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An inner-scaled, shear stress-driven flow is considered as a model of independent
near-wall turbulence as Reτ → ∞. In this limit, the model is applicable to the near-
wall region and the lower part of the logarithmic layer of various parallel shear flows,
including turbulent Couette flow, Poiseuille flow and Hagen-Poiseuille flow. The model
is validated against damped Couette flow and there is excellent agreement between the
velocity statistics and spectra for y+ < 40. A near-wall flow domain of similar size to
the minimal unit is analysed from a dynamical systems perspective. The edge and fifteen
invariant solutions are computed, the first discovered for this flow configuration. Through
continuation in the spanwise width L+

z , the bifurcation behaviour of the solutions over
the domain size is investigated. The physical properties of the solutions are explored
through phase portraits, including the energy input and dissipation plane, and streak,
roll and wave energy space. Finally, a Reynolds number is defined in outer units and the
high-Re asymptotic behaviour of the equilibria is studied. Three lower branch solutions
are found to scale consistently with vortex-wave interaction (VWI) theory, with wave
forcing localising around the critical layer.

Key words:

1. Introduction

There is an ever-growing body of experimental and numerical work on the scaling of
the velocity statistics and spectra of wall-bounded turbulent flow, in both channel and
pipe geometries as well as the flat-plate boundary layer. Closest to the wall, where viscous
effects are dominant, the kinematic viscosity ν and local shear stress define the friction
velocity uτ and the viscous lengthscale δν . One of the key observations concerning the
dynamics of the near-wall region is that of the regeneration mechanism (Hamilton et al.

1995) or the self-sustaining process (Waleffe 1997). This is a quasi-cyclic, interactive
process between streaks and quasi-streamwise vortices, in which the mean streamwise
shear drives streak formation through the lift-up effect. The streaks subsequently break
down due to normal mode instability or transient growth (Hamilton et al. 1995; Schoppa
& Hussain 2002; Cassinelli et al. 2017) and the resulting three-dimensional wavy structure
regenerates the vortices via non-linear mechanisms. The bursting time period of the
near-wall self-sustaining process is T+ ≈ 200− 300 (Hamilton et al. 1995; Jiménez et al.

2005), where the superscript + denotes the viscous scaling. In addition, it has been
shown that there is a lower bound to the streamwise and spanwise dimensions of the
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computational domain in which turbulence can be sustained (Jiménez & Moin 1991). The
dimensions of the minimal unit, which also scale in inner units, are λ+

x ≈ 250− 350 and
λ+
z ≈ 100, consistent with the characteristic spacing of near-wall streaks (Robinson 1991).

Furthermore, it has been observed that the near-wall self-sustaining process operates
independently of the outer flow and survives even when the outer structures are artificially
quashed (Jiménez & Pinelli 1999). The statistics and spectra of the independent near-wall
flow have been compared to that of the global flow in several previous studies (Jiménez
et al. 2004; Hwang 2013). In particular, in the absence of the larger structures, the velocity
statistics and spectra scale in inner units throughout the near-wall region (Hwang 2013).

Above the near-wall region, the flow can be decomposed into the logarithmic layer and
the wake layer, the latter of which is dominated by inertial effects. The characteristic
lengthscale in the logarithmic layer is y, the distance from the wall. This scaling argument
was formalised in the attached eddy hypothesis (Townsend 1980), in which it was
proposed that the size of the coherent structures populating the entire logarithmic layer
was proportional to the distance between the eddy centre and the wall. Townsend also
postulated that these coherent structures were statistically self-similar with respect to the
given lengthscale. There has been a growing body of evidence in support of Townsend’s
theory, including the linear growth of the spanwise correlation lengthscale with distance
from the wall (Tomkins & Adrian 2003), the logarithmic dependence of the turbulence
intensities of the wall-parallel velocity components (Marusic et al. 2013) and the self-
similarity of structures of various spanwise lengthscales in the logarithmic layer (Hwang
2015). Above the logarithmic layer, the velocity field structures and statistics scale in
outer units, including large scale motions (Kovasznay et al. 1970) and very large scale
motions (Kim & Adrian 1999). It has been demonstrated that the coherent structures
of the logarithmic and wake layers bear a self-sustaining process remarkably similar to
that of the near-wall region (Hwang & Cossu 2010; Hwang & Bengana 2016), based
on the interaction between streaks and quasi-streamwise vortices. Therefore, it appears
that wall-bounded turbulence is organised into a hierarchy of self-sustaining coherent
structures, each of which is self-similar with respect to the characteristic inner or outer
lengthscale. Furthermore, it is worth mentioning that the coherent structures populating
the logarithmic and wake layers reach the near-wall region (Hutchins & Marusic 2007;
Mathis et al. 2009; Hwang 2013; Talluru et al. 2014; Agostini & Leschziner 2016)
and contribute significantly to the near-wall spectra at long wavelengths through scale
interaction processes (Hwang 2016; Cho et al. 2018). These features, consistent with
Townsend’s theory, breach the inner-scaling of the near-wall region (Marusic et al. 2017)
and result in the logarithmic growth of the near-wall turbulence intensities of the wall-
parallel velocity components with Reynolds number (Marusic & Kunkel 2003).

The logarithmic layer can be further partitioned into lower and upper parts, depending
on the relative strength of the viscous effects. The lower part, dominated by the viscous
effects of the wall, is often called the ‘mesolayer’ (Long & Chen 1981; Afzal 1982, 1984;
Sreenivasan & Sahay 1997; Wei et al. 2005), which has been classified using the mean
momentum equation. Assuming a logarithmic mean velocity profile, it has been shown
that the inner-scaled wall-normal location of maximum Reynolds stress scales with the
friction Reynolds number as y+ ∼

√
Reτ (Long & Chen 1981; Sreenivasan & Sahay 1997;

Wei et al. 2005), below which the viscous wall effects are not negligible. The mesolayer
can therefore be more generally interpreted as the layer of fluid above the wall that scales
in inner units, encompassing the entire near-wall region. Furthermore, the extent of the
mesolayer increases as the friction Reynolds number increases and the flow variables
scale in inner units at longer and longer wavelengths. This has been corroborated by the
examination of the spectra of high-Re direct numerical simulations and the computation
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of optimal perturbations with a linear theory (Hwang 2016). Therefore, if the domain
size is fixed in inner units, all flow variables will also scale in inner units at a sufficiently
large value of Reτ and the near-wall contribution of the structures larger than the given
domain size will be excluded.
In light of this evidence, the aim of the current study is to design and validate a model

of independent near-wall turbulence at infinitely large friction Reynolds number, with
regard to its location within the mesolayer. The Navier-Stokes equations are rescaled in
inner units based on the kinematic viscosity and the friction velocity of the ‘turbulent
state’, denoted by uτ,r. Consequently, the only model parameters are the inner-scaled
computational domain dimensions (L+

x , L
+
y , L

+
z ), which remain finite even as Reτ → ∞.

At the upper boundary, a horizontally uniform shear stress is applied to maintain uniform
total shear stress across the entire domain, while removing any structures above this
point. At the lower boundary, a no-slip boundary condition is imposed, the distinguishing
feature from previous studies in which near-wall turbulence was regarded as uniform
shear flow turbulence (Lee et al. 1990; Sekimoto et al. 2016). Indeed, it has been shown
recently that the statistics of near-wall turbulence are considerably different from those
of uniform shear flow turbulence (Yang et al. 2018). The key feature of this model is
that it is applicable to various parallel shear flows at sufficiently large friction Reynolds
number. In this limit, the governing equations of turbulent Couette flow, Poiseuille flow
and Hagen-Poiseuille flow are identical because they are essentially approximated by
wall-bounded shear flow around a linear base flow. For the same reason, the model would
describe the universal dynamics of the mesolayer in the absence of outer flow, as long as
the domain size in all spatial directions is suitably defined.

