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Abstract: Classical stability analysis techniques based on nominal models do not consider the uncertainty of system
parameters, their interactions, and nonlinearity, which are important characteristics of practical highly coupled microgrids. In this
work, variance-based sensitivity analysis is used to identify parameter combinations that have a significant impact on the small-
signal stability of a microgrid featuring two parallel active loads. The analysis indicates that the effectiveness of source-side
damping is reduced when resonant frequencies of load input filters become matched. Further results using derivative-based
sensitivity analysis reveal that source-side resistance can exhibit drastically different effects on the stability if load input filter
resonant frequencies are matched with respect to the case when they are well separated. These behaviours are verified using
time-domain switching models.

1௑Introduction
In small-signal modelling of conventional electrical power systems
(EPSs), network dynamics are generally neglected since their time
constants are much smaller than those of synchronous generators
and their control loops. In conventional EPSs, the effects of
individual loads are insignificant (due to their small capacity), and
thus loads can be aggregated and collectively modelled, whereas in
microgrid (MG), individual loads of EPSs play a critical role in
system stability and have to be included in stability analysis [1].

Classical techniques to identify dynamic interactions through
the use of participation factors (PFs) in EPSs [1, 2] are based on
the analysis of nominal models. The work reported in [1] provides
important insights into the complexity of coupling phenomena
between the sources, loads, and network. Although these
techniques are prevailing, they are insufficient for describing how
the interactions change under possible variations of parameters. For
example, the recent work [3] identifies a coupled resonance
phenomenon between multiple parallel load-side filters in an MG.
The observed filter coupling effects depend strongly on parameter
values. This observation highlights the necessity of modelling
system uncertainties, such as the uncertainties in the length of lines
between different nodes in an MG. Similarly, Wu and Lu [4]
identified mutual coupling phenomena between multiple parallel
load-side filters that must be considered at the design stage of the
proposed stabilising controller. Also, Wan et al. [5] illustrated
reduction in stability margins due to coupling effects from between
transmission line impedances and the source and multiple loads,
including impedance in-between loads in an AC system. Recent
publication [6] quantifies effects of multiple simultaneous
parametric uncertainties on the stability of a power electronics
system by applying the structured singular value-based stability
analysis method.

To identify and analyse this type of dynamic phenomena, Luo
and Ajjarapu [7] proposed tracing eigenvalues over parametric
changes to observe the movement of oscillatory modes. This work
shows that modal resonance effects in power systems, such as
subsynchronous resonance, can be caused by the interaction
between two distinct modes, i.e. between torsional modes and sub-
electrical modes, and can be viewed as a precursor to system
instability. For problems with numerous multiple uncertainties,
exhaustive testing of all possible combinations quickly becomes
computationally infeasible. As a result, there is an increasing

interest in applying global sensitivity analysis (SA) techniques
which aim to quantify the behaviour of an output over the entire
range of uncertainties. Probabilistic methods can be used to
examine the scenarios from the whole range and are easily
implemented using Monte Carlo (MC) techniques. Global SA
techniques are reviewed in [8] and some considered for the
importance ranking of uncertain parameters in power networks in
[9, 10]. Of interest are those that can help identify different
interactions between system parameters, such as variance-based
sensitivity analysis (VBSA) [11].

The main idea of this paper is to: (i) demonstrate the application
of VBSA to MG EPSs under uncertainty to identify the critical
parameters that exhibit nonlinear effects through their interactions
on the small-signal stability; (ii) using the identified parameters
from (1), present local SA results for selected uncertain system
scenarios. Interactions are shown by critical eigenvalue sensitivity
to distribution line resistance for different load conditions.

The paper is organised as follows. Section 2 describes the
model of the system featuring two parallel active loads. Two
unique modelling cases considered are as follows: load input filter
resonant frequencies are matched, and load input filter resonant
frequencies are separated. In Section 3, the VBSA technique is
defined and applied to the analysed system to identify interaction
effects among multiple uncertain system parameters. Section 4
performs derivative-based SA to identify effects of line resistance
on the stability. Section 5 demonstrates these behaviours via
switching model simulations, and Section 6 summaries main
findings of the paper.

