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Abstract. The association of Apolipoprotein E (APOE) with late-onset Alzheimer’s disease (LOAD) and cognitive endophe-

notypes of aging has been widely investigated. There is increasing interest in evaluating the association of other LOAD

risk loci with cognitive performance and decline. The results of these studies have been inconsistent and inconclusive. We

conducted a systematic review of studies investigating the association of non-APOE LOAD risk loci with cognitive per-

formance in older adults. Studies published from January 2009 to April 2018 were identified through a PubMed database

search using keywords and by scanning reference lists. Studies were included if they were either cross-sectional or lon-

gitudinal in design, included at least one genome-wide significant LOAD risk loci or a genetic risk score, and had one

objective measure of cognition. Quality assessment of the studies was conducted using the quality of genetic studies (Q-

Genie) tool. Of 2,466 studies reviewed, 49 met inclusion criteria. Fifteen percent of the associations between non-APOE

LOAD risk loci and cognition were significant. However, these associations were not replicated across studies, and the

majority were rendered non-significant when adjusting for multiple testing. One-third of the studies included genetic risk

scores, and these were typically significant only when APOE was included. The findings of this systematic review do not

support a consistent association between individual non-APOE LOAD risk and cognitive performance or decline. However,

evidence suggests that aggregate LOAD genetic risk exerts deleterious effects on decline in episodic memory and global

cognition.
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INTRODUCTION28

Cognitive performance generally declines with29

age, however, the patterns are characterized by 1)30

differences across cognitive domains and 2) substan-31

tial individual variation in level and trajectory [1, 2].32
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Performance on measures of episodic memory, exec- 33

utive function, reasoning, and processing speed may 34

begin to decline in early adulthood whereas gradual 35

improvement in some verbal and knowledge abili- 36

ties may continue to the sixth or seventh decade of 37

life [3]. Variation in individual trajectories reflects 38

life-long differences in demographic, lifestyle, med- 39

ical, environmental, neurobiological, and genetic 40

factors [4]. 41
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Cognitive decline is a multifactorial process that42

is likely promoted by the gradual accumulation of43

neuropathology associated with various chronic con-44

ditions of aging [5–7] and in particular late-onset45

Alzheimer’s disease (LOAD) [8]. The accumulation46

of amyloid-� (A�) and neurofibrillary tangles (NFT)47

begins decades prior to the onset of the clinical symp-48

toms of LOAD [9–12]. In dementia-free individuals49

a higher burden of LOAD pathology is on average50

associated with reduced cognitive performance and51

faster rates of cognitive decline [13–15]. As such,52

age-related cognitive decline may be mediated by the53

co-occurrence of A�, NFT, and other neuropatholo-54

gies [16–18].55

Genetic factors play an important role in the56

development of LOAD, accounting for 53% of the57

total phenotypic variance [19]. The Apolipoprotein58

E (APOE) epsilon (*�4) allele was the first com-59

mon genetic variant associated with LOAD [20], with60

recent genome-wide association studies (GWAS)61

identifying a further 26 loci associated with LOAD62

(Supplementary Table 1). GWAS performed sep-63

arately by four LOAD genetic consortia initially64

identified 11 loci (ABCA7, BIN1, CD2AP, CD33,65

CLU, CR1, EPHA1, MS4A4A, MS4A4E, MS4A6A,66

and PICALM) [21–25]. A further 12 loci (HLA-67

DRB5, PTK2B, SORL1, SLC24A4-RIN3, INPP5D,68

MEF2 C, NME8, ZCWPW1, CELF1, FERMT2, and69

CASS4) were identified in a meta-analysis by70

the International Genomics of Alzheimer’s Project71

(IGAP) [26]. A meta-analysis of IGAP and a proxy72

GWAS case-control study of self-reported fam-73

ily history of parental Alzheimer’s dementia in74

114 564 (14 482 proxy-cases & 100 082 proxy-75

controls) individuals from the UK Biobank identified76

a further 4 loci (HBEGF, ECHDC3, SCIMP, and77

SPPL2A) [27].78

A trio of recent GWAS have identified a fur-79

ther 16 loci. A second meta-analysis of IGAP with80

an expanded UK Biobank dataset (n = 314 278)81

identified three loci (ADAM10, KAT8, and ACE)82

[28]. A meta-analysis of UK Biobank proxy case-83

control status (n = 376,113), the personality genomics84

consortium Alzheimer’s disease working group of85

the Psychiatric Genomics Consortium (PGC-ALZ,86

n = 17,477), IGAP (n = 54,162), and the Alzheimer’s87

Disease Sequencing Project (ADSP, n = 7,506) iden-88

tified 8 loci (ADAMTS4, HESX1, CLNK, CNTAP2,89

APH1B, ABI3, ALPK2, and ACO74212.3) [29].90

Finally, an expanded IGAP analysis (n = 94,437)91

identified five loci (OARD1, TREM2, IQCK, WWOX,92

and ADAMTS1) [30]. TREM2 and ABI3, however,93

were identified as AD associated loci in an earlier 94

rare variant analysis [31]. 95

There is increasing interest in evaluating the 96

role of LOAD genetic risk variants with cognitive 97

decline. First, the shared cognitive and neuroanatom- 98

ical characteristics of normal cognitive aging and the 99

early stages of LOAD may be mediated by shared 100

genetic mechanisms. The presence of individual 101

LOAD-associated risk loci may lead to diminished 102

overall cognitive function, in the absence of cogni- 103

tive impairment or dementia, mediated by the gradual 104

accumulation of LOAD pathology [13, 14]. Sec- 105

ond, cognitive decline prior to dementia represents 106

an important endophenotype for LOAD. Cognitive 107

domain-specific variance reflects localized regional 108

brain structures/networks and the connectivity of 109

those networks. Therefore, the differential asso- 110

ciation of individual loci with specific cognitive 111

domains may reflect associations with particular neu- 112

roanatomical structures that influence LOAD onset 113

and progression. 114

Initial support for the association of LOAD risk 115

loci with cognitive performance was obtained from 116

studies assessing the association of APOE with cog- 117

nition, where the APOE*�4 allele was associated 118

with specific deleterious effects on episodic memory, 119

executive functioning, perceptual speed, and global 120

cognitive ability [32, 33]. Further studies examining 121

the association of other LOAD risk loci with cogni- 122

tive function have been inconsistent and inconclusive. 123

The aim of this systematic review is to evaluate the 124

evidence of the association of non-APOE LOAD 125

risk loci with cognitive performance and decline, 126

within the context of both cognitive aging and a 127

LOAD cognitive endophenotype. We provide a nar- 128

rative synthesis rather than focusing on the relatively 129

few studies that would be amenable to meta-analysis 130

due to the heterogeneity in methodologies between 131

studies. 132

METHODS 133

Registration of protocol and reporting 134

The protocol for the review was registered 135

with the International Prospective Register of Sys- 136

tematic Reviews (PROSPERO CRD42017075685) 137

[34] and the review is reported in accordance 138

with the PRISMA checklist (see Supplementary 139

Material). 140
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Table 1

Study Characteristics

Study Cohort Sample Size Age (y) Education (y) % Male Population Studied Follow-up (y) Cognitive Status

Andrews 2017 [41] PATH 1,626 62.51 (1.51) 14.15 50.46 Caucasian 12 1,626 CN

Barral 2012 [90] NIA-LOAD 1,365 72.9 (8.67) 14.5 (3) 60.1 Caucasian — 337 AD, 1028 CN

