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Abstract

As our demand for computational power grows, we encounter the question: “What

are the physical limits to computation?” An answer is necessarily incomplete unless

it can incorporate physics at the smallest scales, where we expect our near-term high-

performance computing to occur. Microscopic physics – namely, quantum mechanics

– behaves counterintuitively to our everyday experience, however. Quantum matter

can occupy superpositions of states and build stronger correlations than are possible

classically. This affects how quantum computers and quantum thermodynamic engines

will behave.

Though these properties may seem to overwhelmingly defeat our attempts to

build a quantum computer at-first-glance, what is remarkable is that they can

also be immensely helpful to computation. Quantum mechanics hinders and helps

computation, and the nuanced details of how we perform computations are important.

In this dissertation, we examine the transition between these two behaviors and
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connect it to a well-studied behavior in condensed matter physics, known as the

many-body-localization transition.

Our idea utilizes the fact that quantum many-body systems have an intrinsic

fastest speed at which signals can travel. When this speed is maximal, we expect

arbitrary universal quantum computation to be achievable, since strong quantum

correlations, or entanglement, can be built quickly. When it is limited, however, the

difficulty of the computation is classically simulatable. We demonstrate a similar

transition in the amount of thermodynamic work that can be performed by a quantum

system when entanglement is present.

We first consider computations consisting of the evolution of a single particle or

many noninteracting particles. When the number of such noninteracting particles is

comparable to the total size of the system, we do not know of any way to simulate

such computations classically. However, we find that we can still determine the

fastest signal speed in such systems. We extend our result to interacting particles,

which are universal for quantum computation, and observe a many-body-localization

transition in a simple computational model using our algorithm. Finally, we apply

ideas from quantum information to simulate the thermodynamic performance of a

simple quantum system, showing that quantum effects can enable it to outperform

its classical counterpart.
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Chapter 1

Introduction

One of the most important revelations in modern physics is the idea that information

is physical. This is to say that the observer and the observed cannot be treated

separately in any proper description of a physical system. The state of knowledge of

the observer is as relevant as the state of the system itself to predicting the outcomes

of experiments.

This idea was famously first demonstrated in 1867 (before the discovery of quantum

mechanics, in fact) with the gedanken experiment of James Clerk Maxwell, known as

“Maxwell’s demon.” In the thought experiment, an intelligent agent, the demon, sits

at the insulating partition between two halves of a container filled with fluid, initially

at equal temperatures. The demon has perfect knowledge of the microscopic state of

the fluid and so is able to track the motion of every one of its molecules to arbitrary

precision. It also has the ability to raise and lower the partition arbitrarily fast and

with negligible effort. In this ideal situation, the demon can exploit its knowledge and

control to allow only particles traveling faster than a certain speed to pass through

to only one side of the partition, raising the temperature of the fluid on that side and

lowering the temperature of the fluid on the opposing side, particle-by-particle.

This behavior is apparently in direct conflict with the Second Law of Thermody-

namics, which, in the Kelvin-Planck formulation, states:
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It is impossible for any device that operates on a cycle to receive heat

from a single reservoir and produce a net amount of work.

This law is empirically observed to be ubiquitously true, and is often given as the

statement that the net amount of disorder, or entropy, in the universe must always

increase. Nevertheless, it would seem the demon in this example is storing a net

amount of work in the temperature gradient it builds between the two halves of

the container at the expense of the negligible work required to move the partition.

It is apparently lowering the entropy of the universe by ordering the molecules of

the fluid according to their speed, without increasing entropy anywhere else. The

resolution ultimately came in 1961, when Rolf Landauer noted that the demon does

not actually operate cyclically when its state of knowledge of the fluid is accounted

for. Rather, any demon with a finite amount of memory must continuously erase the

memory in-order to update its knowledge of the fluid, and such erasure is guaranteed

to require work as well as dissipate heat. This led Landauer to his famous bound

relating work to information [Lan61], the Second Law was saved, and information

and physics were irrevocably and forever unified.

Concomitant with these developments was the discovery of quantum mechanics,

pioneered in the early 20th century. Quantum mechanics, remarkably effective at

describing the behavior of small-scale systems, similarly incorporates the observer

within its framework. Namely, a quantum system cannot be said to be in any definite

classical state at a given time, but is rather described in-general by a superposition

of such states. Only when the observer makes a measurement does the state of the

quantum system collapse into one of its classical components. Quantum mechanics

says that there is no way to determine a priori which way this collapse will happen:

only the statistics of repeated such measurements can be predicted. A great deal

of effort has gone into interpreting this so-called “measurement postulate,” and

in-particular, this phenomenon forces one to re-examine the role of information in

physical systems at the quantum level.

