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Abstract

For Prediction Error Identi�cation, there are two main ingredients to get a consistent
estimate: one of them is the data informativity with respect to (w.r.t.) the considered model
structure. One common criterion used for the informativity is the positive de�niteness of
the input density spectral power (DSP) matrix at all frequencies. This criterion is not
appropriate for multisine excitation but can be used for �ltered white noise excitation for
many identi�cation problems. However, this criterion is not necessary and its application for
some identi�cation problems might not be possible. In this paper, we propose a necessary
and su�cient condition for the data informativity in the case of multiple-inputs single-output
(MISO) �nite impulse response (FIR) model structure in open-loop.

1 Introduction

When identifying a system with the Prediction Error Method, there are two properties to respect
in order to guarantee a consistent estimation: global identi�ability of the model structure and
data informativity w.r.t. this model structure [1] [2]. In this paper, we focus on the data
informativity criterion in the open-loop con�guration.

This data informativity criterion has been extensively studied in the case of SISO systems [1] [2] [3].
However, even if one could have expected that this study had also been carried out for the mul-
tivariate case and in particular for the MISO systems, this is surprisingly not the case, up to
our knowledge. In the literature, we only �nd the condition that the power spectrum matrix
of the input vector must be strictly positive de�nite at each frequency [2] [3]. This condition is
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2 PREDICTION ERROR OF MISO FIR SYSTEM AND PROBLEM CONSIDERED

su�cient, but not necessary for data informativity as e.g. shown in [4] where we derive conditions
for data informativity in the MISO case when multisine excitation are used. In this paper, we
continue the analysis of the data informativity of MISO systems by considering the case of an
input vector where each element is a stochastic process. In other words, we consider the case
where each input is generated as a �ltered version of a number of white noise processes and we
derive necessary and su�cient condition under which the data informativity is guaranteed.

From this condition, we will, e.g., observe that input vectors that have a power spectrum matrix
with a zero determinant at each frequency can lead to informative data.

It is to be noted that the latter case will be quite unusual if the user can freely choose the input
vector (one would then generally go for independent input processes leading to positive de�nite
power spectrum matrix at each frequency). However, if the input vector is not chosen but given,
it is important to know precisely in which situation we will have informative data and in which
cases not. Such a situation is e.g. encountered when the two stage approach is used for dynamic
network identi�cation [5].

In the case of the identi�cation of MISO FIR systems in open loop, the informativity condition
is equivalent to the condition that the input regressor is persistently exciting (PE), equivalent
to the linear independence in the signal space [6] of the signals in this regressor. By choosing
an appropriate formulation of the input expression, we �nd a simpler necessary and su�cient
condition which is the right-invertibility of a certain matrix containing the coe�cients of the
�lter generating the inputs. We also develop additional conditions to guide the user in its �lter
choice to guarantee the data informativity. A numerical example is provided to illustrate the
developed results.

Notations. For all matrix A, AT denotes its transpose, A∗ its conjugate transpose and A � 0
means that A is strictly positive de�nite. The notation 0n×m refers to the matrix of size n×m
full of zeros. For all integers m and p such that m ≤ p, the set Jm, pK is the set of consecutive
integers between m and p. We denote j the complex number such that j2 = −1. The symbol ⊗
denotes the Kronecker product and ? denotes the convolution product. For a polynomial P in the
variable X, we denote p(n) the coe�cient of the monomial Xn. For quasistationary signals x [1],
we de�ne the operator Ē[x(t)] = lim

N→+∞
1
N

∑N
t=1E[x(t)] where E is the expectation operator.

2 Prediction error of MISO FIR system and problem considered

Consider a linear system S with p inputs and one output [1] [2]:

S : y(t) = G0(z)u(t) + e0(t) (2.1)

where z is the forward-shift operator, G0(z) =
(
G01(z), · · · , G0p(z)

)
is a stable transfer function

matrix, u(t) = (u1(t) · · · up(t))T is the input vector, y(t) is the scalar output and e0(t) is a white
noise with variance σ20. For the sake of simplicity, all G0i(z) are FIR systems with the same order
and are given by

G0i(z) = βi1z
−1 + · · ·+ βimz

−m (2.2)

where all βik are the true parameters to estimate.

