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Abstract

Substantial experimental evidence suggests the cerebellum is involved in calibrating senso-

rimotor maps. Consistent with this involvement is the well-known, but little understood, mas-

sive cerebellar projection to maps in the superior colliculus. Map calibration would be a

significant new role for the cerebellum given the ubiquity of map representations in the

brain, but how it could perform such a task is unclear. Here we investigated a dynamic

method for map calibration, based on electrophysiological recordings from the superior colli-

culus, that used a standard adaptive-filter cerebellar model. The method proved effective for

complex distortions of both unimodal and bimodal maps, and also for predictive map-based

tracking of moving targets. These results provide the first computational evidence for a

novel role for the cerebellum in dynamic sensorimotor map calibration, of potential impor-

tance for coordinate alignment during ongoing motor control, and for map calibration in

future biomimetic systems. This computational evidence also provides testable experimen-

tal predictions concerning the role of the connections between cerebellum and superior colli-

culus in previously observed dynamic coordinate transformations.

Author summary

The human brain contains a structure known as the cerebellum, which contains a vast

number of neurons–around 80% of the total ~90 billion. We believe the cerebellum is

involved in learning motor skills, and so is vitally important for accurately controlling the

movements of our body, amongst other things. However, like most regions of the brain,

we still do not fully understand the role of the cerebellum and evidence for new roles is

appearing all the time. One such new role is in the calibration of sensorimotor maps in

the brain that link our sensory perception to motor function, such as when a visual sti-

mulus causes a redirect of our gaze. We investigated this problem by connecting a mathe-

matical model of the cerebellar cortical microcircuit to simulated sensory maps in the

superior colliculus that are used to control orienting movements. We found the error sig-

nal generated by inaccurate orienting movements could be used to accurately calibrate
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sensorimotor maps, and to allow predictive tracking of moving targets. This finding

points to a potentially widespread role for the cerebellum in calibrating the sensorimotor

maps that are ubiquitous in the brain and could prove useful in controlling the move-

ments of multi-joint robots.

Introduction

Evidence for cerebellar involvement in map calibration comes from studies of prism adaption

in primates [1, 2] and cerebellar patients [3–6], and from measurements of human brain activ-

ity during adaptation [7, 8]. This evidence suggests that "the cerebellum is particularly involved

in the realignment process that is necessary to re-establish a correct spatial mapping among

visuo-motor and sensorimotor coordinate systems" ([7], p.176). Given the ubiquity of map

representations in the brain, such involvement represents a very significant new role for the

cerebellum. However, although computational studies have indicated how the cerebellum

could form internal models of a wide variety of dynamic processes [9–11], it is unclear how

these ideas could be applied to the problem of calibrating maps.

One possible mechanism for map calibration is suggested by electrophysiological studies of

collicular maps that are used to guide orienting movements. These maps receive information

about target location from multiple modalities [12], and issue motor commands to eyes, head

and body depending on the species [13]. In primates and humans the superior colliculus pri-

marily controls saccades that bring the target onto the fovea, and these saccades can be artifi-

cially miscalibrated by allowing the target to move during the saccade itself [14]. Accuracy can

be relearnt, a process termed saccadic adaptation, provided the relevant region of the cerebel-

lum is intact [15]. Current evidence suggests that the cerebellum can act both downstream of

collicular maps, and on the maps themselves [16], consistent with the massive reciprocal con-

nections between the cerebellum and the superior colliculus [17].

In the case of maps combining visual and auditory information, a problem arises when the

eyes do not look straight ahead, since the head-based auditory coordinate frame becomes mis-

aligned with the visual coordinate frame. Recordings from primate superior colliculus indicate

that auditory receptive fields are appropriately altered by information about the position of the

eyes in the orbit [18]. Similar results were obtained for a combined visual and somatosensory

map, when the task was to saccade to a tactile signal delivered to the hand [19]. These results

suggest that the superior colliculus receives map-calibration signals that can vary dynamically

on a trial-by trial basis. We therefore investigated whether such signals could be in principle be

generated by current computational models of the cerebellum.

We used as a basic framework the standard ‘chip’ metaphor of cerebellar function, which

has been employed to represent the combination of a homogeneous cerebellar cortical micro-

circuit with individual microzones having unique external connections [11, 20]. In this frame-

work we constrained the model by requiring the cerebellar microcircuit to be represented in a

familiar form, so that the novel feature was the architecture connecting cerebellum and supe-

rior colliculus. The familiar form we chose was the basic adaptive filter model of the cerebellar

microcircuit [21], a development of the original Marr-Albus theoretical framework that uses

the covariance rule to implement the least mean square learning rule for time-varying input

signals. This model has been used successfully in a wide variety of sensorimotor contexts [22],

and here we investigated whether it could be applied without change to the very different

computational problem of calibrating a topographic map driving an orienting response.

Sensorimotor maps can be calibrated using an adaptive-filter model of the cerebellum
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We determined whether the model was capable of acquiring two competencies, first cor-

recting a unimodal map that has become distorted and secondly resolving mismatches

between modalities in a multimodal map. In addition, since the algorithm we chose naturally

results in maps which are predictive, we examined how the cerebellum could be used to cali-

brate prediction of the future position on the map of a moving target. This competence has

been demonstrated for the auditory tectal map in the owl [23] and a colliculus-related map in

cat [24], and is consistent with the demonstrated role of the superior colliculus or optic tectum

in prey catching in a number of species [25–29].

Results

Overview of architecture for map calibration

Fig 1 shows in schematic form the architecture for calibration of a unimodal sensory map, in

which the adaptive filter learns to produce dynamic modulating inputs to the map that

increase its accuracy. The cerebellar cortical microcircuit is modelled as an adaptive filter [21,

22]. This uses a systems level interpretation, in which each cerebellar microzone has two inputs

(climbing fibre, mossy fibre) and a single Purkinje cell output. Such a model has previously

been applied in a range of sensorimotor contexts [22]. We keep the same model hardwiring

(as described below and in Fig 1A and 1B) to determine if it can still be applied in the very dif-

ferent context of map calibration.

A simplified version of the microcircuit is shown in Fig 1A, in which the mossy-fibre inputs

u are recoded in the granular layer to produce parallel-fibre signals pj. These signals influence

the simple spike firing z of Purkinje cells via the synapses w. Purkinje cells also a receive a

climbing-fibre input e. In the adaptive-filter interpretation of this circuit (Fig 1B) processing in

the granular layer is represented by a set of fixed filters G1 . . . GN whose outputs p1 . . . pN are

weighted by w1 . . . wN where the weights correspond to the efficacies of the synapses between

parallel fibres and Purkinje cells. Purkinje cells linearly sum the weighted parallel-fibre signals

to produce their simple-spike output z = Swipi. The climbing-fibre input e acts as a teaching or

error signal that alters the weights w1 . . . wN using the covariance learning rule Ďwi = -Č<epi>,

which corresponds to the Least Mean Square learning rule [30]. In this form of supervised

learning the weights are altered until correlations between presynaptic inputs and output error

are removed [30, 31], hence the term decorrelation learning [32]. A compact schematic of the

adaptive filter (Fig 1C) is used in subsequent diagrams.