It wasn’t until nearly a century later that Richard Feynman suggested that



Chapter 1. Introduction 3

quantum information may be fundamentally different from classical information in

a way that may be exploited for the purpose of performing computation. Such a

computation would entail preparing a quantum system in a definite state, allowing it

to evolve into a superposition whose statistics encode the solution to some problem

of interest, and performing a measurement, repeating the process many times to

obtain the computation’s result. Shortly thereafter, Peter Shor introduced a quantum

algorithm for factoring integers exponentially faster than any known classical algorithm

[Sho97], and a palpable distinction between classical and quantum computation was

demonstrated. This algorithm functions by forcing undesired computational paths

to destructively interfere, or “cancel each other out,” a phenomenon which has no

classical counterpart, and as-such, there is no comparable equivalent for factoring by

a classical algorithm to this day.

These discoveries reinforce the idea that an information theoretic treatment is

necessary for any complete description of a physical system, and they motivate the

question, “what are the physical limits to the ability to process information, or

perform computation?” In the thermodyamic framework, we see that this ability is

limited by our capacity to perform work, and in the quantum setting, we see that it

is limited by quantum uncertainty and interference, though such effects can also be

leveraged to enhance our computational power as well. In this thesis, we examine the

relationships between thermodynamics, quantum information, and computation with

the aid of several illuminating problems. We first extend the concept of Anderson

localization, the confinement of quantum information in a spatially irregular potential

in the absence of interactions, to quantum circuits. Considering matchgate circuits,

generated by time-dependent spin-1/2 XY Hamiltonians, we give an analytic formula

for the out-of-time-ordered (OTO) correlator of a local observable, and show that it

can be efficiently evaluated by a classical computer even when the explicit Heisenberg

time evolution cannot. Because this quantity bounds the average error incurred by

truncating the evolution to a spatially limited region, we demonstrate dynamical

localization as a means for classically simulating quantum computation and give

examples of localized phases under certain spatiotemporal disordered Hamiltonians.
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We extend our method to study a transition to many-body-localizing behavior,

which has limited dynamical complexity and is often classically simulatable. To

detect the the transition from scrambling to many-body localization, we develop

both exact and approximate methods to compute OTO correlators for arbitrary

universal quantum circuits. We take advantage of the mapping of quantum circuits

to the dynamics of interacting fermions in one dimension, as Gaussian time evolution

supplemented by quartic interaction gates. In this framework, the OTO correlator can

be calculated exactly as a superposition of exponentially many Gaussian-fermionic

trajectories in the number of interaction gates. We approximate this formula using a

restriction to the fastest-traveling fermionic modes alone and guarantee the correctness

of our approach by variationally optimizing this restriction relative to the exact, brute-

force calculation for small system size.

Finally, we study a particular autonomous quantum system, which exhibits

refrigeration under an information-work tradeoff like a Maxwell demon. The system

becomes correlated as a single “demon” qubit interacts sequentially with memory

qubits while in contact with two heat reservoirs of different temperatures. Using strong

subadditivity of the von Neumann entropy, we derive a global Clausius inequality

to show thermodynamic advantages from access to correlated information. It is

demonstrated, in a matrix product density operator formalism, that our demon

can simultaneously realize refrigeration against a thermal gradient and erasure of

information from its memory, which is impossible without correlations. We proceed

to demonstrate that the phenomenon can be enhanced by the presence of quantum

coherence.

The work in this thesis is based on that of several publications, listed below in

Section 1.1. It further includes some necessary background over several chapters.

Chapter 2 introduces the matchgate formalism and gives a summary of classical

simulatability results. Chapter 3 gives some pedagogy for the out-of-time-ordered

correlator, introducing its original motivation as a tool for studying quantum chaotic

systems, giving some formal examples to relate it to other, more conventionally-

studied quantities, and finally a brief summary of its application for the study of
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localizing systems. From there, we proceed to provide our original results in Chapters

4, 5, and 6. The introductory material of these chapters will be redundant with some

of that in Chapters 2 and 3, so as to be self-contained. Finally, we conclude with

future directions and interesting open problems in Chapter 7.

1.1 List of Publications

• A. Chapman and A. Miyake, “How an autonomous quantum Maxwell demon

can harness correlated information,” Phys. Rev. E 92, 062125 (2015). (Appears

in Chapter 6)

• A. Chapman and A. Miyake, “Classical simulation of quantum circuits by

dynamical localization: Analytic results for Pauli-observable scrambling in time-

dependent disorder,” Phys. Rev. A 98, 012309 (2018). (Appears in Chapter

4)

