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Abstract 

Myriad studies have found group differences in neural dynamics between people with and 

without autism spectrum disorder (ASD). However, the extent to which variation in neural 

dynamics is related to variation in the autism phenotype across the population is not known. 

Here we measured behavioral characteristics of autism alongside inter-trial phase coherence 

(ITC) and multi-scale entropy (MSE) computed from EEG in order to address this question. 

Data were obtained from ninety-nine adults, thirty-eight of whom had an ASD diagnosis. 

Phenotypic information was obtained from the Social Responsiveness Scale (Revised), the 

Repetitive Behavior Questionnaire, the WHO Adult ADHD Self-Report Scale Screener and 

the Beck Anxiety Inventory (Trait version). ITC and MSE were computed from EEG 

recorded during visual stimulation and eyes-closed rest. We found no evidence to suggest that 

population variance in autistic traits is underpinned by variance in neural dynamics, despite 

finding that ITC and MSE are more likely to be reduced in people with ASD than in those 

without. We conclude that there are likely to be multiple neural profiles underpinning ASD, 

and suggest that while individual differences in the autism phenotype exist across the 

population, their distribution is not underpinned by individual differences in neural dynamics.  

Keywords: autism, inter-trial phase coherence, multi-scale entropy, EEG 

 

General Scientific Summary: This study shows that while traits and behaviours associated 

with autism spectrum disorder (ASD) occur to a greater or lesser degree across the general 

population, this variation in autistic traits is not related to differences in brain activity. 

However, at a group-level, we found that brain activity differed between people with and 

without a diagnosis of ASD.  This study supports the notion that there are likely to be 

multiple routes to the traits and symptoms of ASD, rather than a unique neurological 

difference that is common to all people with a diagnosis of ASD. 
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Atypical EEG in autism spectrum disorder: comparing a dimensional and a categorical 

approach 

By definition, autism spectrum disorder (ASD) is a neurodevelopmental disorder 

(APA, 2013), albeit of unknown neural etiology. Although a number of recent studies have 

focussed on identifying potential neural biomarkers for ASD (Bosl, Tierney, Tager-Flusberg, 

& Nelson, 2011), no underlying neurobiological differences that consistently differentiate 

autistic and non-autistic brains have been identified. The search for a neural signature that 

distinguishes autism from non-autism assumes that there is a universally optimal neural 

profile within individuals without ASD. This assumption is likely to be incorrect (see Holmes 

& Patrick, 2018) but is prescient within ASD research given that traits associated with ASD 

are continuously distributed amongst the population (Skuse et al., 2009), reflecting the 

potential misnomer in the use of the term ‘neurotypical’ to describe people who are not 

autistic.  

Two neural variables which have been shown to differ between people with and 

without ASD, and are the focus of this investigation, are inter-trial phase coherence (ITC) and 

multi-scale entropy (MSE). ITC is a measurement of the consistency of the phase angles of 

EEG oscillations across trials following events such as stimulus presentation (Tallon-Baudry, 

Bertrand, Delpuech, & Pernier, 1996). Many studies have found reduced ITC in ASD relative 

to controls, leading to the claim that reduced ITC could be an endophenotype of ASD (David 

et al., 2016). MSE characterises the degree of repetition within a timeseries across different 

temporal scales. In EEG data, entropy increases with increasing spatial scale, and higher 

entropy reflects greater complexity of the neural signal (Costa, Goldberger, & Peng, 2002). 

Changes to MSE have been reported in ASD (Catarino, Churches, Baron-Cohen, Andrade, & 

Ring, 2011), and reduced MSE in 9-month old infants, has been suggested as a potential 

biomarker for ASD (Bosl et al., 2011), although at other ages MSE did not distinguish so 
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clearly between infants who were at higher or lower risk for ASD. Collectively, ITC and 

MSE provide insight into a range of neural features including consistency of response and 

long-and short-range interaction between neural networks, all of which have been suggested 

to differ in ASD (Dinstein, Heeger, & Behrmann, 2015; Vissers, Cohen, & Geurts, 2012).  

Claims that ITC and MSE may reflect endophenotypes or biomarkers of ASD 

highlight the importance of further investigations of neural dynamics, especially with respect 

to individual variability and the relationship between MSE, ITC and the autism phenotype. 

Previous investigations of these variables have taken a group-based approach, i.e. comparing 

ITC and MSE between relatively small groups of participants who either do, or do not, have a 

diagnosis of ASD. However, group-based analyses minimise the high degree of phenotypic 

overlap between autistic and non-autistic people (c.f. Holmes & Patrick, 2018). Numerous 

studies have shown that the traits of ASD, including differences in social communication and 

tendencies towards rigid and repetitive behavior vary continuously across the population 

(Baron-Cohen, Wheelwright, Skinner, Martin, & Clubley, 2001; Skuse et al., 2009). As such 

ASD is often considered to lie at the extreme end of the population distribution of autistic 

traits (Ronald, Happé, & Plomin, 2005).  This continuum view is difficult to reconcile with 

research that aims to identify the particular neural etiology of autism that gives rise to the 

symptoms on which a diagnosis of ASD is based.  Despite this, there is a paucity of studies 

which aim to investigate the extent to which individual differences in neural substrates 

underpin the continuous distribution of autistic traits. The majority of studies that have been 

carried out to address this question – typically by measuring autistic traits with the autism-

spectrum quotient (AQ, Baron-Cohen et al., 2001) - do not include people at the extreme end 

of the distribution, i.e. people with a diagnosis of ASD, so do not fully address the question 

of whether these variables are continuously distributed across the population. Furthermore, 

using a single measure of ‘autistic traits’ may obscure some findings due to the fact that this 
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approach assumes ASD is a univariate construct, when in reality ASD is a complex, 

multivariate condition which is associated with multiple comorbidities including ADHD and 

anxiety (Gillberg, 2010).  Furthermore, the domains on which ASD diagnosis are based – 

social communication and interaction (SCI) and repetitive behaviors and restricted interests 

(RBRI) - are dissociable (Happé & Ronald, 2008). It is possible, therefore, that stronger 

associations between phenotype and neurobiology may be observed by analysing these 

symptom domains in isolation rather than focussing only on general symptom severity. 