In the simplest version of the architecture the superior colliculus was represented by a single

topographic map (Fig 1D). Target locations xd = (xd,yd) are selected from within a two dimen-

sional grid, then transformed into sensor data which is written into the collicular map, mod-

elled as a square grid with each grid point corresponding to a collicular neuron. The sensor

data are generated by a linear sensor model sd = Kxd, where K is a 2 x 2 matrix that defines the

sensor model and is determined from the sensor scaling, noise level and rotation of target (e.g.

[33]). The sensor data are then written into the topographic collicular map to provide a distrib-

uted representation of the target location (Fig 1D). Neurons in the map had receptive field cen-

tres (xi,yj), so that if only an individual neuron fired, it would produce an orienting response to

the real-world location (xi,yj). It assumed here that the map’s connections to the motor system

are fixed, and that neuron centres are assumed to be dense enough to code the target location

accurately. A 2D elliptical Gaussian function was used to provide the distributed target posi-

tion which when sent to the motor system generates an orienting response to the estimated

position of the target. For an accurate map this corresponds to the actual position of the target

xd, thus bringing the target onto the fovea (in primates) or the area of the mouth (in rodents).

Sensorimotor maps can be calibrated using an adaptive-filter model of the cerebellum
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The two components are calculated from the distributed firing rates of the collicular neurons

(details in Materials and Methods).

The distributed collicular response is also sent to the cerebellum as mossy-fibre input,

where it is processed in the granular layer to produce a coarse coded map carried by the paral-

lel fibres (Fig 1D). Coarse coding was used to provide a sparser representation to ensure both

an acceptable speed of learning and an acceptable degree of precision. An evenly spaced k by k

grid of Gaussian receptive fields, GnP (where n denotes the n
thGaussian in the k by k grid) was

Fig 1. Cerebellar-collicular circuitry for calibration of unimodal sensory maps. a) Simplified diagram of cerebellar cortical microcircuit, in which mossy-fibre inputs
u are recoded in the granular layer to produce parallel-fibre signals pj. These signals influence the simple spike firing z of Purkinje cells via the synapses w. Purkinje cells
also a receive a climbing-fibre input e. b) Interpretation of the microcircuit as an adaptive filter. In the adaptive filter model, each microzone has two inputs (climbing
fibre, mossy fibre) and a single Purkinje cell output. Processing in the granular layer is represented by a set of fixed filters G1 . . . GN whose outputs p1 . . . pN are weighted
by w1 . . . wN where the weights correspond to the efficacies of the synapses between parallel fibres and Purkinje cells. Purkinje cells linearly sum the weighted parallel-
fibre signals to produce their simple-spike output z = Swipi. The climbing-fibre input e acts as a teaching or error signal that alters the weights w1 . . . wN using the
covariance learning rule Ďwi = -Č<epi>. c) Compact schematic used to illustrate the parallel fibre (PF), Purkinje cell (PC), and climbing fibre part of the circuit in
subsequent diagrams. d) Schematic diagram of the proposed recalibration architecture for a distorted unimodal collicular map. Unimodal sensory signals,
corresponding to target locations (xd, yd), are written into the map, which because of the distortion provides an inaccurate estimate of target location (xg, yg) that is used
to generate a correspondingly inaccurate orienting response. The map output is also sent to the cerebellum, where it is converted into a coarse-coded, normalised set of
parallel-fibre (PF) signals. These are sent to two cerebellar microzones, each represented in the diagram by a single Purkinje cell, that receive climbing fibre inputs that
initially signal errors (xd-xg, yd-yg) in the orienting response. These errors are used to alter PF-PC synapses, generating cerebellar output that shifts the map so that the
orienting response is nowmade to the new location (xa, ya). This process is repeated until the error (xd−xa, yd-ya) becomes zero. Further details in text.

https://doi.org/10.1371/journal.pcbi.1007187.g001
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used to coarse code the topographic map. The activity of each grid point was found by multi-

plying each Gaussian receptive field by the topographic map activity and summing and

normalising.

When the collicular map is correctly calibrated, the target positions estimated by the map

are accurate, and so are the orienting movements it generates. In the absence of orienting

errors the climbing fibres to the cerebellum will not carry any error signals, and the weights

between parallel fibres and Purkinje cells will stay fixed. When the collicular map is inaccurate

it generates an erroneous estimate xg = (xg, yg) of the actual target location xd = (xd, yd) so that

the resulting orienting movement will be in error (e = xd−xg). This would be foveation error in

the case of saccade generation, or a tactile signal provided by micro-vibrissae in the case of

rodent prey acquisition. The cerebellum receives a corresponding error signal via climbing

fibres, a signal assumed here to be signed and two dimensional, with axes approximately

aligned with horizontal and vertical (x and y directions). This error signal is used to adjust the

weights of the synapses between parallel fibres and Purkinje cells so that the output to the supe-

rior colliculus sent from the cerebellar cortex via the deep cerebellar nuclei biases the collicular

map in order to shift the position of peak map activity (Fig 1D). The simplest way for the cere-

bellum to act on a topographic map is to assume a 2D output z which is fed to all neurons in

the map and biases their centre position. That is, for a given sensory map, a cerebellar bias

input z to a target neuron with centre x will make it act as though it has centre x+z. In effect

cerebellar input ‘slides’ map activity across the map by an amount z = (Ďx,Ďy). We therefore

assume there are 2 biasing microzones for each sensory map, so that map activity can be

shifted independently in 2 dimensions. Using a global map shift is a simplification that can be

applied when considering single targets. For multiple targets, different regions of the map are

likely to require shifting by different amounts. To achieve this, the map could be split into dif-

ferent regions, calibrated by a separate cerebellar zones. We consider single targets to avoid

overcomplicating the problem.

We use the notation xa = (xa,ya) to denote the adjusted target location xa = xg+z. Subse-

quent orienting errors are calculated from the shifted estimated location e = xd−xa = (ex,ey)

(further details in Fig 1).

The bias signal is generated as follows. A weight is associated with each parallel fibre signal.

The cerebellar weights to bias the map in the x-and y–directions are learnt from initial values

of zero. As indicated above, the learning rule is given by Δwx = −Č ex P, Δwy = −Č ey P, where ex
and ey are the errors, P the coarse coded parallel fibre signals, and Č is a learning rate.

Calibration of single map

In the first problem we asked the cerebellar-collicular architecture described above to calibrate

a unimodal map (green grid in Fig 2A, left-hand panel) that had been distorted as a result of

sensor changes (red grid). The nature of the distortion varied with stimulus location, as indi-

cated by the arrows which show the changes to the map that are needed to restore its accuracy.

