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Abstract 12 

The critical state is an important concept for saturated and partially saturated granular materials as the 13 

strength and volume become constant and unique under continuous shear. By incorporating the water 14 

bridge effect, the mechanical behaviours of wet granular matters can be studied by the discrete element 15 

method (DEM). A series of DEM simulations are performed following the conventional triaxial loading 16 

path for dry and wet granular materials, and different suction values are applied at various confining 17 

stress levels. Unique critical state behaviours have been observed in both macroscopic and microscopic 18 

scales. It shows that the confining stress level plays an important role in the critical state behaviour of 19 

wet granular materials. The critical stress ratio for a wet material is not a constant value at different 20 

stress levels and it is found that both the critical stress ratio and void ratio in wet granular matters are 21 

also much higher with a low confining stress. A framework is proposed by considering both the contact 22 

stress and the capillary stress effects to model the critical state lines. At large strain, the coordination 23 

number, the mean inter-particle force and fabric anisotropies evolve to constant critical state values for 24 

both dry and wet materials. The macro parameters formulating the critical state stress ratio are found to 25 

be associated with the critical state anisotropies in solid skeleton and water phase fabrics respectively.  26 

Keywords: wet granular material; critical state; micromechanics; discrete element modelling 27 

1. Introduction 28 

A granular material reaches the critical state as the shear strength and volume become stable when it is 29 

sheared to a relatively large deformation [27]. The critical state is independent of the initial void ratio 30 

and is generally regarded as a unique state. For partially saturated soils, the critical state also exists, and 31 

the critical state definition is used for modern constitutive modelling of unsaturated granular materials 32 

such soils [1, 13, 39, 40, 52].  33 
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Laboratory tests can be carried out to investigate the critical state of an unsaturated soil by maintaining 34 

constant suctions in the sample [41, 42, 51]. In laboratory tests, the water content is usually in relative 35 

high range due to the difficulty in applying higher suction. The critical state of unsaturated soils with 36 

relatively low water content, in which the water exits as discontinuous water bridges or absorption 37 

layers, have not been well understood. Moreover, in the recent development of soil mechanics, fabric 38 

and microstructure are usually regarded as important factors governing the macro behaviours [19]. The 39 

conventional laboratory tests may not provide the micro scale information.   40 

The discrete element method (DEM) [8] is a discontinuous numerical method that can simulate granular 41 

matter as individual particles, and thus the contact force network and fabric can be obtained from the 42 

particle scale quantities. The DEM method can be employed to extend the classic experimental study 43 

on the critical state of granular materials, for example sands [2, 3, 15], to microscopic investigations. 44 

The micro characteristics of dry granular material at critical state are recently studied from aspects of 45 

fabric anisotropy, force transmission pattern and entropy convergence [14, 18, 37, 53, 54]. For wet 46 

granular materials, basic macroscopic features of the critical state behaviours have been observed in the 47 

context of rheological study [4, 16, 29]. However, a more systematic study of micromechanics of wet 48 

granular materials at the critical state, especially linking the macroscopic critical state behaviour to the 49 

micro structure evolutions, is still necessary.  50 

Techniques for modelling wet granular materials in DEM are raised and developed in the last decade. 51 

The water phase and water-air interface effect are usually considered as water bridge effects between 52 

neighbouring grains [12, 26, 32, 34, 35, 38, 49] providing it has a low degree of saturation within the 53 

pendular state. Beyond the pendular state the water bridge may coalesce with each other [30, 46]. 54 

Although it is limited to low moisture content, simulations of these wet granular materials may still give 55 

evidence for the behaviours of unsaturated granular soils within a relatively low degree of saturation 56 

range, which is lack in laboratory studies.  57 

In this study, a suction-controlled water bridge model [48] is employed to carry out a systematic study 58 

on the critical state behaviour of granular materials. Conventional triaxial loading path is applied to 59 

dense and loose specimens at different stress levels and various suctions. By decomposing the inter-60 

particle force into a mechanical force and a capillary force, the total stress is then expressed as the sum 61 

of the mechanical contact stress and the capillary stress. The role of the contact stress in representing 62 

the effective stress at critical state is discussed. A framework is then proposed using the mean contact 63 

stress and the mean capillary stress to model the critical state stress ratio and void ratio. Based on the 64 

stress-force-fabric relationship for wet granular material [48], the connection between the critical state 65 

stress ratio and the internal fabrics of solid and water phases is investigated, mainly on the aspects of 66 

coordination numbers, mean force levels and also fabric anisotropies in solid and water phases. It should 67 

be noted that particle size distribution has a significant effect on the material hydraulic and strength 68 
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properties [45, 47], whereas this study only focuses on one kind of grain size distribution and we leave 69 

the grain size distribution effect for future work. 70 

2. DEM Simulation 71 

2.1 Capillary bridge effect between particles 72 

In this study, wet granular material behaviours are simulated by DEM with capillary bridge effect 73 

considered between neighbouring particles. The inter-particle force is the sum of the mechanical contact 74 

force and the capillary force on the water bridge when grains are in physical contact. When there is a 75 

distance between two grains but within the water bridge rupture distance, the inter-particle interaction 76 

is only raised by the capillary force (Fig. 1). Beyond the rupture distance, the inter-particle force 77 

vanishes. 78 

For the capillary effect, suction is assumed to be constantly maintained throughout the material. By 79 

Young-Laplace equation, the geometry of the water bridge has the following relationship with suction 80 

as: 81 

 
1 1

a w
ext int

S u u T
r r

 
    

 
  (1) 82 

where ܵ  is the matric suction, ݑ௔ is the air pressure, ݑ௪ is the water pressure, ܶ is the surface tension 83 

(ܶ ൌ ͲǤͲ͹͵ܰȀ݉) and ݎ௘௫௧ and ݎ௜௡௧ are external and internal radius of the water bridge at the water 84 

bridge neck. In this study, the water bridge is simplified as toroidal shape (external radius is constant 85 

along the water bridge and the cross section is a circle). For a given pair of particles with known 86 

geometry (particle radius and inter-particle distance), suction (ܵ), surface tension (ܶ) and water-solid-87 

air contact angle (ߠ), the shape of the water bridge (ݎ௘௫௧ and ݎ௜௡௧) can be obtained by an iteration method 88 

(more details can be seen in the previous work in [48]).  The material is assumed to be hydrophilic and 89 

the water-solid-air contact angle is simplified as 0. With the obtained ݎ௘௫௧ and ݎ௜௡௧, the capillary force 90 

raised by the water bridge can be calculated by using the ‘gorge method’. It is composed of two parts. 91 

One part is from the surface tension effect and another part is from the pressure difference (the suction) 92 

acting on the cross section of the bridge. Therefore, the capillary force can be calculated as: 93 