Bressler 2017 [44] ARIC 8,320 57 (5.6) >11:86.1% 46.1 Caucasian 6 —

2,039 55.8 (5.7) >11:68.2% 33.7 African-American

Carrasquillo 2015 [42] Mayo Clinic 2,262 77 (49–98)* 14 (4–20)* 44 Caucasian 3.8 (0.7–17.8)* At last diagnosis:

1881 CN, 252

MCI, 129 AD

Chibnik 2011 [57] ROS MAP 791 75.5 (7.3) 18.1 (3.4) 34 Caucasian 7.8 (4.5) 218 incident AD

875 81.0 (6.7) 14.3 (3.2) 27 4.3 (2.6) 186 incident AD

Christoforou 2014 [69] NCNG 670 47.6 (18.3) — 31.8 Caucasian — —

Darst 2017 [68] WRAP 1,200 53.6 (6.6) 16.3 (2.8) 31.1 Caucasian 6.2 CN; enriched with a family

history of AD

Davies 2014 [89] CAGES 3,280 — Caucasian Non-demented

LBC1921</b> 453 79.1 (0.6) 41 68

LBC1936</b> 932 69.5 (0.8) 51 59

ABC1936</b> 347 64.6 (0.9) 52 53

Manchester and 1,548 65 (44–93)* 29 14 (12–18)*

Newcastle

Davies 2015 [61] CHARGE 53,949 66.39 (44.2) — 42.7 Caucasian — 53,949 CN

Davies 2016 [58] UK Biobank 112,151 56.91 (7.93) 30.5% w/ college degree 47.5 Caucasian — —

Davies 2018 [39] UKBB, CHARGE, 300,486 56.76 — 46.26 Caucasian — Dementia Free at baseline

COGENT

Debette 2015 [56] CHARGE 29,076 63.6 (7.0) 28.8% w/ college degree 44 Caucasian — 29,076 CN

DeJager 2012 [78] ROS 749 75.3 (7.2) 18.2 (3.4) 34 Caucasian 9 CN at Baseline. At last diagnosis:

151 MCI; 152 Dementia

Engelman 2013 [43] WRAP 1,153 53.6 (6.6) ≥college 62% 31 Caucasian UTAI 8 CN at baseline; Enriched for a

parental history of AD

Ferencz 2014 [70] SNAC-K 2 480 71.69 (10.3) 12.29 (4.3) 34.1 Swedish — CN at baseline

Ge 2018 [75] ADNI 702 72.8 16.3 54.6 Caucasian 2.83 Baseline: 221 CN; 367 MCI, 114

AD

Gui 2014 [88] GBCS Chinese 4 CN at baseline; 198 incident

Neurological disease

Cases 1 325 62.4 (7.0) ≥College 9% 31.5

Controls 1 083 65.4 (4.5) ≥College 17.1% 32.4

Hagenaars 2016 [95] UK Biobank 112 151 56.9 (7.9) 30.5% w/ degree 47.5 British — —

Hagenaars 2017 [50] UK Biobank 23 822 — — — British — —

Hamilton 2011 [47] LBC1921 505 10.9 (0.28) — 41.3 Caucasian 68.21 CN

LBC1936 998 10.9 (0.28) 50.5 58.68

(continued)
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(continued)

Study Cohort Sample Size Age (y) Education (y) % Male Population Studied Follow-up (y) Cognitive Status

Harris 2014 [96] CAGES Caucasian

LBC1921</b> 550 79.1 (0.6) — 42.5 68.21 CN

LBC1936 1 091 69.5 (0.8) — 50.2 58.68

ABC1936</b> 498 64.6 (0.9) — 48.8 53.7

Manchester and Newcastle 6,063 44–93 — 30.1 20

Hill 2018 [40] UKBB 120 934 — — — — — —

SSAGC 329 417

Sniekers 2017 78 308

Houlihan 2009 [62] LBC1936 1 031 69.5 (0.8) — 50.3 Scottish 58.68 CN

Keenan 2012 [94] ROS 817 75.7 (7.4) 18.2 (3.4) 34.4 Caucasian — Dementia free at baseline, 240

incident dementia

MAP 892 81.1 (6.7) 14.7 (2.9) 27.6 Caucasian 27.8% CN; 48.9% MCI; 23.3%

AD

ADNI 746 75.4 (6.9) 15.6 (3.0) 59 11.6% AD

CHAP 624 71.9 (5.2) 14.9 (3.3) 37 Caucasian

Liang 2015 [97] BABRI 780 64.7 (7.2) 11.3 (3.2) 37.1 Chinese — Cognitively Normal

Liao 2014 [87] Taiwan Biobank 307 76.2 (10) 10.7 (4.9) 69.4 Chinese — Cognitively Normal

Liebers 2016 [73] HRS 8 616 60.5 (8.5) ≥college 25.2% 43.8 Caucasian 10 (0–14) —

Li 2017 [64] BABRI 780 64.7 (7.3) 11.3 (3.2) 37.1 Chinese — CN

Liu 2009 [65] Rotterdam 2 583 64.0 (5.8) — 42.9 Caucasian — CN

Study ERF 2 883 48.7 (14.5) 40.0

Liu 2014 [67] ADNI 211 75.6 (4.9) 16.1 (2.8) 54 — — CN

Marden 2016 [71] HRS 7 172 63.0 (8.4) 13.1 (2.5) 40.8 Caucasian 12.3 —

1 081 61.6 (8.0) 11.4 (3.3) 33.7 African-American 11.3

Marioni 2017 [74] Generation Scotland 3 495 63 (61–65)† 12 (3–15)† 42.8 Scottish — CN

McFall 2016 [92] VLS 593 70.3 (8.66) 15.3 (2.95) 32.7 Canadian UTAI 9 CN

Mengel-From 2011 [54] Danish 1905 Cohort Study 1 380 92–93 — 31 Danish — At baseline: 48.64%

non-impaired; 32.06%

Mildly Impaired; 19.30%

Severely Impaired

Mengel-From 2013 [55] Danish 1905 Cohort Study 1 651 92–93 — — Danish 7 10 At baseline: 47.3% CN

LSADT 573 73–83 At baseline: 80.7% CN

Mormino 2016 [72] ADNI 526 75.3 (6.5) 15.9 (2.9) 61.8 Caucasian 4.58 (2.74) 36.9% CN; 63.1% MCI

Nettiksimmons 2016 [45] MrOS SOF 3 267 73.4 (5.7) 56% w/ college degree 100 0 Caucasian UTAI 10 —

3 026 71.0 (4.9) 18% w/ college degree UTAI 10

Pedraza 2014 [52] Mayo Clinic 268 2 78.7 (7.4) 12.6 (3.0) 23 African American — CN: 224; AD: 44

651 81.8 (6.3) 14.0 (2.9) 43.7 Caucasian CN: 2219; AD: 431

Qiu 2016 [93] — 46 62.96 — 39.1 Chinese — Dementia free at baseline

Raj 2017 [59] CHAP 2 588 70.4 (5.0) 11.9 (3.2) 37 African-American UTAI 12 Dementia free at baseline

IIDP 1 178 75.5 (5.5) 11.0 (2.9) 34 UTAI 15

ROS/MAP 85 70.5 (7.6) 15.4 (3.4) 16 UTAI 19

MARS 113 76.9 (5.1) 14.8 (4.1) 39 UTAI 17

Reynolds 2013 [66] SATSA 1,609 72.3 (50.1–93)* — 42.3 Swedish 7.8 (0–17.8)* Dementia free at baseline

OCTO-Twin GENDER
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Savage 2018 [38] UKBB, Cogent, GENR, 269 867 52.87 — 46.26 Caucasian — —