The sensory map after 3000 trials of cerebellar recalibration (blue dashed grid) is shown in the

centre panel of Fig 2A, and is very substantially restored to its undistorted from. The right

hand panel shows the combined learnt weights in the x- and y-directions corresponding to

each coarse coded set of parallel fibre signal (weights initially zero). The time course of the

recalibration is shown in Fig 2B, which plots the RMS error of the orienting response against

number of stimulus presentations.

The impact of learning maps with a low quality error signal was also investigated by testing

a version of the learning rule that simply used the sign of the error signal. Learning with the

full signal (Fig 2B) gave RMS errors with mean 0.008 over the last 2500–3000 iterations. When

Sensorimotor maps can be calibrated using an adaptive-filter model of the cerebellum
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the sign of the error was used this was increased to 0.015. However, both signals substantially

restored the map to the undistorted form. The model is robust to reductions in the quality of

the error signal, even if it is sign only, learning is little affected.

The details of dynamic recalibration for a particular target location are illustrated in Fig 2C.

The shift needed to restore response accuracy to this location is shown as a red arrow on the

collicular map image in the left panel. The coarse-coded, normalised parallel fibre signals gen-

erated by the inaccurate target location are shown in the centre panel (cf. Fig 1D). At the start

of recalibration, each of the weights of these signals (corresponding to the efficacy of the corre-

sponding synapses on Purkinje cells) were zero. After learning the weights had changed to pro-

duce a cerebellar output that shifted the map appropriately (Fig 2C, right-hand panel). It is

important to emphasise that recalibration by the architecture described above is a dynamic

process since the cerebellar bias signal depends on the current target position. This means

that, although the whole map receives the same bias signal, the bias signal changes according

to the position of the target.

The parallel-fibre representation used here contains enough terms to allow affine recalibra-

tions. In general the complexity of possible re-calibrations depends only on the completeness

of the parallel-fibre representation, e.g. radial basis function inputs could generate very general

calibrations.

Calibration of multiple maps

The superior colliculus has both unimodal and multimodal maps (e.g. [34]). In the example

illustrated in Fig 3, information from a visual and a somatosensory map are combined into a

multimodal map that drives the orienting response. If one or both unimodal maps are dis-

torted, the output of the multimodal map produces an inaccurate orienting response. The

problem is to use this error information to calibrate all three maps.

The architecture used to address this problem (Fig 4A) was an extension of that used for

calibrating a single map (Fig 1). For the case of two sensors we assume two sets of PCs, where

each set consists of an x- bias and y-bias PC. Writing undistorted sensory data into each map

used linear sensor models as before, where the sensory signals were generated from target loca-

tions xd by s1d = K_1xd, s2d = K_2xd. Both K_1 and K_2 were set to the same value to simplify

the simulation. The sensor data were then written into the topographic collicular map to pro-

vide a distributed representation of the target location as previously, using identical 2D ellipti-

cal Gaussian functions. The outputs of the unimodal maps were combined to generate the

multimodal map using element by element multiplication of the individual multimodal maps,

a method that implements Bayes’ rule (Materials and Methods). Copies of the distributed neu-

ronal responses in the unimodal maps were also sent to the cerebellum as parallel-fibre inputs

(Fig 4A). Coarse-coded parallel-fibre signals for each map were generated as before, with the

same values for the parameters for each set. The total parallel fibre signal P is thus a vector con-

sisting of the values of P1 at each grid point and P2 at each grid point.

Fig 2. Recalibration of a single target map with curvilinear distortion. a) The left hand panel shows an initially accurate map (green line) in the superior colliculus
(SC), with artificially induced curvilinear distortion (red line) (details in Methods). The shifts in the map to correct for the distortion are dependent on the location in
the map, and are indicated by black arrows. The learnt cerebellar recalibration of the distorted grid (teal line) is shown in the middle panel. The right hand panel shows
the combined learnt weights in the x- and y-directions corresponding to each coarse coded parallel fibre signal (weights initially zero). b) Time course of recalibration,
showing how RMS errors in orienting responses change with number of target presentations. c) Example of learnt dynamic cerebellar recalibration. The left-hand panel
shows the shift in the map (red arrow) required to produce an accurate orienting response to the inaccurate target location provided by the distorted map. The centre
panel shows the coarse-coded, normalised parallel fibre signals produced by the inaccurate target location. The right hand panel shows that after learning the parallel
fibre signals now shift the map by just the required amount to produce an accurate response.

https://doi.org/10.1371/journal.pcbi.1007187.g002

Sensorimotor maps can be calibrated using an adaptive-filter model of the cerebellum
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When one or both maps were distorted, the output of the multimodal map produced an

inaccurate orienting response. In the first method tried for calibrating the unimodal maps, this

erroneous response was used to bias the unimodal maps, just as in Task 1 where there was

only a single map.

Application of this simple method revealed a fundamental calibration ambiguity. Since esti-

mated target position is a weighted combination of individual map estimates, multiple sensors

can be miscalibrated in such a way that their combined errors cancel on average (Fig 5A).

In principle this ambiguity can be resolved if the sensors have varying accuracies, because

the relative weightings of different sensors will vary so that cancellation cannot be exact. How-

ever, the learning architecture above cannot utilise this information about sensor accuracy,

because all sensor calibration modules are trained by the same error signal (from the

Fig 3. Calibration of combined unimodal maps. a) Individual sensors are assumed to write into 2D unimodal topographic maps, each of which provides a probabilistic
representation of target position as shown in Fig 1. The outputs of these unimodal maps are then combined to produce an overall multimodal map, and the position of
peak activity on this map drives the orienting response. The problem is how errors in the orienting response can be used to calibrate both unimodal and multimodal
maps. b) Combining information frommultiple sensors using probabilistic maps can produce a more accurate estimate of location. c) Information between two sensors
combines to give a more focused estimate of location. The top plots show individual sensor maps and the bottom the combined map.

https://doi.org/10.1371/journal.pcbi.1007187.g003

Sensorimotor maps can be calibrated using an adaptive-filter model of the cerebellum
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combined, single map) and so any behavioural error is necessarily attributed to all sensors.

This generates a credit attribution problem: since any error is attributed to all sensors, a sensor

is forced to learn even when it is accurate (Fig 5B).

The required teaching signal, calculated theoretically by the method of gradient descent, is

target error inversely weighted by sensor accuracy. But even in simple cases this requires

detailed information about sensor accuracy to modulate the target error signal, and is therefore

biologically implausible. A more plausible solution would use available sensory signals as

teaching signals.