• A. Chapman and A. Miyake, “Many-body-localization transition in a universal

quantum circuit model,” ArXiv:1807.09261 [quant-ph] (2018). (Appears in

Chapter 5)
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Chapter 2

Matchgates

2.1 Introduction

Matchgates are an especially interesting example of exactly solvable quantum dy-

namics. Introduced by Leslie Valiant in 2002 as an example of a class of quantum

computations that could be simulated classically in polynomial time [Val02], match-

gate circuits seem to defy our conventional notion of solvability, as their simulatability

arises from an inherently algebraic origin. Such circuits can be built out of 2-input

2-output, nearest-neighbor gates satisfying 10 quadratic identities in their elements

[JMS15]. These arise in the context of solving for the total weight of all perfect

matchings of a planar graph. A perfect matching of a graph is a subset of its edges

such that every vertex is included by exactly one edge in the subset. Surprisingly, for

a weighted, planar graph, the total weight of such subsets can be computed efficiently

by the Fisher-Kasteleyn-Temperley (FKT) [Kas61, TF61] algorithm. This algorithm

defines an associated antisymmetric covariance matrix A to the graph, for which

the number of perfect matchings is given by
√

det (A) (called the Pfaffian of A for

antisymmetric A). Matchgate circuits can be described as planar graphs composed

of elementary “graph gadgets,” corresponding to the elementary nearest-neighbor

matchgates, for which amplitudes of the circuit are computed as perfect matching

sums. As planarity is a necessary criterion for classical simulatability, we see that the
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topology of the circuit is intimately related to its complexity [Bra].

It was later demonstrated by Knill [Kni01] and Terhal and DiVincenzo [TD02]

that such circuits are related to the dynamics of free-fermions hopping on a one-

dimensional lattice with arbitrary single-particle Hamiltonian by the Jordan-Wigner

transformation, providing further physical basis to matchgate simulatability. In

this picture, a non-planar topology can surprisingly be seen as a type of fermionic

interaction. Furthermore, upon inclusion of such operations (i.e. either an interaction

of a SWAP ), these circuits are extended to be universal for quantum computation

[JM08, BC14, BGa11]. Similar extensions include nondemolition charge measurements

on the fermions [BDEK04] and the inclusion of four-qubit “magic states” [Bra06].

In this chapter, we will review the formalism of matchgates from their basic

connection to free-fermion dynamics. In Sec. 2.3, we give an explicit correspondence

between the SWAP gate in the qubit picture and an interaction gate in the fermionic

construction. In Sec. 2.4, we will show that matchgate circuits on n qubits generate

the group Spin(2n), which restricts to a representation of the special orthogonal

group SO(2n) when acting by conjugation. In this section, we will also reconcile the

notions of “linear” versus “algebraic” symmetry by giving a set of observables which

commute with quadratic tensor powers of matchgate circuits. Finally, we close with a

brief review of the matchgate-circuit complexity class and an explicit construction of

its extension to universal quantum computation upon the inclusion of SWAP gates

in Sec. 2.5.
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2.2 Basic Formalism

We define a 2-input 2-output matchgate as

G(V ,W ) =


V00 0 0 V01

0 W00 W01 0

0 W10 W11 0

V10 0 0 V11

 , (2.1)

where

V =

V00 V01

V10 V11

 W =

W00 W01

W10 W11

 (2.2)

with

detV = detW . (2.3)

Without loss of generality, we can take detV = detW = 1, since this quantity

simply contributes to an overall phase on G(V ,W ). We see that matchgates are

block diagonal on the even- and odd-parity subspaces of a 2-qubit Hilbert space

with (ordered) basis {|00〉, |01〉, |10〉, |11〉}. However, it is truly the determinantal

constraint, Eq. (2.3) that restricts the computational power of matchgate circuits1.

To see this, let

G(V ,W ) = exp [i (n ·σeven + m ·σodd)], (2.4)

1We will refer to a general parity-preserving 2-qubit gate as G(U ,V ), even if it violates
Eq. (2.3).
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where σ{even,odd} are vectors of operators preserving their respective fixed-parity

subspaces, given by


Xeven ≡ σxeven = 1

2
(X ⊗X − Y ⊗ Y )

Yeven ≡ σyeven = 1
2

(Y ⊗X +X ⊗ Y )

Zeven ≡ σzeven = 1
2

(Z ⊗ I + I ⊗ Z)

, (2.5)

and


Xodd ≡ σxodd = 1

2
(X ⊗X + Y ⊗ Y )

Yodd ≡ σyodd = 1
2

(Y ⊗X −X ⊗ Y )

Zodd ≡ σzodd = 1
2

(Z ⊗ I − I ⊗ Z)

. (2.6)

Since they preserve the fixed-parity subspaces, operators acting on opposite-parity

subspaces commute with one another (e.g., [Xeven,Yodd] = 0), and operators acting

on a fixed-parity subspace form a Pauli algebra

[σjeven,σkeven] = 2iεjklσ
l
even

[σjodd,σkodd] = 2iεjklσ
l
odd (2.7)

for εjkl the totally antisymmetric 3-index Levi-Civita tensor, for which εxyz = 1, and

there is a summation implied over repeated indices in Eq. (2.7) above.