 2 (2 )cap int intf S r T r     (2) 94 

The water bridge volume can be obtained from the integration of the water bridge profile with the part 95 

of the grain subtracted. The water bridge model is incorporated into the classical Hertz-Mindlin contact 96 

model in DEM simulations. In this study, the open source DEM platform LIGGGHTS [17] is employed 97 

for its easier access to the source code and applicability on high-performance computing service.  98 
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2.2 Sample preparation and water retention curve 99 

The behaviours of dry and wet granular materials are investigated by a representative volume element 100 

(RVE). The tested samples are made of spherical particles with a cubic shape upon generation confined 101 

by smooth rigid wall boundaries. Particle diameters are uniformly distributed from 0.018mm to 102 

0.022mm and the initial length of the RVE is 0.4mm (20 times of mean grain size and the total grain 103 

number is around 9000). The contact model for the solid contacts is the typical Hertz model. The 104 

material property parameters of the particles are based on the typical quartz material. The material 105 

density of grains is 2500 kg/m3. Young’s modulus and Poisson’s ratio of the particles are 70GPa and 106 

0.25 respectively. The inter-particle friction coefficient is 0.5, which is a typical value for quartz sand. 107 

The coefficient of restitution, which is defined as the ratio of the final to initial relative velocity between 108 

two particles after a collision, is 0.2. Therefore, the coefficient of restitution is a parameter governing 109 

the energy dissipation process in the system. 110 

The specimens are prepared by using the radius expansion method without capillary effect. Particles 111 

with reduced sizes are firstly inserted without any contact in the cubic mould. Then, radii of the particles 112 

are increased gradually to the target size. Two samples with different initial void ratio values (e=0.629 113 

and e=0.732) are firstly prepared at 10kPa confinement. The two samples are then compressed 114 

isotropically to different mean stress levels. The isotropic normal consolidation lines (noted as INCL) 115 

of these two specimens can be seen in Fig. 2 (in lines) where ݌ is the mean normal stress as: 116 

 1 2 3

3
p

   
   (3) 117 

The wet specimens are prepared based on the dry materials at the corresponding mean normal stress 118 

levels (at 10kPa, 20kPa, 50kPa, 100kPa, 200kPa, 500kPa, 1MPa, 2Mpa and 10MPa). Capillary bridge 119 

effect is applied to particle pairs within the rupture criteria. As the capillary force is an attractive force, 120 

the material is further consolidated by maintaining the total boundary stress. The wet specimens at ܵ ൌ121 ʹͲ݇ܲܽ are also presented in Fig. 2 (in symbols). It can be seen that the wetting process doesn’t have an 122 

obvious effect on the void ratio. 123 

By summing the water bridge volume and dividing by the void volume, degree of saturation of a 124 

specimen at a certain suction value can be calculated. The relationship between the degree of saturation 125 

(ܵ௥) and suction is generally named as the water retention curve. Fig. 3 depicts the void ratio and mean 126 

normal stress effect on the water retention curve within the pendular state (the water bridge model is 127 

not valid for higher water content conditions). Under 10kPa mean stress, the dense sample has a higher 128 

degree of saturation at the same suction. It can also be observed that increasing the mean normal stress 129 

to 2MPa does not obviously alter the water retention behaviour.  130 
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2.3 Triaxial shearing to the critical state 131 

After the preparation of isotropic specimens, conventional triaxial loading path is applied to shear the 132 

samples to the critical state. The horizontal confining stresses (ߪଶ ൌ  ଷ) are maintained at a constant 133ߪ

value and the axial strain (ߝଵ) is applied by moving the boundaries in the axial direction. Fig. 4 is a 134 

sketch of the loading path in which the deviatoric stress is: 135 

 1 3q      (4) 136 

The triaxial deformation satisfies the quasi-static condition. The quantity of unbalanced force ratio, 137 

which is the ratio between average unbalanced force on grains and mean interparticle forces, is adopted 138 

to certify the quasi-static condition. During the triaxial test, the unbalanced force ratio is controlled to 139 

be less than 0.01 by adjusting the axial strain rate. 140 

The critical state means that the shear strength and void ratio are constant when the material is sheared 141 

to a certain deformation and the final shear strength and void ratio are independent of the material initial 142 

state. Typical behaviours of dry and wet materials (at 20kPa suction) with 10kPa confining stress in 143 

triaxial loading are presented as an example. In Fig. 5, the evolution of the total deviatoric stress (ݍ), 144 

deviatoric and mean stresses in mechanical contact stress component (ݍ௖௢௡௧ and ݌௖௢௡௧), volumetric 145 

strain (ߝ௩), void ratio (݁ ) and degree of saturation (ܵ௥) of the dense and loose samples are depicted. All 146 

the variables become nearly constant when the samples are sheared to 0.4 strain. It should also be noted 147 

that it has also been observed by other authors that the granular material reaches the critical state around 148 

0.4 axial strain by DEM simulation [53]. In Fig. 5a, the capillary effect significantly increases the 149 

material deviatoric stress.  For both dry and wet materials, there is a unique ultimate deviatoric stress 150 

regardless the initial void ratio difference. For the volumetric strain behaviour in Fig. 5b, the capillary 151 

effect significantly enlarges the dilatancy which leads the ultimate volumetric strain of wet materials to 152 

be much higher. Correspondingly, the void ratio evolution during triaxial shearing is presented in Fig. 153 

5c. Both dry and wet materials reach a unique void ratio. As the capillary force is cohesive that a wet 154 

granular material can afford larger voids upon loading, the critical state void ratio for wet granular 155 

materials at 10kPa confining stress is obviously larger. Furthermore, although the initial degree of 156 

saturation is different for dense and loose specimens, it is observed that there should be a same critical 157 

state degree of saturation (Fig. 5d), which could be related to the critical state void ratio.   158 

Similar triaxial tests are then implemented on both dense and loose specimens at various confining 159 

stresses and suctions. Table 1 is a summary of the parameters for the triaxial tests carried out in this 160 

study. For each pair of suction and confining stress, both the loose and dense specimens prepared from 161 

the normal consolidation process in Fig. 2 are tested. All samples are sheared to 0.4 axial strain and the 162 

final stage is regarded as the critical state. The critical state values on both the macro and micro 163 
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behaviours (taking the average value of the dense and loose samples) can then be employed for further 164 

investigations in the following sections. 165 

3. The Critical State Behaviour 166 

3.1 Contact stress and effective stress 167 

In classic critical state soil mechanics [31], formulating the critical state line (CSL) requires descriptions 168 

of the deviatoric stress and void ratio by the mean stress (or mean effective stress). For dry (or fully 169 

saturated) granular materials, critical state deviatoric stress can be expressed as:  170 