Fig 4. Schematic of architecture for calibrating multiple topographic maps. a) The overall topographic map combines information from unimodal maps that are
each obtained from a unimodal sensory input. The combined map is used to drive the orienting response, which if incorrect generates an error signal. Parallel fibre
signals are a combination of all coarse coded individual sensory maps. Separate Purkinje cells are used to calibrate each unimodal map individually. Gating is introduced
to solve credit assignment issues that arise due to the same error signal training all individual sensors. b)Map response to target at centre when sensor is not gated (∑ =
[0.0225 0; 0 0.0225]). c)Map response to target at centre when sensor is gated (∑ = [4.5 0; 0 4.5]). The spread of possible target locations is increased when gating is
included.

https://doi.org/10.1371/journal.pcbi.1007187.g004

Sensorimotor maps can be calibrated using an adaptive-filter model of the cerebellum
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Sensory gating of CF teaching signal. We propose the following adjustment to the basic

architecture to implement a simplified credit attribution algorithm, which is in keeping with

our principle that there are to be no ad-hoc changes to basic microcircuit connectivity or learn-

ing rule: When a sensor fails to detect the target the teaching signal is ‘gated’ (Fig 4A) so that

no climbing-fibre teaching signal is passed to the relevant bias module. This simplified mecha-

nism is plausible in a biological implementation, and can be shown to converge if sensors have

independent non-zero drop-out rates. Here detection failure on a proportion of trials was

ensured by altering the sensor property S (Methods) so that the sensory map gives a very large

spread of possible target locations during gating (simulating failure to detect a target, Fig 4B

and 4C). This method enables accurate calibration of individual sensors in the case when the

combined map errors cancel (Fig 5C), and means that accurate individual sensors are not mis-

calibrated (Fig 5D). It should be noted that olivary error gating has been observed in motor

systems [35].

Sensor specific noise. The cerebellar chip philosophy requires that the PF input should be

an undifferentiated ‘bus’ of sensorimotor context information and the learning rule should

guarantee that only relevant information is used at the synthesis stage. When two sensory

maps are being calibrated, this means that the Purkinje cells that bias sensory map 1 receive

parallel-fibre signals from map 2, and vice versa (Fig 4A). The cross-talk synapses from these

parallel fibres potentially allow sensors to calibrate each other, which can result in miscalibra-

tion where two miscalibrated maps cancel their effects on estimated target position.

This potentially serious problem is actually an artefact of the simulation details. In the simu-

lations described above, sensors produce an activity map which encodes sensor accuracy, but

in fact no sensor noise was included in these simulations. We therefore introduce independent

Gaussian sensory noise e.g. s1d = K_1 xd+N(0,σ) alongside gating to remove parallel fibre

cross talk synapses (Methods). This sensor noise produces target errors which are only corre-

lated with one sensory input, so that covariance learning guarantees that synapses carrying

cross-talk are driven to silence (provided there is gating to break the symmetry between sen-

sors–sensory noise alone without gating did not lead to accurate calibration of individual

sensors).

The effects of adding noise are shown in Fig 6. The weights of cross-talk synapses are

markedly reduced (Fig 6A), with little effect on orienting accuracy (Fig 6B and 6C). It can be

seen that there are now two time scales for cerebellar learning (Fig 6A and 6C): a fast time

scale in which behavioural errors become small but not optimal and a slower time scale in

which synaptic weights are driven to their optimal values.

Predictive recalibration

Map calibration is often regarded as a static, target independent process. The architecture used

here, however, implements a dynamic process since the cerebellar bias signal depends on the

current target position. This means that, although the whole map receives the same bias signal,

the bias signal changes according to the position of the target. This allows position dependent

curvilinear recalibration using a single biasing output as illustrated in Figs 1 and 2. The

dynamic formulation turns also leads to a natural implementation of predictive calibration.

This is because in the adaptive filter the granular layer is assumed to act as an information

Fig 5. Calibrating multiple unimodal maps: Role of gating. a)Demonstration of the credit attribution problem for multiple sensors. Sensors are miscalibrated in such
a way that their errors cancel. If all sensor modules are trained by the same overall error signal the individual sensors will not learn even though they are inaccurate. b)
One sensor has zero error, but the overall error is non-zero. When all sensor modules are trained by the same error signal any behavioural error is necessarily attributed
to all sensors and so the individual sensors are forced to learn even if they are accurate. c)When errors are gated (details in text) both maps are calibrated even though
their errors originally cancelled (panel a). d)Gating also prevents an accurate map from being altered (panel b). In both cases the credit attribution problem is solved.

https://doi.org/10.1371/journal.pcbi.1007187.g005
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processing reservoir, so that the parallel fibres carry information not only about current mossy

fibre inputs, but also about the history of those inputs [22]. If we idealise this process by adding

further parallel fibre inputs to the biasing microzones which contain the coarse coded map

information filtered by leaky integrators at a range of time scales, then, in the presence of delay

in either the sensory or motor systems, the adaptive filter learns to predict target position so as

to acquire the target accurately.

Fig 7A illustrates this predictive architecture and Fig 7B, 7C and 7D show the results when

applied to a target which moves along a smooth curve (Methods) whose position is both dis-

torted by miscalibration and delayed by sensory processing with respect to the raw sensory

Fig 6. Sensor cross-talk is eliminated when independent sensor noise is present. a) Cross talk weights (given as RMS values) over iterations. When independent
sensor noise is present, the cross-talk weights are driven toward zero. b) Individual sensor calibration with and without independent sensor noise. Independent sensor
noise eliminates errors in individual sensor calibrations that arise due to cross-talk. The calibrated results are plotted for the case when the input from the other sensor is
set to zero. c) Overall RMS errors when both sensors are on and stable for the case when independent sensory noise is included.

https://doi.org/10.1371/journal.pcbi.1007187.g006
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Fig 7. Predictive calibration of a single target map with curvilinear distortion. a) Schematic diagram of the proposed recalibration architecture for predictive
recalibration. The desired target position is delayed and distorted before writing into a topographic map. Parallel fibre (PF) signals are the filtered outputs (here a bank
of 3 leaky integrator filters are used) of a coarse coded, normalised topographic map. b) Representation of target trajectory before distortion with 5 sample delay.
Examples of the differences between the desired (represented by a red +) and delayed (represented by blue x) targets are indicated by an arrow. The velocities of the
example target trajectory ranged from (-1.61,-1.82) units/sec to (1.74, 1.72) units/sec. c) RMS errors over iterations when learning to track a target using delayed and
distorted sensory information. d) Cerebellar learning to predictively recalibrate delayed, distorted signals and estimate the target location. Over iterations, the estimated
target trajectory learns to track the desired target trajectory.

https://doi.org/10.1371/journal.pcbi.1007187.g007
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input. The algorithm can be seen to successfully reduce mean square acquisition error (Fig

7C), and both remove the distortion and shift the target peak at its predicted position (Fig 7D).

There are two time scales involved in the calibration process. Learning the weights (or correc-

tions) is relatively slow and takes place over many iterations. Once the weights are learnt then

the application of the corrective signals during dynamic behaviours is fast.

This is only possible because the target motion is predictable; in effect the cerebellum learns

an internal dynamic model of target behaviour and uses it to predict future positions. Fig 7

shows that this internal model is optimally adapted to the statistics of the target behaviour,

which in this case were bandpassed white noise trajectories chosen as an example of a stochas-

tic motion with an adjustable level of predictability. If the target trajectory only contains low

frequencies then prediction is more accurate and uses a simpler internal model based on fewer

filter inputs. When higher frequency components are present the trajectory is less accurately

predictable and requires a more complex internal model utilising a larger range of filter time-

scales.