S4S, TEDS, DTR, IMAGEN,

BLTS, NESCOG, GfG, FHS,

STR, HRS/HI IQ, RS, STSA

Shulman 2010 [91] ROS 414 87.1 (6.9) 16.5 (3.6) 38.9 United States — Dementia free at baseline;

98 incident MCI;

185 incident dementia

MAP

Sneikers 2017 [60] UKBB, GENR, TEDS, ALSPAC, 78 308 44.4 — — Caucasian — —

QIMR, RAINE, HU, ERF,

STR, LBC1921, LBC1936

Sweet 2012 [53] CHS 1 831 71.7 (4.7) 39.9% w/ some college 37.5 Caucasian UPTAI 9 Dementia free at baseline

Thambisetty 2013 [51] BLSA 599 67.5 (7.5) 16.5 (2.5) 57.1 22.4% African-American 6.6 (4.6) CN

95 75.9 (7.1) 16.2 (3.1) 56.8 77.6% Caucasian 5.4 (4.2) MCI/AD converters

Verhaaren 2013 [48] Rotterdam Study 5 171 66.2 (11.2) 12.8% primary education only 43.6 Dutch — Dementia free at baseline

Vivot 2015 [46] 3C 4 931 74.0 (70.0–78.2)† 36%>9 years 38 French UTAI 10 Dementia free at baseline

Zhang 2014 [49] HRS 5 808 64.0 (7.3) ≥college 21.8% 42.8 Caucasian UTAI 13 —

*Median (range); †Median (IQR); UTAI, Up to and Including.
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Search strategy141

A PubMed database search (see Supplementary142

Material) included papers published between Jan-143

uary 2009 (the publication year of the first GWAS144

to identify non-APOE genome-wide significant SNPs145

for LOAD) and April 2018 (inclusive). Articles were146

restricted to human studies published in English. Ref-147

erence lists of all articles selected for data extraction148

were screened for additional articles.149

Inclusion and exclusion criteria150

Studies were included in the review if they met151

the following inclusion criteria: 1) included genetic152

data from non-APOE genome-wide significant risk153

loci for LOAD (ABCA7, BIN1, CD2AP, CD33,154

CLU, CR1, EPHA1, MS4A4A, MS4A4E, MS4A6A,155

PICALM, HLA-DRB, PTK2B, SORL1, SLC24A4,156

RIN3, INPP5D, MEF2 C, NME8, ZCWPW1, CELF1,157

FERMT2, CASS4, HBEGF, ECHDC3, SPPL2A, and158

SCIMP) or a LOAD genetic risk score (GRS); 2)159

included at least one test measuring cognitive per-160

formance; 3) the publication was in English; 4) it161

was either cross-sectional or longitudinal. Articles162

were excluded if they were: 1) case only studies, case163

reports or review articles; 2) animal studies; or 3)164

conducted in a clinical population.165

Abstract screening and article selection166

Article citations and abstracts were imported into167

Covidence [35], rated against the selection crite-168

ria, and nominated independently for inclusion in169

full-text screening by SJA and GPM. Subsequently,170

full-text articles were assessed for inclusion in the171

final review. When the two reviewers differed, the172

article was discussed until a consensus was reached.173

Inter-rater reliability was assessed by calculating174

a two-way consistency average-measures interclass175

correlation coefficient (ICC).176

Data extraction177

For articles included in the systematic review, the178

following variables were extracted: 1) study design179

(i.e., longitudinal or cross-sectional; candidate SNPs,180

gene-based or GWAS analysis; statistical test); 2)181

sample characteristics (i.e., sample size, age, edu-182

cation, gender, ethnicity/population, follow-up, and183

cognitive status); 3) genetic variants examined; 4)184

cognitive tests examined; and 5) reported associa-185

tions (i.e., non-significant result, positive association, 186

negative association). Given the heterogeneity in the 187

measures with which the reviewed articles assessed 188

cognitive performance, all the cognitive tests were 189

coded within conventional cognitive domains [33] 190

(Supplementary Table 2). These domains are based 191

on the typical taxonomy found in the neuropsycho- 192

logical literature and were used in pervious previous 193

meta-analyses on the effect of APOE on cognitive 194

performance [33, 36]. Cognitive domains included: 195

attention (AT), episodic memory (EM), executive 196

function (EF), global cognition (GC), perceptual 197

speed (PS), working memory (WM), verbal ability 198

(VA), and visuospatial skill (VS). Two general cog- 199

nition clusters were included: fluid cognition (Gf) and 200

crystallized cognition (Gc). Study quality was eval- 201

uated using the 11-item Quality of Genetic Studies 202

(Q-Genie) Tool [37] (Supplementary Material). 203

Novel AD loci 204

The initial screen did not include the 16 novel 205

loci identified by Marioni et al. [28], Janssen et al. 206

[29], and Kunkle et al. [30] (ADAM10, KAT8, ACE, 207

ADAMTS4, HESX1, CLNK, CNTAP2, APH1B, ABI3, 208

ALPK2, ACO74212.3, OARD1, TREM2, IQCK, 209

WWOX, and ADAMTS1) as these studies were pub- 210

lished after the database search and article screening 211

were conducted. As such, for the loci reported in these 212

studies we limited our search to articles citing either 213

the BioRxiv pre-print article or the published arti- 214

cle as of March 2019. Additionally, where GWAS 215

summary statistics were available for cognitive phe- 216

notypes, we extracted the reported associations for 217

these loci. 218

RESULTS 219

Systematic literature search 220

The PubMed search identified 2,446 references 221

and follow-up screening of reference lists identi- 222

fied two additional articles. 2,395 references were 223

removed based on the inclusion/exclusion criteria. 224

Seventy-one full-text articles were reviewed, 21 were 225

excluded as follows: 1) fifteen due to selected AD 226

risk loci not reported, 2) one was an updated anal- 227

ysis of a previous study, 3) two because summary 228

statistics were not made publicly available, 4) three 229

as the study was conducted in adolescents. Forty- 230

nine articles were included in the systematic review 231

(Supplementary Figure 1). 232
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Table 2

Description of the Methods used for each study

Study Study Design Genetic risk Score Gene Symbols Cognitive Domains Statistical Test

