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Abstract

We analyze a process-based temperature model for the length distribution and population

over time of mayfly nymphs. Model parameters are estimated using a Markov Chain Monte

Carlo parameter estimation method utilizing length distribution data at five di↵erent stream

sites. Two di↵erent models (a standard exponential model and a modified Weibull model)

of mayfly mortality are evaluated, where in both cases mayfly length growth is a function of

stream temperature. Based on model-data comparisons to the modeled length distribution

and the Bayesian Information Criterion, we found that approaches that length distribution

data can reliably estimate 2–3 model parameters. Future model development could include

additional factors include such as upstream environmental factors, abiotic conditions, inter-

specific competition, predation, or stream salinity. Outputs of this model could be applied

to predict mayfly emergence across a geographic domain or to forecast mayfly population

responses to climate change.

Keywords: mayfly, Markov Chain Monte Carlo, population dynamics, data assimilation

Mayflies (order Ephemeroptera) are one of several in-
sect taxa that are aquatic as juveniles and terrestrial as
adults. Over the course of their lifespan mayflies are a
key contributor to aquatic food webs [12]. As juveniles,
mayflies are benthic organisms associated with stream
beds. The juvenile life history stage may range from
days to years, during which time their final body length
ranges from 3 to 30 millimeters depending on species [6].
A contributing factor to mayfly development across a
range of species and aquatic ecosystems is water temper-
ature [9, 12, 20, 26, 30]. One approach to understanding
this response to temperature, especially in relation to de-
velopment time to adult emergence, is through analysis
of a process model parameterized by stream temperature.

Typically nymph length development is modeled with
a threshold function that assumes growth occurs in a
fixed temperature range [20]. This response predicts any
shifts to stream temperature outside this range may im-
pact both the development and timing of emergence, es-
pecially for cold-water adapted species [10, 29]. Based on
current and predicted patterns on global greenhouse gas

1Augsburg University, Minneapolis, MN, 2Department of Biol-
ogy, Augsburg University, Minneapolis, MN, 3Department of Math-
ematics, Statistics, & Computer Science, Augsburg University, Min-
neapolis, MN

emissions, stream water temperatures in the next century
could increase on average 1.0 °C, with expected variabil-
ity in the magnitude of warming on a regional scale [27].
Consequently, any shift in water temperature has the po-
tential to impact local aquatic food webs [15, 28].

A standard way to quantify mayfly nymph length is the
size frequency method, which reports probability length
distributions of mayfly nymphs sampled monthly, typi-
cally reported over a year [1]. This method has been
previously applied to investigate life history and develop-
ment of di↵erent mayfly species adapted to a particular
stream [2, 5, 7, 8, 13, 14, 16, 29]. Although aggregation
and synthesis of length distribution studies have been rare
(with the exception of Cli↵ord [6] and Huryn and Wallace
[12]), monthly measurements of nymph length distribu-
tion, in conjunction with stream temperature, could help
determine key parameters that a↵ect any mathematical
model of nymph population dynamics [20].

The objective of this study is to parameterize and com-
pare models of mayfly nymph development utilizing a
range of published life history studies. We develop mod-
els that (1) assume nymph length development is solely
a function of stream temperature and (2) consider a con-
stant or time-varying mortality function for individual
nymphs. Model results are compared against life his-
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tory studies of nymph length distribution. To simplify
our approach, we only consider mayfly species with an-
nual life cycles. We make two key assumptions in this
study: (1) application to the same model to similar life
history studies provides information as a baseline for how
di↵erent native species respond and (2) parameters for a
given model are applicable in a broad range of contexts
and climates, even though each separate mayfly species
might be bioadapted to its own climate.