Similar predictive shifts in target position have been observed experimentally, for example

in the map of auditory space found in the optic tectum of the barn owl [23]. The optic tectum

is homologous to the mammalian superior colliculus, and is used by the barn owl to generate

orienting movements required for prey capture (Fig 8A). If the prey is moving, then the orient-

ing response must be directed to its predicted not current location, requiring a shift in tectal

receptive fields. The nature of such shifts in response to horizontal stimulus movement was

examined by manipulating the cue used for localising horizontal position, namely interaural

time difference (ITD) using dichotic presentation of sounds through earphones. Sound pre-

sentation corresponding to a stimulus location moving at constant velocity elicited receptive

field changes corresponding to predicted location (Fig 8B, 8C and 8D).

Consistent with this interpretation, the size of the receptive-field change increases with (vir-

tual) stimulus velocity (Fig 8D). The changes are consistent with a predictive time-lead of ~100

msec, which corresponds to the time taken to complete saccadic gaze shifts produced by elec-

trical stimulation of the tectum [37]. The predictive recalibration architecture (Fig 7A, with

simulation parameters provided in the Methods) was able to reproduce this pattern of changes

(See Fig 1 in [23] for experimental results). Here no sensor distortion was applied, so the algo-

rithm just learns to account for the delay between the estimated and actual target location. The

time scales of the experimental and simulated results differ, however the simulation is not

intended to replicate the experiment, but to demonstrate that the adaptive cerebellar filter is

able to explain the behaviour seen. Note that an even better correspondence could be obtained

if evidence accumulation was added to the salience map write-mechanism, so that sensor

inputs were optimally combined over time in the map. This would result in a tighter bound on

target location over time, mimicking the behaviour seen in the experimental data.

Discussion

The form of dynamic remapping investigated here proved effective for calibrating both unimo-

dal and multimodal topographic maps even when these had been distorted in complex ways,

and also for using the maps to track predictable stimulus trajectories. These results indicate

that the adaptive filter model of the cerebellar microcircuit, which has been widely used in con-

ventional sensorimotor contexts either explicitly or implicitly (e.g. [22]), can in principle be

applied to the very different computational problem of calibrating a topographic map driving

a motor response.

An important feature of these results is the extent to which they were achieved with no ad-

hoc changes to basic microcircuit connectivity (Fig 1) and no changes to the covariance
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learning rule. The climbing-fibre teaching signal was simply related to an available sensory sig-

nal, and as far as possible detailed hardwiring of particular parallel-fibre inputs to particular

microzones was avoided. All sensors were trained using the same error signal and parallel fibre

inputs were an undifferentiated bus of information, the only change was to introduce gating.

In principle all potentially relevant input (e.g. raw sensor input) and even irrelevant input

could be made available, since a useful characteristic of the adaptive-filter learning rule is that

parallel-fibre synapses conveying irrelevant information are driven to silence [38]. This

includes Purkinje cell synapses carrying cross-talk between sensors, greatly reducing the need

to hard-wire the connectivity of parallel fibre inputs to the cerebellar microzones.

These results provide further evidence of the computational adequacy of the model, and

also of the extent to which the cerebellum can be considered to be computationally homoge-

neous, consisting of a repeating cerebellar microcircuit implementing a single algorithm

which is useful in wide range of behaviours (e.g. [11, 20]), justifying its description as a ‘plug-

and-play’ cerebellar ‘chip’.

Fig 8. Receptive fields shift in response to a moving target. a) Sound waves generated by movements of a mouse are received by the owl’s left and
right ears (adapted from [36]). For horizontal positions stimulus location is indicated by interaural time difference (ITD), and stimulus movement by
changes in ITD. b, c, d) Learnt shifts when tracking a moving target with different velocities using the adaptive filter model. Weights were learnt by
tracking a moving target over a single sweep when there was a delay of 100 samples (dt = 5ms) between the estimated and ideal target location (but no
sensor distortion). b) Shift of receptive field of target when target is moving with a velocity of 1ms-1. c) Shift of receptive filed when target is moving
with a velocity of -1ms-1. d) Shift for different positive velocities of 0.125, 0.5, 1, 2 ms-1(thicker lines correspond to faster speeds). The results are
comparable to predictive shifts presented in [23].

https://doi.org/10.1371/journal.pcbi.1007187.g008
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Biological evidence

Both the cerebellum and superior colliculus have been implicated in saccadic adaptation [14].

The precise nature of that involvement has proved difficult to identify, because saccadic adap-

tation has turned out to be more complex than it originally appeared, with evidence for differ-

ent mechanisms being involved depending on whether the adaptation is gain-up or gain-

down, short term or long term, or of reactive or voluntary saccades (e.g. [39, 40]). It appears

that sensory remapping is likely to be involved in the gain-up adaptation of reactive saccades,

and more generally in the adaptation of voluntary saccades (e.g. [41]). In the former case it

seems likely that the altered map is within the superior colliculus [16, 33], whereas for the latter

spatiotopic cortical maps appear to be implicated [42, 43].

A possible anatomical basis for dynamical cerebellar remapping of maps in the superior col-

liculus is the extensive projection from the deep cerebellar nuclei to the superior colliculus

[17]. However, little is known about the signals sent by these projections, though it has been

suggested they may be “involved in correlating the modality maps within the SC” ([17], p.352).

There is evidence for tonic excitatory inputs in anaesthetised rats [44–46] that directly influ-

ence collicular sensory cells, and affect movements resembling pursuit, but how that influence

works during normal behaviour is not understood.

There is good evidence that the cerebellum is involved in the sensory remapping that occurs

in prism adaptation [1–5]. The location of the recalibrated maps is however unclear, though

event-related FMRI implicates the superior temporal cortex [7]. Adaptation of voluntary sac-

cades has been argued to be similar to prism adaptation [41, 43] and also appears to involve

alterations of maps in higher level frameworks than the retinotopic maps in the superior colli-

culus. The basic framework for map recalibration proposed here should in principle work for

such higher-level maps. A necessary requirement for this is the existence of a recurrent archi-

tecture involving cerebral cortex rather than the superior colliculus. Evidence for such an

architecture connecting multiple cerebellar and cortical areas has been summarised by Ram-

nani [47].

Overall, the biological evidence appears to be consistent in broad terms with the map cali-

bration scheme proposed here. The next step is to consider more detailed evidence, that could

be provided by testing specific predictions generated from the present results.

Biological predictions

As mentioned in the Introduction, accurate saccades to auditory targets can be made when the

eyes are in an eccentric starting position, causing auditory and visual maps to become mis-

aligned [18]. The scheme investigated here predicts that saccadic accuracy to auditory stimuli

in this situation will be severely impaired after selective inactivation of cerebellar inputs to the

superior colliculus, or of collicular outputs to the cerebellum. It also predicts that this

impairment will be accompanied by a loss of the shift in auditory receptive fields that normally

results from change in eye position, again as demonstrated by Jay and Sparks [18]

Accurate saccades can also be made to somatosensory targets (stimulation delivered to the

hands which are not visible) from different starting positions of the eye [19]. We again predict

that saccadic accuracy to these somatosensory stimuli under these conditions will be severely

impaired after selective inactivation of connections between cerebellum and superior collicu-

lus, and that this impairment will be accompanied by a loss of the shift in somatosensory

receptive fields that normally results from change in eye position [19].

