodynamic model and closed-nutrient cycle model to 

simulate DO concentrations for the Dommel River, and their sensitivity to low and high scenarios of nutrient 

inputs. In addition, the oxygen decomposition into the production and consumption processes was carried 

out along with the sensitivity of these processes to changes in nutrient levels.  

The first aim of the paper, to evaluate the combined modelling approach (from now on referred to as ͚the 

model͛), demonstrated that the methodology can be used to simulate the seasonal dynamics of DO. The DO 

concentrations were the highest during the winter months and lowest during the summer months 

potentially due to higher solubility during high flow. The model matches this winter/summer dynamic with 

low values of Root Mean Square Errors ranging from 1.2 to 1.7 mg l-1, and PBIAS values ranging from -11.0% 

to 1.5% despite some measurement errors in the observed data (Figure 3). Accurately estimating the 

seasonal behaviour is necessary when evaluating the long term effects of eutrophication.  

The model, however, is not as suitable for simulating the short term dynamics of DO since it cannot fully 

capture the DO depletion and recovery events (Figure 3). This is partly due to the inability of the ecological 

model PCDitch to have a higher time resolution than the daily time resolution used in this study. The lack of 

representation of these DO falls and their recovery might also be due to the absence of slow degradation of 

organic matter.  

In addition, the current model implementation does not explicitly represent mixing processes such as 

dispersion, transient storage and hyporheic exchange. This is based on the assumption that mixing processes 

within the river occur within the sub-daily time scales, and therefore that the performance of the model will 

be relatively insensitive to the representation of mixing processes when assessed against daily observations. 

However, it is recognised that a more detailed representation of these processes are likely to be significant 

when considering the temporal dynamics of aquatic ecosystems more detailed (sub-daily) temporal 

resolutions. This may require a more detailed calibration of dispersion coefficients (Camacho Suarez, 2019) 

and/or inclusion of transient storage and hyporheic exchange (Runkel, 1998; Ryan and Boufadel, 2007).      

Furthermore, the modelling approach implemented within this study can be coupled with a higher temporal 

resolution DO model to simulate shorter periods if this is the main interest or purpose of the user thus 

providing boundary conditions for higher temporal resolution models. For instance, Moreno-Rodenas et al. 

(2017) carried out an integrated catchment modelling study in the Dommel River. With a focus on 

determining the impact of the spatiotemporal effects of rainfall variability, they evaluated the dissolved 

oxygen concentrations in the Dommel River. Their Integrated Catchment Model (ICM) included a rainfall-

runoff model which was complemented with the urban components of CSOs and the WWTP and a water 

quality module. The processes of fractionation of Biological Oxygen Demand, respiration from macrophytes 

and nitrification-denitrification were included in the water quality module in a three-phase layout module to 

account for the atmosphere-water-sediment interactions. In contrast to the study presented in this paper, 

Moreno-Rodenas et al. (2017) focused on shorter time scales studying particular rainfall events. These 

allowed to better understand the dynamics of the CSOs, and the WWTP in response to the precipitation 

events. However, such models require more computational resources for a long term eutrophication study 

evaluation, have a reduced representation of the modelling system (by integrating less ecological processes 

and components), and do not provide insights regarding the ecological processes involving the aquatic biota.  

The sensitivity of the DO concentrations, and the DO consumption and production processes in response to 

changes in nutrient levels at the boundary conditions was analysed (Figure 6, Figure 7 and Figure 8). The 

varing influence of the rural runoff over the year is noted in Figure 6, with rural impacts being dominant 

during winter months. This is in contrast to the influence of CSOs, which are significant during shorter term 

rainfall events. Both, short and long-term effects have consequences over the river habitat. The short-term 
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DO depletion caused by the CSOs may have acute effects (lethal for fish/macro fauna) while the while 

seasonal lowering of oxygen concentration affects the habitat, meaning that oxygen sensitive species will 

not be abundant in the river basin. The discharge of the WWTP flow in the river appears to have a smaller 

impact over the DO concentrations at the Hooidonkse Watermolen and Sint-Oedenrode locations, even 

though the WWTP is a major contributor of flow to the river system (figure 5). 

Figure 7 and Figure 8 illustrate how the sources and sinks of DO behave seasonally and in response to the 

changes in boundary conditions. The decomposition of dissolved oxygen processes shows that aeration is 

the main source of DO into the river system with values ranging from 1.5 to 7 mg l-1. Aeration is also 

sensitive to changes in the boundary conditions of rural runoff and CSOs. When organic loads from both 

ƌƵƌĂů ƌƵŶŽĨĨ ĂŶĚ CSO͛Ɛ, enter the water system, water depth is affected, causing increased flows and 

turbulence in the system which will lead to spikes in aeration.  

