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Abstract

Stress-strain responses of granular material ubddirectional simple shear are comprehensively studied experityental
and numerically. The variable direction dynamic cyclic singllear (VDDCSS) apparatus is used to test glass beads under
various loading paths, and the DEM is used to reprodugeriexental results. These two methods are complementary to each
other. The glass beads are subject to the first shearing upgcdied shear strain is reached, followed by the secosalisiy
until the failure of samples, and the two shears are atusgdagles. The experimental results are in good agreeméntheit
numerical results. Both experimental and numerical studies indiatt¢hth development of shear stresses is dependent on the
angle between the two shears in the early stage, andhpfmepach the same ultimate values at the failure. The |steesk,
principal stress and non-coaxiality are also studied in the BiEMilation. While the lateral stress and principal stress are
dependent on the angle, the orientations of principasssand plastic strain rate almost reach the same value at the fathere.
contact force network and material fabric are also investigatetide insight into the micro-scale responses and macro-micro

relations regarding bi-directional simple shear.
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fabric



Introduction

It has been well established that the principal stress rotation (B&#R)to plastic volumetric strain and the non-coaxiality
between the principal stress and plastic strain rate (RoscoeBj@&8m and Landva 1966; Oda and Konis8v4) Because the
PSR occurs in many geotechnical engineering applications, pcinon soil stress-strain responses has been comprehensively
studiedin experimental, theoretical and numerical aspects. Commonly usednexp@l facilities include the simple shear
apparatus (Roscoe 1953; Bjerrum and Larit@6)and the hollow cylinder apparatus (Hight et al. 1988 former is mainly
used in early years. Because it is generally not able to measdireontrol lateral normal stresses and strains (Budhu 1985), its
applications are limited. The latter is able to control all threenabstresses and one shear stress, and it is widely used to study
impacts of various factors on soil behavior under the PSRdimg anisotropy, intermediate principal stress, and other &riou
stress paths, etc. The impact of PSR is also studied by using-mézhanics and elastoplasticity (Spencer 1964; Rudmicki a
Rice 1975; Christoffersen et al. 1981; Yu and Yuan 2006; Yang an@006). For instance, in the yield vertex theory, an
additional plastic strain rate tangential to a yield surface is cregttee i°SR on the deviatoric plane (Rudnicki and Rie5)

In other elastoplastic models, the PSR induced stress rate idemaasby separate hardening rules and flow rules from those for
the non-PSR stress rate. These elastoplastic models are also implentertiee fimite element method to study the impact of
PSR on geotechnical engineering applications includingeve@abed soil interactions and earthquake-induced soil ligioefact
and these numerical studies are compared with centrifugeessdts (Sassa and Sekiguchi 2001; Wang et al. 2017). These
studies indicate that ignoring or inadequately modeling the PSRctnopn lead to unsafe results. Another method to study the
PSR impact is the discrete element method (DEM), which is ableflect the discrete characteristics of granular materials
(Cundall and Strack979) The 2D and 3D DEM have been employed to model simple shstaraed hollow cylinder tests
(Jiang et al. 2015; Thornton and Zhang 2006; Dabeet dHb; Zdhikari and You 2016; Asadzadeh and Sor@®l§ Farhang

and Mirghasemi 2017). While the numerical results are genénaglgod agreement with experimental results, it can also study
particle interactions such as the development of fabric. An@tieantage of the DEM study is that it is able to study the
development of lateral normal stresses in the simple shear tésh,iswifficult to be measured in the test.

Most of the studies mentioned above focus on only one sheae &R along one direction. However, in reality, solil is
subjected to more than one shear in many geotechnical engegplications. One example is the soil in an embankment
under earthquake loading. The soil is subjected to one sta#c siness from its self-weight, and it is subjected to the second
dynamic shear stress from the earthquake loading. These twostiesaes generally are not along the same direction, and the
shear stress from the earthquake loading is continually chadgimgg an earthquake. An appropriate facility to study this
behavior is the bi-directional simple shear tester (Ishihara and 26&mB980; Rutherford 2012; Kammerer et al. 2002), which
can impose two shears independently along two horizontadtitins. Experimental results indicate that different angles batwe