Finally, owls are able to capture moving prey, an ability connected with predictive shifts in

the receptive field of auditory neurons in the optic tectum [23]. We predict that selective
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inactivation of connections between the cerebellum and optic tectum will seriously affect the

ability to capture moving prey, and abolish the predictive shifts in auditory receptive fields.

Implications for cerebellar function

The recalibration mechanisms investigated here may have application to the generic problems

of realigning collicular maps when the body moves that were outlined in the Introduction. In

the absence of a recalibrating input auditory and visual maps would become misaligned when

the head moves (e.g. [18]), as would tactile and visual maps when the hands move (e.g. [19]).

Dynamic recalibration appears to be particularly useful for such problems, and a role for the

cerebellum is suggested by consideration of the computational complexities of determining

target position in eye-centred coordinates of a tactile target delivered to a hand. “If the stimu-

lus is delivered to the finger, the angles of the finger joints, wrist, elbow, shoulder, neck and

eyes must be known . . . a neural implementation of a multi-dimensional lookup table with

indexes for all the intervening joint angles could convert stimulus position from body-centred

space to eye-centred space” ([19], p.450, p.450). Dynamic coordinate alignment is crucial for

motor coordination in multi-jointed animals, and its implementation by the cerebellum could

greatly simplify higher-level motor control. One suggestion for future work would be to inves-

tigate to what extent the tactile/visual map exemplar could be considered as (or rephrased as)

an eye-position/retinotopic.

Implications for robotics

Finally, dynamic recalibration might also prove useful for biomimetic control schemes in

robotics. The adaptive-filter model of the cerebellum has been applied to a number of robot

control problems, including plant compensation [48, 49] and the reafference problem [50].

Preliminary results suggest that adaptive-filter based dynamic remapping can be utilised with

a robotic platform to improve the accuracy of orienting responses [51]. More generally, the

dynamic coordinate transformations referred to above are also required for control of multi-

joint robots, and it is possible the scheme investigated here could be useful in that context.

Materials andmethods

Task 1: Calibration of unimodal sensory map

Target representation: Writing to the collicular map. Target locations xd = (xd,yd) were

selected randomly from within a two dimensional grid with the limits x = −xt to xt and y = −yt
to yt where xt = yt, and xt was set to 0.75. The target location was transformed into sensor data

which was then written into the collicular map, modelled as an ng×ng square grid spanning x =

−xmax to xmax and y = −ymax to ymax, with values ng = 100 and xmax = ymax = 1.5. Each grid

point corresponds to a collicular neuron. The sensor data were generated by a linear sensor

model which for a calibrated map gives the sensor data sd = (vd,wd) which is the accurate

sensed position of target xd

sd ¼ K xd Eq ð1Þ

where K is a 2 x 2 matrix that defines the sensor model. It was set in the single-sensor calibra-

tion task to [0.8944 0; 0.2739 0.7906].

The sensor data were written into the topographic collicular map to provide a distributed

representation of the target location (Fig 1D). Neurons in the map had receptive field centres

(xi,yj), so that if only an individual neuron fired, it would produce an orienting response to the

real-world location (xi,yj). The response: gxi;yjðsdÞ is the response of the neuron in the map with
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receptive field centre (xi,yj) to sensor input sd. We write gi;jðsdÞ ¼ gxi ;yiðsdÞ. A 2D elliptical

Gaussian function was used to provide the distributed target position. In this representation,

the map output estimates the preferred target location xd from the responses of individual neu-

rons described by a covariance matrix cov [x] = S

gi;jðsdÞ ¼ e
�0:5ððxi;j�xdÞ

T
S
�1ðxi;j�xdÞÞ Eq ð2Þ

For the unimodal map S was set to [0.0125 -0.0043 ; -0.0043 0.0175].

Collicular outputs: Reading the collicular map. The collicular output is sent to the

motor system, where it generates an orienting response to the estimated position of the target,

in this case the actual position of the target xd. Its two components can be calculated as

xd
yd

� �

¼
P rxi

r
y
j

� �

gi;j sdð Þ Eq ð3Þ

where the values r
x;y
i;j code the position of receptive-field centre of neuron (i,j) and vary

smoothly across the map (e.g. [52]). For the calibrated map

xd ¼ ðxd; ydÞ ¼ K�1 sd Eq ð4Þ

A copy of the distributed neuronal response (Eq 2) is also sent to the cerebellum as mossy-

fibre input, where it is processed in the granular layer to produce a coarse coded map carried

by the parallel fibres (Fig 1D). An evenly spaced k by k grid of Gaussian receptive fields, GnP
(where n denotes the nth Gaussian in the k by k grid) was used to coarse code the topographic

map. We use k = 8, and a grid of slightly overlapping, symmetrical Gaussians for GnP with

covariance matrix [0.0352 0; 0 0.0352]. The activity of each grid point was found by multiply-

ing each Gaussian receptive field by the topographic map activity and summing and normalis-

ing. The non-normalised activity of each grid point is given as

qn ¼
P

i;jG
n
Pgi;jðsdÞ Eq ð5Þ

The parallel fibre signals are normalised versions of the coarse coded map and given as

Pn ¼
qn

P

k2 qn
: Eq ð6Þ

There are k2 parallel fibre signals and Pn is the value of the coarse coded, normalised parallel

fibre signal at the nth grid point. P is a vector containing all parallel fibre signals P = [P1,P2,. . ..,

PN] where N is the total number of parallel fibre signals and equal to k2.

Calibration of distorted unimodal collicular map. To produce inaccurate maps, the sen-

sor data were distorted so that the actual value sg = (vg,wg) written into the collicular map dif-

fered from the required value sd = (vd,wd)

sg ¼ A sd þ aþ B sd:
2 þ C sd:

3 Eq ð7Þ

The matrices A,B,C,a define the distortion, the symbol ‘.’ indicates an element by element

operation. The (inaccurate) target position xg = (xg,yg) is estimated from the distorted, sensed

signal as

xg ¼ K�1sg Eq ð8Þ

For the distortion used here the values were: A = [1.1 0.1; -0.2 0.9]; a = [0.00; -0.2]; B = [0–

0.05; 0.05 0.1]; C = [0.1 0.7; -0.8 0].
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The response of individual neurons in the collicular map is given by:

gi;jðsgÞ ¼ e
�0:5ððxi;j�xgÞ

T
S
�1ðxi;j�xgÞÞ Eq ð9Þ

When the map is distorted, the collicular output sent to the motor system is incorrect, so

producing an inaccurate orienting response to location xg rather than to xd. The components

of this response can be calculated as

xg
yg

 !