 'q Mp   (5) 171 

where ݌ᇱ is the effective mean stress and ܯ is the critical state stress ratio (slope of CSL in ݌ െ  space). 172 ݍ

According to Li et al. [20], for granular materials, the specific volume, as ߥ ൌ ͳ ൅ ݁ (݁ is the void ratio), 173 

has the following relationship with mean effective stress: 174 

 
'

1
a

p
e

p



 
 

      
 

  (6) 175 

where Ȟ is a parameter denoting ߥ at ݌ᇱ ൌ Ͳ, ߣ and ߦ are material parameters and ݌௔ is the atmosphere 176 

pressure (101kpa).  177 

The effective stress for unsaturated granular materials is still a controversial definition. The net stress 178 

ߪ) െ ௔ݑ) ௔) and suctionݑ െ  ௪) are widely accepted as the two variables that should be used in the 179ݑ

effective stress definition. The classic Bishop’s effective stress [5] is expressed as: 180 

    '
ij ij a a w iju u u         (7) 181 

where ߜ௜௝ is the Kronecker delta and Ȥ is a parameter related with the degree of saturation. After Lu’s 182 

suction stress definition [22], the Ȥ parameter may be approximated as the degree of saturation or the 183 

effective degree of saturation. In this numerical study, as the absorption layers are not considered, the 184 

macroscopic effective stress may be expressed as: 185 

    '
ij ij a r a w iju S u u       (8) 186 

One of the benefits to study unsaturated granular materials using DEM method is the possibility to 187 

obtain the microscopic stress expression from grain scale interactions. With capillary bridge effects, the 188 

inter-particle force is composed of the mechanical contact force and the capillary force. Thus, the total 189 

stress tensor can be decomposed into a contact stress tensor (ߪ௜௝௖௢௡௧) counting only the mechanical 190 

contact force and a capillary stress tensor (ߪ௜௝௖௔௣) raised from capillary forces [33, 48]. With the aid of 191 
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DEM simulation, by applying the homogenisation technique [7] and following the expressions in [33, 192 

48], the stress tensor can be calculated from particle scale interactions as: 193 

 
1 1cont cap s w w

ij ij ij cont i cont
s
j capi cap j

s V w V

v f v f
V V

  
 

       (9) 194 

where ݏ  and ݓ  denote the ݏ -th inter-particle solid contact and the ݓ -th water–particle interaction 195 

respectively (the total number is not necessarily the same). ݒ௖௢௡௧௜௦ is the contact vector pointing from 196 

the ݏ-th contact point to the particle centre and ݒ௖௔௣௜௪ is a vector from the water bridge centre to the 197 

particle centre. ݂௖௢௡௧௜௦ and ݂௖௔௣௜௪ are the corresponding contact force and capillary force associated with 198 

the defined vectors. The positive direction of a force is defined from the interaction point to the particle; 199 

therefore, the attractive capillary force is a negative force leading the capillary stress tensor always to 200 

be negative. It should also be noted that the frictional force is part of the contact force. Therefore, the 201 

contact force is not necessarily to be normal to the particle. 202 

The micromechanical stress tensors are usually employed in the study of granular material behaviours 203 

in both dry and partially saturated states. Some researchers attempted to describe the shear strength 204 

criteria of wet granular materials by using the contact stress tensor [10, 32, 43]. However, it has also 205 

been argued by some authors that using the contact stress is not adequate to model the material 206 

deformation [6, 11]. Here, the authors verified this again at the critical state by using the contact stress 207 

tensor to formulate the deviatoric stress and void ratio.  208 

Firstly, the critical state deviatoric stress is investigated at different mean stress levels. Fig. 6a shows 209 

the relationship between the critical state deviatoric stress and the mean stress at various suctions. For 210 

a clearer presentation, only low stress states ሺ݌ ൏ ͳͷͲ݇ܲܽ) are plotted. It can be seen that for the dry 211 

granular matter there is a linear ݌ െ ݍ  relationship as Eq. 5. For unsaturated materials, due to the 212 

capillary effect, the critical state deviatoric stress is higher than that of the dry material. In Fig. 6b, the 213 ݌ᇱ െ ݍ ᇱ is the mean effective stress and݌ relationship is presented, where ݍ ൌ  ᇱ as the suction induced 214ݍ

stress is assumed to be isotropic in Eq. 8. However, as it can be seen in Fig. 6b, by using the effective 215 

stress definition in Eq. 8, the points don’t fall in the same line. This is because of, in reality, when the 216 

water content is relatively low, the suction induced stress may not be isotropic. It can also be seen in 217 

Fig. 6c in which the critical state deviatoric stress is plotted in the ݌௖௢௡௧ െ ݍ  space (݌௖௢௡௧ ൌ218 ఙభ೎೚೙೟ାఙమ೎೚೙೟ାఙయ೎೚೙೟ଷ ). Using ݌௖௢௡௧ as the effective stress will also overestimate the deviatoric stress for wet 219 

materials as the CSL is almost above the simulated data points. This is because the capillary stress has 220 

been proven to be an anisotropic stress tensor associated with the solid structure anisotropy [32, 48, 50]. 221 

In Fig. 6d, the relationship between contact deviatoric stress ݍ௖௢௡௧ ൌ ଵ௖௢௡௧ߪ െ  ଷ௖௢௡௧ and mean contact 222ߪ

stress ݌௖௢௡௧ is investigated. It looks like that the  ݌௖௢௡௧ െ  ௖௢௡௧ relationship for various suctions nearly 223ݍ

fall in a linear line, which is also the conclusion drawn in [10, 32, 43] for the ݌௖௢௡௧ െ  ௖௢௡௧ relationship 224ݍ
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but at the peak strength. The coefficient of determination (ܴଶ value) also proves that in the ݌௖௢௡௧ െ225 ݍ௖௢௡௧ space the united critical state line has the best fitness. 226 