Andrews 2017 [41] Longitudinal, candidate

SNPs

Unweighted & weighted

GRS w/ & w/o APOE

ABCA7, BIN1, CD2AP, CD33,

CLU, CR1, EPHA1, MS4A4A,

MS4A4E, MS4A6A, PICALM,

HLA-DRB5, PTK2B, SORL1,

SLC24A4-RIN3, INPP5D,

MEF2C, NME8, ZCWPW1,

CLEF1, FERMT2, CASS4

EM, EF, VA, PS Linear Mixed Effects

Models

Barral 2012 [90] Cross-sectional, candidate

SNPs

— BIN1, CLU, CR1, PICALM EM Logistic Regression

Bressler 2017 [44] Longitudinal, Candidate

SNPs

Unweighted GRS w/

APOE

ABCA7, BIN1, CASS4, CD2AP,

CD33, CELF1, CLU, CR1,

EPHA1, FERMT2, HLA-DRB1,

INPP5D, MEF2C, MS4A4E,

NME8, PICALM, PTK2B,

SLC24A4, SORL1, ZCWPW1

EM, PS, VA General Linear Models

Carrasquillo 2015 [42] Longitudinal, candidate

SNPs

Weighted GRS w/ & w/o

APOE

ABCA7, BIN1, CD2AP, CD33,

CLU, CR1, EPHA1, MS4A6A,

PICALM

EM Linear Mixed Effects

Models

Chibnik 2011 [57] Longitudinal, candidate

SNPs

— CLU, CR1, PICALM EM, GC, WM, VA, PS,

VS cognitive

composites

Linear Mixed Effects

Models

Christoforou 2014 [69] Cross-sectional, GWAGS — ABCA7, CLU, BIN1, CD2AP,

CD33, CR1, EPHA1, MS4A4A,

MS4A6A, MS4A4E, PICALM,

HLA-DRB5, PTK2B, SORL1,

SLC24A4, RIN3, INPP5D,

MEF2C, ZCWPW1, FERMT2,

CASS4, HBEFG, ECHDC3,

SCIMP, SPPL2A, ADAM10,

KAT8, ACE, ADAMTS4, HESX1,

CLNK, CNTAP2, APH1B, ABI3,

ALPK2, OARD1, TREM2, IQCK,

WWOX, ADAMTS1

Gf, Gc Gene - PLINK

permutation-based tests

Darst 2017 [68] Longitudinal, candidate

SNPs

Weighted pathway

specific GRS w/ & w/o

APOE

ABCA7, BIN1, CD2AP, CLU, CR1,

EPHA1, MS4A6A, PICALM,

HLA-DRB1, PTK2B, SORL1,

SLC24A4, INPP5D, NME8,

ZCWPW1, CLEF1, FERMT2,

CASS4, MEF2C

EM, WM, PS/EF factor

scores

Linear Mixed Effects

Models

Davies 2014 [68] Longitudinal, GWAS — ABCA7, BIN1, CD2AP, CD33,

CLU, CR1, MS4A6A, PICALM

Gf Growth Curve Models

(continued)
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(continued)

Study Study Design Genetic risk Score Gene Symbols Cognitive Domains Statistical Test

Davies 2015 [61] Cross-sectional,

gene-based

— ABCA7, BIN1, CD2AP, CD33,

CLU, CR1, EPHA1, MS4A6A,

PICALM, HLA-DRB1,

HLA-DRB5, PTK2B, SORL1,

SLC24A4, RIN3, INPP5D,

MEF2C, ZCWPW1, FERMT2,

CASS4

Gf

Davies 2016 [58] Cross-sectional, GWAS — ABCA7, BIN1, CASS4, CD2AP,

CD33, CELF1, CLU, CR1,

EPHA1, FERMT2,

HLA-DRB5–HLA-DRB1,

INPP5D, MEF2C, MS4A6A,

NME8, PICALM, PTK2B,

SLC24A4-RIN3, SORL1,

ZCWPW1

EF, PS, EM

Davies 2018 [39] Cross-sectional, GWAS;

GWAGS

— ABCA7, BIN1, CASS4, CD2AP,

CELF1, CD33, CLU, CR1,

EPHA1, FERMT2, HLA-DRB5,

INPP5D, MS4A6A, MS4A4A,

MS4A4E, MEF2C, NME8,

PICALM, PTK2B, SORL1,

SLC24A4-RIN3, ZCWPW1,

HBEGF, SPPL2A, ECHDC3,

SCIMP, ADAM10, KAT8, ACE,

ADAMTS4, HESX1, CLNK,

CNTAP2, APH1B, ABI3, ALPK2,

OARD1, TREM2, IQCK, WWOX,

ADAMTS1, AC074212.3

GC Linear Regression

Debette 2015 [56] Cross-sectional, GWAS Weighted GRS w/ & w/o

APOE

CLU, EPHA1, CD2AP, PICALM,

MS4A6A, BIN1, CD33, CR1,

ABCA7, PTK2B, SORL1,

SLC24A4, INPP5D, MEF2C,

NME8, ZCWPW1, CELF1,

FERMT2, CASS4

EM Linear Regression

DeJager 2012 [78] Longitudinal, GWAS Weighted GRS w/o APOE CR1, PICALM, CLU, BIN1,

ABCA7, MS4A, CD2AP, EPHA1,

CD33

GC cognitive composite Linear Mixed Effects

Models: Modelled

Change Linear

regression for GWAS

Engelman 2013 [43] Longitudinal, candidate

SNPs

— ABCA7, BIN1, CD2AP, CD33,

CLU, CR1, EPHA1, MS4A,

PICALM

EM, WM, EM factor

scores

Linear Mixed Models
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Ferencz 2014 [70] Cross-sectional, candidate

SNPs

Unweighted GRS PICALM, CLU, BIN1 EM, PS, VA ANCOVA

Ge 2018 [75] Longitudinal Weighted PGRS w/

APOE

— EM, EF Linear Mixed Effects

Models

Gui 2014 [88] Longitudinal, candidate

SNPs

Weighted GRS w/ APOE BIN1, CD2AP, CLU, SORL1,

PICALM, MS4A6A, MS4A4E,

ABCA7, CD33

EM Maximum Likelihood

multiple linear

regression

Hagenaars 2016 [95] Cross-sectional PGRS — EF, PS, EM Linear Regression

Hagenaars 2017 [50] Cross-sectional; GWAS;

GWAGS

— ABCA7, BIN1, CASS4, CD2AP,

CD33, CELF1, CLU, CR1,

EPHA1, FERMT2, HLA-DRB1,

MEF2C, MS4A4A, MS4A4E,

MS4A6A, NME8, PICALM,

PTK2B, SLC24A4, ZCWPW1,

HBEFG, ECHDC3, SCIMP,

SPPL2A, ADAM10, KAT8, ACE,

ADAMTS4, HESX1, CLNK,

CNTAP2, APH1B, ABI3, ALPK2,

OARD1, TREM2, IQCK, WWOX,

ADAMTS1

AT, EF Linear Regression

Hamilton 2011 [47] Longitudinal, candidate

SNPs

— BIN1, CLU, CR1, PICALM GC, VA, EF, EM ANOVA

Harris 2014 [96] Longitudinal PGRS — Gf, Gc, PS, EM Partial Correlations

Hill 2018 [40] Cross-sectional, GWAS;

GWAGS

— ABCA7, MEF2C, HBEGF, CELF1,

ZCWPW1, SPPL2A, HLA-DRB1,

SLC24A4, HLA-DRB5, SORL1,

PICALM, CR1, RIN3, ECHDC3,

FERMT2, SCIMP, INPP5D,

BIN1, CLU, PTK2B, CD2AP,

MS4A4E, CD33, CASS4,

MS4A4A, EPHA1, MS4A6A,

NME8, ADAM10, KAT8, ACE,

ADAMTS4, HESX1, CLNK,

CNTAP2, APH1B, ABI3, ALPK2,

OARD1, TREM2, IQCK, WWOX,

ADAMTS1, AC074212.3

GC Multi-Trait Analysis of

GWAS (MTAG)

Houlihan 2009 [62] Cross-sectional, candidate

SNPs

— SORL1 GC, EM, WM, EF, VS,

VA, PS

Linear Regression

Keenan 2012 [94] Longitudinal, candidate

SNPs

— CR1 EM cognitive composite Linear Mixed Effects

Models

(continued)



Uncorrected Author Proof

1
0

S
.J.

A
n

d
rew

s
et

a
l.