these two shears lead to different responses. However, an ingbraamack for the simple shear apparatus is the difficulty to



measure and control its lateral normal stredsethis regard, the DEM can compensate for it because thel latenaal stresses
can be computed from the interactions between particléseimbdel The micro-scale responses with regard to bi-directional
simple shear can also be investigated using the DEM. This study aiommptehensively investigating the mechanical responses
of glass beads in dense packing urietirectional simple shear experimentally and numerically.&se of computation and
comparison, glass beads are used in the study, and theddcaindition is considered. In this paper, the detaibsxpérimental
setup and numerical implementation are given in the methoddldgn the stress-strain responses under bi-directional simple
shear are presented, followed by the discussion of principassesultsThe characteristics of micro-scale conssoid material
fabric are finally discusselly examining the contact force network, coordination numéaed, fabric tensor for the granular

assemblies.

M ethodology

The simple shear test is carried out by using the variat#etidn dynamic cyclic simple shear (VDDCSS) apparatus, as
shown in Fig. 1. The experimental specimen is cylindrical and suteaby a stack of low-friction Teflon-coated rings (each
ring is 1 mm high) with an effective height of 21.6 mm andeffective diameter of 70mm. Three electromechanical delisl
are used on the VDDCSS to apply stress or velocities to the spedime vertical Load cell applies vertical stress or velocities
to the specimen, whereas the other two horizontal load celly hprizontal stresses or velocities to the specimen. The two
horizontal load cells enable the VDDCSS to perform simple sheary horizontal directionThus, the vertical stress is exerted
by the top load cell and maintained at a constant of 200rkBe study. Two horizontal shears are exerted on the specimen
independently by two horizontal load cells. For ease ofamigal simulations, the drained condition is consideredt bl.§2016)
gave more detailed information about the testing facilitg procedure. Mono-sized glass beads are used in thentkstsa
average diameter is 0.65 mm. Its density and initial porositigartest are 2550 kgfand 0.35, respectiveljts loading paths
are shown in Fig. 2. Two shears are applied on the sampefirShshearing is exerted until a specified shear strain is reached,
followed by the second shearing until the failure of samplégse two shears have various angles fr8rto0L8® with an
interval of 300, as shown in Fig. Thus, the first shearing involves two directio@sandyz, and the second shearing has only
one directiorxz. To facilitate the comparison with the DEM simulation, the strain-cletrdoading is used in the experiments
The shear velocity is 0.1mm/min, and the first shearingagteat until its total shear strain reachés. 2

The DEM model simulates the test performance as closely as possibleréiéhdithensional (3D) particle flow code (PFC)
(Itasca Consulting Group Inc. 2014) based on DEM is used toa#ntile simple shear tesi&g. 3(a) shows the 3D DEM
model. The boundary of particulate DEM model consists of thevadp bottom wall and cylindrical sidewall, which represent
the top cap, bottom pedestal and ring-shaped side bguafittie VDDCSS, respectively. Similar to the test performance, the
top wall is used to exert the constant vertical stress, argidbevall is displaced exerting the shear stie#ise granular material

It has been verified by the authors that DEM results are raffelsted when the shear velocity ranges from 0.02mm/min2o 0.



mm/min. Thus, 0.2mm/min is used as the shear velagif§EM simulations tamprove the speed of calculation. In the DEM
study, the sample is also firstly sheared to a shear strain of #6tyefd by the second shearing to the failure. The angles
between these two shearing are the same as those in the test