The system S in (2.1) is identi�ed within its full-order parametrized model structure denoted
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2 PREDICTION ERROR OF MISO FIR SYSTEM AND PROBLEM CONSIDERED

M(θ) = {G(z, θ) = (G1(z, θ) · · · Gp(z, θ)) | θ ∈ Rpm} where θ is the parameter vector and such
that ∃θ0 ∈ Rpm such that G(z, θ0) = G0(z) (full-order). In this case, each Gi(z, θ) has the
following form:

Gi(z, θ) = bi1z
−1 + · · ·+ bimz

−m (2.3)

where all bik with i ∈ J1, pK and k ∈ J1,mK are the parameters to identify. We will denote
θi = (bi1 · · · bim)T . Hence, the parameter vector is given by θT =

(
θT1 · · · θTp

)
.

From M(θ), we de�ne the one-step ahead predictor:

ŷ(t, θ) , G(z, θ)u(t) =

p∑
i=1

Gi(z, θi)ui(t) (2.4)

=

p∑
i=1

φTui(t)θi (2.5)

where φTui(t) = (ui(t− 1) · · · ui(t−m)) is a regressor of the scalar input ui(t). Denote

φu(t) =

φu1(t)
...

φup(t)

 = u(t)⊗

 z−1

...
z−m

 (2.6)

the input regressor derived from M(θ). With this notation, (2.5) becomes ŷ(t, θ) = φTu(t)θ.
De�ne the prediction error:

ε(t, θ) = y(t)− ŷ(t, θ) = y(t)− φTu(t)θ (2.7)

Prediction Error identi�cation consists in computing the optimal θ, denoted θ̂N , minimizing a
least-squares cost-function on the prediction error by using N input-output data generated from
S:

θ̂N = arg min
θ

VN (θ) (2.8)

VN (θ) =
1

N

N∑
t=1

ε(t, θ)2 (2.9)

IfM(θ) is full-order, globally identi�able [1] [3] and the data are informative w.r.t. M(θ) [1] [2] [3],
then θ̂N will be a consistent estimate of θ0 [1]. In other words, the asymptotic identi�cation cri-
terion, i.e.

arg min
θ
Ē[ε(t, θ)2]

has unique solution which is equal to θ0. The MISO FIR model structure is globally identi�-
able [3]. Hence, we only need to study the data informativity w.r.t. M(θ) to guarantee the
consistency of θ̂N .

In open loop, the data informativity w.r.t. the MISO FIR model structure M(θ) is equivalent
to the input informativity.

De�nition 2.1

The input u(t) is said to be informative w.r.t. the MISO FIR structure M(θ) if, we have:

Ē
{

[G(z, θ′)−G(z, θ′′)]u(t)
}2

= 0⇒ θ′ = θ′′ (2.10)
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2 PREDICTION ERROR OF MISO FIR SYSTEM AND PROBLEM CONSIDERED

for any θ′ and θ′′ in Rpm �

In the sequel, we will consider that each input ui(t) is generated using r independent zero-mean

white noise processes eq(t) with q ∈ J1, rK, each of them �ltered by a rational and stable �lter
denoted Fiq(z):

ui(t) =

r∑
q=1

Fiq(z)eq(t) (2.11)

Each eq(t) is assumed independent of e0(t). Regroup the white noises eq(t) in a vector e(t) =(
e1(t) · · · er(t)

)T
and construct the input u(t) such that u(t) = F (z)e(t) where F (z) =

(Fiq)(i,q)∈J1,pK×J1,rK is a rational stable �lter matrix. We will assume that there is no zero-column
in F (z), i.e. each eq(t) is used at least once for the generation of u(t). The power spectrum
matrix of u, denoted Φu, is given by Φu(ω) = F (ejω)Λ0F

∗(ejω) where Ē[e(t)eT (t)] = Λ0 � 0.
By using Parseval theorem, the left hand equality of (2.10) is equivalent to

1

2π

∫ π

−π
∆G(ejω)Φu(ω)∆G∗(ejω)dω = 0 (2.12)

where ∆G(z) = G(z, θ′) − G(z, θ′′). Hence, it is straightforward to see that, if the input power
matrix Φu is strictly positive de�nite at all frequencies, then ∆G(ejω) = 0 ∀ω, leading to the
consistency. However, such property is not necessary and not veri�ed for all u(t) = F (z)e(t)
leading to informativity. For instance, with p = 2, consider