1 Methods

This study utilizes published data from five mayfly
life history studies that report (1) length density dis-
tributions and (2) stream temperatures over a period
of several months. We consider five di↵erent species
and streams described in Table 1. To generate data
from published temperature graphs we utilize the open-
software program Engauge (http://markummitchell.
github.io/engauge-digitizer/), interpolated to daily
values using piecewise linear interpolation. Monthly may-
fly length distribution was determined via measuring
tools found with portable document format reader soft-
ware such as Preview or Reader. We then subsequently
convert these measurements to a probability density dis-
tribution. We use the program R and RStudio [22, 23]
for all software analyses. All studies report mayfly body
lengths, with the exception of Winterbourn et al. [29],
which measured head width. In that case, for simplicity
we assume that the probability distribution of head width
length is similar to the body length distribution.

1.1 Mayfly population model

The model we utilize for mayfly growth is similar to the
one described previously in Zobitz et al. [31]. This model
has two dynamic variables of interest: M , the total pop-
ulation of mayfly nymph, and li(t), the length of an in-
dividual mayfly i at time t, where time is measured in
months. For this model, the length rate of change of
a mayfly nymph is proportional to stream temperature
when the daily temperature T is between TL or TL + R,
where R is the thermal range for growth, according to the
following equation:

dli
dt

=

(
↵ for TL  T < TL +R,

0 otherwise.
(1)

where ↵ (mm day�1) is the length growth rate of mayflies.
When there are D days in a month when the daily tem-
perature is between this optimum range each mayfly will
accumulate ↵D units of length.

We assume that the population of mayflies M follows
the following exponential di↵erential equation:

dM

dt
= ��(t)M, (2)

where �(t) (% mayflies month�1) is a time-dependent
mortality of mayfly nymph. The basic solution to this
di↵erential equation is given by

M(t) = M0 exp

✓
�
Z t

0
�(s) ds

◆
, (3)

where M0 is the initial population of mayflies that follows
a prescribed length distribution. For all streams and sim-
ulations we assumed M0 = 1000. In our analyses we
consider two formulations for �(t):

• When �(t) is constant Equation 3 is the exponential
model of population growth, or

M(t) = M0 exp(��t). (4)

We will denote this model as the Standard model.

• If we assume nymph mortality increases over time,

one possible formulation is �(t) = � ·
✓
t

⌧

◆p

, where

� is a constant (as in the Standard model), p is a
shape parameter that is greater than zero, and ⌧ is
the total time (measured in months). This model is
an example of a Weibull population model [17]. The
solution for Equation 3 is

M(t) = M0 exp

 
�� · ⌧p+1

p+ 1

✓
t

⌧

◆p+1
!

= M0 exp

✓
�� · tp+1

p+ 1

◆
. (5)

We will denote this model as the Weibull model.

In both cases the model is implemented on a monthly
timestep using Euler’s method. At each month mayfly
mortality is implemented by removing no more than a
percentage of �(t) mayflies each month. A summary of
each model and the parameters used in both is shown in
Table 2.

1.2 Parameter estimation method

To estimate parameters we minimize the di↵erence be-
tween the modeled and measured mayfly length density
across each month for each site. Autocorrelation tests
on the mean mayfly length did not detect a significant
presence of autocorrelation in the measurements (results
not shown). Of all five sites, only consecutive monthly
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Table 1: Description of mayfly life history studies analyzed.

Site Notes

Prosiek Stream, Slovakia
[2]

Located in the West Carpathians in Northern Slovakia (49°9’N, 19°29’E),
705 meters above sea level. For this study we analyzed length distribution
data for Rhithrogena carpatoalpina.

Bottová et al. [2] report stream temperatures of 8 °C from May to August,
and 7 °C from September to April. We model this annual pattern with con-
stant decrease of 0.23 °C per day between August 15 to September 15. Fol-
lowing construction of that piecewise linear function we account for temper-
ature variations by adding random noise to the daily temperature sampled
from a normal distribution with mean zero and standard deviation 0.1 °C.

Mobile River, USA
[5]

Located between Alabama, northwestern Georgia, and eastern Mississippi.
Chadwick and Feminella [5] collected samples of the mayfly species Hexa-
genia limbata across several sites ranging from a latitude of 30°40’ to 31°N,
88°W from October 1995 to November 1996. The recorded stream temper-
atures ranged from 5 °C to 30 °C.