Here we take a dimensional approach to the study of ASD by investigating ITC and 

MSE in a cross-section of adults who vary in the extent to which they express the autistic 

phenotype. We recruited adult participants as there are a growing number of people being 

diagnosed with ASD in adulthood (Brugha et al., 2011; Lai & Baron-Cohen, 2015) as 

evidenced by the development of ASD screening tools developed specifically for adults 

(Ritvo et al., 2011), yet there is a distinct lack of research in this population. In addition, we 

recruited participants without a diagnosis but who identify with a number of autistic traits, 

and participants who identify with very few autistic traits. Alongside computing ITC and 

MSE from EEG data, we measured SCI, RBRI, ADHD traits and dispositional anxiety with a 

view to identifying the extent to which individual variability in these domains is related to 

individual variability in MSE and / or ITC. In order to place our findings in the context of 

previous literature, we also compared MSE and ITC at a group level between participants 

with and without an ASD diagnosis. The implications of the findings from these two different 

analytic approaches will be considered in the context of the value of searching for neural 

biomarkers for ASD in light of population variability.  
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Materials and Methods 

Participants 

In total, 102 people were recruited to this study. Due to technical issues EEG was not 

obtained from three participants therefore all further descriptions refer to the remaining 

sample of 99 participants. Thirty-eight participants (19 female) had a diagnosis of ASD and 

sixty-one (32 female) did not. Hereafter, participant will be described as “diagnosed” and 

“undiagnosed” in order to avoid using the term neurotypical to describe the non-ASD group, 

and to acknowledge the range of factors that may influence whether or not someone has an 

ASD diagnosis. Diagnosis of ASD had previously been given by a clinical professional in the 

UK according to DSM-IV, DMS-V or ICD-10 criteria. All but two of the participants 

received their diagnosis of ASD when they were older than 18. For inclusion in the diagnosed 

group for group analysis, participants were required to have both a clinical diagnosis as 

described above and to obtain a RAADS-R (see below) score above the cut-off for ASD 

identified by Andersen et al., (2011).  Diagnosed participants were recruited from our 

database of research volunteers and a local ASD outpatient assessment centre.  Participants in 

the undiagnosed group were recruited via advertisements at local ASD-focussed public 

events, and mailing lists of volunteers. Participants lived in areas spanning the full range of 

2015 English Indices of Deprivation (IMD), a measure provided by the UK Office of 

National Statistics based on neighbourhood employment, income, health provision, and 

housing. 27.8% of participants lived in areas with a score in the bottom three IMD deciles, a 

further 42.4% lived in deciles 4-7, with the remaining 29.8% living in the top three deciles.  

With the exception of epilepsy, additional diagnoses were not considered as exclusion 

criteria. This approach is consistent with the Research Domain Criteria (RDoC) project which 

calls for research that spans diagnostic boundaries and focuses on symptoms rather than 

clinical labels (Insel, 2014). Four participants from the undiagnosed group had been 
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diagnosed with depression and /or anxiety, two had dyslexia, one had PTSD and another had 

borderline personality disorder. Three people in the undiagnosed group were taking 

medication that we considered relevant due to potential effects on neurotransmission (i.e. 

anti-anxiety medication). Within the diagnosed group, co-occurring diagnoses and 

medication use were common: eleven participants had additional diagnoses of anxiety and / 

or depression, three participants were dyslexic and nine had additional diagnoses of ADHD. 

Sixteen were taking relevant medication.  

Group comparisons were based on comparing indices from unmedicated diagnosed 

participants (N = 22, 9 female) and a matched subsample of unmedicated undiagnosed 

participants (N = 22, 12 female). Selection of the undiagnosed participants for the 

comparison group was based on obtaining RAADS-R score below 72, being in the 

appropriate age-range to match the diagnosed sample, and not taking relevant medication. 

Within the unmedicated diagnosed sample, three participants had ADHD, five had depression 

and three were dyslexic. None of the participants in the matched undiagnosed sample had any 

diagnoses. Correlation analyses were based on the entire sample, although the results of 

correlation analyses with subgroups of participants, i.e. unmedicated participants, and the 

diagnosed and undiagnosed participants separately, are presented in Supplementary material. 

Participant details are given in table 1.  

Ethical approval was given by the regional NHS Research Ethics Committee, 

overseen by the Health Research Authority in the UK, and the Institutional Psychology ethics 

subcommittee. All participants provided written informed consent before participating. The 

study complied with the APA ethical principles regarding research with human participants.  

Procedure 

The protocol included EEG recording, administration of the matrix reasoning sub-task 

from the WASI (Weschler, 1999), and completion of the questionnaires described below. 
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Ritvo Autism Asperger’s Diagnostic Schedule (RAADS-R, Ritvo et al., 2011). The 

RAADS-R is an 80-item questionnaire that was developed to assist in the diagnosis of ASD 

in adults. Each item is answered on a four-point scale with the options ‘‘never true’’, ‘‘true 

only when I was young (before the age of 16)’’, ‘‘true only now’’ and ‘‘true now and when I 

was young’’.  Possible scores range from 0 to 240. Two clinical cut-offs for ASD have been 

identified: Ritvo et al. (2011) suggested that a score of 65 or above is consistent with a 

diagnosis of ASD, whereas a score of 72 was recommended when sensitivity and specificity 

were given equal priority (Andersen et al., 2011).   