As a first step towards studying the universal mesolayer dynamics, the well-known
minimal unit of near-wall turbulence (Jiménez & Moin 1991) is considered in the present
study, in which the self-sustaining process at the given inner scale is well isolated. In such
a small domain, the turbulent flow is fully correlated in the streamwise and spanwise
directions, and the flow dynamics are largely temporal. This contrasts with turbulence
in extended domains, in which the spatial and temporal dynamics are important (see
Barkley (2016) for this issue in transitional flows). Therefore, under these circumstances,
the most suitable approach to analyse the shear stress-driven model is with the concepts of
dynamical systems theory. The temporal evolution of a turbulent velocity field, governed
by the Navier-Stokes equations, can be represented by a chaotic trajectory of an infinite
dimensional dynamical system. The dynamical systems approach to turbulence emerged
with the computation of the first relative equilibrium solutions (Nagata 1990; Waleffe
1998, 2001, 2003) and periodic orbits (Kawahara & Kida 2001) in channel flow. The
computation of invariant solutions and their linear stability analysis allows for the
construction of the state space of turbulence, within which the turbulent trajectory is
confined. The laminar flow is the trivial equilibrium solution, whose linear stability may
depend on the Reynolds number (Romanov 1973; Orszag 1971). The stability boundary
of the laminar flow, which separates initial conditions that relaminarise from those that
become fully turbulent, is referred to as the edge (Skufca et al. 2006; Schneider et al.

2008, 2007) and plays a fundamental role in structuring the state space of turbulence.
The computation of invariant solutions of the Navier-Stokes equations has allowed for
a simplified analysis of a number of physical processes, including an equilibrium self-
sustaining process (Waleffe 1998), the self-similarity of equilibria localised in the wall-
normal direction (Eckhardt & Zammert 2018) and the high-Re inner-scaling of wall-
attached equilibria (Yang et al. 2019).
In order to study the dynamics of mesolayer turbulence, a near-wall flow domain similar

in size to the minimal unit is analysed from a dynamical systems perspective. The edge
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and several invariant solutions are computed, and various phase portraits explored. While
invariant solutions have been reported in previous studies with a damping technique to
isolate the near-wall dynamics (Jiménez & Simens 2001; Jiménez et al. 2005), most of
the solutions presented here are new. In addition, the invariant solutions of the shear
stress-driven model are valid for a multitude of parallel shear flow configurations at
sufficiently large friction Reynolds number. It must also be pointed out that shear stress-
driven flow is employed as a model of wind blowing over a body of water, resulting in
flow structures such as Langmuir circulation (Faller 1971; Leibovich 1983; Thorpe 2004).
Hence, the invariant solutions presented here are also relevant in physical oceanography.
The bifurcation behaviour of the solutions over the domain size is investigated to establish
connections between different solutions and to examine their physical properties. Finally,
a Reynolds number is defined in outer units and the high-Re asymptotic behaviour of the
equilibria is analysed to link to known high Reynolds number theories (Hall & Sherwin
2010).

2. Near-wall turbulence as Reτ → ∞
2.1. Model formulation

The flow considered is that of an incompressible fluid in a rectangular domain with
dimensions (Lx, Ly, Lz), where x, y, z or x1, x2, x3 represent the streamwise, wall-
normal and spanwise coordinates, respectively. The corresponding velocity components
are denoted by u, v, w or u1, u2, u3 and time is denoted by t. A solid wall is located
at the lower boundary of the domain at y = 0. Given the kinematic viscosity ν and the
fluid density ρ, the instantaneous wall shear stress is defined as

τw(t) = ρν

〈
∂u

∂y

∣∣∣∣∣
y=0

〉

x,z

, (2.1)

where 〈 · 〉x,z denotes the average in the streamwise and spanwise directions. The
wall shear stress of the ‘turbulent state’, τw, is subsequently obtained from a full
simulation, where · denotes the average in time while the flow remains turbulent.
The reference friction velocity is defined as uτ,r =

√
τw/ρ and the viscous lengthscale is

then defined as δν = ν/uτ,r. Using δν as the characteristic lengthscale and uτ,r as the
characteristic velocity scale, the model is formulated in inner units with the velocity field
u+ = (u+, v+, w+) = (u, v, w)/uτ,r, spatial coordinates x

+ = (x+, y+, z+) = (x, y, z)/δν
and time t+ = tu2

τ,r/ν. A diagram of the flow geometry is shown in figure 1.
Employing the Reynolds decomposition, the velocity field can be expressed in terms

of the mean and fluctuating components

u+(x+, t+) = U+(y+) + u
′
+(x+, t+), (2.2)

where U+(y+) = (U+(y+), 0, 0) = (〈u+〉x+,z+ , 0, 0) and u
′
+ = (u

′
+, v

′
+, w

′
+). In channel

flows, the turbulent mean and fluctuating velocity components satisfy the equations

dU+

dy+
− 〈u′+v′+〉x+,z+ = 1− y+

Reτ
(2.3)

u
′
+

t+
+(U+ ·∇)u

′
++(u

′
+ ·∇)U+ = −∇p

′
++∇2u

′
+−(u

′
+ ·∇)u

′
++〈(u′+ · ∇)u′+〉x+,z+ ,

(2.4)
where p

′
+ is the pressure fluctuation and the −y+/Reτ term is derived from the imposed

pressure gradient (e.g. Townsend 1980). Within the mesolayer, the wall-normal coordi-
nate satisfies the relation y+ ∼

√
Reτ (Sreenivasan & Sahay 1997; Wei et al. 2005).
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Figure 1. Flow geometry of the shear stress-driven model.

Therefore, as Reτ → ∞, the −y+/Reτ term will vanish provided that L+
y ∼

√
Reτ . For

parallel wall-bounded flows more generally, any terms in the mean momentum equation
that are associated with the given flow geometry must vanish in the limit of Reτ → ∞.
The model is then governed by the following momentum equations for the turbulent
mean and fluctuating components:

dU+

dy+
− 〈u′+v′+〉x+,z+ = 1 (2.5)

u
′
+

t+
+(U+ ·∇)u

′
++(u

′
+ ·∇)U+ = −∇p

′
++∇2u

′
+−(u

′
+ ·∇)u

′
++〈(u′+ · ∇)u′+〉x+,z+ .

(2.6)
At the lower boundary of the domain, a no-slip condition is imposed to represent the
stationary wall,

u+|y+=0 = 0, (2.7)

whereas at the upper boundary, a horizontally uniform shear stress is applied. The
uniform shear stress condition at the upper boundary is implemented such that the
bulk flow rate across the domain is maintained during simulations. For this purpose,
the instantaneous bulk velocity is defined as U+

b (t+) = 〈u+(x+, y+, z+, t+)〉x+,y+,z+

(〈 · 〉x+,y+,z+ denotes the volume average) and the laminar bulk velocity is denoted
by U+

0 . Then, the streamwise boundary condition is expressed as

∂u+

∂y+

∣∣∣∣∣
y+=L

+
y

(t+) =

〈
∂u+

∂y+

∣∣∣∣∣
y+=0

〉

x+,z+

(t+) + C+(U+
0 − U+

b (t+)), (2.8)

where C+ is a tuning constant that maintains U+

b (t+) close to U+
0 during simulations.

Given that the fluctuation of U+

b (t+) about U+
0 is kept to a minimum, the flow is largely

independent of the value of C+ but C+ ≈ 0.28 is the value used throughout the present

study. Since U+

b (t+) = U+
0 , equation (2.8) implies that the time-averaged total shear

stress (i.e. the sum of molecular and Reynolds stresses) is uniform across the entire
domain as long as the wall-normal velocity at the upper boundary is zero, ensuring that
the mean momentum equation (2.5) is satisfied. During the simulations of the present
study, U+