2௑System structure
Fig. 1 shows the configuration of a distribution system with two
active loads sharing a common voltage bus. The source is modelled
as an ideal voltage source with a finite line resistance (Rline). Each
active load is modelled as a tightly regulated synchronous buck
converter with an LC low-pass input filter, as shown in Fig. 2. The
buck converter's control loop is implemented as a Type-III voltage
compensator [6] represented in state space, with the state vector
xCiௗ=ௗ[x1,Ci, x2,Ci, x3,Ci,], input vector uCiௗ=ௗ[vC,Biௗ−ௗuref,Ci], and
output vector yௗ=ௗ[D] (where D is duty cycle). A poorly damped
input filter may induce instability on the bus voltage (Vbus) due to
the negative input impedance characteristics of the buck converter
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[12]. The stability analysis of each active load subsystem
individually is inapplicable in the presence of other loads in
parallel. Rline can not only provide a damping effect for the system
under study [4], but it can also contribute to the coupling between
the loads, as shown in [3]. 

A single linearised model based on the nominal operating
condition is not sufficient to describe system dynamics under
uncertainty; therefore, it is necessary to have an analytical
nonlinear system model through parameterisation. This is modelled
using a set of differential equations f and output equations ׇ:

dx

dt
= f (x, u, p), y = g(x, u, p) (1)

where x are state variables, u are system inputs, and p are all other
parameters describing the system. For conciseness in this paper, a
k-number of parallel active loads can be represented by deriving a
set of general equations based on a single active load in Fig. 2.
Firstly, let the parameters of each subsystem of an active load be
denoted by subscripts, i.e. the active load i is formed by combining
the filter Fi, averaged buck converter Bi, controller Ci and load Ri.
By applying the circuit averaging technique and Kirchhoff laws to
the dynamic models in Figs. 1 and 2, each active load has the
differential equations in (2)–(8) and bus voltage in (9). To note, (3)
shows the sharing of the common bus through the iL,Fi state
variable, i.e. Rline contributes to a voltage drop of Vbus based on the
sum of the currents flowing into each active load:

dvC, Fi

dt
= (iL, Fi − iL, Bi(D11, Ci(uref, Ci − vC, Bi)

+C11, Cix1, Ci + C12, Cix2, Ci + C13, Cix3, Ci))/CFi

(2)

diL, Fi

dt
= (v1 − vC, Fi − Rline∑ i = 1

n iL, Fi − iL, FiRL, Fi)/LFi (3)

dvC, Bi

dt
= (iL, Bi − vC, Bi/Ri)/CBi (4)

(see (5)) 

dx1, Ci

dt
= B11, Ci uref, Ci − vC, Bi + A11, Cix1, Ci + A22, Cix2, Ci

+ A13, Cix3, Ci

(6)

dx2, Ci

dt
= B21, Ci uref, Ci − vC, Bi + A21, Cix1, Ci + A22, Cix2, Ci

+ A23, Cix3, Ci

(7)

dx3, Ci

dt
= B31, Ci uref, Ci − vC, Bi + A31, Cix1, Ci + A32, Cix2, Ci

+ A33, Cix3, Ci

(8)

vbus = v1 − RlineΣi = 1
n

iL, Fi (9)

For the two active load system in Fig. 1, this results in a state space
model of 14th order, such that

x = [vC, F1 iL, F1 vC, B1 iL, B1 x1, C1 x2, C1 x3, C1

vC, F2 iL, F2 vC, B2 iL, B2 x1, C2 x2, C2 x3, C2]
T (10)

u = [v1 uref, C1 uref, C2]T (11)

Two case studies are considered for the system in Fig. 1. Case A
has matched load input filters such that their nominal resonant
frequencies are identical (fr,F1ௗ=ௗ114௓Hz, fr,F2ௗ=ௗ114௓Hz), whereas
Case B has well-separated input filter resonant frequencies (fr,F1ௗ=ௗ
114௓Hz, fr,F2ௗ=ௗ60௓Hz). Both cases have multiple parametric
uncertainties and are modelled as continuous uniform distributions
on the interval given by the percentages around the nominal value.
Tables 1–3 show the system parameters and corresponding
uncertainties. 