Social Responsiveness Questionnaire (SRS-2, Constantino & Gruber, 2012). This 

65-item instrument asks participants to rate the extent to which their behavior and 

experiences have reflected the autism phenotype in the last 6 months. Responses are given on 

a four-point scale ranging from “not true” to “almost always true”. Possible t-scores range 

from 30 to 90. We created a separate raw score comprising items that measure SCI (see 

Appendix B of Constantino & Gruber, 2012) and used this scale to measure the DSM-V 

domain of SCI. Cronbach’s alpha of the SCI scale in this sample was .96. There are two 

versions of the SRS-2 – a self-report and an other-report.  In addition to administering the 

self-report version we asked each participant to nominate someone who could complete the 

other-report. Other reports were returned for sixty-two participants. 

Adult Repetitive-Behaviors Questionnaire (RBQ-2A, Barrett et al., 2015). The 

RBQ-2A is a 20 item questionnaire that measures restricted and repetitive behavior in adults. 

Participants are asked to rate the frequency or severity of particular behaviors on a three-point 

scale. Total mean score, ranging from 1 to 3, was computed.  Cronbach’s alpha in this sample 

was .88. 

Beck Anxiety Inventory - Trait (BAIT, Kohn, Kantor, DeCicco, & Beck, 2008). 

This 21 item scale asks participants to rate the extent to which they are affected by the 
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physical symptoms of anxiety on a day to day basis. Responses are given on a four-point 

scale ranging from “Never / rarely” to “Almost Always”. Scores range from 0 to 63. 

Cronbach’s alpha in this sample was .93. 

WHO Adult ADHD Self-Report Scale Screener, Part A (ASRS Screener, Kessler 

et al., 2005). The ASRS Screener (Part A) is a six-item screening questionnaire that asks 

participants to rate how they have conducted themselves in the past six months in relation to 

DSM-IV criterion A symptoms of ADHD. Responses are given on a 5-point Likert scale 

from ‘never’ to ‘very often’. The instrument has been shown to have strong concordance with 

clinicial diagnoses of ADHD. Total scores are computed as the sum of all items. Scores range 

from 0 to 24. Cronbach’s alpha in this sample was .72. 

Information about missing data points is given in supplemental information.  

EEG acquisition and processing. EEG was acquired via BioSemi ActiveTwo in an 

electrically shielded chamber during visual stimulation and eyes-closed rest. Data were 

filtered online with a band-pass of 0.01-140 Hz and digitised at a sampling rate of 2048 Hz. 

All channel offsets were kept below 25 kっ. Visual stimulation involved presenting a black 

and white checkerboard, generated within Psychtoolbox (Brainard & Vision, 1997) on a 20-

inch LCD screen within Matlab (The Mathworks, Inc. Natick, MA). The checkerboard 

subtended 13.5° x 11.5°, each check subtended 0.4°. Participants were asked to maintain 

fixation on a red cross that was present in the centre of the screen throughout the task, and 

instructed to press the spacebar at checkerboard offset. Each checkerboard remained on 

screen for an average of 2000 ms, jittered between 1500 and 2500 ms. The mean inter-

stimulus interval was 2000 ms, jittered between 1500 and 2500 ms. Two blocks of 100 trials 

were presented, interspersed by a self-timed break. After 200 trials, resting state data were 

acquired: participants remained seated and were asked to close their eyes while EEG was 

recorded for 150 s (see Figure 1).  
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Insert Figure 1 here 

Offline processing was carried out using EEGLAB v14.1.1 (Delorme & Makeig, 

2004) and customised MATLAB scripts. Data were downsampled to 512 Hz and referenced 

to channel Cz. For the majority of participants (N=81) a 64-sensor montage was used to 

acquire data. For the remaining participants, a 128-sensor montage was used. Prior to 

analysis, channels were systematically removed from the 128-sensor montage datasets so that 

the remaining sensors were located in the same, or very similar locations to the 64-sensor 

montage. Continuous data were filtered using the eegfiltnew function within EEGLAB, 

transition bandwidth and passband edges were both 1Hz. Channels and segments of data 

contaminated by gross artifacts were identified via visual inspection and removed. Data were 

decomposed into independent components (IC) using the runica algorithm within EEGLAB. 

In order to obtain good quality decomposition from ICA it is important to ensure that the ratio 

of data points to channels is sufficient. The estimated minimum number of data points 

required to perform ICA is (number of channels2) x 30. In this study, the number of channels 

entered to ICA ranged from 48 to 63, suggesting that the minimum length of data required 

would range from 69,120 to 119,070 data points. Here the number of data points entered to 

ICA ranged from 311,982 to 549,888 and was therefore well above the recommended 

minimum. Components reflecting eye-movements or blink artifacts were removed, and 

missing channels were interpolated. Continuous data containing ICA weights were then 

segmented into two separate files: visual evoked data from which ITC was computed, and 

resting state data from which MSE was computed.  

Computation of ITC. Epochs from -1s to 1.5s around stimulus onset were extracted 

and corrected to the 1s ‘baseline’ prior to stimulus onset. The mean number of epochs 

retained for each participant was 193.4 (SD = 13.8). Time-frequency analysis was performed 

by the EEGLAB function, newtimef (see Delorme & Makeig, 2004), using wavelets with 3 
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cycles at the lowest frequency and 12.5 cycles at the highest frequency with a window size of 

556.56 ms. Spectral estimates at 200 evenly spaced time-points (from -721.5 to 1221.5ms) 

and 47 evenly spaced frequencies (from 4 to 50Hz) were returned as complex vectors in 

phase space. After normalising the magnitude of each trial activity vector to 1, the complex 

average of each trial activity vector was averaged. ITC values were returned as absolute 

values from these complex averages. For each time point of the epoch and each frequency an 

ITC value between 0 and 1 was obtained, with 0 representing an absence of synchronisation 

across trials and 1 representing perfect inter-trial phase synchrony. The frequency associated 

with the maximum ITC value for each subject (typically between 4-9 Hz) was used for 

subsequent analysis. 