To reach the target porosity used in the test before shearhgoasolidation, the overlapping method is used to prepare
samples filled with spherical particléBhe program of PFC 5.0 (Itasca Consulting Group Inc. 2014pwi matically calculate
the particle number needed by the system based on inpistegpaize distribution and porosity. Large overlaps betwparticles
will be allowed during the generation of particles. As thgainequilibrium calculation starts, the large overlaylf be rapidly
reduced to an allowable default value. When the bulk velofra DEM model remains the same, the volume of all pastare
voids remains unchanged as well during the equilibrivmegss although the particles are rearranged. Thus, the povdsiti,
is the ratio of the volume of voids to that of the bulk volugenerally remains to be 0.35 during the equilibrium prodebss
been suggested by many researchers that the particleasizgecscaled up to reduce the computational cost (Co2@de
which will not significantly affect the results. For instance, i@ BEM study conducted by Ni et al. (2000)e particle size in
the DEM model was 2.5 times that of the material in reality. Similarlgt al. (2017) as well as Farhang and Mirghaq@oi.7)
scaled up the size of DEM particles by no less than 3 timerdiagly, the particle size for the DEM mod@sset to be 2.5
times larger in our study, which results in approximately(®® particles. The particle interaction is simulated by the rolling
resistance linear model in PFC 5.0, which is actually aficentact model with a rolling resistance coefficient ingbiéware
Similar contact modelbave been introduced or validated by many researcher for colessomaterials including glass beads
and sand (lwashita and Oda 1998; Tordesillas and Walsh Z608; et al. 2002). The DEM parameters used in the study are
shown in Table 1, by referring to micromechanical parameterddss peads or similar materials determined by Hartl and Ooi
(2008) and other researchers (Ni et al. 2000; Shen et dl; P@beet et al. 2015; Asadzadeh and Soroush 2016; Li2014).

The values of all parameters except for the final fricioefficient are set and added in the model before the edurnfib
calculation is launched. The final friction coefficient is used afteretfjuilibrium process is finished, which has been a well
established way to simulate dense samples because a very sral lidfficient can speed up the equilibrium calculation
(O’Sullivan et al. 2004; Asadzadeh and Soroush 2016; Li et al. 2017).

The measurement sphere has long been used and wellegcbgmther researchers to obtain quantities such as stoesses
strains (Asadzadeh and Soroush 201t6% a sphere in three-dimensional model or a circle indimeensional model located in
the DEM model. The measurement sphere will automatically metmistress, strain rates, porosities of particles encircled by it
without interfering with the calculation of software. In the DEMdel of this papethe measurement spheres are also used to
measure the lateral normal stressf side wall of irregular shape and strain raféig. 3(b) shows nine measurement spheres
initially generated in the study. The results indicate that thersph gives the most reliable and stable results. Budhu (1984)

found that the stress and strain non-uniformities can develdmm@aw with shearing in monotonic loading. Since the non-



uniformities are directly influenced by the boundary cooditthe sphere 9 is used to capture the development of laterahhor
stresses and strain rates because it is the farthest to the boandadrgs the minimum boundary effect. The shear strain and
volumetric strain are obtained by dividing the horizontal diggigent and vertical displacement by the height of the sarfihe
vertical stress, shear stress are obtained by tracing the averag® stress and average shear stress on the top wall, respectively.

The equation for calculating the shear stress is givemb®lherer, denotesx. andzxy, respectively.;:jci is the contact force for

the jth particle with the top wall along the directio@sindyz, respectivelyn is the total contact number on the top waibp And
rop are the area and radius of the top wall, respectively.

n n
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Simple shear results and analyses

The study is first carried out under the simple shear alongdmeetion to validate the discrete element modellifige
vertical stress for both experiments and DEM simulations is 200WHeh remains unchanged as the shearing progressgst
shows the experimental and numerical development of e sktress and volumetric strain with the shear strain until theeail
Fig. 4(a) shows the shear stress-strain response, in which the exparirasult is in very good agreement with the numerical
result. The sample of glass beads reaches its peak shear saggorimately 80 kPa at a large shear strain, followed by & sligh
drop of shear stress. It is softer and more ductile than a pariassembly of sand as the glass beads are spherical arodeof
uniform size than sands. Fig. 4(b) shows the volumetric straponse with shear strain. Given the fact that it is more difficu
for the simulation to reproduce the volumetric strain in the expatirttee numerical and experimental results are in reasonably
good agreement. Especially, the trend of the volumetric caitingfollowed by the expansion is well captured in the satioth.