F (z) =

(
1 + 2z−1

z−1 + 3z−2

)
and Λ0 =

(
1 0
0 1

)
(2.13)

The input power matrix is given for all ω ∈ [−π, π] by

Φu(ω) =

(
2e−jω + 2ejω + 5 7ejω + 3ej2ω + 2

7e−jω + 3e−j2ω + 2 3e−jω + 3ejω + 10

)

It has a zero-determinant for all frequencies: we cannot verify the data informativity with the
positive de�niteness of Φu in this case. However, we will show that, with this �lter and when
m = 2, we have data informativity (see Case 4, in Section 4).

The motivation of this paper is to �nd a necessary and su�cient condition to verify the data
informativity for any �lter matrix F (z) and for any number r of white noises in e(t). We have
this following necessary and su�cient condition in the general case:

Theorem 2.1

[7] [4] The following propositions are equivalent:

(a) The input vector u(t) is informative w.r.t. M(θ).

(b) Ē[φu(t)φTu(t)] � 0.

(c) The signals in φu(t) are linearly independent in the signal space, i.e. φTu(t)α = 0 ∀t ⇔
α = 0. �
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3 INPUT REGRESSOR PERSISTENCY IN THE CASE OF WHITE NOISE EXCITATION

Proof : • Let us �rst prove that (a)⇔ (b).

As we have G(z, θ) = φTu (t)θ, the equality Ē {[G(z, θ′)−G(z, θ′′)]u(t)}2 = 0 is equivalent to
∆θT Ē[φu(t)φTu (t)]∆θ = 0 with ∆θ = θ′ − θ′′. Hence, the property (2.10) holds if and only if
Ē[φu(t)φTu (t)] � 0.

• Let us now prove that (b)⇔ (c).

For any α ∈ Rpm, Ē[φu(t)φTu (t)] � 0 is equivalent to Ē[φu(t)Tα]2 = 0 ⇔ α = 0. However the
quantity Ē[φu(t)Tα]2 is the power of any signal φu(t)Tα. Therefore, as the power of any signal is equal
to 0 if and only if this signal is identically equal to 0, we have Ē[φu(t)Tα]2 = 0 ⇔ φu(t)Tα = 0 ∀t.
Therefore φu(t) is PE if and only if φu(t)Tα = 0 ∀t which completes the proof.

A quasistationary vector-valued signal regressor φ(t) verifying Ē[φ(t)φT (t)] � 0 is called per-
sistently exciting (PE). Applied to φu(t), it is a necessary and su�cient condition for the data
informativity w.r.t. MISO FIR model structure in open-loop (and so is a necessary and su�cient
condition for the consistency). We are going to apply this condition in the case of �ltered white
noise excitation for any number of white noises in e(t). Hence, the problem of this paper is the
following one:

Problem 2.1

Find necessary and su�cient conditions on F (z) such that the regressor φu(t) in (2.6) is PE
for any number r of di�erent white noise processes in e(t). �

3 Input regressor persistency in the case of white noise excitation

3.1 Development of a necessary and su�cient condition

In this section, we are going to develop a necessary and su�cient condition for the persistency
of the input regressor φu(t) when each input ui(t) is given by (2.11).

In the sequel, we will decompose F (z) as follows:

F (z) =
L(z)

w(z)
(3.1)

where the scalar �lter w(z) is the obtained denominator after putting all �lters in F (z) on the
same denominator and L(z) a p× r matrix of FIR �lters. We will denote Liq the (i, q)-entry of
L(z) and each Liq will be written as follows

Liq(z) =

niq∑
h=0

l
(h)
iq z

−h (3.2)

Remark 3.1

One can also think of writing F (z) with the In�nite Impulse Response (IIR) of the rational
�lters, however it seems more complex to develop a necessary and su�cient condition which
easily answers Problem 2.1. We will show that both ways lead to the same result in one
numerical example (see Case 1 in section 4). �
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3 INPUT REGRESSOR PERSISTENCY IN THE CASE OF WHITE NOISE EXCITATION

By denoting nmax the maximal order among all �lters Liq(z), we rewrite L(z) as follows

L(z) =

nmax∑
h=0

L(h)z−h where L(h) =


l
(h)
11 · · · l

(h)
1r

...
...