Sutton Stream, New Zealand
[13]

A high-elevation tributary of the Taieri River on the South Island of New
Zealand (45°36’S, 169°54’E). The life history of populations of the lep-
tophlebiid mayfly Deleatidium (lillii group) located in during the period
extending from October 31, 1991 to October 31 1992. Over the observation
period stream temperatures ranged from 0 °C to 17.4 °C.

Gapyeong Stream, South Korea
[14, 16]

Located in South Korea (37°57’N, 127°15’E). Samples of Ephemera orientalis
McLachlan, a common burrowing mayfly distributed in temperate East Asia
were collected March 1998 to June 1999. The recorded stream temperatures
during the study period range from 3 °C to 25 °C.

Rob Roy Stream, New Zealand
[29]

Rob Roy Stream (44°26’S, 168°43’E) is a south-facing tributary of the
Matukituki River in the southwest of the South Island, New Zealand. Head
width arval samples of the mayfly Deleatidium cornutum (subgenus Pen-
niketellum) were analyzed from November 2004 to October 2005. Mayflies
in this stream are cold adapted; average water temperature over the period
was 2.1 °C, ranging from 1.2 °C to 3.7 °C.

Winterbourn et al. [29] did not report a timeseries of temperature data. To
generate a representative graph of stream water temperature, we assumed
that the monthly water temperature is proportional to the air tempera-
ture found from local climatological records (http://www.yr.no/place/
New_Zealand/Otago/Rob_Roy_Peak/statistics.html). We then interpo-
lated the pattern of the monthly air temperature to a daily value, adding
independent random noise of mean zero and standard deviation equality to
the square root of the reported range in temperatures (2.5 °C). By construct-
ing a representative stream temperature timeseries in this way, the average
of that data approximately equaled the published average mean of 2.1°.
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Table 2: Description of model parameters. S: Standard model (Equation 4) W: Weibull model (Equation 5)

Symbol Units Description Model Prior Range

TL °C Minimum temperature for growth S, W 0–20

R °C Thermal range for mayfly growth S, W 0–30

↵ mm day�1 Mayfly length growth rate S, W 0–1

� % mayflies month�1 Mayfly population death rate S, W 0–1

p no units Shape parameter W 0–5

measurements of mean mayfly length at Rob Roy stream
were significantly correlated (p < 0.02). We assume that
each measurement is independent, identically distributed,
so we have the following log likelihood function (denoted
as LL) in Equation 6:

LL(~v) = �N ln(
p
2⇡)�

NX

i

ln(�i)�
NX

i=1

(xi � ⌘i(~v))2

2�2
i

,

(6)
where xi is a measured value, ⌘i is a modeled value, ~v
the vector of estimated parameters, N the number of
data points, and �i the uncertainty on the measurements.
For this study �i is the uncertainty in the digitization
of the distribution measurements. Preliminary investiga-
tions measuring the length distribution found it computa-
tionally feasible to measure the length distribution curve
to high precision, which e↵ectively forces Equation 6 to
have zero weight on the measured values. To modify this
e↵ect we treated �i as a nuisance parameter and set �i

equal to the value that maximizes log-likelihood, which
can be shown to equal the sample standard deviation [3].

For each parameter we initially prescribe a uniform
probability distribution over a selected range shown in
Table 2. For convenience we assume that the range of
each parameter is the same across each of the sites. Nu-
merical bounds for the prior parameter values were se-
lected based on reasonableness (e.g. mayflies cannot grow
below 0 °C) or previous studies utilizing this model [31].
The shape parameter p was selected between zero and
five because if p is much greater than unity if e↵ectively
forces �(t) = 0, causing the mayfly population to remain
constant.

To estimate parameters we apply a variation of the
Metropolis algorithm [11]. The Metropolis algorithm is
an iterative search through the multidimensional parame-
ter space. At each iteration the parameter estimation rou-
tine randomly modifies a particular parameter to a pro-
posed new value, evaluates the log-likelihood, and com-
pares it to the current log-likelihood. We accept the pro-
posed parameter set if the log-likelihood increases. If the

proposed parameter set does not increase the joint log-
likelihood it is still accepted with a probability propor-
tional to the di↵erence of the log-likelihoods. With this
setup approximately 30% of parameter proposals are ac-
cepted.