Because ICA unmixes signals from independent sources it acts as a spatial filter to 

EEG data and generates signals (components) that are less contaminated by artifacts than 

those measured from channels. When measuring a variable such as ITC which could be 

influenced by transient fluctuations from other neural and non-neural sources, analysing data 

in source space (components) rather than sensor space (channels) is recommended (Milne, 

2011). Here, we report ITC obtained from ICs rather than from channels, although data 

obtained from channels is included for comparison in supplementary material.  ITC values 

across the timeseries were computed at each frequency (4 to 50 Hz) from every IC. Within 

each participant, an IC showing very strong ITC could be clearly identified. The weights of 

the unmixing matrix of these components projected to electrodes positioned over posterior 

cortex, suggesting that the sources of these components were in visual cortex. Scalp 

topographies of the ICs that showed maximum ITC are shown in supplementary figure S2. 

The ERP of each of these components also showed features of the visual evoked potential 

(e.g. C1, P1 or N1 deflections), further confirming that the IC which shows the highest ITC 

reflects the activity of a neural source associated with visual information processing. 
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Maximum ITC value, from any component and from any frequency band was extracted 

within matlab and used for subsequent analysis.  

  Computation of MSE. MSE was computed using the algorithm of Liang et al., (2014)  

and can be found at http://www.psynetresearch.org/tools.html. Resting state data were re-

filtered with cut-offs of 1.5Hz and 50Hz, and split into 5 second epochs (corresponding to 

2560 data points), with no baseline correction. MSE analysis was performed on the 2nd to the 

20th epoch and then averaged to yield a single MSE value for each scale and each channel. 

The MSE analysis on scale factors 1–20 for each channel for each epoch was calculated in 

two steps. First, the algorithm creates course grained timeseries by progressively down-

sampling the EEG timeseries {x1,…, xi,…, xN}. For scale factor k, the coarse-grained 

timeseries {y (k)} is obtained by averaging data points within non-overlapping windows of 

length k. The timeseries associated with scale factor 1 is simply the original data and scale 

factor 2 is the average of consecutive pairs of data points and so forth for increasing scales.  

As such, the element of a coarse-grained timeseries, j, is calculated according to: 

ሺதሻ݆ݕ (1) ൌ ଵதσ ܺதୀሺିଵሻதାଵ ǡ ͳ  ݆  ேத  
where N is the length of the timeseries. Second, the algorithm computes the sample entropy for 

each coarse-grained timeseries. Sample entropy is defined by the negative natural logarithm of 

the conditional probability that a timeseries of length (N/k), having repeated itself within a 

tolerance r (similarity factor) for m points (pattern length), will also repeat itself for m + 1 

points, without allowing self-matches. As in Liang et al., (2014), the pattern length, m, was set 

to 1; that is, one data point was used for pattern matching. The similarity factor, r, was set to 

0.30; that is, data points were considered to be indistinguishable if the absolute amplitude 

difference between them was ≤ 30% of the standard deviation of the timeseries. Data points of 

10m or 20m have been shown to be of sufficient length to calculate entropy (Pincus & 

Goldberger, 1994; Richman & Moorman, 2000), therefore, the 2560 data points used here are 

http://www.psynetresearch.org/tools.html
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well above that suggested previously. As there was no a priori reason to select particular ICs 

for the analysis of MSE, MSE analyses were based on channel data. 

Results 

Histograms showing the range of scores on variables that reflect the ASD phenotype 

and the range of ITC and MSE (averaged overall scales and all electrodes) are given in figure 

2. Table 1 shows the mean scores obtained from the questionnaires for the whole sample and 

from the subsamples of medicated and unmedicated participants.  

Insert Table 1 about here please 

Insert Figure 2 about here please 

Bayes Factors evaluating strength of evidence in support of the null hypothesis (two-

tailed BF01) were computed within JASP (JASP team, 2018). We adopted the convention for 

evaluating the strength of evidence in favour of a particular hypothesis via Bayes factors 

which states that BF <3 = weak evidence; BF >3<10 = moderate evidence and BF >10 = 

strong evidence.   

Dimensional Approach 

Correlations between ITC, MSE at fine- mid- and coarse-scales, and phenotypic 

variables are reported in table 2. As our sample included a greater proportion of people with 

an ASD diagnosis than would be expected in the general population, non-parametric 

correlations were performed. Commensurate with previous work showing that aging is 

associated with a shift towards smaller-scale network dynamics and away from longer-range 

interactions (McIntosh et al., 2013), in the undiagnosed sample MSE at fine scales was 

positively correlated with age and MSE at coarse-scales was negatively correlated with age. It 

is interesting to note that there was no relationship between age and MSE in the diagnosed 

participants. No other correlations involving EEG variables were significant. This pattern of 

results remained consistent when data from only unmedicated participants or from only 
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diagnosed or undiagnosed participants was analysed (see supplemental tables S1, S2 and S3). 

Scatterplots showing the relationships between the variables are shown in supplemental 

figure S3. 

Insert Table 2 about here please 

As described in the Method section, we obtained SRS-2 other reports for sixty-two 

participants (forty of whom were undiagnosed). The correlation between SRS-2 t-scores 

given by self or other report was high, rho = .680, p<.001, 95% CI = [.506 .801], B01 = 

<.001. Furthermore, when SCI obtained from the other-report was entered into correlation 

analyses as described above, the significance of all results remained stable, i.e. SCI was not 

significantly related to any of the EEG variables and remained significantly related to RBS-

2A, ASRS and BAIT scores. Results from these correlations are presented in supplemental 

material.   