0 −U+

b (t+) has indeed been found to be very small, indicating that only a very
small amount of compensation at the upper boundary is required at each time step to
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maintain U+

b (t+) close to U+
0 . This technique is very similar to that used to maintain

constant mass flux in pressure-driven channel flow. At the upper boundary of the domain,
impermeability and stress-free conditions are imposed for the wall-normal and spanwise
velocity components respectively, namely

v+|y+=L
+
y

= 0 and
∂w+

∂y+

∣∣∣∣∣
y+=L

+
y

= 0, (2.9)

ensuring zero Reynolds stress at the upper boundary. The upper boundary conditions of
the model may be considered ad hoc, however, such conditions are required to ensure that
the structures of the logarithmic and wake layers are safely removed. Periodic boundary
conditions are imposed in both the streamwise and spanwise directions. The numerical
simulations in this work were performed with the diablo Navier-Stokes solver (Bewley
2014). This code uses spectral methods with a 2/3 dealiasing rule in the streamwise
& spanwise directions and a second-order finite difference scheme in the wall-normal
direction, which has been verified extensively (e.g. Hwang 2013).
Several notable features of the present model must also be mentioned. Firstly, (2.6)

does not seem to contain any explicit control parameter, such as a Reynolds number. This
is essentially because the equations of motion are normalised by the viscous lengthscale δν
and reference friction velocity uτ,r. Under this rescaling, the velocity field is governed by
the unit-Reynolds number Navier-Stokes equations (2.6). The inner-scaled flow variables
are O(1) quantities even in the limit of Reτ → ∞. However, this does not imply that
the equations do not have a control parameter. In this case, the domain dimensions (i.e.
(L+

x , L
+
y , L

+
z )) are the main control parameters, as long as they are finite. In particular,

the spanwise width of the domain can be used to determine the expected multiplicity
(or levels in the hierarchy) of integral lengthscales. For example, if L+

z ≃ 100, it will
only include the near-wall energy-containing structures at a single integral lengthscale
(Jiménez & Moin 1991). If L+

z ≃ 200, it will include two integral lengthscales (i.e.
λ+
z ≃ 100, 200) due to the spanwise periodic boundary condition. Secondly, it must

be emphasised that (2.5) only governs the turbulent mean velocity field. The laminar
state (and other invariant solutions) satisfy

dU+

dy+
− 〈u′+v′+〉x+,z+ = ∆+, (2.10)

where ∆+ = dU+

dy+

∣∣
y+=0

is the wall shear rate of the corresponding solution, which is

smaller than unity in the laminar case. However, the present model ensures that the
base flow is a uniform shear flow – this can be easily checked by setting the Reynolds
stress in (2.10) to zero, with solution U+ = ∆+y+. The laminar bulk velocity is then
U+
0 = ∆+L+

y /2 ≈ 13.89. This implies that the model would be valid in the region close
to the wall, where the base flow can be approximated by a uniform shear flow. This also
indicates that the base flow in the mesolayer is a uniform shear flow, explaining why
the description by (2.5) and (2.6) would be universal for any parallel wall-bounded shear
flow. Finally, it is evident that the crucial issue in the use of the present model is the use
of the upper boundary condition (2.8), which could potentially affect the region that is
to be studied. For this reason, the model is first carefully validated in §2.2.

2.2. Validation of the shear stress-driven flow model

The shear stress-driven flow model presented in the previous subsection must now
be evaluated, and the velocity statistics and spectra compared to that of independent
near-wall turbulence. The obvious benchmark for the model is near-wall Couette flow,
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Case L+
x L+

y L+
z Nx Ny Nz y+

0

SSDF 2900 87 106 300 105 32 n/a
DCF 3042 146 111 300 161 32 95

Table 1. Simulation parameters of the shear stress-driven flow model and damped Couette
flow.

which exactly satisfies (2.5) and (2.6) at all Reynolds numbers. In order to isolate the
near-wall flow, a damping function is introduced to the system, which quashes turbulent
fluctuations above a fixed wall-normal height. The damping function employed is

µ+(y+) =
µ+
0

2

[
1 + tanh

(
10

((
y+

y+0

)2

− 1

))]
, (2.11)

similar to that used by Jiménez & Pinelli (1999). Here, µ+
0 denotes the damping amplitude

and y+0 denotes the damping height, such that µ+(y+) tends to the constant µ+
0 above

y+0 and decays rapidly to zero below this point. Above the damping height, the turbulent
fluctuations are damped onto the mean flow, hence the system is governed by the
equations

u+

t+
+ (u+ · ∇)u+ = −∇p+ +∇2u+ − µ+(y+)(u+ − 〈u+〉x+,z+). (2.12)

The value of the damping height is chosen to be y+0 ≈ 95 so that the near-wall flow
is unaffected. The value of the damping amplitude must be sufficiently high to kill all
turbulent fluctuations above the damping height and it was found that µ+

0 ≈ 0.33 achieves
appropriate results. Since the damping function kills Reynolds stresses above the damping
height, the kinematic viscosity must increase in line with the FIK identity (Fukagata
et al. 2002) to maintain similar inner-scaled domain dimensions. To compare both flow
configurations, a long streamwise domain length of L+

x ≈ 3000 is chosen so that the
longest streaky structures are resolved. However, the spanwise domain width is chosen to
be close to that of the minimal unit, L+

z ≈ 110, so as to remove the wider structures of the
outer flow. The shear stress-driven flow model is denoted by SSDF and damped Couette
flow by DCF, and the simulation parameters are displayed in table 1. All statistics
presented here were computed over a time period of T+ > 35000.
The mean streamwise velocity profile of the shear stress-driven flow model compared to

that of damped Couette flow is shown in figure 2. There is excellent agreement between
the two flow configurations for y+ < 70 but the shear stress-driven model slightly
overestimates the mean velocity above this point. The viscous sublayer features the
characteristic linear profile, which is also seen near the upper boundary of the domain.
Similar behaviour is observed in the root mean squared velocity statistics in figure 3.
The shear stress-driven model clearly captures the near-wall peak of the streamwise
velocity fluctuation at y+ ≈ 12 but again overestimates the streamwise velocity near
the upper boundary. In contrast, the wall-normal and spanwise velocity fluctuations are
underestimated by the shear stress-driven model near the upper boundary but show
excellent agreement closer to the wall. The premultiplied one-dimensional streamwise
and spanwise wavenumber spectra are shown in figure 4. As seen in the first and
second order statistics, there is excellent agreement between the shear stress-driven
model and damped Couette flow for y+ < 40. The streamwise wavenumber spectra
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Figure 2. (Colour online) Mean streamwise velocity, U+(y+), of the shear stress-driven flow
model (red dashed line), plotted against that of damped Couette flow (black solid line).

Figure 3. (Colour online) Root mean squared velocity of the shear stress-driven flow model; (a)
u+
rms (red dashed line), (b) v+rms (green solid line) and (c) w+

rms (blue dash-dotted line), plotted
against that of damped Couette flow (black solid lines).

of the streamwise velocity shows slight excitation at longer streamwise wavelengths near
the upper boundary, consonant with the previous statistical results. The spectra of the
wall-normal and spanwise velocity components are also underestimated near the upper
boundary. In general, the spanwise wavenumber spectra of the three velocity components
and Reynolds stress show excellent agreement.

3. The state space of near-wall turbulence

Having introduced the shear stress-driven flow model and validating it against damped
Couette flow, the task at hand is to describe near-wall turbulence from a dynamical
systems perspective. To this end, the domain dimensions are fixed at (L+

x = 320, L+
y =

90, L+
z = 110), slightly larger than the minimal unit in which turbulence can be sustained

(Jiménez & Moin 1991). This reference domain is denoted by Ω and its parameters are
set out in table 2. The Navier-Stokes equations, subject to boundary conditions (2.7) -
(2.9), are subsequently solved in the shift-reflectional subspace,

[u+, v+, w+](x+, y+, z+) = [u+, v+,−w+](x+ + L+
x /2, y

+,−z+), (3.1)

to reduce the dimensionality of the turbulent state space. However, it has been shown
that this symmetry does not significantly alter the statistics and dynamics of the
turbulent trajectory (Hwang et al. 2016) since it captures the sinuous mode of streak
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Figure 4. Premultiplied one-dimensional streamwise (a, c, e, g) and spanwise (b, d, f, h)
wavenumber spectra of the shear stress-driven flow model; (a, b) streamwise velocity, (c, d)
wall-normal velocity, (e, f) spanwise velocity and (g, h) Reynolds stress. Isocontours of damped
Couette flow are superimposed in black.
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L+
x L+

y L+
z Nx Ny Nz

320 90 110 32 105 32

Table 2. Simulation parameters of the reference domain, Ω.

instability, which is the dominant streak breakdown mechanism in the self-sustaining
process (Hamilton et al. 1995; Cassinelli et al. 2017; de Giovanetti et al. 2017).