From Eq. (2.4), we have the correspondence

V = exp [i (n ·σ)]

W = exp [i (m ·σ)]
. (2.8)
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The identity det
(
eiH
)

= ei tr (H) implies that the condition Eq. (2.3) is automatically

satisfied by the parameterization given by Eq.s (2.4) and (2.8) (detV = detW = 1,

since tr (n ·σ) = tr (m ·σ) = 0). Furthermore, everyG(V ,W ) for which V ,W ∈ SU(2)

can be written according to this parameterization. We can include a relative phase

between the two fixed-parity subspaces by defining

Ieven ≡ 1
2

(I ⊗ I + Z ⊗ Z)

Iodd ≡ 1
2

(I ⊗ I − Z ⊗ Z)
(2.9)

and including these operators in the exponential Eq. (2.4) with arbitrary real coef-

ficients will allow us to vary the determinants of V and W as arbitrary phases. It

is clear that G(V ,W ) will still preserve fixed-parity subspaces even with a relative

phase between V and W . However, including this phase has an important and

surprising consequence for the complexity of circuits composed of 2-input, 2-output,

nearest-neighbor matchgates, as we will see in the coming section.

2.3 Mapping to Free-Fermions

To elucidate the complexity of nearest-neighbor 2-qubit matchgate circuits, it is

necessary to define the 2n Majorana operators {cµ}, for µ ∈ {1, . . . , 2n} as particular

Pauli strings acting on n qubits by the Jordan-Wigner transformation

c2j−1 =
⊗j−1

k=1 Zk ⊗Xj

c2j =
⊗j−1

k=1 Zk ⊗ Yj
(2.10)

These operators satisfy the fermionic canonical anticommutation relations

{cµ, cν} = 2Iδµ,ν , (2.11)
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where δµ,ν is the Kronecker delta. That is, two Majorana operators anticommute

unless they are identical, for which we have c2
µ = I. It is straightforward to verify

that the Pauli strings in the right-hand side of Eq. (4.3) satisfy Eq. (2.11), since the

Pauli operators square to the identity, and distinct such strings will commute on

every qubit except for one (either both Paulis are Z or one is the identity on the

commuting qubits), where one of the Paulis will be an X or Y and the other will be

a Z. Distinct Majorana operators therefore anticommute.

Rewriting the parity-preserving Pauli operators Eq.s (2.5) and (2.6) in-terms of

the four Majorana modes {c1, c2, c3, c4} gives


Xeven = − i

2
(c1c4 + c2c3)

Yeven = i
2

(c1c3 − c2c4)

Zeven = − i
2

(c1c2 + c3c4)

, (2.12)

and


Xodd = i

2
(c1c4 − c2c3)

Yodd = i
2

(c1c3 + c2c4)

Zodd = − i
2

(c1c2 − c3c4)

. (2.13)

We see that, between the two sets of operators, we have all symmetric and antisym-

metric linear combinations of the
(

4
2

)
= 6 quadratics in the four Majorana operators,

and so any linear combination of these quadratics can be written as some linear

combination of these parity-preserving Paulis. We therefore conveniently rewrite our

parameterization in Eq. (2.4) as

G(U ,V ) = exp

(
4∑

µ,ν=1

hµνcµcν

)
≡ exp

(
cT ·h · c

)
, (2.14)
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where c is a column vector of the Majorana operators, and the coefficients {hµν}, for

µ, ν ∈ {1, . . . , 4}, define a real, antisymmetric matrix h, given by

h =
1

4


0 nz +mz ny +my nx −mx

− (nz +mz) 0 nx +mx ny −my

−
(
ny +my

)
− (nx +mx) 0 nz −mz

− (nx −mx) −
(
ny −my

)
− (nz −mz) 0

 . (2.15)

Antisymmetry follows from the canonical anticommutation relations, Eq. (2.11), which

imply that any symmetric part of h will vanish, and since we have taken the operator

in the exponential to be traceless in Eq. (2.4).