Group Comparisons  

All group comparisons included data from the subsample of 44 unmedicated 

participants only. Effect sizes for group comparisons are reported as Aw which is a non-

parametric estimate of common-language effect size (see Li, 2016).  Aw is calculated as 

follows:  

(2) Aw = [#(p>q) + .5#(p=q)]/npnq, 

where p and q represent two groups (e.g. diagnosed and undiagnosed participants), and # 

represents the count function, e.g. counting the number of times that each value in 

distribution p is larger than each value in distribution q plus 0.5 x the number of times each 

value in distribution p is equal to each value in distribution q. The resulting output indicates 

the probability of a randomly selected value in distribution p being larger than a randomly 

selected value in distribution q. Because Aw is unaffected by sampling distributions and has 

been shown to be one of the most robust measures of effect size (Li, 2016), Aw is presented 
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regardless of whether parametric or non-parametric statistics were used to evaluate the 

significance of group differences.  Aw = values of .56, .64 and .71 are considered small, 

medium and large respectively. 95% confidence intervals for Aw were calculated from the 

distributions of 5000 bootstrapped values.  

Analysis of ITC. ITC data are shown in Figure 3. The frequency of maximum ITC 

ranged from 4 to 9 Hz, and did not differ significantly between groups, ぬ2(5) = 3.54, p = .62, 

Cramer’s V = .284.  Maximum ITC was not normally distributed, therefore group 

comparisons were performed using Mann-Whitney U. Maximum ITC was significantly lower 

in the diagnosed participants (Median = .898, 25 and 75 centiles = [.856 .929]) than the 

undiagnosed participants (Median = .937, 25 and 75 centiles = [.905 .969]), Mann-Whitney 

U = 186, p =.005, Aw = .75, 95% CI for Aw = [.585 .870], BF01 = 0.073. Conversely, Bayes 

factor in favour of the alternate hypothesis (BF10) was 13.762. 

Given that ITC is sensitive to data quality, we investigated whether the groups 

differed in indices that reflect data quality including number of data points entered into ICA, 

the difference between the number of data points entered into ICA and the recommended 

number of data points based on the number of channels available, and the number of epochs 

from which ITC was calculated. No group differences were found (see supplemental 

material).   

Insert Figure 3 about here please 

Analysis of MSE. MSE values are shown in figures 4A and 4B. For analysis, data 

were collapsed into variables reflecting coarse scales, medium scales and fine scales by 

averaging scales 1 – 5, scales 6 – 13 and scales 14 – 20 respectively, and into three regions of 

interest (frontal, central and parietal / occipital) by averaging across channel-groups as shown 

in supplemental figure S3. 
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Data were analysed using a repeated measures ANOVA with group (diagnosed or 

undiagnosed) as a between-subject factor, and location (frontal, central or parietal) and scale 

(fine, mid or coarse) as within-subjects variables. Greenhouse–Geisser adjustment was 

applied. Results revealed a main effect of scale, F(1.28, 53.73) = 532.9, p<.001, さ2 = .927, 

90% CI for さ2 = [.909 .956]; a main effect of location, F(1.69, 70.92) = 13.80, p<.001, さ2 = 

.296, 90% CI for さ2 = [.109 .445]; and a main effect of group, F(1,42) = 4.18, p = .047, Aw = 

.66, CI for Aw = [.509 .796] MSE was lower in diagnosed (M = 1.22, SD = .059) than in 

undiagnosed participants (M = 1.25, SD = .039), BF01 =  0.649. Bayesian statistics indicated 

only weak evidence (BF10 = 1.541) in support of a group difference in MSE.  

Insert Figure 4 about here please 

Can diagnosed and undiagnosed participants be identified by their EEG data? 

Discriminant function analysis (DFA) entering average MSE (collapsed over electrode and 

scale) and ITC as predictors of group membership (diagnosed and undiagnosed) was 

performed. The association between group and predictors was significant, ぬ²(2) = 12.09, 

Wilks 】 = .75, p = .002. However, while 18 out of 22 (81.8%) undiagnosed participants were 

correctly classified, only 12 out of 22 (54.5%) diagnosed participants were correctly 

classified. Additional DFAs were performed to identify how well the groups could be 

classified by either ITC or MSE alone. The association between group and ITC was 

significant, ぬ²(1) = 7.99, Wilks 】 = .825, p =.005, with 81.8% of the undiagnosed participants 

being correctly classified, and 50% of the diagnosed participants being correctly classified. 

The association between group and MSE was also significant, ぬ²(1) = 4.34, Wilks 】 = .90, p 

=.037, however only 63.6% of the undiagnosed participants and 59.1% of the diagnosed 

participants were correctly classified. Two of the undiagnosed participants and five of the 

diagnosed participants were incorrectly classified in both DFAs. Only seven of the twenty-

two autistic participants were correctly classified by both DFAs, six were correctly classified 
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by the MSE analysis and not the ITC analysis, and four were correctly classified by the ITC 

analysis and not the MSE analysis. With a view to establishing whether there was any 

evidence of particular subgroups characterised by atypical EEG, we scrutinised questionnaire 

scores, matrix reasoning scores and categorical variables including gender and co-occurring 

diagnoses in the participants with particularly low MSE and / or ITC scores. Based on visual 

inspection, we found no evidence to suggest that the participants with reduced MSE and / or 

ITC represented a distinct phenotypic cluster.  

Discussion 

The aim of this study was to establish whether individual differences in neural 

dynamics, as indexed by ITC and MSE, are related to individual differences in autistic traits. 

In order to place this study in the context of previous work suggesting that ITC and MSE may 

represent biomarkers or endophenotypes of ASD we also compared ITC and MSE between a 

subsample of unmedicated undiagnosed and diagnosed participants. As expected, and as 

shown in figure 2, individual differences in autistic traits were seen in both the diagnosed and 

undiagnosed participants. Individual differences in ITC and MSE were also evident, but were 

unrelated to phenotypic variability. In light of Happé’s call to “give up on a single 

explanation of autism” (Happé, Ronald, & Plomin, 2006), we investigated relationships 

between EEG and symptom-domains, rather than global ASD severity. However, even when 

analysed in isolation, ASD symptom-domains were not related to either MSE or ITC. 