3.1. Edge and invariant solutions

As in the case of Couette flow, the base flow of the shear stress-driven flow model
has a linear velocity profile. However, any perturbations to the base flow are subject to
different boundary conditions than those of Couette flow, namely (2.8) and (2.9), hence
the linear stability of the base flow is not guaranteed. A simple way to verify the linear
stability of the base flow for the parameters chosen is to determine whether it is possible
to compute the edge, the hyper-dimensional manifold that separates initial conditions
that relaminarise from those that become fully turbulent (Skufca et al. 2006). In this
case, the edge of Ω is computed via bisection, in which the turbulent fluctuations of a
random initial condition are rescaled so as to lie between specific laminar and turbulent
thresholds. This modified velocity field is advanced in time until the transient behaviour
has decayed sufficiently, denoted by time t+0 . The edge is a fundamental feature of the
state space of a parallel wall-bounded shear flow. The turbulent state space is also
structured by invariant solutions, including relative equilibrium solutions and relative
periodic orbits, whose stable and unstable manifolds guide nearby turbulent trajectories.
Such invariant solutions are computed using the Newton-Krylov-Hookstep algorithm
(Viswanath 2007, 2009; Willis et al. 2013), which has been verified extensively in Hwang
et al. (2016). Given an initial condition u+

0 , this algorithm seeks to minimise the relative
error between the initial condition and its translated time-forward map

r =
||u+

0 − τ(sx+ , sz+)fT+

(u+
0 )||

||u+
0 ||

, (3.2)

where f denotes the Navier-Stokes propagator and τ represents a translation of distance
sx+ in the streamwise direction and sz+ in the spanwise direction. For periodic orbits,
the value of T+ is updated at each Newton iteration from a good initial guess and the
converged value becomes the time period (up to positive integer multiplication of the
fundamental period). For equilibria, the choice of T+ is arbitrary but T+ ≈ 16 is the
value used for those computed here. All invariant solutions reported in this work satisfy
r < 10−8. The eigenvalues of converged solutions are subsequently computed via Arnoldi
iteration.
Defining the streamwise turbulent fluctuation energy as

E+
u =

1

2
〈(u′+)2〉x+,y+,z+ , (3.3)

the edge of Ω as a function of time is shown in figure 5. After the transient behaviour has
decayed, the edge initially shows statistically stationary behaviour, from which the first
relative equilibrium solution, EQA1L, was computed. However, this equilibrium solution
is unstable to a gentle relative periodic orbit on the edge. In figure 5, the edge trajectory
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Figure 5. (Colour online) The edge of the reference domain Ω (black solid line), separating
initial conditions that relaminarise (blue dash-dotted lines) from those that become fully
turbulent (red dash-dotted lines). E+

u is the streamwise turbulent fluctuation energy and t+0
is the time by which the initial transient behaviour of the edge has decayed sufficiently. The
insert shows the relative periodic orbit embedded in the edge.

leaves the neighbourhood of the equilibrium solution and is pulled towards the periodic
orbit, stabilising at later time. This periodic orbit, titled POA0L, is stable on the edge
and hence it is the edge state. Therefore, the transient visit of EQA1L in figure 5 is
a peculiarity of the initial condition for the bisection, since any edge trajectory in the
neighbourhood of POA0L will approach it monotonically. The other invariant solutions
were computed using initial conditions taken directly from the turbulent trajectory or
via continuation. In total, two relative periodic orbits and thirteen relative equilibrium
solutions were found in Ω. They are distinguished into three distinct groups (A, B and
C) in the following discussion and their properties are summarised in table 3.

TheGroup A solutions are characterised by small cross-streamwise velocity fluctuations
relative to the streamwise velocity fluctuations. Velocity isosurfaces and second order
statistics are shown in figure 6. Titled POA0L, EQA1L, EQA2, EQA3L and EQA4L

respectively, each solution in this group is a lower branch solution (figure 9). As previously
mentioned, POA0L is the edge state. It is time-periodic with T+ ≈ 26.2, an order of
magnitude shorter than the bursting period of near-wall turbulence (Hamilton et al.

1995; Jiménez et al. 2005), and its oscillation amplitude is very small (t+− t+0 ≃ 20000 in
figure 5). However, its E+

u value is significantly different to that of EQA1L (t+−t+0 ≃ 0 in
figure 5), which is noticeable in the u+

rms profile near the upper boundary. This periodic
orbit might be related to that identified in the near-wall region of Poiseuille flow by
Jiménez & Simens (2001) or to the ‘gentle’ periodic orbit on the edge in Kawahara & Kida
(2001) (see also Lustro et al. (2019)). EQA1L is the equilibrium solution embedded in
the edge. However, it has a 3-dimensional unstable manifold; one dimension representing
the instability of the edge and the other two representing its instability to POA0L. It is
dominated by a pair of strong streaks, flanked by weaker vortical motion. Examination of
the velocity field indicates that this is presumably the stress-driven analogue of Nagata’s
lower branch solution (Nagata 1990), without the shift-rotational symmetry possessed
by Couette flow. If an appropriate computational domain is provided, Nagata’s lower
branch solution also arises as the edge state of Couette flow (Schneider et al. 2008). The
Group A solutions all have wall shear rates well below the turbulent mean but EQA2 is
the equilibrium solution with the lowest drag in Ω (table 3). In fact, it is analogous to
EQ7 computed by Gibson et al. (2009) and is the only solution to comprise of two pairs
of streaks. EQA3L is a ‘wall-attached’ solution, showing clear vertical localisation and
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Figure 6. (Colour online) Velocity field visualisation and root mean squared velocity profiles of
the Group A relative periodic orbit and relative equilibrium solutions, henceforth titled POA0L,
EQA1L, EQA2, EQA3L and EQA4L, respectively. The red and blue surfaces represent high and
low speed streaks; (a, b, d) u+ − 〈u+〉x+,z+ = ±3, (c, e) u+ − 〈u+〉x+,z+ = ±1.5. The yellow

and green surfaces are iso-surfaces of wall-normal velocity; v+ = ±0.12. Red dashed lines, u+
rms;

green solid lines, v+rms; blue dash-dotted lines, w+
rms. The root mean squared velocity profile of

POA0L is an average over the period T+.
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T+ c+x ∆+ I/Il Ep dim(Wu)

POA0L 26.2272 14.0281 0.4053 1.3092 3.3016 1
EQA1L - 16.8070 0.4019 1.1962 4.7462 3
EQA2 - 15.1808 0.3549 1.1325 0.5489 3
EQA3L - 10.3307 0.3979 1.3600 1.8629 3
EQA4L - 14.9931 0.3576 1.1423 0.8946 3

EQB5L - 14.8210 1.0078 2.5056 20.0140 19
EQB3U - 7.0278 0.5453 1.8650 4.0807 8
EQB4U - 14.9599 0.4200 1.3195 2.5399 6
EQB6L - 14.6201 0.6707 2.0041 10.7257 14
EQB6U - 14.3803 0.7864 2.3703 12.6819 17

POC0U 25.7832 12.6168 1.1941 3.9097 14.1242 47
EQC1U - 14.2457 1.5442 4.1139 23.5143 22
EQC5U - 14.1047 1.6692 4.5419 23.9548 25
EQC7L - 12.9620 1.2743 3.8623 10.3416 38
EQC7U - 13.5580 1.6092 4.5532 13.6796 63

Table 3. Properties of the invariant solutions in Ω: T+, the time period; c+x , the phase speed;
∆+, the wall shear rate; I/Il, the energy input normalised by that of the laminar state; Ep,
the kinetic energy deviation from the laminar state; dim(Wu), the dimension of the unstable
manifold. The c+x , ∆

+, I/Il and Ep values of POA0L and POC0U are averages over the period
T+.