General quadratics in the Majorana operators are closed under commutation:

[(
cT ·h · c

)
,
(
cT ·g · c

)]
=
∑
µ,ν,λ,η

hµνgλη[cµcν , cλcη] (2.16)

= 2
∑
µ,ν,λ,η

hµνgλη
[
δµλ(1− δνη)cηcν + δµη(1− δνλ)cνcλ

+ δνλ(1− δµη)cµcη + δνη(1− δµλ)cλcµ
]

(2.17)

= 2

[∑
ν,η

(∑
µ

hµνgµη

)
(1− δνη)cηcν

+
∑
ν,λ

(∑
µ

hµνgλµ

)
(1− δνλ)cνcλ

+
∑
µ,η

(∑
ν

hµνgνη

)
(1− δµη)cµcη

+
∑
λ,µ

(∑
ν

hµνgλν

)
(1− δµλ)cλcµ

]
(2.18)

= 4
∑
ν,λ

(hg − gh)νλ (1− δνλ)cνcλ (2.19)[(
cT ·h · c

)
,
(
cT ·g · c

)]
= 4 cT · [h, g] · c (2.20)

From Eq. (2.16) to Eq. (2.17), we restricted to the four mutually exclusive cases for
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which the term does not vanish, wherein two of the indices µ, ν, λ, η are equal and

the other two are not. We cannot have µ = ν or λ = η by the antisymmetry of h

and g, and if two pairs of indices are equal (e.g. µ = λ and ν = η) or all of the

indices are different, then the commutator vanishes for that term. From Eq. (2.17)

to Eq. (2.18), we summed over one of the indices appearing in a Kronecker delta

on each term and rearranged sums to separate those over Majorana operators from

contractions on matrix indices. From Eq. (2.18) to Eq. (2.19), we relabeled dummy

indices, collected terms, and relabeled an index contraction as matrix multiplication.

Finally, from Eq. (2.19) to Eq. (2.20), we again relabeled index contraction as matrix

multiplication with the vector c, using the fact that [h, g] is also antisymmetric, and

so its diagonal elements are zero.

We therefore see that the commutator of two quadratics in the Majorana operators

is itself quadratic in the Majorana operators. The Baker-Campbell-Hausdorff (BCH)

formula expresses the product of two operator exponentials in terms of the exponential

of a series of the operators and their commutators

exp (X) exp (Y ) = exp


∞∑
n=1

(−1)n−1

n

∑
r1+s1>0

...
rn+sn>0

adr1Xads1Y adr2Xads2Y . . . ãd
rn
X ãd

sn
Y∑n

i=1 (ri + si) ·
∏n

i=1 ri!si!


(2.21)

exp (X) exp (Y ) = exp

{
X + Y +

1

2
[X,Y ] +

1

12
([X, [X,Y ]] + . . . ) + . . .

}
,

(2.22)

where adX( · ) ≡ [X, · ], and

ãdX =

X if appearing as last factor

adX otherwise
. (2.23)
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The sum is over all nonnegative si, ri ≥ 0 such that ri + si > 0 (so at least one of

these values must be greater than zero). Since [X,X] = 0, we see that the term is

zero if sn > 1 or if sn = 0 and rn > 1. This general expression of the BCH formula

was actually introduced by Eugene Dynkin in 1947 [Jac66]. We thus have

exp
(
cT ·h · c

)
exp

(
cT ·g · c

)

= exp

cT ·
∞∑
n=1

(−1)n−1

n

∑
r1+s1>0

...
rn+sn>0

4
∑n
i=1(ri+si)adr1h ads1g adr2h ads2g . . . ãd

rn
h ãd

sn
g

4
∑n

i=1 (ri + si)
∏n

i=1 ri!si!
· c

 ,

(2.24)

Since again, the commutator of antisymmetric matrices is antisymmetric, the coeffi-

cients in the exponential on the right-hand-side form an antisymmetric matrix. The

factor of four in the denominator here is due to the fact that each commutator comes

with a factor of four due to Eq. (2.20), but there is one fewer factor of four than the

number of matrices h or g due to the fact that ãdX = X (and not 4X) if it is the

last factor. We can therefore rewrite Eq. (2.24) in such a way that it is clear that

unitaries of the form exp
(
cT ·h · c

)
form a group, as

exp

[
cT

2
· (4h) · c

2

]
exp

[
cT

2
· (4g) · c

2

]

= exp


cT

2
·
∞∑
n=1

(−1)n−1

n

∑
r1+s1>0

...
rn+sn>0

adr14hads14gadr24hads24g . . . ãd
rn
4hãd

sn
4g∑n

i=1 (ri + si)
∏n

i=1 ri!si!
· c

2

 , (2.25)

This group, for two operators of the form (2.14), is in-fact Spin(4), which shares a Lie

algebra with SO(4), but forms a double-covering [Vla01] due to the factor of 1
2

on each

of the vectors c in the exponential, since these guarantee, e.g., exp
(

2π · cicj−cjci
4

)
= −I.
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More generally, any exponential of a sum of quadratics in the Majorana operators,

which may act non-locally on n qubits, will satisfy Eq. (2.25), where it forms the group

Spin(2n). We will generally refer to such exponential operators as Gaussian fermionic

operations synonymously with the phrase “matchgate circuits”. General Gaussian

fermionic operators can always be written as products of (polynomially-many) op-

erators of the form (2.1) acting on nearest-neighbor qubits using the generalized

Euler angle decomposition [JM08]. This nearest-neighbor property is crucial, as

non-nearest-neighbor parity-preserving Pauli operators will not be quadratic in the

Majorana operators. For example,

X(1,3)
even ≡

1

2
(X ⊗ I ⊗X − Y ⊗ I ⊗ Y ) (2.26)

X(1,3)
even ≡ −

1

2
(c2c3c4c5 + c1c3c4c6) (2.27)

It is straightforward to verify that this property holds for non-nearest-neighbor parity-

preserving Paulis in-general, since a string of identities between either X or Y Paulis

will be a completely filled string of Majorana operators on those qubits under the

Jordan-Wigner transformation.