At a group level, ITC and MSE were significantly reduced in the diagnosed 

participants. Such group differences are in line with previous work showing reduced ITC and 

reduced MSE in ASD (Catarino et al., 2011; Milne, 2011). However, there was substantial 

overlap between diagnosed and undiagnosed participants in both variables, and Bayes factors 

provided only weak evidence for a group difference in MSE. Furthermore, discriminant 

function analysis showed that EEG variables did not clearly distinguish diagnosed from 
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undiagnosed participants. The lack of clarity in group-based classifications highlights the 

heterogeneous nature of ASD and the observation made recently by Holmes and Patrick 

(2018) that there is no optimal neural profile in ‘typical’ development. Many authors have 

proposed that the current diagnostic label of ASD comprises a number of sub-types with 

different genetic profiles (Geschwind & Levitt, 2007). Indeed, there are a number of genetic 

variants that can give rise to symptoms and behaviors that meet diagnostic criteria for ASD 

(Betancur, 2011). Despite this, there is a tacit assumption in much autism research that the 

diagnostic label of ASD represents a neurobiological boundary and that therefore a distinct 

neural signature which identifies the condition should be found.  

The work presented here shows that while neural differences are more likely to be 

seen in people with a diagnosis of ASD than in people without a diagnosis of ASD, autistic 

traits and behaviors are not underpinned by a unique and distinct neural etiology, at least in 

so far as is reflected by ITC and MSE. Instead, just as has been shown by genetic studies, 

there are likely to be multiple routes to a diagnosis of ASD which are underpinned by 

multiple neural profiles. Indeed, it is possible that in some people, a diagnosis of ASD 

represents one end of a continuous distribution of particular traits in the absence of specific 

neural etiology, whereas in other people a diagnosis of ASD reflects alteration to specific 

neural circuitry which may give rise to autistic traits and symptoms. Alteration to both ITC 

and MSE have been reported in other conditions including schizophrenia and Tourette’s 

syndrome (Koh et al., 2011; Takahashi et al., 2010, Weng et al., 2017), suggesting - as RDoC 

proposes - that neural differences do not necessarily reflect clinical boundaries imposed by 

current diagnostic criteria, and that reduced ITC and MSE are not specific to ASD. The data 

presented here can be viewed in the context of the Early Symptomatic Syndromes Eliciting 

Neurodevelopmental Clinical Examinations (ESSENCE) framework, which suggests that 

neurodevelopmental disorders are not necessarily “discrete disorders or syndromes, but […] 
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brain dysfunctions/neurodevelopmental problems that reflect circuitry breakdown, network 

dysfunctions and decreased/aberrant/increased connectivity…” (Gilberg, 2010, pp 1549).  In 

this context, differences in neural dynamics as reflected by reduced ITC and / or MSE may 

represent underlying vulnerabilities for a number of neurodevelopmental and psychiatric 

conditions that, as shown here, occur in a subgroup of individuals with ASD, but need not 

necessarily be related to particular traits within the population.  

 ITC represents consistency of the phase angles of EEG oscillations across trials 

therefore reduced ITC is indicative of more irregular, and less consistent neural responses. 

This is commensurate with increased neural variability and unreliable neural responses in 

ASD (Dinstein et al., 2012), which could originate from increased neural noise (Weinger, 

Zemon, Soorya, & Gordon, 2014), or inconsistent and inefficient neural transmission as has 

been suggested in ADHD (Russell et al., 2006). MSE represents the integration of activations 

across varying time scales and provides an index of the complexity of the EEG signal; lower 

MSE reflects reduced complexity of the signal. To the best of our knowledge this study is the 

first to measure both ITC and MSE in the same participants. We found no evidence of a 

correlation between MSE and ITC (see table 2) suggesting that the neural processes being 

measured by these two variables are distinct, and that both variables are unlikely to be 

measuring a single construct.  

EEG complexity has been associated with neural connectivity. For example, model-

based analyses show that reduced connectivity increases complexity (Friston, 1996), 

therefore, reduced complexity, as found here in the diagnosed participants, may suggest 

increased connectivity in these participants. Figure 4 shows a trend towards reduced MSE in 

ASD being most evident at fine scales, although the interaction between group and scale did 

not reach statistical significance. Given that sample entropy at fine-scales reflects local, short-

range dynamics and sample entropy at coarse-scales reflects longer-range interactions 
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(McIntosh et al., 2013), reduced MSE at fine scales would be in-line with previous 

suggestion of increased short-range connectivity in ASD (Belmonte et al., 2004), although, as 

discussed above not all diagnosed participants showed reduced MSE. 

The increase in ITC that is seen following the presentation of a visual stimulus has 

been suggested by some to be due to phase re-setting of on-going alpha-band oscillations 

(Gruber, Klimesch, Sauseng, & Doppelmayr, 2004; Makeig et al., 2002), which play a 

functional role in controlling the timing of information processing. Specifically, it has been 

proposed that the visual P1 deflection of the ERP represents the inhibitory-phase of the alpha-

band oscillation and acts as an inhibitory filter, increasing signal to noise ratio during 

stimulus encoding and facilitating top-down integrative processes (Klimesch, Sauseng, & 

Hanslmayr, 2007). Although we did not find a relationship between ITC and autism traits, 

reduced ITC may be associated with features of ASD not measured here such as atypicalities 

of perception, a suggestion which is intriguing in light of recent work carried out in our lab 

showing that reduced ITC is associated with anomalous perception (Milne, Dunn, Zhao, & 

Jones, 2019).  