¼
P rxi

r
y
j

� �

gi;j sg

� �

Eq ð10Þ

where, as previously, the values r
x;y
i;j code the centre position of neuron (i,j) and vary smoothly

across the map. The corresponding parallel-fibre output is given by:

qn ¼
P

i;jG
n
Pgi;jðsgÞ Eq ð11Þ

Cerebellar calibration

When the collicular map is not correctly calibrated, the estimated target position xg will differ

from the actual location xd, and the orienting movement will be in error(e = xd−xg = (ex, ey)).

The cerebellum receives a corresponding error signal via climbing fibres, a signal assumed

here to be signed and two dimensional with axes approximately aligned with horizontal and

vertical (x and y directions), which is used to adjust the weights associated with each parallel

fibre signal

Dwx ¼ �b ex P Eq ð12Þ

Dwy ¼ �b ey P

where ex and ey are the error components, P the coarse coded parallel fibre signals, and Č is a

learning rate here set to 1. The initial value of the weights was zero. The learnt weights were

used to bias the map in the x—and y–directions by generating a cerebellar signal (Ďx, Ďy) corre-
sponding to the sum of the weighted parallel fibre signals

dx ¼
P

wxP Eq ð13Þ

dy ¼
P

wyP

The cerebellar bias signal in effect slides map activity across the map by an amount (Ďx,Ďy).

Task 2: Combining unimodal sensory maps

Target representation: Writing to the collicular maps. Sensor data were written into

undistorted unimodal maps using Eq (1). For two independent sensors, two independent sen-

sory maps are generated, with sensor-model parameters K_1 and K_2 which were both set to

[1 0; 0 1]. The sensor data were written into each map to provide a distributed representation

of the target location, as described by Eq (2). The parameters S_1 and S_2 were both set to

[0.0225 0; 0 0.0225].

Target representation: Reading the collicular maps. Map read out however differs when

there are multiple maps. The individual unimodal maps do not themselves drive orienting

responses, but instead are combined into an overall multimodal map. Neurons with receptive
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field centres (xi, yj) in the unimodal maps project to the neuron with the same receptive field

centre in the multimodal map. In the simplest form of combination, the responses of neurons

in this map are given by:

Gi;j ðs1d; s2dÞ ¼ gi;jðs1dÞ � gi;jðs2dÞ Eq ð14Þ

where � represents an element by element multiplication of the individual unimodal maps.

Target position is then estimated from the multimodal map using Eq (3), with the (x, y) com-

ponents of the response now calculated with the individual map responses gi,j(sd) replaced

with the multimodal map responses Gi,j(s1d,s2d). The output of the multimodal map is sent to

the motor system to generate an orienting response to the estimated position of the target,

which in the case of undistorted maps will be the actual position of the target xd.
Copies of the distributed neuronal responses in the unimodal maps were also sent to the

cerebellum as parallel-fibre inputs (Fig 4). Coarse-coded parallel-fibre signals for each map

were generated using Eqs (5) and (6), with the same values for the parameters.

Calibration of distorted unimodal maps. When one or both unimodal maps are dis-

torted, the target position xg estimated by the multimodal map will differ from the actual loca-

tion xd. With the parameters used here, this estimated target position is the mean of the

estimates of the unimodal maps. The inaccurate estimate generates an error in the orienting

movement (e = xd−xg). We examined three methods for using this error to ensure accurate cal-

ibration of the unimodal maps.

In the first method (Method 1), the same error was used to calibrate both unimodal maps,

by adjusting the weights of the synapses between parallel fibres and Purkinje cells, so that the

cerebellar output to each map biases it to shift the position of peak map activity (Fig 4).

Maps were distorted using the procedure described by Eq (7). Two conditions were run. In

the first, the map distortions were arranged so that they cancelled each other out. The parame-

ters for this condition were:

A_1 = [0.8 0.2; -0.4 1.1] a_1 = [0; 0] B_1= [0 0; 0 0] C_1= [0; 0]

A_2 = [1.15 -0.21; 0.42 0.83] a_2 = [0; 0] B_2= [0 0; 0 0] C_2= [0; 0]

Before calibration these distortions produce two inaccurate estimates of target position,

xg_1 and xg_2 (Eq 8), such that xg_1 + xg_2 = 2xd.

The responses of individual neurons in the collicular maps is given by Eq (9). In the second

condition, only one of the maps was distorted, with the parameters: A_1 = [0.75 0.2; -0.4 1.1]

a_1 = [0; 0] B_1 = [0.01 0.02; 0.05–0.05] C_1 = [0; 0].

In both conditions, the output of the two unimodal maps was sent to the bimodal map (Eq

14). The target position xg estimated by the multimodal map is given by Eq 14. When this esti-

mate differs from the actual location xd, the orienting movement will be in error (e = xd−xg),

and that error is used as before to alter parallel-fibre synaptic weights (Eq 12) and so generate

cerebellar biasing signals (Eq 13). In the case of two maps the learning rule becomes

Dw1x ¼ �b1 ex P

Dw1y ¼ �b1 ey P Eq ð15Þ

Dw2x ¼ �b2 ex P

Dw2y ¼ �b2ey P

where w1 and w2 refer to the vector of parallel-fibre weights for maps 1 and 2 respectively, ex
and ey are the x− and y−components of e, and P the vector of coarse coded parallel fibre signals
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(combined for multiple sensors), and Č1 and Č2 the learning rates. For calibration Method 1,

both learning rates were set to 0.25.

The biasing signals for the two maps, z1 = (Ďx1,Ďy1) and z2 = (Ďx2,Ďy2) were calculated as:

dx
1
¼
P

w1xP

dy
1
¼
P

w1yP Eq ð16Þ

dx
2
¼
P

w2xP

dy
2
¼
P

w2yP

These biasing signals adjusted each map’s target estimate as before. The maps were cali-

brated for 10, 000 trials.

Using the same error signals to train each individual map led to credit assignment problems

that did not arise for a single map. For example, sensors can end up miscalibrated in such a

way that their errors cancel on average. Furthermore, since the parallel fibre signals to both

sets of Purkinje cells contain information from each sensor and so constitute an undifferenti-

ated bus of information, there are problems with parallel fibre cross talk that are also not seen

for a single map. Two methods for solving these problems were investigated. The first (Method

2) was gating of error signals.

The same sensor parameters were used as in Method 1. Two conditions were considered: i)

the unimodal maps were miscalibrated in such a way that errors cancelled on average so the

overall combined map is accurate, and ii) one map was accurate and the other map distorted.

Distortion parameters (Eq 7) for both conditions were as in Method 1.

Error gating was introduced so that if a sensor failed to detect a target the error signal was

gated (the learning rate for the corresponding sensory map was set to zero for that trial). Fail-

ure to detect the target on a given trial was simulated by setting the sensor property S = [4.5 0;

0 4.5] which effectively gives a very large spread of possible target locations in the sensory map

(Fig 4B and 4C). The gating was random such that on average for 1/3 of trials both sensors

detect the target so neither error signal was gated, for a further 1/3 of trials sensor 1 was impre-

cise and the error signal to the corresponding Purkinje cells (Fig 4) gated, and the remaining

1/3 of trials sensor 2 was imprecise and error signal to the corresponding Purkinje cells gated.