Fig. 5 shows the experimental and numerical response cfhiber stresse, 7yz and the volumetric strain with the shear
strainyx at different angles between the first and second shearimg fir§t shearing is imposed until its total shear strain reaches
2%. The numerical results and the experimental results areryngood agreement at all angles. Fig. 5(a) and (by ghe
developmenbf the shear stresseg in experiments and DEM simulations, respectively. In Fg) &nd (b), when the angle is
larger than 99 the shear stress T« iS increased in the negative direction during the first hgaiollowed by a turning and an
increase in the positive direction when the second shestémty, because one component of the first shearing goesthéng
negative x-direction shown in Fig. When yx: goes back to the origin in the shearing of larger th&naQfsitive 1« has already
developed. As a result, a larger angle generally leads to a greater txzat the origin. When the angle is smaller thafh 9@ is always

positive, and a larger angle generally leads to a lawaet a relatively small shear straiHowever, with the increasing yxz during



the second shearing, 1z with different angles approach each other and eventually thackame ultimate value at failure of
approximately 80 kPa. The DEM simulations capture the trend agditade of the experimental results very well.

Fig. 5(c) and (d) show the development of the shear siresith yx. 17y Starts at the value of 0 kRathe beginning of the
first shearing. It is obvious that the angle of 8hds to the largesfz and noyx. during the first shearing. The largegtis as

high as 52 kPa at the angle of9@hich is much lower compared with the ultimate shear strength &Pa in Fig. 5(a) and (b).
Similarly, an angle closer to 9@ads to a largesz smalleryxz during the first shearing during the first shearing. After it is taken

over by the second shearing along the x-directighstarts to decrease although generated from the first shearing remains
unchanged, and 1y, eventually reaches zero at the failurhere 1z reaches its ultimate value. The DEM simulations also
reproduce the trend and values of the experimental results e#iryFig. 5(e) and (f) show the volumetric responses withirhe
DEM simulations are also in very good agreement with theerémental results. The results indicate that the volume first
decreases, followed by an increase at a relatively large straar. It is obvious in these figures that a larger angle leads
larger volumetric contraction. This is because the angle res@dtsadditional shearing from the shear stygiror negativeix. or

both from the first shearing. The additional shearing withiange of a relatively small shear strain leads to more contradtion o
the sample. A larger angle results in a larger additisim@aring, which is reflected by a larger volumetric contractibany, is

at the origin. From Figure 4 and 5, it can be concludedDEM! results are in reasonably good agreement with experimental
results The slight differences between them do not obviously inflaghe qualitative analysis, which has been demonstrated by
previous researcfO’Sullivan2004 Dabeet et al. 2015; Asadzadeh and Soroush 2016)

While it is difficult for the tests to measure the lateral norgtadss in the sample, the DEM simulation can calculate the
lateral normal stresby using the measurement sphef@. 6 shows the calculated lateral normal stressesd oy with yx.
Because the DEM results are in very good agreement with pegieental results of the shear stessHong two directions and
the volumetric strain, it can be inferred that the calculated lateraial stresses closely reproduce the actual values. Fig. 6(a) for
ox indicates that its initial value is 52 kPa before the sheatangs at all the angles before the shearing starts. The first ghearin
makesox increase. Whemx, returns to the origin, a larger angle leads to a lasgérecause a larger angle generates a larger
additional shearing. The increase rate»o almost the same for all the angles during the seceatisg. Thus, the value o
at a larger angle is generally higher than that at a smallez.anith increasingx, ox approaches 200 kPa which is exactly the
value of vertical stress. The developmentpfn Fig. 6(b) is similar to that fosx. Its initial value is also 52 kPa and the first
shearing at a larger angle generates a larger valag ®he increase rate of, is almost the same at all thegéas during the
second shearing, and thus, a larger angle leads to adar@ar the other hand, the increase rateyaé smaller than that far,
andoy approaches 140 kPa. Consequerntlyis associated with the second shearing gnd associated with the first shearing

ending at a shearing strain of 2%.