There are a number of limitations to this study. Firstly, a large minority of the 

diagnosed participants were taking medication that may exert an effect on EEG. For group 

comparisons these participants were excluded from analyses. This reduces the 

generalizability of our findings and is a non-trivial problem for research of this nature, where 

prescribed medication use is a common feature of autism in adulthood. However, the 

correlation analyses remained stable when participants who were taking medication were 

excluded from the analysis, suggesting that our conclusion that the traits and symptoms of 

ASD are not related to either ITC or MSE across the population is not affected by medication 

use within the sample. A second limitation concerns the difficulty in confirming ASD 

diagnoses in research participants. Although observational tools, e.g. the ADOS, are available 
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for this purpose, these tools may not be sensitive enough to measure autistic behaviors in 

adults. This is particularly relevant here as many of the diagnosed participants did not receive 

a diagnosis of ASD until adulthood and reported developing strategies that enabled them to 

mask their autistic traits. Because of this, we did not administer the ADOS and instead used 

the RAADS-R to confirm the presence of ASD symptomatology (Andersen et al., 2011; 

Ritvo et al., 2011). As the RAADS-R was administered face-to-face with all participants, 

anecdotal information provided during the administration of the RAADS-R suggested that 

this instrument provided a sensitive way to measure experiences and behaviors (including 

masking behaviors) in autistic participants. 

A third limitation is the use of self-report measures.  In an attempt to overcome this, 

we administered the other-report version of the SRS wherever possible. There was a 

relatively high degree of concordance between the self- and other reports, and the pattern of 

correlations obtained using SCI calculated from other-report was similar to the pattern of 

correlations obtained using SCI calculated from self-report, providing confidence in the use 

of self-report measures. Nevertheless, some degree of measurement error is inevitable with 

the use of questionnaires, which may impact on the results of the correlations presented here. 

A fourth limitation concerns the fact that we analysed only two EEG variables. It is 

possible that had other variables been investigated, a relationship between neural features and 

autistic traits would be seen (c.f. Elton, Di Martino, Hazlett, & Gao, 2016). However, MSE 

and ITC were selected for analysis specifically because they reflect integrity of a broad range 

of neural features, and are sensitive to variation in neural structure and function (e.g. changes 

to MSE associated with aging reported by McIntosh et al., 2013, and found here in the 

undiagnosed sample). Furthermore, both variables were sensitive enough here to differ 

between the participants with and without ASD at a group level. 
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A final consideration is the extent to which the diagnosed participants are 

representative of the autistic population. Given that the aim of this study was to investigate 

the extent to which alterations to neural dynamics that have previously been reported in ASD 

are related to the autism phenotype across the population, we purposefully recruited 

diagnosed participants who were similar in intellectual level and socio-economic status to the 

undiagnosed participants. However, many autistic people have additional needs which would 

preclude them from taking part in a study such as this, therefore it is important to 

acknowledge that these data reflect only a subsection of autistic adults. The mean RAADS-R 

score for the unmedicated diagnosed participants on which group comparisons are based was 

116.9. Compared with two other papers that have recruited large samples of participants with 

ASD, this mean score is lower than the mean RAADS-R score of 133.8 reported by Ritvo et 

al., and similar to the mean score of 118.7 reported by Andersen et al., 2011. It is possible 

that different patterns of results would be found if we repeated this study in a different 

population, for example in autistic children, infants at high risk for being diagnosed with 

ASD (c.f. Bosl, Tager-Flusberg, & Nelson, 2018), or in autistic adults who score more highly 

on the RAADS-R.  

To summarise, these data support previous findings of individual differences within 

the general population of the traits associated with ASD. However, we found no evidence to 

suggest that the distribution of autistic traits in the population is underpinned by individual 

differences in neural dynamics: EEG variables that have been reported by others, and found 

here, to differ between people with and without ASD were unrelated to ASD traits. This 

conclusion is tempered by the fact that we measured only two EEG variables and obtained 

data from only one neuroimaging method. Nevertheless, ASD is defined as a 

neurodevelopmental disorder, implying a neural etiology of the condition. By combining a 

categorical and a dimensional approach to analysis, this study suggests that neural etiology is 
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seen in some, but not all, people who are diagnosed with ASD, and that there are likely to be 

multiple neural profiles underlying the condition. These data have implications for studies 

that aim to find distinct neural biomarkers for ASD, and highlight the difficulties involved in 

research that is aimed at identifying the neural etiology of diagnostic constructs that are 

defined by behavior alone.  
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Table 1. 

Descriptive variables and questionnaire scores for the full sample, and for the sub-sample of un-medicated diagnosed and undiagnosed 
participants used in group analysis. 
 
 
 

Full Sample (N = 
99) 

Un-medicated 
diagnosed (N = 22) 

Matched undiagnosed 
(N = 22) 

    

 Mean SD Mean SD Mean SD ta p Awc CI 
Age  
 

37.5  
 

13.5 42.1  
 

14.0 37.2  
 

10.7 -1.28 .21 .608 [.415 .767] 
 

MR t-score  
 

59.5 
 

7.3 59.4  
 

7.8 59.1  
 

6.7 -.130 .90 .538 [.315 .731] 
 

IMD  
 

5.73  
 

2.7 5.8  2.9 5.7  2.7 .446 .658 .466 [.218 .688] 

RAADS-R score  
 

72.4  
 

53.3 116.9  
 

27.9 24.3  
 

19.9 -11.83b  <.001 1 [1       1] 

SRS-R t-score  
 

58.0  
 

14.3 66.3  9.9 44.8  
 

4.3 -9.40 b <.001 .979 [.923 .997] 

SCI score  51.1  
 

32.3 69.3  
 

21.6 21.0  9.8 -9.55 b <.001 .978 [.910 .996] 