/
A

lzh
eim

er’s
D

isea
se

G
en

etics
a

n
d

C
o
g

n
itio

n

Table 2

(continued)

Study Study Design Genetic risk Score Gene Symbols Cognitive Domains Statistical Test

Liang 2015 [97] Cross-sectional, candidate

SNPs

— SORL1 GC, EM, EM, VS, VA,

PS, EF

MANOVA

Liao 2014 [87] Cross-sectional, candidate

SNPs

— ABCA7 GC ANOVA

Liebers 2016 [73] Longitudinal PGRS — GC, AT, EM Linear Mixed Effects

Models

Li 2017 [64] Cross-sectional, candidate

SNPs

— SORL1 GC, EM, VS, VA, PS, EF GLM

Liu 2009 [65] Cross-sectional, candidate

SNPs

— SORL1 EM, EF, GC cognitive

composites

GLM

Liu 2014 [67] Longitudinal, candidate

SNPs

— NME8 GC, EM ANOVA

Marden 2016 [71] Longitudinal Weighted GRS w/ & w/o

APOE

BIN1, CLU, ABCA7, CR1,

PICALM, MS4A6A, CD33,

CD2AP, EPHA1, HLA, PTK2B,

SORL1, SLC24A4, INPP5D,

MEF2C, NME8, ZCWPW1,

CELF1, FERMT1, CASS4

EM Linear regression

Marioni 2017 [74] Cross-sectional PGRS — PS, EM Linear Mixed Effects

Models

McFall 2016 [92] Longitudinal, candidate

SNPs

— CLU EF factor scores Growth curve models

Mengel-From 2011 [54] Cross-sectional, candidate

SNPs

— CLU, PICALM, CR1 GC Linear Regression

Mengel-From 2013 [55] Longitudinal, candidate

SNPs

— CLU GC Linear Mixed Effects

Models

Mormino 2016 [72] Longitudinal PGRS — EM, EF factor scores Linear Mixed Effects

Models

Nettiksimmons 2016 [45] Longitudinal, candidate

SNPs, gene-based

— ABCA7, BIN1, CASS4, CD2AP,

CD33, CELF1, CLU, CR1,

EPHA1, FERMT2, HLA,

INPP5D, MEF2C, MS4A, NME8,

PICALM, PTK2B, SLC24A4,

SORL1, ZCWPW1

GC Linear Mixed Effects

Models

Pedzara 2014 [52] Cross-sectional, candidate

SNPs

— CLU, CR1, PICALM EM Linear Regression

Qiu 2016 [93] Cross-sectional, candidate

SNP

— CLU GC, PS, VA t-test
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Raj 2017 [59] Longitudinal, GWAS — ABCA7, MS4A6A, CASS4,

INPP5D, SORL1

GC cognitive composite Linear Mixed Effects

Models

Reynolds 2013 [66] Longitudinal, candidate

SNPs

— SORL1 VA, EM, PS, WM Linear Mixed Effects

Models

Savage 2018 [38] Cross-sectional, GWAS;

GWAGS

— MEF2C, HBEGF, SPPL2A,

SLC24A4, CR1, CELF1, RIN3,

ZCWPW1, ECHDC3, CLU,

ABCA7, PICALM, SORL1,

BIN1, INPP5D, EPHA1, CASS4,

MS4A4E, SCIMP, MS4A6A,

CD2AP, MS4A4A, FERMT2,

PTK2B, CD33, NME8, ADAM10,

KAT8, ACE, ADAMTS4, HESX1,

CLNK, CNTAP2, APH1B, ABI3,

ALPK2, OARD1, TREM2, IQCK,

WWOX, ADAMTS1, AC074212.3

GC Gene test

Shulman 2010 [91] Cross-sectional, candidate

SNPs

— SORL1, CD33 EM, VA, WM, PS, VS

cognitive composites

Linear Regression

Sneikers 2017 [60] Cross-sectional, GWAS;

GWAGS

— MEF2C, HBEGF, CELF1,

ZCWPW1, MS4A4E, MS4A6A,

SLC24A4, PICALM, MS4A4A,

SCIMP, CD2AP, HLA-DRB1,

SORL1, PTK2B, CD33, NME8,

CR1, HLA-DRB5, BIN1,

SPPL2A, ECHDC3, EPHA1,

CLU, CASS4, ABCA7, RIN3,

FERMT2, ADAM10, KAT8, ACE,

ADAMTS4, HESX1, CLNK,

CNTAP2, APH1B, ABI3, ALPK2,

OARD1, TREM2, IQCK, WWOX,

ADAMTS1, AC074212.3

GC Regression

Sweet 2012 [53] Longitudinal, candidate

SNPs

— CLU, CR1, PICALM GC, AT Bayesian Modelling

Thambisetty 2013 [51] Longitudinal, candidate

SNPs

— CLU EM Linear Mixed Effects

Models

Verhaaren 2013 [48] Cross-sectional, candidate

SNPs

Weighted GRS w/ & w/o

APOE

CLU, PICALM, BIN1, CR1,

ABCA7, MS4A6A, MS4A4E,

CD2AP, EPHA1, CD33

GC, EM, EF, PS cognitive

composites

Linear Regression

Vivot 2015 [46] Longitudinal, candidate

SNPs

Weighted GRS w/ & w/o

APOE

CR1, CLU, BIN1, PICALM,

ABCA7, MS4A4E, CD33,

MS4A6A, CD2AP

GC, VA, GC, PS, EM non-linear mixed models

with latent processes

Zhang 2014 [49] Longitudinal, GWAS — PICALM, CD2AP, CR1, EPHA1,

MS4A, CLU, CD33, ABCA7,

BIN1

GC Linear Mixed Effects

Models
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For each study we report study characteristics233