Buck converter controllers, as shown in Fig. 2, are identical for
both active loads, with parameters shown in (12). For buck
converter switching frequency of 50௓kHz and under nominal
parameters, the regulator voltage loop gain is designed to a 1௓kHz
crossover frequency:

Fig. 1௒ DC MG with multiple active loads
 

Fig. 2௒ Circuit diagram of an active load
 

diC, Bi

dt
= − (vC, Bi − vC, Fi(D11, Ci(uref, Ci − vC, Bi) + C11, Cix1, Ci + C12, Cix2, Ci + C13, Cix3, Ci)

+iL, Bi(Rds(on)Q2, Bi + RL, Bi) + iL, Bi(Rds(on)Q1, Bi − Rds(on)Q2, Bi)(D11, Ci(uref, Ci − vC, Bi)

+C11, Cix1, Ci + C12, Cix2, Ci + C13, Cix3, Ci))/LBi

(5)

Table 1௑System parameters
Symbol Input/parameter Nominal

value
Units

v1 source voltage 380 V
uref,C1,uref,C2 command voltages 100 V
CB1,CB2 output filter capacitances 1200 ȝF
LB1,LB2 output filter inductances 100 ȝH
RL,B1, RL,B2 DCRs of LB1, LB2 10 mȍ
RDS(on)Q1,B1,
RDS(on)Q1,B2

high-side switch (Q1) on
state resistances

5 mȍ

RDS(on)Q2,B1,
RDS(on)Q2,B2

low-side switch (Q2) on
state resistances

5 mȍ

 

Table 2௑Uncertain parameters
Symbol Parameter Nominal

value
Units Uncertainty

Rline line resistance 100 mȍ ௗ±ௗ100%
CF1 input filter 1 capacitance 880 ȝF ௗ±ௗ30%
LF1 input filter 1 inductance 2.2 mH ௗ±ௗ30%
RL,F1 DCR of LF1 10 mȍ ௗ±ௗ50%
R1 load 1 resistance 5 ȍ ௗ±ௗ50%
R2 load 2 resistance 5 ȍ ௗ±ௗ50%
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ACi =

0 −1.52e4 −2.29e4

0 −8.75e4 −1.17e5

0 0 −9.17e4

BCi =

13.08

72.7

109.5

CCi = [−23.65 131.5 198] DCi = − 0.113

(12)

3௑Identification of interaction effects using
variance-based sensitivity analysis
3.1 Variance-based sensitivity analysis (VBSA)

The main idea of VBSA is the quantification of the influence of
uncertain input variables Xௗ=ௗ[X1, X2,..., Xn] on the model output Yௗ
=ௗf (X), without the assumption of model linearity. This model can
be approximated as a combinatorial expansion of 2n additive
components, known as the high-dimensional model representation
[13]:

Y = f 0 + ∑
i = 1

n

f i(Xi) + ∑
1 ≤ i < j ≤ n

f i j(Xi, X j) + ⋯ + f 12...n(X1, X2,

…, Xn)
(13)

where the component fi(Xi) represents the contribution to Y by the
independent variation of the ith variable Xi the second-order term
fij(Xi, Xj) represents the contributions to Y due to the interactions
between inputs Xi and Xj, not attributable to either fi(Xi) or fj(Xj),
and so on. Each component is orthogonal to each other. This can
further be decomposed in terms of the variances of the output
quantity and normalised [14], such that