...

l
(h)
p1 · · · l

(h)
pr

 (3.3)

By using (2.6), φu(t) obeys the following relation:

w(z)φu(t) =

L(z)⊗

 z−1

...
z−m


 e(t) (3.4)

Let us rewrite the expression in (3.4). First, we will consider a permuted version φ̃u(t) of φu(t)
such that it has this following form

w(z)φ̃u(t) =

u(t− 1)
...

u(t−m)

 =

L(z)e(t− 1)
...

L(z)e(t−m)

 (3.5)

Remark 3.2

It is clear that if Theorem 3.1 holds for φ̃u, it also holds for φu (and conversely). �

Hence, combining (3.3) and (3.5) leads to

w(z)φ̃u(t) =

nmax∑
h=0

L(h)e(t− h− 1)
...

L(h)e(t− h−m)


equivalent to

w(z)φ̃u(t) = F

 e(t− 1)
...

e(t−m− nmax)


︸ ︷︷ ︸

v(t)

(3.6)

where

F =


Lbase 0p×(m−1)r

0p×r Lbase 0p×(m−2)r
0p×r 0p×r Lbase 0p×(m−3)r
...

...
. . .

. . .
...

0p×r 0p×r 0p×r · · · Lbase


(3.7)

Lbase =
(
L(0) L(1) · · · L(nmax)

)
(3.8)

Note that the matrix F is not diagonal-block, that is why we decided to represent it as in (3.7).
We provide a numerical example to illustrate this point. Consider that w(z) = 1, p = 3, m = 2,
r = 2 and:

L(z) =

 1 −z−3
2 + 2z−3 5z−2

0 2z−1 + 3z−2 − 4z−3
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3 INPUT REGRESSOR PERSISTENCY IN THE CASE OF WHITE NOISE EXCITATION

Hence, nmax = 3,

L(0) =

1 0
2 0
0 0

 L(1) =

0 0
0 0
0 2


L(2) =

0 0
0 5
0 3

 L(3) =

0 −1
2 0
0 −4


and

Lbase =

1 0 0 0 0 0 0 −1
2 0 0 0 0 5 2 0
0 0 0 2 0 3 0 4


Therefore, F is given by

F =



1 0 0 0 0 0 0 −1 0 0
2 0 0 0 0 5 2 0 0 0
0 0 0 2 0 3 0 4 0 0
0 0 1 0 0 0 0 0 0 −1
0 0 2 0 0 0 0 5 2 0
0 0 0 0 0 2 0 3 0 4


It is clear that it is not block-diagonal.

The matrix F that links v(t) to φ̃u(t) is a matrix of scalars. In this case, we have the following
result:

Theorem 3.1

The regressor φ̃u(t) de�ned above in (3.5) is PE if and only if the matrix F in (3.6) is full-row
rank. �

Proof : Since w(z) is a 1×1 stable FIR �lter that applies to all elements of φ̃u(t), it is clear that φ̃u(t)
is PE if and only if w(z)φ̃u(t) is PE. Let us now prove that φw(t) = w(z)φ̃u(t) is PE if and only if F
is full row-rank.

From (3.6), Ē[φw(t)φTw(t)] = FĒ[v(t)vT (t)]FT . As Ē[v(t)vT (t)] � 0 (due to white noise properties),
Ē[φw(t)φTw(t)] � 0 if and only if F is full-row rank.

Theorem 3.1 combined with Remark 3.2 answers Problem 2.1: it is a necessary and su�cient
condition to get consistency for the identi�cation of MISO FIR model structure in open-loop for
any number of white noises in e(t). It depends explicitly on the �lters coe�cient and is a similar
criterion as in the multisine case [4] (rank veri�cation of a certain matrix of scalars).

For some choices, the matrix F will not be full-row rank. We can deduce some possible reasons
to understand why it happens. It is explained in the next paragraph.

3.2 Development of additional conditions

One has to be careful in the choice of L(z) to provide the right-invertibility of F. Indeed, the
rank veri�cation is an a posteriori condition.