(Table 1), study design (Table 2), individual cog-234

nitive tests and the respective cognitive domains235

tested (Supplementary Table 2), and individual SNPs236

genotyped (Supplementary Table 3). Of the forty-237

nine studies, 23 employed a cross-sectional design238

and 26 a longitudinal design. 29 selected SNPs239

based on a candidate gene approach, 7 employed240

gene-based analyses, 6 reported AD risk loci as a sec-241

ondary outcome in GWAS, and 17 included a GRS,242

with 8 studies only using a GRS. Episodic mem-243

ory (n = 31, 63.27%) and global cognition (n = 23,244

46.94%) were the most commonly assessed cognitive245

measures.246

The overall average quality rating was ‘good’,247

with four studies obtaining a ‘moderate’ score. The248

distribution and mean rating for each item and the249

average score per study are presented in Supplemen-250

tary Figures 2 and 3. The ICC was in the excellent251

range (ICC = 0.88 95%CI: 0.79 - 0.93), indicating252

that reviewers had a high degree of agreement in the253

overall quality of the included studies.254

Association of AD genetic risk loci with cognitive255

performance and change256

In the following narrative, we report all gene-257

cognition associations that are statistically significant258

(p < 0.05) (Figs. 1 and 3). However, it should be259

noted that the majority (84.3%) of the reported260

associations were non-significant (Supplementary261

Table 4). The number of studies investigating the262

association of each LOAD loci with cognitive func-263

tion and the number of studies reporting at least264

one significant association for each gene-cognitive265

domain combination is reported in Supplementary266

Table 4. Across cognitive domains/clusters, GC had267

the highest proportion of reported significant associ-268

ations (30.2%, 77/255) followed by VS (30%, 3/10),269

VA (14.29%, 16/112), EM (14.29%, 32/224), AT270

(13.33%, 6/45), EF (11.86%, 14/118), PS (11.79%,271

23/195), Gf (7.46%, 5/67), WM (4.05%, 3/74), and272

Gc (0%, 0/38). The largest studies to report an asso-273

ciation between the AD risk loci and GC, were two274

GWAS meta-analyses inclusive of the UK Biobank275

(n = 269,867 and 300,486) [38, 39] and a multi-trait276

analysis of intelligence and educational attainment277

(n = 248,482) [40]. Davies et al. [39] found 18 loci278

associated with GC (MEF2C, HBEGF, SPPL2A,279

IQCK, ABI3, FERMT2, CELF1, CR1, CNTNAP2,280

SLC24A4, AC074212.3, CLU, ABCA7, ADAM10,281

PTK2B, CD2AP, CLNK, and WWOX), of which only282

MEF2C, HBEGF, and SPPL2A were genome-wide 283

significant. Savage et al. found 11 loci to be asso- 284

ciated with GC (MEF2C, HBEGF, SPPL2A, CR1, 285

SLC24A4, OARD1, CNTNAP2, WWOX, ZCWPW1, 286

CELF1, and ABCA7), of which MEF2C, HBEGF, 287

and SPPL2A were also genome-wide significant [38]. 288

Finally, Hill et al. [40] identified 13 loci associated 289

with global cognition (MEF2C, HBEGF, CELF1, 290

ZCWPW1, SPPL2A, WWOX, HLA-DRB1, SLC24A4, 291

ADAMTS4, ALPK2, ACE, SORL1, and PICALM), of 292

which MEF2C, HBEGF, CELF1, and ZCWPW1 were 293

genome wide significant. 294

ABCA7 295

rs3764650(G) was associated with worse base- 296

line performance and slower decline in EM [41]. 297

In a second study, rs3764650(C) was associated 298

with faster decline in EM in cognitively normal 299

participants who converted to mild cognitive impair- 300

ment (MCI)/Alzheimer’s disease (AD), but not in 301

participants who remained cognitively normal [42]. 302

Additionally, rs3752246(G) was associated with 303

worse performance in EM and WM at baseline 304

[43], whereas rs4147929(A) was associated with 305

better baseline EM [44] and EF [39] performance. 306

Change in GC was associated with rs115550680(G) 307

in African-Americans and with the ABCA7 gene- 308

region in a female only and a male only cohort [45]. 309

BIN1 310

rs744373(G) was associated with worse baseline 311

EM performance [41] and a faster rate of decline 312

in global cognition [46]. In univariate (7 SNPs) 313

and haplotype analyses (two 3-SNP windows), sig- 314

nificant associations were observed for cognitive 315

performance in EM, EF, VA, and GC [47]. The BIN1 316

gene region was associated with change in GC in 317

females [45]. 318

CD2AP 319

rs9349407(C) and rs9296559(G) were associated 320

with worse EM performance and a faster rate of 321

decline in GC respectively [48, 49]. The CD2AP gene 322

region was also associated with performance in AT 323

[50] and PS [39]. 324

CD33 325

rs3865444(C) was associated with worse baseline 326

performance in EF [48], and in African-Americans 327

rs3865444(A) was associated with worse baseline 328

performance in VA [44]. The CD33 gene region and 329
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rs3865444 were associated with change in GC in330

females [45].331

CLU332

rs11136000(C) was associated with faster decline333

in WM [41] and EM in participants who converted334

to MCI/AD, but not in participants who remained335

cognitively normal [51]. rs11136000(C) was also336

associated with better performance in EM in a337

combined cohort of case/controls, but not in non-338

demented subjects only [52]. In a follow-up study,339

rs11136000(G) was associated with worse baseline340

performance in EM [42]. rs11136000(T) minor allele341

was associated faster decline in GC [53]. Mengel-342

From et al. [54, 55] investigated the association of343

four separate SNPs in the CLU locus with cognitive344

function. They reported that rs11136000(T) was asso-345

ciated with better baseline GC, rs9331888(G) and346

rs9331908(T) were associated with slower decline347

and rs11136000(T) and rs1532278(T) were associ-348

ated with faster decline [54, 55]. Bressler et al. [44]349

observed that rs9331896(C) was associated with bet-350

ter baseline performance in EM and a reduced rate351

of decline in PS. rs2279590(A) was associated with352

worse performance in EM [56] and two separate 3-353

SNP haplotypes were significantly associated with354

baseline performance in EM and VA [47].355

CR1356

rs3818361(T) was associated with faster decline357

in AT [53], while rs3818361(A) was associated with358

baseline performance in GC and faster decline in359

VA [47, 46]. Additionally, in African-Americans360

rs3818361(A) was associated with worse perfor-361

mance in EM in both a combined case/control362

cohort and non-demented control only subjects [52].363

rs6656401(A) was associated with improved base-364

line performance in PS in African-American [44] and365

with faster decline in EM, semantic memory, PS, VS,366

and GC [47, 57]. Finally, a 3-SNP haplotype and367

2-SNP haplotype was associated with VA and GC,368

respectively [47]. The CR1 gene region was associ-369

ated with change in GC in females [45], PS [39], and370

GC [38].371

EPHA1372

rs11767557(C) and rs11767557(T) were associ-373

ated with worse EM performance [48] and faster374

decline in WM, respectively [41]. Additionally,375

rs11767557(A) was associated with a faster rate376

of decline in EM in participants who converted to377

MCI/AD, but not in participants who remained cog- 378

nitively normal [42]. 379

MS4A 380

MS4A6A-rs983392(G) was associated with worse 381

EM performance [58] and in African-Americans with 382

change in GC [59]. MS4A4E-rs670139(T) was asso- 383

ciated with better baseline WM [41] and slower 384

decline in EM [44]. The MS4A4E and MS4A6A gene 385

regions were associated with GC [60]. 386

PICALM 387

rs3851179(A) and rs3851179(G) were associated 388

with better baseline GC [54] and faster decline in 389

GC respectively [49]. rs7110631(G) was associated 390

with faster decline in EM, VA, and GC [57], while 391

rs541458(C) was associated with an earlier age at 392

midpoint in decline in a non-linear trajectory of GC 393

[53]. In univariate analysis 4 SNPs (rs10501604, 394

rs10792821, rs11234532, rs10501608) were associ- 395

ated with EF, while in haplotype analyses 12 3-SNP 396

windows were associated with EF [47]. The PICALM 397

gene region was associated with Gf performance [61] 398

GC in a multi-trait analysis of intelligence and edu- 399

cational attainment [40], and with change in GC in 400

males [45]. 401

SORL1 402

rs3824968(A) was associated with worse EM 403

performance at age 70, before and after adjust- 404

ing for childhood IQ at age 11 [62]. In Chinese 405

participants, rs2070045(T) was associated with PS 406

performance [63] and rs1699102(T) was associated 407

with faster decline in EM and PS [64]. rs11218343(T) 408

was associated with worse PS at baseline [41]. In 409

African-Americans, rs11218343(C) was associated 410

with change in GC [59]. The SOLR1 gene region was 411

associated with change in GC in males [45] and with 412

GC in a multi-trait analysis of intelligence and educa- 413

tional attainment [40]. In a Dutch population-based 414

study, rs668387(T), rs689021(A), and rs641120(T) 415

were associated with worse EM performance, but bet- 416

ter EM and GC performance [65]. A further three 417

SNPs (rs3824968(T), rs2282649(T), rs1010159(C)) 418

were associated with better performance in EF in the 419

family based study [65]. In three Swedish based pop- 420

ulation cohorts, five SNPs (rs11600875, rs753780, 421

rs7105365, rs11820794, rs2070045) were variously 422

associated with performance in EM, VA, and 423

VS [66]. 424

The HLA gene region was associated with change 425

in GC in a female only and male only cohort 426
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[45]. The PTK2B gene region was associated with427