We may further investigate the critical state void ratio to validate if the contact stress can be adequately 227 

used as the effective stress in deformation. The relationship between critical state void ratio and ݌௖௢௡௧ 228 

is demonstrated in Fig. 7. For the dry material, the ݌ െ ݁ relationship can be fitted by Eq. 6, in which 229 ߦ 

is simplified as 1, Ȟ ൌ ͳǤ͹ͷͷ and ߣ ൌ ͻǤͺͻ ൈ ͳͲିହ. Due to the higher dilatancy in wet granular media, 230 

the critical state void ratio is obviously higher than that of the dry material, especially when the mean 231 

contact stress is relatively low. This indicates that using the contact stress tensor as the ‘effective stress’ 232 

is not enough, especially for modelling low stress conditions. A more complex relationship for the CSL 233 

is required that involves both the capillary stress and the contact stress. 234 

3.2 Critical state formulation 235 

Besides using an effective stress definition to model the critical state behaviour for unsaturated soils, 236 

based on laboratory experiments, Toll [40–42] proposed a framework for the unsaturated soil critical 237 

state using two stress state variables: the mean net stress ሺ݌ െ ௔ݑ௔ሻ and suction ሺݑ െ  ௪ሻ. It can 238ݑ

overcome the difficulty in modelling stress ratio and void ratio. In this framework, the deviatoric stress 239 

at the critical state is modelled as: 240 

    a a b a wq M p u M u u      (10) 241 

where the parameter ܯ௔ denotes the contribution of the mean net stress on the stress ratio and the 242 

parameter ܯ௕ represents the effect of suction on total stress ratio. Similarly, the specific volume (and 243 

void ratio) at critical state is written as: 244 

    1 ln lna a a b a we p u u u            (11) 245 

where Ȟ௔ represents the specific volume when both ݌ െ ௔ݑ ௔ andݑ െ  ௕ are 246ߣ ௔ andߣ ௪ are 1kPa andݑ

parameters associated with effect of ݌ െ ௔ݑ ௔ andݑ െ  ௪ respectively. 247ݑ

In laboratory experiments, only the macro state variables (݌ െ ௔ݑ ௔ andݑ െ  ௪) can be measured. By 248ݑ

using DEM, the stress tensor of a wet granular material can be expressed as Eq. 9. Thus, the contact 249 

stress (݌௖௢௡௧), which is the physical mechanical stress transmitting through solid contacts, and the 250 

capillary stress raised by water meniscus can be used to model the critical state framework. The capillary 251 

stress can also be expressed by contact stress and total stress as: ݌௖௔௣ ൌ ݌ െ  ௖௢௡௧. Similar to Eq. 10, 252݌

the deviatoric stress could be modelled as: 253 

  s cont w contq M p M p p     (12) 254 
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where ܯ௦ and ܯ௪ are model parameters representing the stress ratio contributed by the mean contact 255 

stress and mean capillary stress respectively. Thus the critical state stress ratio is: 256 

 cont cont
s w

p p pq
M M M

p p p


     (13) 257 

It can be seen that when it is absolutely dry or fully saturated, ݌ ൌ ௖௢௡௧݌ , then ܯ ൌ ݌Ȁݍ ൌ ௦ܯ . 258 

Moreover, when the mean stress is relatively high, the effect from the capillary stress is also smaller to 259 

the total stress ratio. In addition to the soil mechanics point of view, Roy et al. [29] proposed another 260 

relationship between cohesion effect and critical state stress ratio based on the definition of bond 261 

number of the specimen, expressed as 
max

2

capf
Bo

pd
 , in which max

capf  is the maximum capillary in the 262 

specimen and d  is the mean grain diameter. In their study, bond number has a linear relationship with 263 

critical state stress ratio. Similarly, we plot the relationship between bond number and critical state 264 

stress ratio in Fig. 9. The linear relationship is consistent with the previous study and the relationship 265 

can be fitted as: 266 

 w sM Bo M    (14) 267 

where ܯ௦  is the critical state stress ratio for dry granular materials and ߙ௪  is the slope the linear 268 

relationship which is related to suction. 269 

For the void ratio at the critical state, the formula can be extended from Eq. 6. It has been observed by 270 

[36] by using DEM method that there is a linear relationship between solid fraction (
ଵଵା௘) and mean 271 

pressure for cohesionless granular materials at the critical state. Therefore, ߦ ൌ ͳ is taken in this study 272 

to represent the linear relationship between pressure and void ratio. In Fig. 7, critical state void ratio for 273 

wet granular materials is higher than that of the dry material, however, when the mean stress level is 274 

higher, the difference is reduced. Therefore, we propose the following equation to model the specific 275 

volume. 276 

 1 cont cont
s s w

a

p p p
e

p p
  

   
        

  
  (15) 277 

where Ȟ௦ is the specific volume of a dry material when ݌ ൌ Ͳ݇ܲܽ, ݌௔ is the atmosphere pressure as 278 

101kPa, ߣ௦  and ߣ௪ are material parameters. In this equation, the capillary stress effect is presented by 279 ௣ି௣೎೚೙೟௣  in which the effect of ݌ is considered. This means that when the mean stress is very large, the 280 

effect of the capillary stress on void ratio becomes less significant. The suction/capillary cohesion 281 

increased the critical state void ratio in Fig. 7 and Fig. 10, especially for low stress conditions. This is 282 

consistent with the work done by Roy et al. [29] , in which the volume fraction (void ratio) is increased 283 
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with bond number (a relative measurement of cohesive effect), although the shape of the sheared 284 

specimen is different. This is because the cohesive force between particles leads to particle granulation, 285 

which can support larger inter-particle space especially in the sheared zones.  286 

3.3 Critical state lines and parameters 287 

Based on the proposed critical state framework based on the view of soil mechanics, the critical state 288 

lines on stress ratio, deviatoric stress and void ratio are investigated at various suction values. In Fig. 8, 289 

the critical state lines are depicted in the ݌ െ ݌ space and the ܯ െ ݌ space respectively. In the ݍ െ  290 ܯ

space, the dry material critical state stress ratio is around 0.73 and it is not obviously affected by mean 291 

stress. The value is consistent with the result in another DEM simulation [37] in which the inter-particle 292 

friction coefficient is also 0.5.  However, the critical state stress ratios for wet granular materials are not 293 

constant values in different mean stress levels, they are higher than the dry material value at low stress 294 

conditions due to the capillary effect. The capillary effect on stress ratio decreases with the increase of 295 

mean stress level. This is because of that the capillary effect is almost independent of the mean stress 296 

level and the contribution of capillary stress on stress ratio is more significant at relatively low stress 297 

conditions. At high stress levels all critical state stress ratio values of wet materials converge to the dry 298 

material critical state stress ratio value. The results of the proposed critical state framework (Eq. 13) are 299 

plotted in lines. At high stress levels, the stress ratio is mainly contributed by the contact stress tensor 300 

and the total stress ratio values are similar. Considering the above fact, the parameter ܯ௦ for the dry 301 

material as 0.73 is used for all dry and wet materials. The parameter ܯ௪  represents the effect of 302 

capillary stress and is fitted for different suctions. The ݌ െ  space critical state lines are presented in 303 ݍ

Fig. 8b. As the mean capillary stress is almost constant for different mean total stress levels, the critical 304 

state lines in high stress range are almost the same. A clearer presentation of the capillary effect on 305 

critical state shear strength can be seen in the inset in which the mean stress is lower than 100kPa. This 306 

also indicates that the water effect on strength is more important for low mean stress conditions.  307 