Figure 8 shows the influence of the rural runoff and the CSOs over the mineralization and nitrification of 

detritus in the water and also in the sediment. This is due to the inflow of suspended solids contributing to 

both, organic and inorganic matter into the system. Most of the organic matter in the system will settle into 

the sediment and decompose contributing to the mineralization and nitrification processes. The 

mineralization of detritus in the water column is sensitive to the CSO events resulting in spikes of DO 

depletion. The wastewater treatment plant mainly affects the nitrification processes in the water column by 

the WWTP discharges of ammonium in the water system. The remaining organic matter mainly consists of 

humidic acids, which are slowly to not degradable and do not cause a significant and direct oxygen demand 

in the water column. These interactions between nutrient inputs and oxygen processes show that the 

system, already loaded by high organic matter content, is likely to tip on to a low oxygen state as observed in 

a study by Veraart et al. (2011). 

Vegetation is significantly affected by mowing. The sharp decrease in macrophytes production in Figure 7 is 

due to mowing every June 1st. Consequently, the vegetation recovers over the summer but dies during the 

winter months. It is noted that this particular mowing scenario is removing more vegetation faster than the 

system can replenish itself. This effect is also visible for the macrophytes respiration and NO3 uptake. This 

supports the view that vegetation management strategies can have a substantial effect on water quality and 

ecological function in river systems. The modelling approach also showed that vegetation is sensitive to CSO 

events (Figure 7 and Figure 8). A constant influence of the CSOs is noted over the macrophytes DO 

production.  

Overall, the advantages of using PCDitch over other water quality models is noted by this study where the 

decomposition of dissolved oxygen process and the sensitivity analysis of the boundary inputs revealed 

critical interactions such as the importance of the CSOs over vegetation, the influence of rural runoff and the 

WWTP discharge on nitrification, and the sensitivity of the system to the removal of vegetation. This 

modelling approach is capable of providing an overview of the river processes due to its ability to include the 

various ecological processes such as the competition of vegetation for nutrient, lights, and temperature. 

Other models, for instance the Charisma model (van Nes et al., 2003), are also able to model the 

competition of plants. However, only two types of submerged vegetation are included in the Charisma 

model (McCann, 2016) while PCDitch incorporates six types of aquatic vegetation. Capturing such vegetation 

density and its relationship to flow dynamics has been recognized to assist in assessing the ecological quality 

of the water system (Kuipers et al., 2016), and this is attainable with this modelling approach by coupling the 

hydrodynamic and ecological models. Furthermore, PCDitch describes the relation between external 

nutrient loadings, nutrient concentrations and the dynamics of the different types of vegetation (submerged 

plants, algae, duckweed and helophytes).  
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5 Conclusion  
 

This work evaluates a combined modelling approach to describe hydrologic, hydrodynamic and ecological 

processes within a catchment in order to provide a holistic view of a river system and its sensitivity to both 

urban and rural inputs. Such integrated approach is crucial for the full assessment of the catchment and 

implementation of management measures in response to human pressures. In this study, the modelling 

approach is evaluated based on a rural and urban catchment (the Dommel River catchment). Precipitation 

evaporation, and runoff inputs were modelled using a rainfall-runoff modelled designed for low-land areas, 

followed by the hydrodynamic simulation which included CSOs, the Eindhoven treatment plant and other 

urban components. The novelty of this study lies in the successful implementation of the extensive closed-

nutrients cycle model to the slow flowing river highly impacted by urbanization and rural inputs. PCDitch, 

which was initially developed for ditches, was used to model DO concentrations for the first time. In 

addition, this paper studies the decomposition of oxygen processes into production and consumption 

processes and their sensitivity to low and high levels of nutrient inputs from the different boundaries given 

mowing and dredging in the river system.  

This study found that the seasonal pattern of dissolved oxygen can be well simulated with the combined 

modelling approach, although some shortcomings are identified when modelling DO recovery following CSO 

events. Secondly, the sensitivity of the dissolved oxygen processes to changes in nutrient high and low levels 

from the boundary conditions showed that DO levels are influenced by rural runoff mainly during the winter 

months. This influence is more notorious in the upstream locations. In addition, it was observed that the 

CSOs have short-term impacts over DO during and after precipitation events. Thirdly, the separation of 

oxygen processes into the production and consumption processes and sensitivity analysis revealed: i) a 

continuous influence of the CSOs input concentrations on the vegetation processes of production, 

respiration and NO3 uptake, ii) an influence of rural runoff over nitrification and mineralization processes, iii) 

a sharp impact of mowing on vegetation processes, and iv) an intermittent effect of the WWTP on 

mineralization during and after precipitation events.  

The model structure of PCDitch using closed nutrient cycles allows for a better understanding of the nutrient 

dynamics within the ecological habitat allowing the study of important ecological processes affecting the 

production and degradation of oxygen while implementing vegetation and dredging management practices. 

This allows for a deeper consideration of such important processes into river management strategies than is 

currently possible. 

These findings are an illustration of the knowledge that can be gained from a modelling approach which 

incorporated both hydrological, hydrodynamic and detailed ecological processes. With such understanding, 

specific urban or rural management measures may be more fully considered to improve the overall health of 

the river system. 
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Appendix A: Simulated WWTP nutrient input scenarios  
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Appendix B: WALRUS model results and calibration 
 

 

Figure B1. Walrus model results and calibration for Keersop catchment 

 

Figure B2. Walrus model results and calibration for Tongelreep catchment 
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Appendix C: Observed and predicted flow using Sobek hydrodynamic 

model  
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