Given the vertical and two lateral normal stresses and two streases in the DEM simulations, the principal stresses can
be determined. Fig. 7 shows the development of threeipairatresses with. There are peaks, valleys and turning for the early
development of principal stresses, and they are more notaltkeeforinor principal stress. It is becausexperiences a negative
increase during the first shearing, followed by a paosiiicrease during the second shearing at the angles laaged®hshown
in Fig. 5(a) and (b). Similarlyy, experiences an increase to a peak, followed by a remadkaipdor all the anglegssshown in
Fig. 5(c) and (d). Fig. 7 indicates that a larger angle rgéipdeads to a greater principal stress for three principal stresses. Th
reason is that a larger angle leads to larger shear stress andrdatmgl stresses. Fig. 8 shows the orientations of principal
stresesand major principal strain rate during the second shearirggoflientations of principal stre=sand strain rates are the
angles with regard to the z-axis. Although it is more difficulttfe DEM simulations to extract the orientation of strain rate, the
general trend is that these two orientations are non-coaxial ftiealingles. With increasing shear strain, the non-coaxiality
becomes smaller, and eventually they almost approach mhe @dentation at the end of shearing. This is consistenttiéh
principle of non-coaxiality for the shearing along one diom as wasobserved in previous studies (Yang and Yu 2006;
Thornton and Zhang00§ Ai et al. 2014; Asadzadeh and Soro@6t6) The reason may be that the second shearing along only

the x-direction is dominant during the whole loading pesc

Contact force network and material fabric

The contact force network can be used to show the distnibafionicro-scale contacts and transmission of contact forces.
Taking the contact force netwodt 60° as an examplerig. 9 shows the front viewkZ-plane), side view (yz-plane) and top
view (xy-plane) of contact force chains in the 3D DEM model. fhilckness of the black lines is proportional to the magnitude
of contact forces and the orientation of the black lines detimedirection of contact normals. From the contact force sloain
the left in Fig. 9 (a) to (c), it can be seen that the contactf@meerandomly orientated after consolidation, and the contact force
network is generally transversely isotropic (cross-anisotropitgr the first shearing, contact force chains projected on the xz
and yz plane slightly incline towards the diagonal directioe to the development of yx, and yy,. The transverse isotropy of
contact force networkloesnot change much. However, at the end of the secondirsipghe strong contact forces (darker and
wider lines) are remarkably focused on the dominant titimes For instance,n Fig. 9(a), the strong contact forces projected on
the xz plane approach a notable diagonal distribution, simildyetdistribution under unidirectional shear obtained bgriiton
and Zhang (2006), Shen et al. (2011) and Asadzadehandsh 2016. In Fig. 9(b), strong contact forces projected on the yz
plane are vertically dominant whila Fig. 9(c) on thexy-plane, the strong contact forces are dominantly orientated ir-the
direction. The distribution of the magnitude of contact fortbess, becomes orthotropic at the end of the second shearieg. Th
dominance of contact forces in the x-direction over th&getion is consistent with the development of two shear sgésgéag.

5, where the shear stresskeeps increasing and the shear strpggadually diminishes with the progress of the second shearing



Fig. 10(a) and (b) show the quantitative distribution of the ntagai and normal of contact forces, respectivalybin
indicates that the distribution direction of the magnitudéne normal of contact forces increases by i the rose diagram. The

orthotropic anisotropy of the magnitude of contact forces can be rfurtiservedn Fig. 10 (a). Fig.10 (b) illustrates that the
distribution of contact normals can be approximated to be tresesvsotropy because the rose diagram of contact normals
projected on the xy plane is approximately circular. By comgdfig. 10(a) with (b), the distribution of magnitude of tza
forces is less uniform than that of the contact normals. Thms®a normals orientated in the bins named as weak area only
transmit weak forces that are lower than the average cdotaeteven though they are in high proportidnsaddition, Thornton
and Zhang (2006) found that the normal of strong contact faagsed with the directions af; under unidirectional simple
shear Under bi-directional simple shedorefore the second shearing, the strong contact forces projectedioal yganes are not
observedo align themselvesvith that of o1 in Fig. 8 because of the additional shear from yy,. Nevertheless, by the end of the
second shearing, the orientationcefyenerally falls within the bins representing strong contact forces fgdjea the xz plane
Different from therelation between the orientation of 61 and that of strong contact forces on the xz plamestrong contact
forces on the yz plane are mainly orientated in or closeetaéitical direction when the contact forces in the y-direcien
remarkably weaker. This can explain why thealmost reaches zero in the end while s, and 1y, are very high. Fig. 11 shows
the final distribution of the magnitude of contact forces projectexzgrlane at the loading angle fromi Oto 180° other than
60° . At different loading angles, a very similar distributiohthe magnitudes of contact forces can be clearly obsefvesl.
provides micromechanical evidence for the phenomenonhhag, for all angles as well asientations of 61 almost reachsthe
same ultimate value