change in GC in males [45]. The SLC24A4 gene428

region was associated with Gf performance [61]429

GC in a multi-trait analysis of intelligence and430

educational attainment [40] and in a meta-analysis431

inclusive of the UKBB [38], and change in GC432

[45]. INPP5D-rs35349669(T) was associated with433

better baseline VA [44], slower decline in EM, and434

faster decline in PS [41]. In African-Americans, the435

INPP5D-rs4585024(A) minor allele was associated436

with change in GC [59]. MEF2C-rs190982(A) was437

associated with decreased EF performance in the438

UKBB, though it was non-significant in an earlier,439

smaller, analysis [39]. The MEF2C gene region was440

associated with GC in a multi-trait analysis of intelli-441

gence and educational attainment [40], GC in two442

large meta-analyses inclusive of the UK Biobank443

[38], Gf performance [61], and change in GC in males444

[45]. NME8-rs12155159(G) was associated with445

slower decline in VA [44] and NME8-rs2718058(G)446

was associated with worse baseline performance and447

faster decline in GC [67]. ZCWPW1-rs1476679(T)448

was associated with slower decline in PS [41], while449

in African-Americans ZCWPW1-rs1476679(C) was450

associated with faster decline in EM [44]. For451

CELF1, rs6485758(A) was associated with better452

baseline performance in EM, VA, and PS [44],453

while rs10838725(C) and rs7933019(C) were asso-454

ciated with better baseline EF performance [58]455

and a slower decline in EM [41], respectively.456

rs10838725(T) was associated with decreased EF457

performance [39]. The CELF1 gene region was asso-458

ciated with change in GC in females [45], GC in a459

multi-trait analysis of intelligence and educational460

attainment [40], GC in three large meta-analyses461

inclusive of the UK Biobank [38, 39], and with462

PS [39]. FERMT2-rs17125944(C) with better EM463

performance [68], worse baseline VA [44], and accel-464

erated decline in PS [41]. CASS4-rs927174(C) was465

associated with change in GC in African-Americans466

[59].467

For the novel loci identified by Yiu et al., Marioni468

et al., Janssen et al. and Kunkle et al., there were469

no articles that reported associations of these loci470

with cognitive performance. Our initial search identi-471

fied 6 GWAS where summary statistics were publicly472

available and for which we could extract the reported473

associations. The HBEGF and SPPL2A gene regions474

were associated with GC in a multi-trait analysis of475

intelligence and educational attainment [40], and in476

two large meta-analyses inclusive of the UK Biobank477

[38,39]. The ADAM10 gene region was associated478

with GC and ADAM10-rs889555(T) was associated 479

with worse GC performance [39]. The KAT8 gene 480

region was associated with AT and EF [50]. The 481

ACE gene region was associated with EF [50], PS 482

[39] performance in the UK Biobank, and GC [40]. 483

The CLNK gene region was associated with PS and 484

GC, while CLNK-rs6448453(A) was associated with 485

worse and better EF and PS performance, respectively 486

[39]. The CNTNAP2 gene region was associated with 487

GC in two large meta-analyses inclusive of the UK 488

Biobank [38, 39] and general fluid intelligence [69]. 489

The APH1B and HESX1 gene regions were associ- 490

ated with PS in the UK Biobank [39]. The ALPK2 and 491

ADAMTS4 gene regions were associated with GC in 492

a multi-trait analysis of intelligence and educational 493

attainment [40]. ADAMTS1-rs2830500(A) was asso- 494

ciated with worse EF and better PS [39]. The ABI3 495

gene region was associated with GC [39, 60] and gF 496

[69] while ABI3-rs28394864(A) was associated with 497

better PS. The ACO74212.3 gene region was associ- 498

ated with GC and ACO74212.3-rs76320948(T) was 499

associated with worse GC [39, 60] and better PS [39]. 500

The OARD1 gene region was associated with AT [50] 501

and GC [38], while rs114812713(C) was associated 502

with better PS [39]. IQCK-rs7185636(T) was associ- 503

ated with worse GC performance [39]. The WWOX 504

gene region was associated with GC [38–40] while 505

WWOX-rs62039712(A) was associated with worse 506

PS [39]. 507

Association of AD GRS with cognitive 508

performance 509

We found 14 studies that investigated the cumula- 510

tive effect of AD risk loci on cognitive performance. 511

Three studies investigated the effect of an unweighted 512

GRS on cognitive performance. An unweighted GRS 513

composed of PICALM, BIN1, and CLU, was associ- 514

ated with reduced EM performance [70]. In contrast, 515

an unweighted GRS composed of the IGAP risk loci 516

was not associated with either both cognitive per- 517

formance or cognitive decline [38, 41]. Weighted 518

GRSs that include APOE have shown more consis- 519

tent results. GRS composed of SNPs identified in the 520

initial GWAS have been associated with worse cog- 521

nitive performance in EM [42, 46, 48], EF [48], VA 522

[46], PS [46, 48], and GC [46, 48]. Studies that have 523

used a GRS including the IGAP LOAD risk loci have 524

also reported associations with worse performance in 525

EM [41, 56, 71] and PS [41]. However, these associa- 526

tions largely reflect the effect of APOE as the majority 527

are not statistically significant after the exclusion of 528
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APOE. Pathway specific risk scores for A� clearance,529