7



3 INPUT REGRESSOR PERSISTENCY IN THE CASE OF WHITE NOISE EXCITATION

But, �rst, one has to remark that, depending on the choice of F (z)e(t), there can be some
zero-columns in F. A zero-column column in F means that the corresponding generated white
noise element in v(t) is not present in φ̃u(t). To illustrate this remark, let us consider back the
example given in Section 3. There are two zero-columns in F. As F multiplies v(t) and from
the construction of v(t) in (3.6), these zero-columns mean that the correspond generated white
noises e2(t − 1) and e1(t − 3) are not present in φu(t). The generated white noises present in
φu(t) obtained from e1(t) are e1(t−1), e1(t−2), e1(t−4) and e1(t−5). The ones obtained from
e2(t) are e2(t− 2), e2(t− 3), e2(t− 4) and e2(t− 5).

Theorem 3.2

If F de�ned in (3.7) is full-row rank, then

• (i) the rows of L(z) (or equivalently F (z)) must be linearly independent.

• (ii) the number of generated white noises in v(t) present in φu(t) is greater than or equal
to the number of parameters to be identi�ed. �

Proof : (i) From the construction of F, when it is full-row rank, Lbase must be full-row rank. With the
expression of Lbase in (3.7), it corresponds to the linear independence of the rows of L(z) (or F (z)
by dividing L(z) by w(z)).

(ii) To be full-row rank, F must have at least a number of non-zero columns greater than or equal to
its row number. There are pm rows in F, corresponding to the number of parameters to be identi�ed.
There are m+ nmax columns, corresponding to the number of generated white noise elements of the
form eq(t − k) in v(t). However, some of these columns can be zero-columns. Then, the conclusion
follows.

The conditions derived in Theorem 3.2 are necessary but not su�cient. This remark will be
illustrated with a numerical example (Case 3 in section 4). In the next paragraph, we give an
interpretation and a synthesis of the obtained results.

3.3 Synthesis of the developed results

In this paper, we have developed a necessary and su�cient conditions to verify the data infor-
mativity w.r.t. a MISO FIR model structure (and so the consistency) in open-loop excited by
�ltered white noise with any number of white noise processes: it is given in Theorem 3.1 and
corresponds to the rank veri�cation of a matrix depending on the coe�cients of L(z), on r and
m. But, �rst, the �lter matrix F (z) must be decomposed as in (3.1). Then, Theorem 3.1 can be
used on the FIR �lter matrix L(z). For both numerical examples in Section 3 and in (2.13) and
by considering that m = 2, the rank of F is respectively equal to 4 and 6 which was the number
of parameters to be identi�ed in each case. For both cases, we have consistency.

We have also derived conditions to guide better the user in its �lter choices, given in Theo-
rem 3.2. If these conditions are not met, the consistency will never be guaranteed. The �rst one
is the linear independence of the rows of F (z) which can be easily avoided when we do the �lter
choice. The second one is linked to the number of generated white noise elements through the
�ltering of e(t) by L(z): it must be at least equal to the number of parameters to be identi�ed.
This criterion is directly linked to the number of white noises and the �lter orders as follows:

8



4 NUMERICAL EXAMPLE

• when the number of white noises in e(t) is greater than the number of inputs, i.e. r ≥ p,
then there is at least one generated white noise element from the �ltering of each eq(t)

1.
In other words, it means there are at least r ≥ p generated white noise elements of the
form eq(t − k) present in u(t), for each q = 1, · · · , r. Hence, there are at least rm ≥ pm
generated white noise elements present in φu(t) (due to the m times regression): condition
(ii) of Theorem 3.2 is always guaranteed. However, this does not necessarily mean that
the consistency is reached.

• when r < p, one should consider the condition (ii) of Theorem 3.2 to verify that the chosen
�lter is enough complex to generate the right number of white noise elements present in
φu(t). Indeed, if the �lter is not enough complex, the consistency will never be reached
regardless of the �lter coe�cients values.

However, these conditions are not su�cient : it seems than we cannot avoid the rank veri�cation
of Theorem 3.1. But, in the general case, if the number of generated white noises is su�cient
and the coe�cient �lters are chosen randomly, the consistency will be reached.

Remark 3.3

Note that, when r = p and F (z) is such that det(F (ejω)) 6= 0 ∀ω, then it is guaranteed that
Φu(ω) > 0 ∀ω and the consistency is also reached.