little activity near the upper boundary. It too consists of a pair of strong streaks, driven
by cross-streamwise motion an order of magnitude lower. EQA4L is the the last Group
A solution and also exhibits vertical localisation, this time in the domain centre. The
maximum streak value is similar to that of EQA2, hence it has the second-lowest drag
in Ω. Again, this solution possesses a Couette flow analogue, namely EQ3 computed by
Gibson et al. (2009).
Group B comprises the equilibria whose wall shear rate values are in the vicinity of

the turbulent mean, specifically 0.41 < ∆+ < 1.01 (table 3). In this sense, these solutions
can be described as ‘moderately turbulent states’. In contrast to Group A, the equilibria
in this group show much greater velocity field diversity, as seen in the velocity isosurfaces
and second order statistics in figure 7. This is due to the fact that both lower and upper
branch solutions are present. However, the Group B equilibria are clustered together
in state space, as seen in the phase portraits in figures 10 and 11. In particular, the
energy input (3.5) of the solutions relative to that of the laminar state lies in the interval
1.3 < I/Il < 2.6. These equilibria are much more unstable than the solutions of Group A,
each having an unstable manifold of dimension 6 to 19. EQB5L is an equilibrium solution
that bifurcates away from the EQA1L branch, just above the turning point (figure 9(a)).
It is very similar structurally to a typical upper branch solution, with the localisation
of the low-speed streak along the wall and high-speed streak along the upper boundary,
except for significantly lower drag. In fact, the drag of this solution is almost exactly
equal to that of the turbulent trajectory in Ω, hence it could be argued that EQB5L

represents the mean turbulent state. EQB3U is the upper branch of the ‘wall-attached’
solution EQA3L. It consists of two distinct regions; y+ < 40, where the cross-streamwise
velocity fluctuations are of the same order as the streamwise fluctuations, and y+ > 40,
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Figure 7. (Colour online) Velocity field visualisation and root mean squared velocity profiles of
the Group B relative equilibrium solutions, henceforth titled EQB5L, EQB3U , EQB4U , EQB6L

and EQB6U , respectively. The red and blue surfaces represent high and low speed streaks;
(a, d, e) u+ − 〈u+〉x+,z+ = ±3, (b, c) u+ − 〈u+〉x+,z+ = ±2. The yellow and green surfaces are

iso-surfaces of wall-normal velocity; (a, d, e) v+ = ±0.9, (b, c) v+ = ±0.35. Red dashed lines,
u+
rms; green solid lines, v+rms; blue dash-dotted lines, w+

rms.
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where the streamwise velocity fluctuations dominate. Correspondingly, in the velocity
field visualisation (figure 7 b), a pair of near-wall streaks are present together with the
sustaining vortical motion, as well as a pair of energetic streaks along the upper boundary.
EQB4U is the upper branch of EQA4L and like its lower branch counterpart, it too is
vertically localised in the domain centre. Both the low- and high-speed streaks exhibit
wavy behaviour, resembling streak instability, and the wall-normal fluctuations are much
more prominent. However, due to the wall-normal localisation, the wall shear stress
remains relatively low for an upper branch solution, as for its Couette flow analogue
EQ4 (Gibson et al. 2009). EQB6L and EQB6U are the last Group B solutions. A lower
and upper branch pair, these equilibria are positioned quite close together in state space
(figures 10 and 11). Consequently, the two solutions are very similar structurally, the
only differences being a shift closer to the wall in the u+

rms profile and a small increase
in wall-normal velocity content.

The Group C solutions are characterised by large near-wall peaks in the streamwise
velocity fluctuations, as shown in the velocity isosurfaces and second order statistics in
figure 8. Consequently, these solutions exhibit very high wall shear rates and can be
described as the ‘high drag states’. In contrast to Group A and B, each of the Group C
solutions has a wall shear rate greater than the turbulent mean, specifically ∆+ > 1.19
(table 3). These solutions are also highly dissipative, with energy dissipation (3.6) relative
to that of the laminar state satisfying D/Dl > 3.8. Unsurprisingly, the solutions in this
group are highly unstable, with unstable manifolds of dimension 22 or greater. POC0U

is the upper branch of POA0L, the edge state. It is also time-periodic, with T+ ≈ 25.8,
and its oscillation amplitude is still quite small (figures 10 and 11). In contrast to the
stability of its lower branch counterpart, POC0U has a 47-dimensional unstable manifold,
the second most unstable in Ω. It features very strong streaks along the upper boundary
of the domain, resulting in a skewed u+

rms profile. EQC1U is the upper branch of EQA1L,
the equilibrium solution embedded in the edge. As seen in the Group B equilibria, the
low-speed streak localises along the wall and the high-speed streak localises along the
upper boundary, resulting in a bimodal u+

rms distribution. Again, examination of the
velocity field indicates that this is presumably the stress-driven equivalent to Nagata’s
upper branch solution (Nagata 1990). EQC5U is the upper branch of EQB5L, the solution
that bifurcates away from the main EQA1L - EQC1U branch (figure 9(a)). Structurally, it
is very similar to EQC1U , except for small differences in the wall-normal velocity content.
In fact, EQC5U is the solution with the highest drag in Ω (table 3). Finally, EQC7L and
EQC7U are the last Group C solutions. A lower and upper branch pair, both equilibria
are characterised by very ‘turbulent’ velocity fields, containing high-speed streaks near
the upper boundary and strong vortical structures. The root mean squared velocity
profiles of both solutions are quite uneven, the only pair to exhibit such behaviour. Both
equilibria are extremely unstable, possessing 38- and 63-dimensional unstable manifolds
respectively.

3.2. Bifurcation of solutions

Thus far, three distinct groups of invariant solutions of the Navier-Stokes equations
have been presented. In order to establish connections between the different solutions
and to analyse their physical properties, the bifurcation of solutions over the domain
size is investigated. Each periodic orbit and equilibrium solution is continued to smaller
and larger values of the spanwise width L+

z using an arc-length continuation algorithm,
while maintaining L+

x and L+
y the same. Solution curves are traced out and bifurcation
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Figure 8. (Colour online) Velocity field visualisation and root mean squared velocity profiles of
the Group C relative periodic orbit and relative equilibrium solutions, henceforth titled POC0U ,
EQC1U , EQC5U , EQC7L and EQC7U , respectively. The red and blue surfaces represent high
and low speed streaks; u+ − 〈u+〉x+,z+ = ±3.75. The yellow and green surfaces are iso-surfaces

of wall-normal velocity; (a, d) v+ = ±1.4, (b, c, e) v+ = ±1.9. Red dashed lines, u+
rms; green solid

lines, v+rms; blue dash-dotted lines, w+
rms. The root mean squared velocity profile of POC0U is

an average over the period T+.
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Figure 9. (Colour online) Wall shear rate of the invariant solutions, ∆+, as a function of the
spanwise width; (a) L+

z normalised by uτ,r, (b) L∗

z normalised by uτ,e. The grey dashed line
represents the width of the reference domain Ω. Brown line, POA0L & POC0U ; black line,
EQA1L & EQC1U ; gold line, EQA2; blue line, EQA3L & EQB3U ; red line, EQA4L & EQB4U ;
green line, EQB5L & EQC5U ; cyan line, EQB6L & EQB6U ; pink line, EQC7L & EQC7U . The ∆

+

values of POA0L and POC0U are averages over the period T+. The insert shows the subcritical
Hopf bifurcation of EQA1L.

points are identified. The (L+
z , ∆

+) bifurcation diagram is shown in figure 9a, where

∆+ = dU+

dy+

∣∣
y+=0

is the wall shear rate of each solution.

In the reference domain Ω, in which L+
z = 110, POA0L is the edge state and EQA1L

is the equilibrium solution embedded in the edge, as mentioned previously. Continuing
POA0L to larger values of L+

z (in brown), it forms a saddle-node bifurcation at L+
z ≈ 136

(as seen in the insert in figure 9(a)), beyond which it gains two more real unstable
eigenvalues. It turns back to smaller values of L+

z and at L+
z ≈ 111, the periodic orbit

collides with the EQA1L lower branch. Analysing the eigenvalues of EQA1L reveals that
it is stable on the edge for L+

z > 111 and unstable on the edge for L+
z < 111, indicating

that this is a subcritical Hopf bifurcation. Continuing POA0L to smaller values of L+
z

instead, the drag begins to increase and it forms saddle-node bifurcation at L+
z ≈ 74.5,

the only solution to exist at this lengthscale. Above the bifurcation point, the drag
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increases substantially and after two further sharp saddle-node bifurcations, it reaches its
maximum at the upper branch periodic orbit POC0U . EQA1L (in black) exhibits similar
behaviour at smaller values of L+

z , forming a saddle-node bifurcation at L+
z ≈ 75.5.

However, at larger values of L+
z , the upper branch shows increasingly erratic behaviour

until it turns sharply at L+
z ≈ 196. The solution curve continues back down to smaller

values of L+
z , forming the upper branch on which EQB3U exists (in blue). The drag

decreases through the saddle-node bifurcation point at L+
z ≈ 82.5 but is largely constant

in the neighbourhood of the lower branch solution, EQA3L. Clearly, there is a relationship
between these two pairs of equilibrium solutions. This is reinforced by the fact that the
drag of EQA1L and EQA3L is almost identical over the interval 90 < L+

z < 150.
EQB5L and EQC5U are also related to the above solution pairs, as mentioned in §3.1.