The coordination number Z is commonly used to defineatlerage density of contacts per particle within the daanu
material. Therefore, it has the ability to describe the pgckitensity which is an important characteristic of the material fabric.

The simplest definition of Z is given by

Z=—" )

where Nis the total number of contacts andifthe total number of particles. Fig. 12 shows the devedopmwf coordination
number Z with shear strain in DEM simulations. For all logdingles, the coordination number Z has the same initiaé of
7.35. When the loading angle is smaller thaf) 8 value of Z increases with the first shearing and declimesartly with the
second shearing. When the loading angle is larger th&ntl®® value of coordination number Z increases in thathey
direction during the first shearing, followed by a slightr@ase in the positive direction when the second shearirig atal a
constant decline as the shearing progressethe end of the second shearing, the coordination numbar different loading
angles ends with the value between 6.63 andB3. €omparing the coordination number in FIQ with the volumetric strain in

Fig. 5, it can be illustrated that the coordination numbeegaly increases with contraction of granular assembly andatsse



with assemblies’ dilation. Thus, the coordination number is associateth wie volumetric change, indicating the relation
between macro-scale deformation and micro-scale structure reghrdimectional shear
To gain a deeper understanding of the material fabric, the fabria t@msmisotropy tensor) was defined by Satake (1982)

as.
@, =NiZkN;ﬂkﬂk (.j=123 3)

wheren¥denotes the ka contact normal vector within a granular assemHlgnce, this equation defines the fabric tensor from
the perspective of the contact normal.

where coak, cogk and cog denote direction cosines of the k-th contact. The thremeggtors ofdj are the orientations of the
principal fabric, andhe eigenvalues (®1, ®2, ®3) indicate the magnitude of the principal fabric in eatthese three directions.
To accurately quantify the degree of fabric anisotropy, Baeetl. (2009) proposed a general definition of deviator datsi

follows by using these three eigenvalues:

2 2 2
(@) - D)) +(Dy— D) +(Dy—D)
O, = . (4)

Fig. 13 shows the development of the deviator fabsi@nd the orientations of the major principal falbiccalculated by
using the DEM orientation data. In Fig. 13(&), @4 at different loading angles has the same initial value. Titialianisotropy
comes from the inherent anisotropy caused by depositionagw@nd the induced anisotropy caused by vertical consofidati
In general, thedeviator fabric ®q increases with shearing, and the increase rate gradually etechnlarger loading angle
generally leads to a higher degree of fabric anisotropy tH®udeviator fabric almost reaches the same value by thefen
shearing. In Figl3(b), the orientation of the major principal fabfdg almost has the same developing trend with the deviator
fabric in Fig. 13(a)lts evolution also resembles that of the major principal strgissFig. 8 for all loading angles. Howevér,
can be observerd thdte orientation of®,, has a slightly lower value compared to tbhthe major principal stress; beforea
large shear strain of 15% is reached. This phenomenonlsaslzserved by other researchers (Asadzadeh and Soroush 2016;
Shen et al. 2011; Ai et al. 2014; Oda et al. 1980 main reason for the slight difference between these twetidire, as
mentioned by Shen et al. (2011) and Asadzadeh anduSor@016), was that the larger contact forces gave a stronge
contributionto the stress tensor while all contact forces contributed equathetéabric tensor. In other words, the stress tensor
considers the magnitude and normal of contact forces, taléabric tensor only considers the contact normal and dtasg
to do with the magnitude of contact forces. This can be fucwfirmed by the absence of the magnitude of contactdaod

stress components in Equation (3) for the calculation of the fmsor.