cholesterol metabolism, and immune response were530

also constructed but were non-significant [68].531

Five studies have utilized a GRS approach,532

whereby a GRS is calculated based on all genome-533

wide significant SNPs, plus all nominally associated534

variants at a given significance level (PT). Two GRS535

(PT = 0.01) were associated with worse baseline EM536

and faster decline on EF and [72] and with worse EM537

and GC and faster decline in GC [73]. A third GRS538

composed of all LOAD-related SNPs (PT = 1) except539

for those within 500 kb of APOE was associated with540

worse baseline EM [74]. One study found that GRS541

across a range PT ranging from 1e-7 to 1e-2 was asso-542

ciated with faster EM and EF performance decline in543

A�+, but not A�- individuals [75].544

DISCUSSION545

This is the first systematic review to evaluate the546

role of non-APOE LOAD GWAS risk loci in cogni-547

tive decline. Based on a synthesis of data from 49548

published studies, the results between individual risk549

loci and specific cognitive domains were largely non-550

significant for both baseline/cross-sectional cognitive551

performance and for longitudinal cognitive change.552

Of the significant gene-cross-sectional/longitudinal553

cognition associations that were reported (n = 128),554

the majority (n = 96) were not reproduced; other555

reviewed studies reported non-significant associa-556

tions. Moreover, inconclusive patterns emerged for557

significant associations that were reproduced by one558

or more studies. Specifically, three reported signif-559

icant effects in the same direction, three reported560

significant associations, but with inconsistent direc-561

tions of effect, 12 were reproduced as significant by562

studies that did not report the direction of effect, and563

finally, 12 were reported as significant but no direc-564

tion of effect was reported. However, it should be565

noted, where significant associations were reported566

and reproduced, the majority of further replication567

studies reported non-significant associations results.568

Overall, global cognition was the most extensively569

examined cognitive domain, with 77/255 significant570

associations reported. This low rate of significance571

and the concomitant lack of reproducibility of sig-572

nificant associations were observed across all the573

cognitive domains.574

In contrast to univariate and gene-based analysis,575

we found more studies reporting consistent signif-576

icant results of genetic risk scores associated with577

episodic memory performance. GRS composed of 578

GWAS top hits and APOE were associated with 579

worse cognitive performance in episodic memory, 580

with 4/7 cross-sectional studies and 4/4 longitudinal 581

studies reporting significant associations. However, 582

these effects were largely driven by APOE, with 583

only 2/7 baseline associations and 1/4 longitudi- 584

nal associations retaining significance after APOE 585

was excluded from the GRS. GRS composed of 586

all nominally associated variants at a given signif- 587

icance level were also consistently associated with 588

worse episodic memory performance, with 5/6 of 589

the studies reporting significant associations. Given 590

these results, future studies should focus on the use 591

of GRS rather than individual variants, where the 592

effects are likely too small to be reliably detected 593

in a univariate analysis [76]. Furthermore, aggre- 594

gating risk variants based on biological function 595

may offer a more powerful approach to evaluat- 596

ing the association of genetic variants with specific 597

endophenotypes [68]. 598

Sample size/statistical power 599

A major limitation of the reported studies is small 600

sample sizes and consequently low statistical power. 601

In order to detect a genetic variant explaining 1% 602

of cognitive variance at 80% power, early analy- 603

ses suggested a sample size of 800–1,000 [77], but 604

more recent genome-wide associations analyses esti- 605

mate 10,000–15 000 is required [78]. Of the included 606

studies, 37/49 had a sample size greater than 1,000, 607

but only 9/49 studies had greater than 10,000. The 608

two largest GWAS of cognitive performance to date, 609

conducted as a meta-analysis of the UK Biobank 610

and other consortia (n = 300,486 [39] & n = 269,867 611

[38]), found three LOAD gene-regions reaching 612

genome-wide significance: MEF2C, HBEGF, and 613

SPPL2A. However, it should be noted that HBEGF 614

and SPPL2A were associated with dementia proxy 615

case/control status in the UK Biobank and in both 616

of these studies the majority of the samples (∼30%) 617

originated in the UKBB. The UK Biobank has two 618

limitations relevant to this review: it is limited to a 619

cross-sectional design and the cognitive assessments 620

used are brief non-standard tests that are suscep- 621

tible to floor/ceiling effects [79]. Future studies, 622

particularly longitudinal studies, should recruit larger 623

sample sizes, or alternately, greater efforts should be 624

made to harmonize data across studies to facilitate 625

meta-analysis. 626
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Phenotypic heterogeneity627

Phenotypic heterogeneity between studies due to628

the use of different cognitive tests can limit repli-629

cation [61]. While cognitive test results are highly630

correlated, some tests may lack the sensitivity to631

identify associations with small effect sizes, such632

as Mini-Mental State Examination (MMSE) [80],633

a commonly used GC test. MMSE was designed634

as a screening test for dementia and not a mea-635

sure of cognitive abilities. It therefore exhibits strong636

ceiling effects, limiting its ability to differentiate637

between medium and high cognitive performers [81].638

There was vast between-study variability in the spe-639

cific measures used to assess the different cognitive640

domains. Although most of the cognitive measures641

used were psychometrically sound, replication of642

genetic effects on a specific cognitive domain may643

have been tested using measures that differed in valid-644

ity, reliability, or sensitivity [82]. Additionally, when645

evaluating the effects of AD risk loci on cognitive646

aging a broad range of relevant cognitive domains647

should be assessed using multiple cognitive tests648

per domain. The construction of latent variables or649

composite scores offer several advantages over using650

single cognitive tests scores [83]. For example, latent651

variables use multiple indicators, rather than a single652

measure, thus representing a more compressive cog-653

nitive construct that by design reduces the impact of654

varying psychometric properties [84]. Alternatively,655

when examining cognition as an endophenotype of656

LOAD, a cognitive test battery focused on cognitive657

domains more directly affected pre-clinical AD, such658

as episodic memory, may be warranted. Given these659

findings, future studies should 1) focus on specific660

cognitive domains rather than global tests; 2) choose661

cognitive tests specifically for their sensitivity to mea-662

sure subtle cognitive differences; 3) use multiple tests663

to assess cognitive function of a single domain; and664

4) that are robust to test-retest effects.665

Sample characteristics666

Variation in sample characteristics such as age, sex,667

education, ethnicity, and medical comorbidities can668

limit replicability. In particular, inclusion/exclusion669

of individuals who develop dementia during a study670

may affect results. Of the studies included in this671

review, 26/49 were conducted in non-demented pop-672

ulations, 11/49 included participants with prevalent673

or incident dementia, while 12/49 studies did not674

report the cognitive status of its participants. The675

reported associations of LOAD risk loci in pop- 676

ulations that retain prevalent or incident cases of 677

cognitive impairment may be driven by pathologi- 678

cal cognitive decline [61, 85]. In contrast, in studies 679

that selectively exclude participants with a clinical 680

diagnosis of dementia, the inadvertent inclusion of 681

individuals in prodromal stages of dementia may 682

also drive the reported genetic effects [85]. Evi- 683

dence to suggest this effect has been reported in 684

studies that separately assessed associations in par- 685

ticipants who eventually converted to dementia and 686

those who remained cognitively normal for ABCA7, 687

EPHA1, and CLU [42, 51]. Similar effects have been 688

observed for APOE*�4 carriers [85]. In cognitively 689

normal APOE*�4 carriers, participants with a high 690

A� PET levels experienced a faster rate of decline 691

then carriers with low A� PET levels, suggesting 692

that cognitive decline observed in APOE*�4 carriers 693

reflects the effect of APOE exacerbating A�-related 694

decline rather than an APOE-independent effect [86]. 695

Accordingly, future studies should evaluate the asso- 696

ciation of LOAD risk loci with cognitive function 697

using neuroimaging or cerebrospinal fluid biomark- 698

ers to inform the classification of preclinical AD in 699

‘cognitively normal’ individuals. Furthermore, sen- 700

sitivity analysis should be conducted to evaluate if 701

the inclusion/exclusion of participants with MCI or 702

dementia drives potential association of genetic vari- 703

ants on cognitive function. 704

Limitations 705

There are several limitations to this review. First, 706

the heterogeneity in the methodologies (cognitive 707

tests, genetic polymorphisms, and study design) of 708

the included studies precluded performing a meta- 709

analysis, which would offer increased power to detect 710

associations and increased precision in the estimation 711

of the magnitude of the effect. Second, we empha- 712

size that we have reported significant associations 713

that were p < 0.05 but as such the number of ‘true’ 714

associations is probably smaller than the number 715

reported here due to multiple testing and undetected 716

publication bias. Third, the literature search used a 717

single database, PubMed, which could limit the sen- 718

sitivity of our search strategy. However, PubMed is 719

by far the most populated database for publications 720

for general medical and biomedical science offering 721

a higher likelihood of retrieval of relevant publica- 722

tions. In addition, we followed up reference lists 723

for all included studies and this retrieved less than 724

5% of studies eventually included, suggesting an 725
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acceptable sensitivity for the bibliographic database726

searches. Finally, while we adapted our search strat-727

egy from a published filter for detecting causation728

studies that favored sensitivity, it is possible that729

not all relevant studies were identified as our search730

strategy relied on the gene names or SNP identi-731

fiers being present within the title or abstract of a732

publication.733

Conclusion734

This is the first study to systematically evaluate735

the role of non-APOE LOAD risk loci with cog-736

nitive performance and decline. We found that the737

majority of associations between individual LOAD738

risk loci and cognitive function were non-significant,739

suggesting that current samples sizes are too small740

to detect individual risk loci effects on cognition. In741

contrast, consistent findings were observed for GRS,742

with increased LOAD genetic risk associated with743

deleterious effects on episodic memory performance744

and decline. Future research should focus on the use745

of GRS, recruitment of larger sample sizes or har-746

monization of findings across studies, and improved747

phenotyping of cognitive abilities. Consideration of748

these factors in future study design may allow for749

more reliable associations of LOAD-related genetic750

variants with ageing-related cognitive performance751

and change.752
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Karamujić-Čomić H, Frosch MP, Thonberg H, Maier W, 1089

Roschupkin G, Ghetti B, Giedraitis V, Kawalia A, Li S, 1090

Huebinger RM, Kilander L, Moebus S, Herná ndez I, Kam- 1091
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