Similarly, the critical state lines in the ݌ െ e space are then presented in Fig. 10.  The results of Eq. 15 308 

are in solid lines with points as the measured values. The parameters of Ȟ௦ and ߣ௦ are taken from the 309 

dry material results and not altered by suction. The parameter ߣ௪ is fitted for different suctions. As ܵ ൌ310 ͷܽܲܯ presents a condition that the material has a very low degree of saturation (ܵ௥ ൏ ͲǤͲͲͳΨ), this 311 

indicates that a small amount of water will increase the material’s dilatancy and void ratio at the critical 312 

state significantly in the low mean stress state. However, further change in suction (thus water content) 313 

does not alter the void ratio obviously. It also shows that with the increase of mean stress level, the 314 

discrepancies in critical state void ratio between the dry and wet materials are reduced. The  ݌ െ e lines 315 

for wet materials converge to the dry state line at high stress. 316 

Fig. 8 and Fig. 10 only present part of the simulated results to have more explicit plots. Table 2 gives a 317 

summary of critical state parameters of all simulations in Table 1. As introduced in Fig. 5d, when the 318 
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unsaturated material reached the critical state, there is a unique degree of saturation. The relationship 319 

between critical state stress ratio parameters and degree of saturation from the DEM simulation results 320 

are demonstrated in Fig. 11a.  In the dry state, we define that ܯ௦ ൌ ௪ܯ ൌ ͲǤ͹͵. Although ܯ௪ has no 321 

true meaning at the dry state, this is to imply that when the water content is extremely low, the water 322 

bridges should share the same directional distribution with the inter-particle contacts. With a very small 323 

amount of water added in the material, ܯ௪ reduces significantly to around 0.2 and further increase of 324 

degree of saturation from 4% to 10% has little influence on ܯ௪. In this study, the water bridge model 325 

is only valid within the pendular state. With the recent developments of other numerical method, such 326 

as coupling granular matter with the Lattice Boltzmann method in [9, 25], the capillary stress and thus 327 

the contact stress can be calculated. Using contact stress to model the critical state can be expected to 328 

be applied to the funicular and capillary states in the near future. Beyond the pendular state, we may 329 

imagine that the water bridges start coalesced and the capillary effect will be gradually reduced. When 330 

it is fully saturated,  ݑ௔ െ ௪ݑ ൌ Ͳ and ݌௖௔௣ ൌ Ͳ. In Eq. 12, the capillary stress is related to suction. 331 

Therefore, one possible trend of ܯ௪ is that it increases in the funicular state and reaches to value of ܯ௦ 332 

at fully saturation. Another possibility is that ܯ௪  converges to 0 at saturation (Fig. 11b). This is from 333 

the implication that the capillary stress tensor could become a rather isotropic tensor with a high water 334 

content. This will be investigated in the next section. Moreover, the relationship between degree of 335 

saturation and parameter ߣ௪ is presented in Fig. 12. It can be seen that ߣ௪ varies around 0.04 and the 336 

water content effect on ߣ௪ is not obvious.  337 

4. Micro-characteristics at the Critical State 338 

4.1 General relationship between stress state and microstructures 339 

After the pioneering work of [21, 28], the stress tensor of a granular material is intrinsically related to 340 

its fabric and mean interparticle force, which is known by the stress-force-fabric relationship. The 341 

statistical micro interpretation of stress of wet granular materials can also be seen in [24] based on two 342 

dimensional simulations in which the repulsive contact force and attractive capillary force were 343 

integrated together as ‘bond forces’. In their work, the critical stress ratio can be expressed as the 344 

anisotropies of different micro-scale based quantities. In addition to this earlier work, a stress-force-345 

fabric relationship for wet granular materials was developed by our previous work [48] to have an 346 

explicit understanding of the connection between the macro stress and the micro fabrics and forces 347 

associated with the contact stress and capillary stress respectively. It should be noted here that the 348 

capillary force does not necessarily act on a physical inter-particle contact, as the capillary bridge can 349 

be formed between neighbouring particles with a small gap less than the water bridge rupture distance. 350 

In this case, the capillary stress effect may be less anisotropic upon loading than that of the contact 351 

stress and it is necessary to study the stress tensors separately. 352 
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In our interpretation, for a representative elementary volume ܸ with ܰ  particles inside, the total stress 353 

tensor, as a sum of the contact stress tensor and the capillary stress tensor, can be approximated by its 354 

internal fabrics and forces as:  355 

 
1 10 0

2 2 2
( ) ( )

3 5 5 3 5
sf s s sf w

ij s cont ij ij ij im jm w cap ij ij

NR NR
f G D D G f D

V V
            (16) 356 

where ܴത  is the mean particle radius, ߱௦ is the solid contact coordination number (average physical 357 

contacts per particle), ߱௪ is the water bridge coordination number (average solid-water interactions per 358 

particle, normally ߱ ௪ ് ߱௦), ݂ ௖௢௡௧଴ and ݂௖௔௣଴ are parameters quantifying the directional mean contact 359 

and capillary forces respectively. The tensors in the equation, ܦ௜௝௦  ௜௝௦௙, are obtained from the 360ܩ ௜௝௪ andܦ  ,

directional distributions of solid contact normals, water bridge directions and solid contact forces 361 

respectively. More details about this relationship can be referred to [48] and a reintroduction about 362 

procedures to calculate the three direction tensors can also be seen in the appendix after this paper. 363 

The evolutions of the micro parameters during the triaxial shearing are then studied. The evolutions of 364 

the micro parameters for the set of tests in Fig. 5 (dry and wet granular materials are sheared at 10kPa 365 

confining stress) are presented as examples in Fig. 13. The evolutions of coordination numbers of solid 366 

contacts and water-solid interactions (߱௦ and ߱ ௪) for the dry and wet granular materials (ܵ ൌ ʹͲ݇ܲܽ) 367 

are depicted. In Fig. 13a, the solid contact coordination numbers are higher in the wet granular material 368 

due to the attractive capillary force. Independent to the initial number, by shearing the material to large 369 

deformation, there are unique critical state solid coordination numbers for dry and wet materials 370 

respectively. In wet granular materials, the water bridge coordination number is higher than the solid 371 

contact coordination number (Fig. 13b). This is because that a water bridge may exist between two 372 

neighbouring particles without a physical contact. With axial deformation, the water bridge 373 

coordination numbers for the loose and dense specimens also evolve to the same value, corresponding 374 

to the critical state degree of saturation. 375 

Similarly, the directional mean contact and capillary force evolutions in the same set of triaxial tests are 376 

demonstrated in Fig. 14. In the wet material, the mean contact force is larger than that of the dry material 377 

due to the water bridge effect (Fig. 14a). The maximum contact force in the dense material is higher 378 

than that of the loose specimen. By shearing to 40% axial strain, the ultimate mean contact forces are 379 

stable and have unique values for dry and wet materials respectively. Fig. 14b also indicates that at 380 

critical state the mean capillary forces become the same for both dense and loose samples. 381 