RBQ-2A score  
 

1.7  
 

0.4 1.9  
 

0.3 1.3 
 

0.3 -6.72 <.001 .924 [.831 .970] 

BAIT score  
 

14.4  
 

10.9 16.1 10.5 8.3  
 

6.3 -2.98 b .005 .725 [.522 .869] 

ASRS score  12.3 4.7 13.9  4.3 9.4  4.2 -3.50 .001 .798 [.657 .897] 
Note. MR = matrix reasoning; IMD = Index of Multiple Deprivation; RAADS-R = Ritvo Autism Asperger Diagnostic Scales – Revised; SRS-R 
= Social Responsiveness Scales, Revised; SCI = social communicative interaction subscale from the SRS-R; RBQ-2A = Adult Repetitive 
Behaviour Questionnaire-2A; BAIT = Beck Anxiety Inventory – Trait version; ASRS = World Health Organisation Adult ADHD Self-Report 
Scale Screener Part A. 
a Comparison of the subsample of un-medicated diagnosed participants and the matched undiagnosed participants. 
b degrees of freedom adjusted due to between-group inequality of variance 
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c Aw presented as probability of score from the diagnosed group being larger than score from the undiagnosed group. CI = 95% confidence 
intervals around Aw 
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Table 2. 
 
Correlation coefficients (Spearman’s rho) between MSE, ITC and questionnaire scores. 
 

 
Note. CI = Confidence interval; B01 = Bayes Factor in favour of the null hypothesis; MSE = multi-scale entropy; ITC = inter-trial coherence; SCI 
= social communicative interaction subscale from the SRS-R; RBRI = score from the Adult Repetitive Behaviour Questionnaire-2A; BAIT = 

N = 99a MSE fine MSE mid MSE coarse ITC SCI RBRI ASRS BAIT 
MSE mid 
95% CI 

.190 
[-.007 .374] 

       

B01 1.059        
MSE coarse 
95% CI 

-.639** 
[-.743 -.505] 

.386** 
[.204 .542] 

      

B01 < 0.001 0.004       
ITC 

95% CI 
.039 
[-.166 .241] 

-.052 
[-.253 .153] 

-.048 
[-.249 .157] 

     

B01 7.144 6.673 6.529      
SCI 
95% CI 

.028 
[-.171 .224] 

-.043 
[-.238 .156] 

-.087 
[-.279 .113] 

-.077 
[-.276 .129] 

    

B01 7.347 6.860 5.194 5.998     
RBRI 
95% CI 

-.005 
[-.202 .193] 

-.108 
[-.299 .091] 

-.128 
[-.318 .071] 

-.019 
[-.222  .185] 

.827** 
[.752 .881] 

   

B01 7.621 4.137 3.454 7.288 < 0.001    
ASRS 
95% CI 

-.031 
[-.227 .167] 

-.047 
[-.242 .152] 

-.019 
[-.216 .179] 

-.199 
[-.387  .005] 

.609** 
[.468 .720] 

.587** 
[.441 .703] 

  

B01 7.288 6.816 7.471 1.038 < 0.001 < 0.001   
BAIT 
95% CI 

.079 
[-.120 .272] 

.048 
[-.151 .243] 

-.096 
[-.288 .103] 

-.130 
[-.325 .075] 

.632** 
[.497 .737] 

.595** 
[.450 .709] 

.553** 
[.399 .677] 

 

B01 5.771 6.681 4.695 3.967 < 0.001 < 0.001 < 0.001  
AGE 
95% CI 

.389** 
[.207 .544] 

.069 
[-.130 .263] 

-.361** 
[-.521 -.176] 

-.067 
[-.267 .139] 

.197 
[.000 .380] 

.136 
[-.060 .325] 

-.026 
[-.223 .172] 

.249* 
[.055 .426] 

B01 0.004 6.120 0.014 6.158 1.336 2.706 7.499 0.344 
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Beck Anxiety Inventory – Trait version; ASRS = World Health Organisation Adult ADHD Self-Report Scale Screener Part A. Significant 
correlations are indicated by bold font. 
a with the exception of correlations involving ITC where N = 93.  
* = p<.05, ** = p< .01 
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Figure 1. Schematic illustration of the EEG procedure.  
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Figure 2. Histograms showing the distribution of scores obtained from the questionnaires and 

EEG variables in the diagnosed (N = 38) and undiagnosed (N = 61) participants. See the 

online article for the color version of this figure. 

 

 

 

 



NEURAL DYNAMICS AND THE AUTISM PHENOTYPE   36 

 

 

 

 

 

Figure 3. ITC values in the unmedicated subsample of diagnosed and undiagnosed 

participants. Top panel shows time/frequency plots of ITC values in the diagnosed (A) and 

undiagnosed (B) samples. Middle panel shows the timeseries at the frequency at which 

maximum ITC occurred from each participant in the diagnosed (C) and undiagnosed (D) 

samples.  E shows the average of the timeseries depicted in C and D, and F shows the 

maximum ITC value in the diagnosed and undiagnosed groups. Note that if the five 

participants who show clearly reduced ITC values (four from the diagnosed group and one 
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from the undiagnosed group) are excluded from analysis, there is still a significant group 

difference between the diagnosed and undiagnosed participants (Mann-Whitney U = 104, p 

=.016, BF10 = 5.92). See the online article for the color version of this figure.    
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Figure 4. MSE values in the unmedicated subsample of diagnosed and undiagnosed 

participants. Sample entropy at each electrode and at a selection of scale factors (1,6,11 & 16) 

is shown in each headplot. (A) shows mean sample entropy for the diagnosed participants and 

(B) shows mean sample entropy for the undiagnosed participants. C, D and E show mean 

sample entropy at each scale factor in the diagnosed and undiagnosed participants computed 

from frontal (C), central (D) and parietal / occipital (E) electrodes. See the online article for 

the color version of this figure. 