1 = ∑
i = 1

n
Si + ∑ j > i

Si j + ∑k > j > i
Si jk + ⋯ + S12..n (14)

where each S term is an associated sensitivity measure of input
parameter(s) denoted by the subscript(s). The first-order sensitivity
index, Si, or main effect is an indicator of the significance of Xi on
the variance of Y, and can be calculated using [11]

Si =
Var[E[Y Xi]]

Var[Y]
(15)

where the total variance of Y under all variations is denoted by

Var[Y] = ∫ ⋅ ⋅ ⋅ ∫ ( f (X)dX − f 0)
2 (16)

and the variance of the conditional expectation is:

Var[E[Y Xi]] = ∫
0

1

⋅ ⋅ ⋅ ∫
0

1

f i
2(X)∏

s ≠ i

k

dXs (17)

Homma and Saltelli [11] introduced the total effect indices, STi,
that measure the effect of single variable (Xi) including its higher
order effects with other variables:

STi = 1 −
Var[E[Y X ∼ i]]

Var[Y]
(18)

where X∼i is a set that includes all variables except Xi.
Both main effects Si and total effects STi are computed through

the estimation of the multi-dimensional integrals using Monte

Carlo integration [14, 11]. Estimation of the variance of conditional
expectations is achieved by keeping certain input variables
common, for example, Si is calculated by keeping Xi constant while
sampling all other variables independently as indicated by (17).
The difference between the total effect indices and the first-order
indices (STiௗ−ௗSi) accounts for the interactions of parameter Xi with
other variables.

3.2 Modelling for VBSA

The stability of the system can be assessed from the real part of the
eigenvalues of the linearised (small-signal) model. Due to the
parametric uncertainty, the steady-state operating point (x0) and
system eigenvalues are also uncertain. Eigenvalues must be
numerically computed and are dependent on the uncertain input
variables. This process can be considered as a model input–output
mapping denoted by: f: Xĺ Y, where X is the vector of uncertain
input parameters and Y is the real-part of the eigenvalue(s).
Random sampling from the probability distributions of the
uncertain variables generates a unique scenario. For a given
scenario (m), systems (1)–(8) are represented by the simplified
form: dx/dtௗ=ௗfm (x). x0 is determined when state variables no longer
vary with time, i.e. 0ௗ=ௗfm (x0), and is calculated using a numerical
solver (fsolve in MATLAB). For each scenario, a linear time
variant model in the state space form is generated via Jacobian
linearisation about x0:

dx

dt
= Amx + Bmu (19)

where

Am =
∂ f m(x)

∂x x = x0
Bm =

∂ f m(x)
∂u x = x0

(20)

Matrix A is an nௗ×ௗn matrix which has a set of n distinct
eigenvalues (Ȝ1, Ȝ2, …, Ȝn), representing the modal response of the
system, and is used to find the stability margin by assessing the real
part of the critical eigenvalues which correspond to the oscillatory
modes with the least damping ratio. Under uncertainty, a difficulty
lies in the situation where the critical eigenvalues are related to
different subsystems. In this system, the most unstable response
can either be from the poorly damped filter in the active load 1
(AL1) or active load 2 (AL2).

PF analysis is used then to associate each eigenvalue with their
most dominant state variables. PFs show the influence of a state
variable (i) on any given eigenvalue (j) and are defined in (21) [1].
This allows us to reliably identify and group the eigenvalues to
unique subsystems:

pi j = wi j vji /∑
k = 1

N
wik vki (21)

The two most critical eigenvalue pairs (in further text referred to as
Ȝ1,2 and Ȝ3,4) in the system under study are related to the LC filter
state variables of AL1 (VC,F1, IL,F1) and of AL2 (VC,F2, IL,F2),
respectively. Table 4 shows the values of Ȝ1,2 and Ȝ3,4 for Cases A
and B under nominal conditions. Cases A and B differ only in
nominal values of input filter parameters of AL2, as defined in
Table 3. However, it is observed that under different scenarios
within the uncertainty ranges defined in Table 2, the real parts of
both the critical eigenvalues, where each critical eigenvalue is
related to either AL1 or AL2, do change. This indicates that
nonlinear coupling effects between subsystems AL1 and AL2 are