In Eq. 16, the scalars determining the mean stress level, and the direction tensors, which quantify the 382 

solid contact fabric, solid contact force network and water bridge fabric respectively, ascertain the 383 

magnitude of stress deviator. The evolutions of the anisotropy of these tensors are then presented in Fig. 384 

15. In Fig. 15a, the solid contact fabric becomes anisotropic upon loading from the initial isotropic state. 385 
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The maximum solid fabric anisotropy is higher in the dense material, but the ultimate fabric anisotropy 386 

is the same for materials with different initial void ratios. For the wet materials with a constant suction, 387 

the induced solid phase fabric anisotropy ሺܦଵ௦ െ  ଷ௦ሻ is lower than that of the dry material. There is also 388ܦ

a unique fabric anisotropy at the critical state. In Fig. 15b, regarding the solid contact force anisotropy 389 ሺܩଵ௦௙ െ  ଷ௦௙ሻ, the initial void ratio influences its maximum value but the ultimate value is also the same. 390ܩ

It also indicates that the capillary effect has little influence on the contact force anisotropy evolution. 391 

However, this doesn’t mean that the cohesive capillary force has no influence on the force transmission 392 

pattern. As [44] already introduced that the capillary bridges increased the possibility of weak 393 

interparticle contact forces. These forces didn’t change the contact force anisotropy index, which is 394 

based on a tensorial form calculation. In Fig. 15c, the anisotropy of the joint tensor term is obviously 395 

altered by capillary bridge. Although the water bridge distribution is not the same as the solid contact 396 

distribution, it is indeed affected by the solid structure and become anisotropic upon triaxial loading  397 

(Fig. 15d). The water phase anisotropy ሺܦଵ௪ െ  ଷ௪ሻ evolution in Fig. 15d also shows that there may also 398ܦ

be a critical state value for each suction.  399 

4.2 Critical state stress ratio and fabric anisotropies 400 

After the stress-force-fabric relationship in Eq. 16, the mean stress, sum of the mean contact stress and 401 

the mean capillary stress, can be formulated by the scalar micro parameters as: 402 

 0 03 3cont cap s cont w cap

NR NR
p p p f f

V V
       (17) 403 

After Eq. 16, the deviatoric stress, which is associated with the anisotropy effects in the direction tensors, 404 

can be approximately written as: 405 
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  (18) 406 

We can denote  οܩ௦௙ ൌ ൫ܩଵ௦௙ െ ௦ܦଷ௦௙൯ as the anisotropy in contact forces, οܩ ൌ ሺܦଵ௦ െ  ଷ௦ሻ as the solid 407ܦ

contact fabric anisotropy, οܦ௦ܩ௦௙ ൌ ൫ܦଵ௦ܩଵ௦௙ െ ଷ௦௙൯ܩଷ௦ܦ  as the joint tensor anisotropy and οܦ௪ ൌ408 ሺܦଵ௪ െ  ଷ௪ሻ as the water phase fabric anisotropy. Thus, the stress ratio can be formulated as: 409ܦ
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  (19) 410 

As 
௣೎೚೙೟௣ ൌ ఠೞ௙೎೚೙೟బఠೞ௙೎೚೙೟బାఠೢ௙೎ೌ೛బ and 

௣೎ೌ೛௣ ൌ ఠೢ௙೎ೌ೛బఠೞ௙೎೚೙೟బାఠೢ௙೎ೌ೛బ (from Eq. 16), combining Eq. 19 with Eq. 13, 411 

the critical state parameters for stress ratio can then be linked to the internal fabric and force anisotropies 412 

as: 413 



14 
 

 
2 2

5 5
sf s s sf

sM G D D G       (20) 414 

and: 415 

 
2

5
w
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Fig. 16 demonstrates the critical state fabric and force anisotropies in different mean stress levels. The 417 

solid contact anisotropy is depicted in Fig. 16a. For a dry material, the critical state solid fabric 418 

anisotropy is reduced by the mean stress increase. In a low stress state, when the capillary effect is 419 

applied, the magnitude of critical state solid fabric anisotropy is reduced significantly from its dry state 420 

value. With the increase of mean stress, solid fabric anisotropy at critical state has a raise-and-fall trend. 421 

The discrepancies of solid fabric anisotropy between the dry and wet materials are also reduced by 422 

mean stress. Fig. 16b shows the solid contact force anisotropy quantified by tensor ܩ௜௝௦௙. It indicates that 423 

the capillary bridge effect on contact force anisotropy is not significant. With the logarithmic increase 424 

of mean stress, the contact force anisotropy at critical state raises almost linearly. The anisotropy of the 425 

joint tensor ܦ௜௠௦ ௝௠௦௙ܩ  , depicted in Fig. 16c, is generally a negative value. For the dry material, the 426 

anisotropy of the joint tensor is almost constant for different mean stresses. However, in the wet 427 

materials, the joint tensor anisotropy is higher in the low stress conditions and is reduced with mean 428 

stress increase. The critical state anisotropy of the water phase, represented by the water bridge direction 429 

anisotropy in Fig. 16d, is rather constant under different mean stress conditions. It also shows that with 430 

a higher suction, which means a lower degree of saturation, the critical state water phase anisotropy is 431 

more significant.  432 

The anisotropy values of different components can be summed up according to Eq. 20 to estimate ܯ௦. 433 

In the previous section, ܯ௦  was taken as a constant value 0.73 for all stress conditions for model 434 

simplicity. In Fig. 17a, it shows that the ܯ௦  values estimated from the internal force and fabric 435 

anisotropies are not always constant. There is an overestimation at low stress levels by taking ܯ௦ ൌ436 ͲǤ͹͵, especially for the wet materials.  Fig. 17b presents the ܯ௪ values estimated from the critical state 437 

water fabric anisotropy as a function of the degree of saturation. As the water phase fabric anisotropy 438 

is not influenced by mean stress obviously. The average value was taken for each applied suction and 439 

the relationship between 
ଶହ οܦ௪ and degree of saturation is then obtained. It shows that 

ଶହ οܦ௪  (the 440 

triangles) has a similar trend with the measured ܯ௪ values in Table 2 but is however lower than the 441 

measured value (the dashed line). This is due to the fact that the constant approximation of ܯ௦ ൌ ͲǤ͹͵ 442 

was taken for simplicity. Therefore, the deviatoric effect of the contact stress in low stress conditions 443 

was overestimated and was actually corrected by the ܯ௪ values in Table 2. The correction in ܯ௪ values 444 

is about 0.21 by evaluating the difference between the ܯ௪ values and the 
ଶହ οܦ௪ values. It can be seen 445 
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that when 
ଶହ οܦ௪ is shifted up by 0.21 they coincide with the measured ܯ௪ values. By following that 446 ܯ௪ is associated with the water phase anisotropy effect, one may deduce that the second trend in Fig. 447 