In the next section, we give other numerical examples.

4 Numerical example

For the numerical example, as in [4], we consider the MISO FIR system S described in (2.1) with
p = 2 inputs, m = 2 parameters per G0i :

G01(z) = 0.22z−1 − 0.63z−2 and G02(z) = z−1 + 0.95z−2

i.e. the same example as in [4]. We use �ltered white noise excitation

(
u1(t)
u2(t)

)
=

(
F11(z) · · · F1r(z)
F21(z) · · · F2r(z)

)e1(t)...
er(t)


where r ∈ N∗, all Fiq(z) are rational stable �lters. We are going to propose several input choices
to test the conditions developed in this paper. For each choice, we identify G(z, θ) with N input-
output data and we compute the rank of F in (3.7). From Theorem 3.1, there is data informativity
w.r.t. the MISO FIR model structure (and so consistency) if and only if rank(F) = pm = 4.

For FIR systems, the modeling error θ̂N−θ0 of the computed parameters is normally distributed
around 0 [1]. Thus the relative error (θ̂N−θ0)/θ0 is normally distributed around 0%. We consider
N = 1000 and σ20 = 0.1 for small variance of the relative error to facilitate the consistency
veri�cation. The notation err(bik) refers to the relative error between the computed parameter
bik and the true parameter βik. The white noise e(t) is chosen Gaussian such that E[e(t)e(t)] = Ir
where Ir is the identity matrix.

1It is true as we assumed that there is no zero-column in F (z).
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4 NUMERICAL EXAMPLE

4.1 Cases with r = 1 white noise

Case 1: Let us consider

F (z) =

(
1
1

1−0.5−1

)
=
L(z)

w(z)

where L(z) =

(
1− 0.5−1

1

)
and w(z) = 1− 0.5z−1.

With these �lters, the di�erent generated white noises in φu are e1(t − 1), e1(t − 2) and
e1(t − 3): it is less than the number of parameters to be identi�ed which are pm = 4. Hence,
from Theorem 3.2, there is no consistency. This result is veri�ed in simulation, in Table 1, with
the high values of relative errors.

One can think of using the IIR of the �lters without using the decomposition L(z)/w(z).
Indeed, in this case, the number of generated white noises will be in�nite in u(t) and so in
φu(t) and we would circumvent the problem shown above. In this example, 1/(1 − 0.5z−1) can
rewritten with its IIR. The impulse response of a �lter of the form 1/(1 − bz−1) with |b| < 1 is
given by hk = bk for all k ∈ N and hk = 0 for all k < 0. Hence, u2(t) is given by

u2(t) = (h ? e1)(t) =
+∞∑
k=0

bke1(t− k) =
+∞∑
k=0

0.5ke1(t− k) (4.1)

The input regressor is given by

φ̃u(t) =


u1(t− 1)
u2(t− 1)
u1(t− 2)
u2(t− 2)

 =


e1(t− 1)∑+∞

k=1 0.5k−1e1(t− k)
e1(t− 2)∑+∞

k=2 0.5k−2e1(t− k)


= Fv(t)

where

FT =



1 1 0 0
0 0.5 1 1
0 0.52 0 0.5
...

...
...

...
0 0.5k−1 0 0.5k−2

...
...

...
...


and v =



e1(t− 1)
e1(t− 2)
e1(t− 3)

...
e1(t− k)

...


(4.2)

From Theorem 3.1, we will have consistency if and only if F is full-row rank. Both �rst
columns are linearly independent. But the columns after are all linearly dependent. Hence, we
will not be able to �nd pm = 4 linearly independent columns in order to get F full-row rank: the
identi�cation will be non-consistent. We meet the same conclusion.

Case 2: We want to excite S with

F (z) =

(
1 + 0.5z−1

−2+0.5z−2

1−0.5z−1

)
=
L(z)

w(z)

where L(z) =

(
1− 0.25z−2

−2 + 0.5z−2

)
and w(z) = 1− 0.5z−1.
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4 NUMERICAL EXAMPLE

The second row of L(z) can be obtained by multiplying the �rst one by −2. From Theorem 3.2,
we conclude to the non-consistency. This explains the high values of relative errors found in
simulation, presented in Table 1.