Just above the bifurcation point of EQC1U , the number and magnitude of unstable
eigenvalues increases significantly, meaning that the upper branch is highly unstable. A
secondary solution curve emerges at L+

z ≈ 84 (in green), namely that of EQC5U , which is
the solution with the highest drag in Ω. Just above L+

z ≈ 112, there is a sharp reduction
in drag before the solution curve continues back to smaller values of L+

z in the vicinity
of the lower branch solution, EQB5L. At smaller values of L+

z again, this solution curve
exhibits erratic ‘looping’ behaviour, before it eventually rejoins the EQC1U branch from
which it emerged.
EQA2 (in gold) is the only solution without an upper branch counterpart in Ω. The

drag of the lower branch remains almost constant over the interval 100 < L+
z < 190 but

increases as it approaches the cusp-like saddle-node bifurcation point at L+
z ≈ 83. Along

the upper branch, there is a substantial increase in drag before the solution curve turns
again and continues back down to smaller values of L+

z . Below L+
z ≈ 80, the residual

began to increase above the desired threshold so further continuation was abandoned.
In contrast, the remaining three pairs of equilibria, EQA4L & EQB4U (in red), EQB6L

& EQB6U (in cyan) and EQC7L & EQC7U (in pink), are all well-defined lower and
upper branch pairs. However, the solution curves of each pair differ significantly. EQA4L

and EQB4U have a parabolic-shaped curve, emerging in a saddle-node bifurcation at
L+
z ≈ 90, even though the difference in drag between the lower and upper branches

is quite small. EQB6L and EQB6U possess a unique lemniscate curve, while EQC7L

and EQC7U have an almost rectangular-shaped curve. Another common feature of these
three pairs of equilibria is that they only exist over a very limited interval of L+

z , namely
90 < L+

z < 125.
The bifurcation diagram in figure 9(a) also provides insight into the lengthscales of

turbulent activity in the near-wall region. POA0L is the solution that exists at the smallest
spanwise width, L+

z ≈ 74.5, and no solutions exist below this value. As L+
z increases,

nearly all of the equilibrium solutions are born through saddle-node bifurcations, thirteen
of which exist in Ω. With the exception of EQB3U , all upper branch solutions achieve
maximum drag in the interval 100 < L+

z < 120, corresponding to the characteristic
spacing of near-wall streaks (Robinson 1991). While the upper branch solutions are much
more sensitive to the spanwise width, the lower branch solutions show little variation in
drag and even quasi-constant behaviour over moderate values of L+

z . At the largest values
of L+

z , only a few lower branch solutions still exist. As an aside, the (L∗

z, ∆
+) bifurcation

diagram is shown in figure 9(b), where L∗

z is the spanwise width normalised with the
friction velocity of the corresponding invariant solution, uτ,e. Under this rescaling, the
bifurcation points of the solutions POA0L, EQA1L, EQA2, EQA3L and EQA4L coincide
at L∗

z ≈ 55, similar to that of the high-Re asymptotic state reported by Yang et al.

(2019). The slight discrepancy is likely due to the 2 : 1 aspect ratio of the horizontal
computational domain (i.e. Lx : Lz) maintained in that work.
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3.3. Phase portraits

Now that the connections between various invariant solutions have been determined,
an approximation to the state space of near-wall turbulence can be constructed. This
is the ultimate aim of the dynamical systems approach, namely how the position and
stability of invariant solutions guide a chaotic turbulent trajectory through the state
space. A particular phase portrait is usually chosen to exploit the inherent properties
of invariant solutions or to shed light on a specific physical process. For example, if the
total kinetic energy is defined as

E(t+) =
1

2
〈u+ · u+〉x+,y+,z+ , (3.4)

then its time derivative can be expressed as dE
dt+

= I −D, where

I(t+) =

〈
u+ ∂u+

∂y+

∣∣∣∣∣
y+=L

+
y

〉

x+,z+

(3.5)

is the energy input and

D(t+) =

〈(
∂u+

i

∂x+

j

)2
〉

x+,y+,z+

(3.6)

is the energy dissipation. However, the energy conservation property of invariant solutions
implies that dE

dt+
(or its average over the period T+ in the case of periodic orbits) is

identically zero, hence I and D (or their average over T+) must be equal quantities.
Denoting the energy input and dissipation of the laminar state by Il and Dl respectively,
the (I/Il, D/Dl) phase portrait of a turbulent trajectory and the invariant solutions is
shown in figure 10(a). The invariant solutions are positioned along the diagonal, while the
turbulent trajectory oscillates around it in a chaotic manner and eventually relaminarises
at late time. Introducing the deviation from the laminar state u+

p = u+ − u+

l =
(u+

p , v
+
p , w

+
p ), the perturbation kinetic energy may be defined as

Ep(t
+) =

1

2
〈u+

p · u+
p 〉x+,y+,z+ . (3.7)

This quantity (or its average over T+) also remains constant for invariant solutions,
thus allowing for the construction of an alternative phase portrait. The (I/Il, Ep) phase
portrait of the same turbulent trajectory and the invariant solutions is shown in figure
10(b). As expected, the energy input and perturbation kinetic energy of the invariant
solutions is positively correlated. The A, B and C grouping of solutions is also clearly
visible in both phase portraits. The Group A solutions, represented by squares, are
positioned closest to the laminar state, satisfying I/Il = D/Dl < 1.4 and Ep < 5
(table 3). These solutions form a lower bound to the self-sustaining turbulent trajectory,
consonant with the fact that POA0L is the edge state and EQA1L is embedded in the edge.
In contrast, the Group C equilibria, represented by triangles, and periodic orbit are closer
to the maximum values attained by the turbulent trajectory, with I/Il = D/Dl > 3.8.
The Group B equilibria, represented by circles, fill in the gap between the other two,
closer to the mean turbulent state.
A particular phase portrait may also be chosen to investigate a specific physical process.

In the case of near-wall turbulence, the relevant process is of course the self-sustaining
process (Hamilton et al. 1995). It is therefore of interest to relate the relative equilibrium
solutions and relative periodic orbits to the self-sustaining process, in order to study the
state space dynamics in greater detail. In order to capture the three distinct stages, the
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Figure 10. (Colour online) Phase portraits of a turbulent trajectory and the invariant solutions:
(a) the (I/Il, D/Dl) plane, where Il and Dl represent the energy input and dissipation of the
laminar state; (b) the (I/Il, Ep) plane, where Ep is the kinetic energy deviation from the laminar
state. Brown square & line, POA0L & POC0U ; black square & triangle, EQA1L & EQC1U ; gold
square, EQA2; blue square & circle, EQA3L & EQB3U ; red square & circle, EQA4L & EQB4U ;
green circle & triangle, EQB5L & EQC5U ; cyan unfilled & filled circles, EQB6L & EQB6U ;
pink unfilled & filled triangles, EQC7L & EQC7U . The I/Il, D/Dl and Ep values of POA0L are
averages over the period T+.

self-sustaining process will be illustrated by a three-dimensional phase portrait. Following
the approach of Lucas & Kerswell (2017), the kinetic energy of the streak, roll and wave
are defined as

Es(t
+) =

1

2

〈
〈u+

p 〉2x+

〉
y+,z+

, (3.8)

Er(t
+) =

1

2

〈
〈v+p 〉2x+ + 〈w+

p 〉2x+

〉
y+,z+

(3.9)

and

Ew(t
+) =

1

2

〈(
u+
p − 〈u+

p 〉x+

)2〉
x+,y+,z+

(3.10)

respectively, such that Es+Er+Ew = Ep. Since the streak energy is of higher order than
that of the roll and wave, the above quantities are normalised by their mean turbulent
values in the phase portraits in figure 11. The three-dimensional portrait is shown in
figure 11(a), while the two-dimensional (Er/Ēr, Ew/Ēw) and (Es/Ēs, Er/Ēr) portraits
are shown in 11(b) and 11(c) respectively. It is immediately obvious that the invariant
solutions are dispersed throughout the phase portrait, indicating that the solutions have
very different dynamics.