Additionally, Eq.s (2.9) will also involve quartics in the Majorana operators under

the Jordan-Wigner transformation, despite being nearest-neighbor, as

Ieven ≡ 1
2

(I − c1c2c3c4)

Iodd ≡ 1
2

(I + c1c2c3c4)
(2.28)

As we state below Eq. (2.9), we can vary the determinants of V and W by including

these operators in the exponential parameterization Eq. (2.4) with arbitrary real

coefficients, as

G(V ,W ) = exp {i [(n ·σeven + aIeven) + (m ·σodd + bIodd)]} (2.29)
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G(V ,W ) = exp

[(
cT ·h · c

)
+
i

2
(b+ a) I +

i

2
(b− a) c1c2c3c4

]
, (2.30)

where, h is again defined by Eq. (2.15). Unless b = a, the exponent in Eq. (2.30) will

include a quartic term, which will not preserve quadratics in the Majorana operators.

For example,

[c1c2c3c4, c4c5] = 2c1c2c3c5 (2.31)

Though such exponentials of quartic terms are still nearest-neighbor, they can be

used to extend the range of nearest-neighbor matchgates, since they are related to

the SWAP operation by matchgate multiplication, as

SWAP = G(I,X) = G(I, iI)G(I,−iX), (2.32)

and

G(I, iI) = exp

(
iπ

2
Iodd

)
(2.33)

= exp

[
iπ

4
(I ⊗ I − Z ⊗ Z)

]
(2.34)

G(I, iI) = exp

[
iπ

4
(I + c1c2c3c4)

]
(2.35)

Clearly G(I,−iX) satisfies the determinental constraint, Eq. (2.3), whereas G(I, iI)

(and G(I,X)) does not. It was shown, surprisingly, in Ref. [JM08] that non-nearest-

neighbor matchgate circuits, composed of nearest-neighbor matchgates and SWAP,

are universal for quantum computation. The above relations demonstrate that

such circuits are equivalent to those composed of nearest-neighbor matchgates and

nearest-neighbor 2-qubit parity-preserving unitaries generated by quartic products

of Majorana operators. Therefore, it is sufficient to only violate the determinental
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constraint Eq. (2.3) in circuits composed of nearest-neighbor parity-preserving uni-

taries to achieve universal quantum computation. We will return to the nuanced

computational complexity of matchgate circuits in an upcoming section. In the next

section however, we examine the relationship between matchgate circuits and the

group action of SO(2n) ∼= Spin(2n)/Z2.

2.4 Relationship to Representations of SO(2n)

We begin by proving the relation

U †cµU =
2n∑
ν=1

(
e4h
)
µν
cν , (2.36)

where U ≡ exp
(
cT ·h · c

)
is a Gaussian fermionic operation, and the single-particle

transition matrix u = e4h is an element of SO(2n), since it is the exponential of an

antisymmetric matrix, as

uuT = e4he4h
T

= e4he−4h = I

uTu = e4h
T

e4h = e−4he4h = I
. (2.37)

This relation is proved in Ref. [JM08] by showing that

cµ(t) =
2n∑
ν=1

(
e4ht
)
µν
cν (2.38)

satisfies the Schrödinger equation

∂

∂t
cµ(t) = −

[(
cT ·h · c

)
, cµ(t)

]
, (2.39)
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and then choosing t = 1. Here however, we prove the relation in a related yet

slightly different way. We first show that such conjugation on a linear combination in

the Majorana operators can be related to that on a quadratic in the Majoranas by

introducing a mode which does not participate in the evolution. We then evolve the

quadratic by the adjoint action of the group Spin(2n) ⊆ Spin(2n + 1) of Gaussian

fermionic operators. We will find that this adjoint action is the same as that of

SO(2n) in accordance with Eq. (2.36), since the two groups share a Lie algebra.