Case 3: Consider

F (z) =

(
1−0.5z−1

1−0.5z−1

−4z−1+2z−2

1−0.5z−1

)
=

1

w(z)

(
1− 0.5z−1

−4z−1 + 2z−2

)

Here, rank(F) = 3 6= 4: the identi�cation is again non-consistent, as shown by the simulation
in Table 1. However, both necessary conditions of Theorem 3.2 are veri�ed. Indeed, we generate
e1(t−1), e1(t−2), e1(t−3) and e1(t−4) and the rows of L(z) are linearly independent. But, if we
look closer at L(z), we see that −4z−1L11(z) = L22(z), resulting in u1(t−1) = −0.25u2(t−2) ∀t.
As shown in Theorem 2.1, the persistency is equivalent to the linear independence of the signal
in φu(t), which is not the case here. Hence, it is not consistent. This case is interesting as it
allows us to insist on the fact that both conditions in Theorem 3.2 are only necessary and not
su�cient.

Case 4: Consider the example given in (2.13). Here, F (z) = L(z) as w(z) = 1 and both
necessary conditions in Theorem 3.2 are veri�ed. We obtain rank(F) = 4: we have consistency,
as illustrated by the simulation in Table 1.

4.2 Cases with r > 1 independent white noises

First, consider the case where r = p = 2.

Case 5: We take w(z) = 1 and for L(z) the following �lters: L11(z) = 1 + 2z−1, L12(z) =
2z−1 + 4z−2, L21(z) = 2 + z−1 and L22(z) = 4z−1 + 2z−2. Here, rank(F) = 3: the identi�cation
is not consistent, as shown in Table 1. However, it is easy to verify that both conditions of
Theorem 3.2 are guaranteed with this �lter choice. This example is interesting, because we
show that even for the case r = p, there can be some pathological cases where we meet both
conditions of Theorem 3.2 but the identi�cation is not consistent. It is to be noted that, in this
case, det(F (ejω)) = 0 ∀ω and so the su�cient condition of Remark 3.3 is not satis�ed. So this
remark is not in contradiction to this observed result.

We consider w(z) = 1− 0.5z−1 for the last two cases.

Case 6: Consider for L(z) the following �lters: L11(z) = 9, L12(z) = 1, L21(z) = 2 and
L22(z) = −4. Here, rank(F) = 4: the identi�cation is consistent, as shown in Table 1.

We can also use more white noises processes than the number of inputs, for instance r = 3.

Case 7: Finally we consider, L11(z) = 9, L12(z) = 1, L13(z) = 4, L21(z) = 2, L22(z) = −4
and L23(z) = −4. Again, rank(F) = 4: we have consistency, as illustrated in Table 1.
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Table 1: Parameter relative errors for the 6 cases.
err(b11) err(b12) err(b21) err(b22)

Case 1 284.73% −67.89% −40.5% −67.28%

Case 2 178.12% −101.48% −54.15% −100.12%

Case 3 −0.012% −55.41% −11.45% −0.003%

Case 4 0.29% 0.043% −0.039% −0.028%

Case 5 280.91% −49.05% −30.9% −65.05%

Case 6 0.53% 0.084% −0.041% 0.098%

Case 7 −0.055% −0.056% 0.048% −0.041%

5 Conclusion

This paper considers the problem of data informativity for MISO FIR systems in open-loop when
this system is excited by �ltered white noise. This problem is mainly straightforward when the
input power spectrum matrix positive de�niteness criterion can be used. When it is not the case,
we need to develop a less restrictive condition which is the aim of this paper. The informativity
is equivalent to the persistency of the regressor derived from the MISO FIR model structure. As
for the multisine case [4], it is equivalent to the linear independence of the elements in the input
regressor derived from this model structure. A necessary and su�cient condition depending on
the number of considered white noise processes and on the �lter coe�cients. One result is that we
can identify such systems with inputs generated with less white noises than the number of inputs.
However, the necessary conditions developed in Theorem 3.2 show that, in this case, there is a
needed complexity for the �lter orders. A numerical example has been proposed to verify several
results developed in this paper. In the future, we want to extend this study in closed-loop and
also for other model structures such as Box-Jenkins, ARMAX, ARX and Ouput-Error. We want
also to study if it is interesting to consider less white noise processes for experiment design.
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