The (Es/Ēs, Er/Ēr, Ew/Ēw) phase portrait allows for the clearest distinction between
the three groups of solutions. The Group A solutions (squares) possess very little roll
or wave energy, positioned almost at the origin of the (Er/Ēr, Ew/Ēw) plane. They are
positioned almost along the abscissa of the (Es/Ēs, Er/Ēr) plane, with EQA1L (the
equilibrium solution embedded in the edge) showing greatest streak energy and EQA2

(the solution with lowest drag) showing least. On the other hand, the high drag Group
C equilibria (triangles) and periodic orbit possess the greatest roll and wave energy,
corresponding to their high vorticity content. The Group B equilibria (circles) again
bridge the gap, with moderately low values of both roll and wave energy. Interestingly,
the Group B and C solutions are not distinguishable based on streak energy alone, given
that strong streaky structures appear in the velocity field visualisations in both groups.
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Figure 11. (Colour online) Phase portraits of a turbulent trajectory and the invariant solutions:
(a) (Es/Ēs, Er/Ēr, Ew/Ēw) space, where Es, Er and Ew represent the streak, roll and wave
energy respectively, and · denotes the average in time while the flow remains turbulent; (b)
the (Er/Ēr, Ew/Ēw) plane; (c) the (Es/Ēs, Er/Ēr) plane. The symbols are identical to those
used in figure 10.

The above phase portraits also illustrate the interruption of the self-sustaining process
and the consequent relaminarisation of the flow. At late time, the trajectory appears to
escape from the turbulent state and enters the neighbourhood of the low energy states on
the way to the laminar state. In particular, the trajectory appears to approach EQB3U

then EQA1L, as seen in each of the (I/Il, D/Dl), (I/Il, Ep) and (Es/Ēs, Er/Ēr, Ew/Ēw)
phase portraits. However, EQA1L is the equilibrium solution embedded in the edge and
other than its instability to the edge state, its only unstable eigendirection is transversal
to the edge. In this case, the turbulent trajectory passes through the edge along the
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unstable manifold of EQA1L, exhibiting the characteristic decay of the roll energy. The
turbulent trajectory then approaches the laminar state along the Es axis, corresponding
to the slow decay of the streak energy.
It must be pointed out that each phase portrait provides a limited description of the

infinite-dimensional dynamical system that is turbulence. The dynamics of turbulence
that lie in dimensions orthogonal to a given phase portrait will be omitted, hence
important physical processes may be missed. The (I/Il, D/Dl) and (I/Il, Ep) phase
portraits shown above are not without criticism (Budanur et al. 2017). For example,
the edge is not recognisable as the boundary between the laminar and turbulent flow
regimes. Neither POA0L, the edge state, nor EQA1L, the equilibrium solution embedded
in the edge, have the lowest values of I/Il, D/Dl or Ep and several other equilibria
appear to be positioned between them and the laminar state. In addition, EQB4U

appears to be positioned closer to the Group A solutions, even though its velocity field
is structurally very different to the solutions in that group. In order to gain a more
thorough understanding of the state space of near-wall turbulence, the construction of
phase portraits must be combined with the careful analysis of velocity fields, solution
stability and bifurcation behaviour.

3.4. High-Re asymptotic behaviour of equilibria

Following the model formulation in section 2, all results presented thus far have been
scaled in inner units, where the domain dimensions (L+

x , L
+
y , L

+
z ) have been the only

model parameters. By the definition of the system, its Reynolds number is of order unity.
In this regime, the asymptotic description should follow Deguchi (2015). Of course, the
same results can be rescaled in outer units for the purpose of studying the asymptotic
behaviour in the limit of vanishing viscosity. In this case, the definition of a Reynolds
number is required. Using the domain height Ly as the characteristic lengthscale, the
laminar bulk velocity U0 as the characteristic velocity scale and the kinematic viscosity
ν, the Reynolds number can be defined as

Re =
LyU0

ν
. (3.11)

In outer units, the model parameters are therefore the streamwise length of the domain
Lx/Ly, the spanwise width of the domain Lz/Ly and the Reynolds number Re. In the
current configuration, the values of these parameters are Lx/Ly ≈ 3.56, Lz/Ly ≈ 1.22
and Re = 1250. Given the definition of a Reynolds number, it is of interest to study
the asymptotic development of the relative equilibrium solutions at high Re with Lx/Ly

and Lz/Ly fixed as above. In particular, the scaling of the equilibria with Re will be
examined and compared to established theories at high Reynolds number (Hall & Sherwin
2010), since this will provide valuable information about the asymptotic structure of the
equilibrium solutions in the near-wall computational domain. To this end, the deviation
from the laminar state up = (u − ul)/U0 is reintroduced and the kinetic energy of the
streak and roll are defined analogous to (3.8) and (3.9) respectively. The wave velocity
field is subsequently defined as

(uw, vw, ww) = up − 〈up〉x (3.12)

and the energy of the first and second streamwise modes of the wave as

Ew1 =
1

2

〈
û2
w(±1, y, 0) + v̂2w(±1, y, 0) + ŵ2

w(±1, y, 0)

〉

y

(3.13)
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and

Ew2 =
1

2

〈
û2
w(±2, y, 0) + v̂2w(±2, y, 0) + ŵ2

w(±2, y, 0)

〉

y

, (3.14)

where ·̂ denotes the Fourier transform.
The scaling of EQA1L, EQA2, EQA3L and EQA4L with Re is shown in figure 12,

together with their upper branch counterparts EQC1U , EQB3U and EQB4U . The streak
and roll energy are shown in (a, c, e, g) and the energy of the first and second streamwise
modes of the wave are shown in (b, d, f, h). EQA1L, EQA3L and EQA4L all exhibit the
characteristic vortex-wave interaction (VWI) scaling, where Es ∼ Re0, Er ∼ Re−2,
Ew1 ∼ Re−2 and Ew2 ∼ Re−3 (Hall & Sherwin 2010). This result is not surprising,
given that the Group A solutions possess very little roll or wave energy relative to streak
energy, as seen in figure 11. EQA2 exhibits similar behaviour, except that the energy
of the fundamental streamwise mode of the wave is approximately zero and hence not
shown. The upper branch solutions EQC1U , EQB3U and EQB4U could not be continued
to as high values of the Reynolds number due to the increasing instability of equilibria
at high Re. The relative equilibrium solutions not included in figure 12 either could not
be continued or collided in saddle-node bifurcations at higher values of Re.
In addition to the characteristic Reynolds number scaling, VWI states are distin-

guishable by their velocity field structure. As shown in Hall & Sherwin (2010), the roll
equations are driven by the Reynolds stresses of the wave, defined as

Fy = −
〈
uw

∂vw
∂x

+ vw
∂vw
∂y

+ ww

∂vw
∂z

〉

x

(3.15)

and

Fz = −
〈
uw

∂ww

∂x
+ vw

∂ww

∂y
+ ww

∂ww

∂z

〉

x

. (3.16)

However, in the limit of Re → ∞, the wave equations become singular in the critical
layer, where the mean streamwise velocity and phase speed are equal, U(y, z) = cx.

Hence, VWI states exhibit the localisation of the wave forcing, F (y, z) =
√

F 2
y + F 2

z ,

around the critical layer at high Reynolds number. The critical layer position and wave
forcing of EQA1L, EQA2, EQA3L and EQA4L is shown in figure 13, at Re = 1250
(a, c, e, g) and Re = 12500 (b, d, f, h). At lower Reynolds number, the wave forcing is more
spatially extensive, affecting a large area surrounding the critical layer. Maximum values
are attained in the critical layer with gradual spatial decay in the outer region. However,
as the Reynolds number increases, the spatial extent of the wave forcing decreases and
in each case, it is confined to the critical layer in the limit of Re → ∞. In particular,
EQA2 possesses a flat critical layer, like EQ7 in Gibson et al. (2009) (see also Deguchi
et al. (2013)).

EQA1L, which appears to be the analogue of Nagata’s lower branch solution, has
been exemplified as the canonical VWI state (Hall & Sherwin 2010). However, it has
been shown above that two new equilibrium solutions exhibit VWI scaling and the
localisation of wave forcing in the critical layer, namely EQA3L and EQA4L. Each of
these solutions is structurally similar, with small cross-streamwise velocity fluctuations
relative to streamwise velocity fluctuations. This is highlighted by the position of the
Group A solutions close to the origin of the (Er/Ēr, Ew/Ēw) phase plane in figure 11(b).
The primary difference between the three states is their wall-normal localisation, where
EQA3L appears to be fully attached to the wall, EQA4L in the domain centre and EQA1L
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Figure 12. (Colour online) Scaling of (a, b) EQA1L, (c, d) EQA2, (e, f) EQA3L and (g, h) EQA4L

with Re; (a, c, e, g) solid lines, Es, dash-dotted lines, Er; (b, d, f, h) solid lines, Ew1, dash-dotted
lines, Ew2. The grey dotted lines represent the VWI scaling; Es ∼ Re0, Er ∼ Re−2, Ew1 ∼ Re−2

and Ew2 ∼ Re−3.