Table 3௑Case A and Case B values for input filter of active load 2
Symbol Parameter Nominal value (Case A) Nominal value (Case B) Units Uncertainty
CF2 input filter 2 capacitance 880 1500 ȝF ௗ±ௗ30%
LF2 input filter 2 inductance 2.2 4.7 mH ௗ±ௗ30%
RL,F2 DCR of LF2 50 50 mȍ ௗ±ௗ50%
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the result of the interactions among a set of parameters of AL1 and
AL2.

VBSA is used here to estimate the sensitivity (output variance)
of the real part of critical eigenvalues (Re(Ȝ1,2), Re(Ȝ3,4)) to
uncertain system parameters (Rline, CF1, LF1, RL,F1, R1, CF2, LF2,
RL,F2, R2) in the uncertainty range defined in Tables 3. The
procedure is outlined below:

(i). Sample the probability distribution of all uncertain parameters
using the pseudo-random sampling methodology for VBSA as in
[14] to generate an input vector of n unique scenarios.
(ii). For each scenario, use the procedure described in Section 2. (a)
Calculate a steady-state operating point for each scenario; (b)
linearise the model to obtain the A matrix and calculate
eigenvalues; (c) identify the two critical eigenvalue pairs, Ȝ1,2 and
Ȝ3,4, and associate them with load AL1 or AL2 using PF analysis.
(iii). Calculate Si and STi for both Re(Ȝ1,2) and Re(Ȝ3,4) using the
estimator presented in [14].

The total calculation time was ∼246௓s to perform 110,000 unique
model evaluations using an Intel Core i7-4790 @ 3.60 GHz with
16.0 GB of memory.

3.3 Results and discussion

VBSA results for the system under study are shown in Figs. 3 and
4. The first-order sensitivity indices Si indicate that in both Cases A
and B, Ȝ1,2 responds to changes in AL1 parameters (R1, CF1, LF1,
RL,F1), whereas Re(Ȝ3,4) responds mainly to changes in AL2
parameters (R2, CF2, LF2, RL,F2). This is expected as Ȝ1,2 and Ȝ3,4
have been classified by their dominant participation factors which
associate them either with AL1 or with AL2. The results show that
the most influential parameter for both Re(Ȝ1,2) and Re(Ȝ3,4) is
Rline, meaning that the reduction in the uncertainty of Rline will
reduce the output variance the most. Comparing Case A to Case B,
it can be observed that they differ primarily in total effect indices
STi and interaction effects (STiௗ−ௗSi). 

Under the matching filters case (Case A), the total variances of
Re(Ȝ1,2) respond to changes in both AL1 and AL2 parameters,
indicating interactions between the parameters of these two load
subsystems, i.e. varying multiple parameters simultaneously
produces a non-additive response on the movement of the
eigenvalue. Of interest is the significant interaction effect of Rline
which suggests that the behaviour of Rline on Re(Ȝ1,2) depends on
the other interacting variables. This phenomenon is investigated
further in the following section.

The results in Fig. 4 show that Case B exhibits minimal
interaction effects and no interaction between AL1 and Ȝ3,4, and
AL2 and Ȝ1,2; meaning that parameters with zero interaction terms
will have no effect on the sensitivity of any other parameter. For
example, changes in the value of LF2 in the uncertainty range will
not affect Re(Ȝ1,2) associated with AL1.

A limitation of using the total effect sensitivity measure is that
it cannot identify which particular parameters are interacting.
Modification of the adopted sampling procedure and estimator can
be made to accommodate the 2nd order and higher order
sensitivities [15], at the expense of increased total computation
time. Additionally, it is important to note that VBSA indices only
show the importance of particular variable(s) and do not quantify
whether increasing or decreasing a variable will destabilise or
stabilise the system.