To avoid convergence to a local optimum, we first run
seven independent chains until obtaining the prescribed
acceptance rate of 30% or by reaching a finite number of
iterations. The chain that has the highest log likelihood
is selected for parameter estimation. The parameter es-
timation chain has 150,000 iterations, of which the first
70,000 iterations are discarded as the “burn-in” period
when the parameter estimation is converging to the op-
timum. Final parameter estimates and analysis are com-
puted on the last 80,000 iterations.

Two di↵erent parameter estimates were generated for
each of the two models studied (Standard and Weibull
model). In the first approach, we estimated 4 or 5 param-
eters (TL, R, ↵, �, p) depending on if it was the Standard
or Weibull model. Additionally for each stream we fixed
the values of TL and R so these values fell between the
reported stream temperatures for each site. This second
approach allowed us to investigate the e↵ect of reducing
the parameter dimension on the parameter estimation.

This sampling strategy allows several post-assimilation
analyses. First summary statistics (median and confi-
dence intervals) for each parameter sets are computed.
To assess goodness of fit and determination of the best
approximating model for each site, we compare modeled
mayfly length to measured values. The Bayesian Informa-
tion Criterion is applied to determine the best approxi-
mating model [4, 24]:

BIC = �2 · LLmax + P · ln(N), (7)

where LLmax is the maximum log-likelihood, P the num-
ber of estimated parameters, and N is the number of data
points. The best approximating model is the one with
the lowest BIC. We also generate population forecasts
by first randomly thinning the set of accepted parameter
values by 50% for computational e�ciency, next evalu-
ating the mayfly model for each of the remaining sets of
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parameters. and then reporting results at each timestep
as an ensemble average (median plus 95% centered confi-
dence interval).

2 Results

MCMC parameter estimates for ↵, �, and p were well-
constrained by the data whereas the parameters TL and
R were not as constrained from the data (Figure 1).
In both cases, common parameters across the Standard
and Weibull models were proximate, but not identical, in
value. In the case when TL and R were fixed parameter
estimates for ↵ were close four of the five sites. Generally
speaking the data contained information that was able to
reliably estimate two to three parameters at each site.

We further analyzed the impact of the parameter es-
timates of TL and R in relation to the stream temper-
ature data. For two out of the five sites (Mobile River
and Gapyeong Stream) the median values of TL and R
fall within the measured ranges stream temperature (Fig-
ure 2).

Even though the parameter estimates were well con-
strained, further examination of the modeled temperature
ranges compared to the measured temperature utilized
shows the e↵ect of mayfly mortality on the length distri-
bution. All of the models were able to reasonably capture
the measured mayfly length distribution at each site when
compared across each month (Figures 3 and 4, results
not shown when TL and R are held fixed because they
were similar). Because a plot of measured versus mod-
eled values contains uncertainties in the measurement, we
calculated regression slope using geometric mean regres-
sion [25]. A bootstrap estimate [17] of the 95% confidence
interval for the regression slope included unity for three
of the five sites (Figure 5 and Table 3).

Population forecasts with both the Standard and Wei-
bull model suggest a decreasing population over time
(Figure 6). Generally speaking the Standard model dis-
played less uncertainty in modeled population values than
the Weibull model, however the Weibull model had a
larger survivorship of nymph than the Standard model.
For both of these models there was no appreciable di↵er-
ence between the population forecasts results correspond-
ing to the same model when TL and R were fixed (results
not shown).

3 Discussion

Our objective of this study was to parameterize and evalu-
ate a mayfly population model that considered the distri-
bution of individual nymph length and the mayfly pop-
ulation. We compared two di↵erent models of nymph

mortality across several di↵erent ecosystem types and lat-
itudes. For several sites, population level parameters (↵,
�, TL and R) were consistent and comparable (Figure 1).