Shear stress-driven flow: the state space of near-wall turbulence as Reτ → ∞ 25

Figure 13. (Colour online) Wave-induced forcing, F (y, z), of (a, b) EQA1L, (c, d) EQA2, (e, f)
EQA3L and (g, h) EQA4L; (a, c, e, g) Re = 1250; (b, d, f, h) Re = 12500. The white line represents
the critical layer position, U(y, z) = cx.
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along the upper boundary. The VWI states reside in the same neighbourhood of the
state space of near-wall turbulence. As lower branch solutions, they are characterised by
drag rates well below the turbulent mean, relatively high phase speeds and low energy
input and dissipation rates (table 3). They are the most stable equilibrium solutions,
each possessing three unstable eigenvalues, consonant with their position within or
proximity to the edge. In addition, the VWI states are among the first solutions to
emerge via saddle-node bifurcation in the (L∗

z, ∆
+) bifurcation diagram in figure 9(b).

The bifurcation point appears to be L∗

z ≈ 55, below which only the laminar state exists,
indicating their relevance to the transition to turbulence.
However, it must be pointed out that the VWI states only account for a small subset of

the invariant solutions presented above. Since they form a lower bound to the turbulent
trajectory in terms of drag, energy input and perturbation kinetic energy, the VWI
states fail to capture fully turbulent dynamics. The Group B equilibria best represent the
statistics and structure of the mean turbulent state, featuring high and low speed streaks
and quasi-streamwise vortices. In particular, EQB5L has wall shear rate ∆+ ≈ 1 and
has a similar velocity profile to that of the reference simulation (figure 3). Together with
EQB6U , it appears close to the mean turbulent values of the energy input, dissipation
and perturbation kinetic energy in figure 10, and streak energy in figure 11. The Group
C solutions are the most ‘turbulent’, in the sense that they exhibit highly wavy streaks
and significant vortical content. They appear to form an upper bound to the turbulent
trajectory in terms of drag, energy input and dissipation and roll energy, lying close to the
extremal turbulent trajectories in figures 10(a) and 11(c). Consequently, these invariant
solutions are extremely unstable. For example, EQC7U is the most unstable equilibrium
solution in Ω, with an incredible 63-dimensional unstable manifold, and POC0U is the
most unstable periodic orbit, with a 47-dimensional unstable manifold. However, the
Group C solutions are the only ones to attain wave energy values close to the turbulent
mean in figure 11(b) and they also move with phase speeds 12 < c+x < 14, comparable
with the advection velocity of the near-wall coherent structures observed in numerical
experiments (Kim & Hussain 1993). Clearly, the solutions of Group B and C play an
important role in describing the full dynamics of near-wall turbulence.

4. Conclusion

In this work, a shear stress-driven flow is introduced as a model of independent near-
wall turbulence as Reτ → ∞. The system is governed by the unit Reynolds number
Navier-Stokes equations, which are valid throughout the mesolayer. A horizontally uni-
form shear stress is imposed at the upper boundary of the domain so as to satisfy the
mean momentum equation. This model is applicable to various parallel shear flows,
including turbulent Couette flow, Poiseuille flow and Hagen-Poiseuille flow, provided
that L+

x , L
+
y , L

+
z ∼

√
Reτ . In addition, shear stress-driven flow is employed as a model of

wind blowing over a body of water, hence the results presented here are also relevant in
physical oceanography. The shear stress-driven flow model is validated against damped
Couette flow and there is excellent agreement between the velocity statistics and spectra
for y+ < 40. Above this point, the mean streamwise velocity and streamwise velocity
fluctuations are slightly overestimated, while the wall-normal and spanwise velocity
fluctuations are slightly underestimated. Therefore, the shear stress-driven flow model
can be said to describe the universal part of near-wall turbulence, which provides a means
to study the flow dynamics and multiple-scale interaction unimpeded by the presence of
an upper wall.

A near-wall flow domain of similar size to the minimal unit is analysed from a dynamical
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systems perspective. The edge exhibits both stationary and time-periodic behaviour,
from which a relative equilibrium solution and a relative periodic orbit were computed.
Fifteen invariant solutions are presented in total, which can be divided into three groups
based on their physical properties. Through continuation in the spanwise width L+

z , the
bifurcation behaviour of the solutions is investigated and it is found that most emerge via
saddle-node bifurcations in the interval 70 < L+

z < 100. Furthermore, the upper branch
solutions achieve maximum wall shear rate in the interval 100 < L+

z < 120, corresponding
to the characteristic spacing of near-wall streaks. When the spanwise width is instead
normalised by the friction velocity of the computed solution, the bifurcation points of
all Group A solutions coincide at L∗

z ≈ 55, similar to the results obtained by Yang et al.

(2019).
The present study is analogous to that of Jiménez & Simens (2001) but with several

key differences. Firstly, the shear stress-driven flow model allows for the simulation of
autonomous near-wall turbulence without the need for damping functions of the form
(2.11). Damped flow simulations require a greater number of grid points, many of which
support only laminar flow, and the omission of these greatly improves the computational
cost. Furthermore, the flow can be studied without consideration as to whether the
precise form of the damping function will affect the dynamics. Secondly, the simulations
in Jiménez & Simens (2001) were performed with constant volumetric flux maintained
by a pressure gradient, resulting in the −y+/Reτ term in the mean momentum equation
(2.3). Given the simulation parameters, however, this term is an O(1) quantity and so the
results of that study apply more directly to turbulent Poiseuille flow. Finally, the invariant
solution in Jiménez & Simens (2001) is not computed explicitly and is only identifiable at
low values of the mask height δ+1 . Above δ+1 ≈ 70, only chaotic turbulent flow is observed,
in contrast to the fifteen explicitly-computed invariant solutions presented in the current
work for wall-normal domain height L+

y = 90.
The computation of the invariant solutions of the shear stress-driven flow model and

their linear stability analysis allows for the construction of the state space of near-wall
turbulence. The chaotic turbulent trajectory and invariant solutions are visualised in
several phase portraits, including the energy input and dissipation plane, and streak, roll
and wave energy space. The Group A solutions, three of which exhibit the characteristic
vortex-wave interaction scaling at high-Re, are characterised by low energy input and
dissipation rates, relatively high phase speeds and few unstable eigenvalues, consonant
with their proximity to the edge. While the Group A solutions form a lower bound
to the turbulent trajectory, the Group B equilibria best represent the statistics and
structure of the mean turbulent state, featuring high and low speed streaks and quasi-
streamwise vortices. The Group C solutions appear to form an upper bound to the
turbulent trajectory in terms of drag, energy input and dissipation and roll energy, and
hence are extremely unstable. Though they do not exist at high values of Re, the Group
B and C solutions play an important role in describing the full dynamics of near-wall
turbulence.
The statistical results and invariant solutions presented in this work have all been

computed in minimal (L+
z ≈ 110) near-wall (L+

y ≈ 90) flow domains, which only allow
for the simulation of near-wall energy-containing structures at a single integral lengthscale
(Jiménez & Moin 1991). However, the extent of the mesolayer increases as the friction
Reynolds number increases as y+max ∼

√
Reτ , meaning that at extremely high Reynolds

numbers, the mesolayer encompasses a hierarchy of scales – not just one. Therefore, the
governing equations (2.5,2.6) are valid for arbitrary values of the domain dimensions
(L+

x , L
+
y , L

+
z ), under the assumption that the friction Reynolds number is sufficiently

high. Once the spanwise width of the domain exceeds L+
z ≃ 200, then energy-containing
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structures at two integral lengthscales (λ+
z ≃ 100, 200) will be present, due to the periodic

boundary condition in the spanwise direction. In such a flow domain, the interaction
between the large and small scale structures will alter the turbulent dynamics, in contrast
to the isolated single-scale turbulence analysed here. This study is only the first step in
the investigation of multiscale mesolayer turbulence.
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Jiménez, Javier & Moin, Parviz 1991 The minimal flow unit in near-wall turbulence. Journal
of Fluid Mechanics 225, 213–240.
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