11b, as ܯ௪ converges to 0 at saturation, is more realistic. This is because, as it can be easily understood, 448 

at full saturation the water phase effect becomes isotropic.  449 

4.3 The relationship between scalar micro-parameters and mean stress level 450 

From the macro observations, it has already been know that capillary effect is less prominent under 451 

high stress conditions. A more insightful understanding can also be achieved by analysing its micro-452 

structures and force transmissions. From Eq. 17, it can be seen that the mean contact stress and the mean 453 

capillary stress are related to the coordination numbers (߱௦ and ߱ ௪) and mean forces (௖݂௢௡௧଴ and ݂௖௔௣଴). 454 

Fig. 18a demonstrates the critical state mean contact stress under different mean total stress levels. For 455 

dry materials, ݌௖௢௡௧ ൌ  ௖௢௡௧ is higher. It shows that the capillary effect 456݌ and for wet granular materials ݌

is more significant when ݌ ൏ ͳͲͲ݇ܲܽ. From Eq. 17, ݌௖௢௡௧ is microscopically determined by the solid 457 

contact coordination number and mean contact force. Fig. 18b depicts the critical state solid contact 458 

coordination numbers under various mean stress and suctions. For a dry material, the solid contact 459 

coordination number at critical state is positively related to its mean stress. The dilatancy of wet granular 460 

materials is generally higher in triaxial shear, which leads a higher critical state void ratio. Therefore, 461 

the critical state solid contact coordination numbers of wet materials are generally higher than that of 462 

the dry material. With the increase of mean stress, the critical state ߱௦ values for wet granular materials 463 

are gradually reduced and they increase again to approach to the ߱௦ values for the dry material at high 464 

stress conditions. In Fig. 18c, the mean contact force is increased linearly with mean stress level and 465 

when the mean stress is relatively low, the capillary effect has more significant influence on ݂௖௢௡௧଴, 466 

which leads ݂௖௢௡௧଴ to be higher than that of the dry material. 467 

Fig. 19a presents the critical state mean capillary stress at different suctions and mean stress levels. The 468 

capillary stress is a negative stress and with the increase of suction, which means a decrease in water 469 

content, the absolute value of mean capillary stress is lower. It also indicates that the mean capillary 470 

stress is not changed obviously by the mean total stress increase. As the mean capillary stress is related 471 

to the water bridge coordination number and mean capillary force (from Eq. 17), the ߱௪ and ݂௖௔௣଴ 472 

values at critical state are presented in Fig. 19b and Fig. 19c respectively. It can be observed that ߱௪ 473 

and ݂ ௖௔௣଴ values are not obviously altered by the mean total stress. The ௖݂௔௣଴ value is negative as 474 

capillary force is an attractive force. With the increase of suction (a decrease of water content), the 475 

water bridge coordination number is reduced and the magnitude of the capillary force (its absolute value) 476 

is larger. 477 
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5. Conclusions 478 

In this paper, the critical state of wet granular materials is systematically investigated by series of DEM 479 

simulations. Water bridge effect is considered between neighbouring particles providing the material 480 

has a relatively low degree of saturation in the residual state (the pendular state). By testing relatively 481 

dense and loose materials in different suctions in the conventional triaxial loading path, the critical state 482 

is reached in both macro stress-strain behaviours and micro structures. Main conclusions can be drawn 483 

from both macro and micro aspects as follows: 484 

1. The contact stress tensor, which is formulated by inter-particle mechanical forces, is not 485 

sufficient to be used as the effective stress of unsaturated granular materials to model the critical 486 

state behaviours. It can model the critical state with a linear mean contact stress and deviatoric 487 

contact stress relationship (in the ݍ-݌ space). However, due to the higher dilatancy in wet 488 

materials, solely using contact stress is not enough to describe the deformation and critical state 489 

void ratio (in the ݌-݁ space). 490 

2. The critical state stress ratio for wet materials is not constant as it is much higher under a low 491 

mean total stress. Critical state equations (Eq. 12 to Eq. 15) are proposed to fit the simulated 492 

critical state stress ratio and void ratio by using the mean contact stress (݌௖௢௡௧) and mean 493 

capillary stress (݌௖௔௣ or ݌ െ  ௖௢௡௧). Classic parameters for dry or fully saturated conditions are 494݌

kept with one more term added to quantify the capillary stress effect in each equation. The 495 

parameter associated with capillary stress is correlated to suction or degree of saturation. 496 

3. As reported before [48], the stress state is related to the internal structure indexed by the micro 497 

quantities such as the solid contact coordination number, water bridge number, solid and water 498 

phase fabric tensors and contact force and capillary force levels and anisotropies. It has been 499 

observed in this study that at the critical state, unique values have been reached in these micro 500 

quantities.  501 

4. By analysing the deviatoric stress and mean stress with the stress-force-fabric relationship 502 

equation, it is realised that the two parameters for the critical state stress ratio in the proposed 503 

critical state equations (ܯ௦  and ܯ௪ ) are related to the critical state internal solid structure 504 

anisotropy and the water phase fabric anisotropy respectively. This also implies that at full 505 

saturation, the parameter ܯ௪ is possibly converged to 0, as the water phase is an isotropic effect 506 

at full saturation.  507 

5. At the critical state, the mean capillary stress is almost independent of the mean total stress. 508 

This is because the water bridge coordination number and the mean capillary force are almost 509 

not affected by the total stress level. The solid contact coordination number and mean contact 510 

force are obviously increased by the capillary effect especially in low stress conditions which 511 

induce a more significant mean contact stress when in low stress conditions. 512 
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Appendix: Calculation of direction tensors 513 

For a granular assembly with ௦ܰ solid contacts (note that one physical contact point has two contacts), 514 

after Oda et al. [23], a moment tensor quantifying the directions of solid contact normals can be 515 

expressed as: 516 
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ij c c
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N 

 n n   (22) 517 

where ࢉ࢔ is the unit vector of the contact normal on the ܿ-th solid contact. Similarly, a second rank 518 

tensor for water bridge network can also be raised. For a sample with ௪ܰ particle water interactions 519 