Several observational studies have posited temperature
is a key driver of nymph length development [12, 20, 26,
30]. Our results comparing estimated values of TL and R
to when these two parameters are fixed highlight (1) the
mechanistic meaning of these parameters under the as-
sumption of temperature dependent length growth and
(2) the importance of these values falling within the re-
ported stream temperatures. Figure 2 shows that tem-
perature parameter estimates of TL and R were reason-
able (meaning the final parameter estimates were within
the range or stream temperatures) for only two of the
five sites studied. Parameter estimates of TL and R out-
side the measured range of temperatures (as in the case
of Prosiek, Sutton, and Rob Roy Streams) would imply
that mayfly length distribution would be constant in time.
In contrast, measured length distributions for these sites
show variation over time (Figures 3 and 4). If we set the
value of TL and R to be within the reported stream tem-
perature range, either the estimated value of the growth
rate ↵ tends towards zero (meaning the length distribu-
tion is stationary) or nymph mortality � tends to unity
(meaning populations decline rapidly), see Figure 1. In
both of these cases ↵ and � serve as a tempering param-
eter to prevent skewing the length distribution to larger
mayflies. From these results we conclude that TL and R
cannot be independently estimated from length distribu-
tion data alone and recommend specifying them for each
stream.

For the two models and data considered in this study
using the BIC, in Table 3, three of the five sites suggest
that a non-constant mortality (as in the Weibull model)
is preferred compared to a constant mortality. Related
to this conclusion, four of the five sites suggest that TL

and R should be fixed parameters. Future work is needed
to determine if this result would hold across other stream
types and nymphs, as three ecological factors favor a non-
constant mortality function. First, mayfly nymphs may
be a↵ected by site specific environmental and ecological
factors such as upstream environmental factors, abiotic
conditions, interspecfic competition, predation, or stream
salinity [7, 8]. All of these factors may suggest that fu-
ture studies should investigate a length dependence on
mortality in addition to a temporal dependence on mor-
tality. Second, while the BIC indicates a slight preference
for the Standard model, the population forecasts (Fig-
ure 6) suggest a steeper decline in mayfly survivorship
over time than forecasts with the Weibull model. Addi-
tional data, such as population counts over time, could
be incorporated into the parameter estimation to further
elucidate the best approximating model from the data.
Third, the current analysis opted for a model that started
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Figure 1: Parameter estimation results for the two di↵erent models considered (Standard model, Equation 4 and
Weibull model, Equation 5) across the range of sites as well as when TL and R were assigned values for each site
(Standard model (fixed) and Weibull model (fixed)). The whiskers for each parameter represent the 95% confidence
interval of the parameter distribution, the empty diamond the median, and the filled triangle the parameter that
maximized the log-likelihood.
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Figure 2: Parameter estimation for TL and R for the two di↵erent models considered (Standard model, Equation 4
and Weibull model, Equation 5) across the range of sites along with the measured stream temperatures (solid line).
Values for TL and R are selected from the median parameter estimate of each site in Figure 1. The shading indicates
the fixed values of TL and R for each stream for the Standard model. In the case of Standard model (fixed) and
Weibull model (fixed), values of TL and R are provided in Table 2.
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Figure 3: Comparison of measured and modeled length densities over time for each site. Model results shown are for
the Standard model (Equation 4).
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Figure 4: Comparison of measured and modeled length densities over time for each site. Model results shown are for
the Weibull model (Equation 5).
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Figure 5: Comparison of measured and modeled length densities across the di↵erent sites for the two di↵erent models
considered (Standard model, Equation 4 and Weibull model, Equation 5), as well as when TL and R are fixed or
estimated parameters. The 1:1 line is included for comparison.
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Table 3: Information criteria and model-data fits by site and model. N : the number of measurements used in the
parameter estimation. P : number of parameters estimated. In the case of Standard model (fixed) and Weibull
model (fixed), values of TL and R are provided in Table 2. m: slope of linear regression from Figure 5, calculated
via geometric mean regression, followed with the 95% confidence interval calculated via bootstrap sampling. R2:
coe�cient of determination. LL: Maximum log-likelihood. BIC: Bayesian information criterion from Equation 7.
The best approximating model is the one with the lowest BIC.