Conclusions



This paper studies thmechanical responses of granular matenighe simple sheaests by using the bi-directional simple
shear tester and the DEM, with the focus on the shearing alandirections. The specimen is subject to two sheadsthen
first shearing is at various angles with the second shedrivegDEM simulation results are in very good agreement thith
experimental results. Both experimental and numerical resulisatedthat although the shear stresses are dependent on the
loading angles during the early stage of shearing, they glbaph the same ultimate value at the failure of the specBuh.
results indicate that a larger angle leads to a larger volumetric ciioriras a larger angle gives more shearing. Whileithgls
shear tester is not able to measure the lateral normal streshesspecimen, the DEM study can compensate for it analateic
them. The values of lateral normal stresses are dependent amgteebetween two shears, and the larger the loadingsaagle
the higher the lateral normal stresses @he principal stress can also be determined in the DEM studya &rger angle leads
to a larger principal stress. The orientation of the prinapaks is different from that for the principal strain rate andottmeer
is dependent on the loading angles. However, the noxiadiby between them decreases with increasing shear strainhesel
two orientations approach the same value at the failure cfpemen for all the angles. It is consistent with the principle of
non-coaxiality for the simple shear along only one dioectThe additional shearing from the shear styaiplays an important
role in the relation between the normal of strong contact $omoel the orientation of the major principal stress, mainly at the
early stage of shearing. The distribution of the magnitud®tact forces evolves from initial transverse isotropy to orthotropic
anisotropy in the end while the distribution of the contaatmab generally remains transversely isotropiteanwhile, the
distribution of the magnitude of contact forces is notably less unifioam that of the contact normahe distributions of these
two contact components also provide the micromechanical rmgdefor the macro-scale stress-strain responses. The material
fabric including coordination number and fabric tensor isisige to the loading anglek is shown that the coordination number
has a close relation to the volumetric change, indicating the correldtietween macro-scale deformation and micro-scale
structure regarding bi-directional shear. The evolution ®fotfientation of the major principal fabric resembles thateithjor
principal stress for all angles. However, a slight difference letvibrese two directions is observed, which can be largely

attributed to the absence of the magnitude of contact forcestraisd components for the calculatidrihe fabric tensor.
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Figure Captions

Fig. 1 Variable direction dynamic cyclic simple shear (VDDCSS) apparatu@véyiew of VDDCSS; (b) prepared glass beads;
(c) installed specimen before consolidation

Fig. 2 Schematic diagram of loading directions in the simple shear tesid@mection; b: bi-direction)
Fig. 3 DEM model (a) and measurement spheres (b)
Fig. 4 Experimental and DEM results in the unidirectional shear tests (a: shesirstrlumetric strain)

Fig. 5 Stress-Strain responses of the experiments and DEM at differtrg famghe first shearing at 2% (a, ¢, e: experiments; b,
d, f: DEM)

Fig. 6 Lateral normal stresses at different loading angles by the DEM (a: tietfirdxc y-direction)
Fig. 7 Principal stresses at different loading angles by the DEM (a: rhajotermediate; c: minor)
Fig. 8 Orientations of major principal stresses and principal strain rates atrdifteréing angles by the DEM

Fig. 9 Contact force chains of the 3D DEM model at the loaalimde of 60° (a: front view (looking along the y-axis); b: side view
(looking along the x-axis); c: top view (looking along the z-axis))

Fig. 10 Rose diagrams of the magnitude of contact forces (a)patattnormals (b) within the 3D DEM model by the end of the
second shearing at the loading angle of 60°

Fig. 11 Rose diagrams of the magnitude of contact forces projactéet re-plane (y = 0) at the end of the second shearing at
different loading angles

Fig. 12 Coordination number calculated by the DEM

Fig. 13 Deviator fabric (a) and orientation of the major principal fabric (@iffatent loading angles by the DEM



Fig. 1 Variable direction dynamic cyclic simple shear (VDDCSS) apparatus: éayi®w of VDDCSS; (b) prepared glass beads;
(c) installed specimen before consolidation
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