10,000 trials were run.

As Fig 4 indicates, the Purkinje cells that bias sensory map 1 receive parallel-fibre signals

from map 2, and vice versa. The cross-talk synapses from these parallel fibres potentially allow

sensors to calibrate each other, which can result in miscalibration where two miscalibrated

maps cancel their effects on estimated target position. To address this problem (Method 3) we

introduced independent sensory noise to Eq (1) alongside gating to remove parallel fibre cross

talk synapses:

s1d ¼ K 1 xd þ Nð0; sÞ Eq ð17Þ

s2d ¼ K 2 xd þ Nð0; sÞ

N(0,σ) indicates Gaussian noise with mean 0 and standard deviation σ. Here σ was set to

0.005.

The properties of each sensor were again set to K_1 = K_2 = [1 0; 0 1] and S_1 = S_2 =

[0.0225 -0.0000 ; 0.0000 0.0225]. Unimodal map 1 was distorted using Eq (7) with parameters

A_1 = [0.7–0.2; -0.3 0.9]; a_1 = [0.1; 0.25]; B_1 = [0 0.0; 0.0 0]; C_1 = [0; 0];. unimodal map 2
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was distorted with parameters A_2 = [0.8–0.2; -0.1 1.1]; a_2 = [-0.5; 0]; B_2 = [0 0.0; 0.0 0];

C_2 = [0; 0]. The procedure for gating was that used in Method 2, with the nominal learning

rate set at 0.25. The system was trained for 15,000 trials.

It should be noted that the method used here for combining single unimodal maps to pro-

duce an overall map of target position implements Bayes rule

GxðsÞ ¼ pðxjs1; ::; snÞ / pðxÞpðs1; . . . ; snjxÞ / pðxÞ
Q

pðs
k
jxÞ ¼ pðxÞ

Q

gxðskÞ Eq ð18Þ

where s1,..,sn represents sensory data from each of the n sensors, the prior p(x) can be inter-

preted as an attentional search light (for simplicity we assume that the prior for each sensor is

unity), and the overall activity calculated by taking the product of the activities in registered

maps for each sensor.

Task 3: Predictive recalibration

Sensory maps can be used for the pursuit of moving targets. We therefore examined whether

the proposed role of the cerebellum in calibrating a unimodal sensory map using stationary

targets (Fig 1) could be extended to pursuit. For moving targets delays in sensory processing

(for example in the retina) become important, because the map no longer has access to the cur-

rent target location x(T+Δ) (where Δ is the delay and T the trial number, Fig 7A) but only to

its delayed location x(T). In addition the error signal is no longer the difference between cur-

rent estimated and actual target locations, but between current estimated location and actual

location Δ times steps earlier (Fig 7A). To solve this calibration problem the system must learn

to predict future target location, hence the term predictive recalibration.

The parallel-fibre signals from map to cerebellum now conveyed temporal information,

required for the prediction of target trajectories. The new temporal signals were generated by a

bank of fixed temporal filters (Fig 7A). Incorporating fixed filters increases the number of par-

allel fibre signals and corresponding weights to adjust, but does not change the rest of the

algorithm.

Target representation: Writing to the collicular map. Whereas in previous tasks target

locations xd = (xd,yd) were selected randomly, here they were specified using a two-dimen-

sional, low-frequency, coloured noise trajectory. The trajectory was made up from a vector of

x-values and one of y-values, both with length N, where N = 10,000. To construct these vectors,

we used a sampling frequency of 20Hz (so that successive vector values represented target loca-

tions 50 msec apart) and first generated values from the uniform distribution on the interval

−0.75 to 0.75. Frequencies greater than 0.5Hz were removed to give a low-frequency trajectory.

The trajectory was re-scaled to ensure that it reached the limits in x- and y- more to enable cor-

rect calibration of the grid at the limits. This rescaling was done using a sigmoid function. An

example (14.25secs long) of a target trajectory generated in this way is shown in Fig 7B (shorter

example trajectories of 3.75s are given in Fig 7D). The resulting target trajectories are only pre-

dictable in the sense that they have some structure derived from filtered white noise.

Sensor data were written into the collicular map as in task 1, with parameters K = [0.8944 0;

0.2739 0.7906] and S = [0.0125 -0.0043 ; -0.0043 0.0175]. Sensor delay Δ was 5 samples (250

msec).

Collicular outputs: Reading the collicular map. The collicular map output was sent to

the motor system to generate an orienting response, as for the unimodal map. A coarse coded

copy of the neuronal response was also sent to the cerebellum, only now as outlined above it is

passed through a set of temporal filters. The normalised signals Pn(Eq 6) from the nth grid

point were passed through fixed filters G1−Gr giving outputs of the form P1n ¼ G1ðPnÞ.
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Here 3 leaky integrator filters were used, with log-spaced time constants T = 0.0500,

0.0707,0.1000 sec. The outputs of these filters were then approximately decorrelated into sig-

nals P1n−P3n(where n = 1!k2, the number of parallel fibre signals is increased as a multiple of

the number of fixed filters) using a fixed matrix Q as described in Wilson et al. [53]. The over-

all parallel fibre signals are now given as P = [P11,P12,. . .P1đ,P21,P22,. . .P2đ,P31,P32,. . .P3đ]

where đ = k2.

Predictive Calibration of distorted collicular map. The map was distorted as described

in Eq 7 with A = [1.2 0.2; -0.3 0.9], a = [0.0; 0], B = [0–0.05; 0.05 0.01], C = [0; 0]. The collicular

output sent to the motor system was thus incorrect, due both to the distortion (Eq 10) and the

delay (Δ = 100 msec). As indicated in Fig 7A, the error was now the difference between the

desired target location in the future (at time orient takes place) and the actual target location at

each point in time (e = xd(Δ+T)−xa(T)).
The cerebellar learning algorithm given in Eqs 12 and 13 remained unchanged, although

the number of weights to learn is increased to three times the number in task 1.

For predictive calibration, we used a learning rate of Č = 5 and a signal trajectory with

10000 data points.

One dimensional targets moving with constant velocity. The map calibration algorithm

was also applied to targets moving with a constant velocity in one dimensional space (e.g. the

target location xd = (x) now has a single dimension). In this simulation, no distortion was

applied, but signals were delayed by 100 samples. The sampling frequency was dt = 5ms.

The map was coarse coded using a grid of 8 Gaussians, with evenly spaced centres. This was

then filtered using a bank of three leaky integrator filters, with log-spaced time constants

T = 0.0500, 0.0707, 0.1000 to give a total of 24 parallel fibre signals. The sensor parameters

were K = 0.1094 and S = 0.7559. For calibration, we used a learning rate of Č = 25. Distinct

constant velocity targets with positive and negative velocities of 0.125, 0.5, 1 and 2ms-1 were

used as trajectories.
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