Following Ref. [JMS15], we introduce the Majorana operator c0 and basis vectors

{e0, eµ} for µ ∈ {1, . . . , 2n} (in general, we will refer to an index in the set {1, . . . , 2n}

by a Greek letter). Let h̃ be an antisymmetric matrix, related to the antisymmetric

matrix h by h̃0µ = h̃µ0 = 0 and h̃µν = hµν . Additionally, let g(0,µ) ≡ 1
2

(
e0e

T
µ − eµe

T
0

)
be the antisymmetric matrix coupling indices µ and 0 We have

[(
cT · h̃ · c

)
, c0cµ

]
= 4cT ·

[
h̃, g(0,µ)

]
· c (2.40)

= −2
{

cT ·
[(

h̃ · eµ
)

eT
0 + e0

(
eT
µ · h̃

)]
· c
}

(2.41)

= −2
{[

cT ·
(
h̃ · eµ

)]
c0 + c0

[(
eT
µ · h̃

)
· c
]}

(2.42)

= −4c0

[(
eT
µ · h̃

)
· c
]

(2.43)[(
cT · h̃ · c

)
, c0cµ

]
= −4c0 (h · c)µ (2.44)

In Eq. (2.40), we applied Eq. (2.20). From Eq. (2.40) to Eq. (2.41), we expanded the

commutator and the definition of g(0,µ) and used the fact that h̃ · e0 =
(
eT

0 · h̃
)T

= 0.

From Eq. (2.41) to Eq. (2.42), we used the fact that eT
0 · c = cT · e0 = c0. From

Eq. (2.42) to Eq. (2.43), we used the fact that, since eT
0 · h̃ · eµ = 0,

[
cT ·

(
h̃ · eµ

)]
c0 = −c0

[
cT ·

(
h̃ · eµ

)]
, (2.45)

and
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cT ·
(
h̃ · eµ

)
=
[
cT ·

(
h̃ · eµ

)]T

(2.46)

=
(
eT
µ · h̃T

)
· c (2.47)

cT ·
(
h̃ · eµ

)
= −

(
eT
µ · h̃

)
· c (2.48)

Finally, we used the fact that
[(

eT
µ · h̃

)
· c
]

= (h · c)µ to arrive at Eq. (2.44). We

expand the commutator using the product rule

[(
cT · h̃ · c

)
, c0cµ

]
= c0

[(
cT · h̃ · c

)
, cµ

]
+
[(

cT · h̃ · c
)

, c0

]
cµ, (2.49)

for which
[(

cT · h̃ · c
)

, c0

]
= 0. This gives

c0

[(
cT · h̃ · c

)
, cµ

]
= −4c0 (h · c)µ (2.50)

and multiplying both sides by c0 on the right, using the fact that c2
0 = I, gives

[(
cT · h̃ · c

)
, cµ

]
= (−4h · c)µ . (2.51)

We apply a similar trick to demonstrate Eq. (2.36), using the adjoint representation

of the group Spin(2n) ⊆ Spin(2n)

exp
[
−
(
cT · h̃ · c

)]
c0cµ exp

(
cT · h̃ · c

)
= exp

[
−ad(cT · h̃ · c)

]
(c0cµ) (2.52)

c0 exp
[
−
(
cT · h̃ · c

)]
cµ exp

(
cT · h̃ · c

)
= c0

(
e4h · c

)
µ

(2.53)

Once again, we multiply both sides by c0 on the right, using the fact that, restricted

to the modes {cµ}2n
µ=1, we can make the replacement h̃→ h to obtain the relation
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exp
[
−
(
cT ·h · c

)]
cµ exp

(
cT ·h · c

)
=

2n∑
ν=1

(
e4h
)
µν
cν , (2.54)

as desired. In Eq. (2.52), we simply applied the action of the adjoint representation

of Spin(2n) ⊆ Spin(2n + 1). In Eq. (2.53) on the left, we used the fact that c0

and
(
cT · h̃ · c

)
commute. On the right, we applied Eq. (2.44) iteratively within the

exponent, noting that the relation (2.44) holds for all µ ∈ {1, . . . , 2n}, and so repeated

application of the adjoint map corresponds to repeated matrix multiplication by −4h.

2.4.1 Lie Closure of Quadratic and Linear Terms

The introduction of this extra operator c0 may seem overly complicated, but it is

useful for proving that operators which are linear and quadratic in the {cµ}2n
µ=1 also

form a closed Lie algebra. To see this, let h′ be an antisymmetric matrix over all

modes {c0} ∪ {cµ}2n
µ=1, such that eT

0 ·h′ · c ≡
∑2n

µ=1 vµcµ ≡ vT · c. That is,

h′ = h̃ + e0v
T − veT

0 , (2.55)

where h̃ is as defined above. We have

[(
cT ·h′ · c

)
, c0cµ

]
=
[
cT ·

(
h̃ + e0v

T − veT
0

)
· c, c0cµ

]
. (2.56)

We already know
[(

cT · h̃ · c
)