(two times of total water bridge number), the moment tensor can be written as: 520 
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where ࢝࢔ is the unit vector pointing from water bridge centre to particle centre on the ݓ-th water-solid 522 

interaction. The direction tensors of ܦ௜௝௦  and ܦ௜௝௪ consider the deviatoric part of the moment tensor being 523 

formulated as: 524 
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  (24) 525 

by taking the corresponding superscript. 526 

For the directional distribution of contact forces, a second rank moment tensor is also defined. By 527 

integrating the tensor product of the average contact force along a particular direction, the moment 528 

tensor noted as  ܭ௜௝௦௙, can be expressed in a unit sphere space ȳ as: 529 
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where ۄܜܖܗ܋܎ۃȁ܋ܖ is the average value for the contact forces in the ࢉ࢔ direction. The direction tensor of 531 

contact force, ܩ௜௝௦௙, is the deviatoric part of the contact force moment tensor in a normalised form: 532 
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  (26) 533 

Note that the directional mean contact force is ௖݂௢௡௧଴ ൎ ଵଵ௦௙ܭ ൅ ଶଶ௦௙ܭ ൅ ଷଷ௦௙ܭ . Similar to the above 534 

procedures, the directional mean capillary force ௖݂௔௣଴ can also be obtained from a moment tensor for 535 

the capillary forces which will not be repeated. 536 
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  ܵ ଷߪଶƬߪ

(kPa) 

10kP

a 

20kP

a 

50kP

a 

100kP

a 

200kP

a 

500kP

a 

1MP

a 

2MP

a 

5MP

a 

10MP

a 

20MP

a 

50MP

a 

dry  ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ 

5000 ξ ξ ξ ξ ξ ξ ξ ξ െ ξ െ െ 

700 ξ ξ ξ ξ ξ ξ ξ ξ െ െ െ െ 

300 ξ ξ ξ ξ ξ ξ ξ ξ െ െ െ െ 

200 ξ ξ ξ ξ ξ ξ ξ ξ െ െ െ െ 

100 ξ ξ ξ ξ ξ ξ ξ ξ െ െ െ െ 

50 ξ ξ ξ ξ ξ ξ ξ ξ െ െ െ െ 

20 ξ ξ ξ ξ ξ ξ ξ ξ െ ξ െ െ 

*Both the dense and loose specimens are tested on each set of parameter. ξ means triaxial tests have 711 
been implemented.  712 

Table 1. Summary of triaxial test parameters. 713 

Table 2 714 

Suction 
(kPa) ࢝ࡹ ࢙ࡹ (%) ࢘ࡿ ડ࢝ࣅ ࢙ࣅ ࢙ 

dry 0 

0.73 

0.73 

1.755 9.89×10-5 

0 

5000 0.000876 0.59 0.0407 

700 0.042 0.42 0.0398 

300 0.196 0.38 0.0427 

200 0.411 0.37 0.0432 

100 1.19 0.33 0.0484 

50 3.39 0.24 0.0337 

20 9.75 0.22 0.0404 

Table 2. Summary of critical state parameters. 715 

 716 

 717 
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Figure 1: Contact model with capillary bridge effect

Figure 2: Isotropic normal consolidation lines
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Figure 3: Water retention curves under different confinements

Figure 4: Conventional triaxial loading path
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Figure 5: Typical triaxial test results of dry and wet granular materials (S =
20kPa) to the critical state (σ2 = σ3 = 10kPa).

3



Mean Stress, p (kPa)

0 50 100 150

C
ri
ti
c
a

l 
S

ta
te

 D
e

v
ia

to
ri
c
 S

tr
e

s
s
, 

q
 (

k
P

a
)

0

20

40

60

80

100

120

R2 = 0.990

CSL M=0.73

S=20kPa

S=100kPa

S=700kPa

S=5MPa

dry

(a) p− q line

Mean Effective Stress, p' (kPa)

0 50 100 150

C
ri
ti
c
a

l 
S

ta
te

 D
e

v
ia

to
ri
c
 S

tr
e

s
s
, 

q
 (

k
P

a
)

0

20

40

60

80

100

120

R2 = 0.977

CSL M=0.73

S=20kPa

S=100kPa

S=700kPa

S=5MPa

dry

(b) p′ − q line

Mean Contact Stress, p
cont

 (kPa)

0 50 100 150

C
ri
ti
c
a

l 
S

ta
te

 D
e

v
ia

to
ri
c
 S

tr
e

s
s
, 

q
 (

k
P

a
)

0

20

40

60

80

100

120

R2 = 0.981

CSL M=0.73

S=20kPa

S=100kPa

S=700kPa

S=5MPa

dry

(c) pcont − q line

Mean Contact Stress, p
cont

 (kPa)

0 50 100 150

C
ri
ti
c
a

l 
S

ta
te

 D
e

v
ia

to
ri
c
 C

o
n

ta
c
t 

S
tr

e
s
s
, 

q
c
o

n
t (

k
P

a
)

0

20

40

60

80

100

120

R2 = 0.993

CSL M=0.73

S=20kPa

S=100kPa

S=700kPa

S=5MPa

dry

(d) pcont − qcont line

Figure 6: Critical state deviatoric stress at different mean stress levels.
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Figure 13: Evolution of coordination numbers in triaxial shearing.
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Figure 15: Evolutions of internal fabric and force anisotropies.
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(b) Solid contact force anisotropy
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(c) The joint tensor anisotropy
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Figure 16: The critical state fabric and force anisotropies at different mean
stress levels.
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Figure 17: The critical state stress ratio parameters and internal fabric
anisotropy.
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(a) Mean capillary stress
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(b) Solid contact coordination number
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(c) Directional mean contact force

Figure 18: The critical state mean contact stress and its associated micro-
parameters at different mean total stress levels.

12



Mean Total Stress, p (kPa)
10

1
10

2
10

3
10

4

M
ea
n
C
ap

il
la
ry

S
tr
es
s,
p
ca
p
(k
P
a
)

-11

-10.8

-10.6

-10.4

-10.2

-10

-9.8

-9.6

S=20kPa

S=100kPa

S=700kPa

S=5MPa

(a) Mean capillary stress

Mean Stress, p (kPa)
10

1
10

2
10

3
10

4
10

5

W
at
er

B
ri
d
ge

C
o
or
d
in
at
io
n
N
u
m
b
er
,
ω
w

4.5

5

5.5

6

6.5

7

S=20kPa

S=100kPa

S=700kPa

S=5MPa

(b) Water bridge coordination number

Mean Stress, p (kPa)
10

1
10

2
10

3
10

4
10

5

M
ea
n
C
ap

il
la
ry

F
or
ce
,
f
ca
p
0
(1
0−

6
N
)

-4.2

-4.1

-4

-3.9

-3.8

-3.7

-3.6

-3.5

-3.4

-3.3

-3.2

S=20kPa

S=100kPa

S=700kPa

S=5MPa

(c) Directional mean contact force

Figure 19: The critical state mean capillary stress and its associated micro-
parameters at different mean total stress levels.
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