4௑Modal analysis of source-side resistance
To further investigate the effect of Rline on the stability of Case A
system, the local sensitivity ∂Re(Ȝ1,2)/∂Rline is calculated for
different values of AL2 input filter resonant frequency. This is
achieved by adjusting parameters LF2 and CF2. Results presented in
Figs. 5 and 6 indicate drastically different behaviours of the system
under perturbations in Rline. 

Table 4௑PF analysis of critical eigenvalues for Cases A and B under nominal conditions
Case A Case B State variables with highest PFs

Ȝ1,2 −49.6ௗ±ௗ712.8i −19.3ௗ±ௗ710.7i VC,F1, IL,F1
Ȝ3,4 −2.46ௗ±ௗ714.5i −14.8ௗ±ௗ376.3i VC,F2, IL,F2

 

Fig. 3௒ Estimation of VBSA sensitivity indices for Case A
 

Fig. 4௒ Estimation of VBSA sensitivity indices for Case B
 

Fig. 5௒ Effects of 30% uncertainty in CF2 and LF2 on critical eigenvalue
sensitivity to Rline changes, in Case 1. All other parameters at nominal
values
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The results in Fig. 5 can be classified into three regions:

Region 1) line resistance is stabilising due to equivalent series
damping of the filters;
Region 2) line resistance is destabilising due to increase in filter
coupling effects;
Region 3) critical eigenvalue insensitivity to changes in Rline when
the two filters are matched;

For clarity, a cross-sectional view of Fig. 5 is shown in Fig. 6 when
LF2 is nominal. From this, it can be seen that for Rline to have a
damping effect, the system has to operate in Region 1.

5௑Validation via time-domain simulation
The detailed switching model of the system, as shown in Fig. 1, is
simulated using Simulink/SimPowerSystems library. The effects of
changes in Rline under different operating conditions, as identified
in Section 4, are verified using time-domain simulations. To
investigate the effect on the stability, the time-domain simulation
models are configured to operate in Region 1 (Rline stabilising) and

Region 2 (Rline destabilising). Fig. 6 is used to select AL2 input
filter parameters. In addition, the load resistances R1 and R2 are
chosen so that the system operates near instability, as summarised
in Table 5. 

Referring to the simulation results in Figs. 7 and 8, at tௗ=ௗ0, the
system operates in the steady state at the nominal line resistance
(Rlineௗ=ௗ0.1௓ȍ). Rline is then incrementally varied byௗ±ௗ0.01௓ȍ every
1௓s to observe the effect on Vbus. In Region 2, unstable oscillations
occur when Rline is increased to 0.14௓ȍ at tௗ=ௗ4 (Fig. 7b), whereas
in Region 1, Rline can be safely increased to the upper bounded
value of 0.2௓ȍ without exhibiting instability (Fig. 8b). These
results confirm the predicted system behaviour in Section 4.
Decreasing Rline results in the oscillatory behaviour in both
Regions 1 and 2. In Region 2, the instability occurs when Rline is
decreased to 0.02௓ȍ (Fig. 7a) compared to Region 1 instability at
0.06௓ȍ (Fig. 8a). It can be concluded that Rline has both damping
and coupling effects on AL1 and AL2 and under certain operating
condition, it can destabilise the system. 

6௑Conclusion
In this paper, a system with two active loads under parametric
uncertainties is analysed. An improved analysis approach has been
proposed using VBSA in order to identify system parameter(s) that
have a significant impact on the small-signal stability. For the
system under study, source-side resistance interacts with other
uncertain parameters when input filter resonant frequencies of
loads 1 and 2 are matched. Further analysis using local SA reveals
that source-side resistance can exhibit different effects on the small
signal stability: stabilising (damping), destabilising, and no impact
(insensitivity). The predicted model behaviours are validated
through time-domain simulation.
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