Site / Model N P m R2 LL BIC

Prosiek Stream

Standard model 264 4 1.1 (0.9, 1.2) 0.45 512 �1001

Weibull model 264 5 1.1 (0.9, 1.2) 0.41 497 �966

Standard model (fixed) 264 2 1.1 (0.9, 1.2) 0.43 511 �1011

Weibull model (fixed) 264 3 1.1 (0.9, 1.2) 0.41 506 �995

Mobile River

Standard model 90 4 0.90 (0.8, 1.0) 0.80 178 �338

Weibull model 90 5 0.91 (0.8, 1.0) 0.83 183 �343

Standard model (fixed) 90 2 0.96 (0.9, 1.1) 0.74 170 �321

Weibull model (fixed) 90 3 0.94 (0.8, 1.0) 0.76 173 �333

Sutton Stream

Standard model 80 4 0.73 (0.5, 1.1) 0.31 72 �127

Weibull model 80 5 0.34 (0.3, 0.5) 0.12 63 �104

Standard model (fixed) 80 2 0.44 (0.3, 0.7) 0.20 74 �140

Weibull model (fixed) 80 3 0.40 (0.3, 0.6) 0.11 68 �124

Gapyeong Stream

Standard model 100 4 1.5 (1.2, 1.7) 0.73 139 �260

Weibull model 100 5 1.5 (1.3, 1.7) 0.73 135 �246

Standard model (fixed) 100 2 1.4 (1.2, 1.7) 0.64 135 �261

Weibull model (fixed) 100 3 1.4 (1.2, 1.7) 0.67 138 �262

Rob Roy Stream

Standard model 77 4 1.2 (1.0, 1.4) 0.60 112 �207

Weibull model 77 5 1.2 (1.0, 1.3) 0.53 107 �193

Standard model (fixed) 77 2 1.3 (1.0, 1.5) 0.52 108 �207

Weibull model (fixed) 77 3 1.2 (1.0, 1.4) 0.55 111 �210
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Figure 6: Modeled and measured population distributions
for the di↵erent sites considered, taken as an time ensem-
ble. Results were generated by first randomly thinning
the set of accepted parameter values by 50% for compu-
tational e�ciency, next evaluating the mayfly model for
each of the remaining sets of parameters. The thick line
represents the median value, along with the 95% confi-
dence interval. The red coloring is the Standard model
(Equation 4) and the blue coloring is the Weibull model
(Equation 5).

with an initial length distribution rather than an initial
value problem with recently hatched nymphs from an ini-
tial length size class. In this case, ↵ could be modified
to allow for variable growth rate as nymphs mature. We
anticipate that collection of nymph data from hatching
would better constrain this modification to ↵ in the pa-
rameter estimation routine.

This study parameterized the same model across sev-
eral di↵erent streams, rather than characterizing a unique
model tailored to each stream. There are two distinct ad-
vantages to this general—rather than specific—approach.
First, we are able to compare similar parameters across
di↵erent streams to facilitate the evaluation of factors
that control mayfly length development [10, 19]. For ex-
ample, a uniform increase of stream temperature across
each site has the potential to a↵ect the modeled length
distribution by either forcing the temperature inside or
outside the interval TL and TL + R. As previously
discussed, any shift in temperature can either skew or
force the length distribution to remain stationary. Sec-
ond, this model could be coupled to an ecological model
forecast of synchronous emergence across a geographic
area [18, 20, 21], which have the potential to inform en-
vironmental policy mitigating climate change e↵ects [28].
Future model directions can focus on including additional
sites or coupling this model to models of mayfly emer-
gence across a geographic domain.

4 URLs

The data collected in this manuscript were digitized from
data of mayfly length distributions from peer-reviewed
scientific studies. The other data utilized was tempera-
ture data series for Rob Roy Stream was generated from
data published on the web from the Norwegian Meteoro-
logical Institute, and interpolated to fit the study guide-
lines, as described in Table 1.
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