, c0cµ

]
from Eq. (2.44). We thus only need calculate

[
cT ·

(
e0v

T − veT
0

)
· c, c0cµ

]
= 4cT ·

[(
e0v

T − veT
0

)
, g(0,µ)

]
· c (2.57)

= 2cT ·
(
−vµe0e

T
0 − veT

µ + vµe0e
T
0 + eµv

T
)
· c

(2.58)
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= 2
[
−
(
cT ·v

)
cµ + cµ

(
vT · c

)]
(2.59)[

cT ·
(
e0v

T − veT
0

)
· c, c0cµ

]
= 4cµ

(
vT ·Pµ · c

)
(2.60)

where Pµ is the diagonal matrix for which
(
Pµ

)
νη

= δνη
(
1− δνµ

)
. Eq (2.57) follows

straightforwardly from Eq. (2.20), with g(0,µ) ≡ 1
2

(
e0e

T
µ − eµe

T
0

)
as defined above.

From Eq. (2.57) to Eq. (2.58), we expanded the commutator, using

eT
0 · e0 = 1 eT

µ · e0 = 0

eT
0 ·v = 0 eT

µ ·v = vµ

(2.61)

From Eq. (2.58) to Eq. (2.59), we performed cancellations and used the fact that

eT
µ · c = cµ. Finally, we used the fact that cµ anticommutes with vT · c, except for the

cµ term in the linear combination, yielding the projector Pµ in Eq. (2.60). We next

expand the right-hand side of this equation, as

[
cT ·

(
e0v

T − veT
0

)
· c, c0cµ

]
=
[
c0

(
vT · c

)
−
(
cT ·v

)
c0, c0cµ

]
(2.62)

= 2
[
c0

(
vT · c

)
, c0cµ

]
(2.63)

= 2
{[(

vT · c
)

, cµ

]
+ c0

[(
vT · c

)
, c0

]
cµ

+c0

[
c0, cµ

] (
vT · c

)
+ [c0, c0] cµ

(
vT · c

)}
(2.64)

= 2
{[(

vT · c
)

, cµ

]
− 2

(
vT · c

)
cµ

+2cµ

(
vT · c

)}
(2.65)

= 2
{[(

vT · c
)

, cµ

]
− 2

[(
vT · c

)
, cµ

]}
(2.66)[

cT ·
(
e0v

T − veT
0

)
· c, c0cµ

]
= −2

[(
vT · c

)
, cµ

]
(2.67)

and so combining Eq.s (2.67) and (2.60) gives

[(
vT · c

)
, cµ

]
= −2cµ

(
vT ·Pµ · c

)
(2.68)
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We may therefore write the commutator of quadratic-plus-linear combinations of

Majorana operators succinctly as

[
(
cT ·h · c

)
+
(
vT · c

)
,
(
cT ·g · c

)
+
(
wT · c

)
]

= cT ·
{

4 [h, g] +
(
vwT −wvT

)}
· c + 4

(
vT ·g −wT ·h

)
· c (2.69)

We can check Eq. (2.69) against the smallest nontrivial case of Pauli operators on a

single qubit

n ·σ ≡ nzZ + n⊥ ·σ⊥ = nz
2

(
cT ·Y · c

)
+ nT

⊥ · c

m ·σ ≡ mzZ + m⊥ ·σ⊥ = mz
2

(
cT ·Y · c

)
+ mT

⊥ · c
(2.70)

where Y is the Pauli-Y operator acting on the Majorana operator space, and n⊥ and

m⊥ are the components of the Bloch vector along the equatorial plane of the Bloch

sphere. We have

[(n ·σ) , (m ·σ)] = cT ·
{

4nzmz [Y, Y] +
(
n⊥mT

⊥ −m⊥nT
⊥

)}
· c

+ 2
[
mzn

T
⊥ − nzmT

⊥

]
·Y · c (2.71)

Expanding

n⊥ = nxex + nyey

m⊥ = mxex +myey

, (2.72)

and performing some simplification gives

[(n ·σ) , (m ·σ)] = cT ·
(
nxmy −mxny

) (
exe

T
y − eye

T
x

)
· c
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+ 2i
[(
nymz −mynz

)
eT
x + (nzmx −mznx) eT

y

]
· c (2.73)

= 2i (n×m)z (−ic1c2) · c + 2i
[
(n×m)x c1 + (n×m)y c2

]
(2.74)

[(n ·σ) , (m ·σ)] = 2i(n×m) ·σ (2.75)

Just as we expect.

2.4.2 Majorana Configuration Operators and “Matchgate

Symmetry”

Let us introduce a Majorana configuration as

C~α = cα1
cα2

. . . cαk (2.76)

for ~α a k-tuple of indices, where the ordering α1 < α2 < · · · < αk in the product is

taken. We will often denote set-theoretic operations on these tuples using conventional

notation (see, “List of Symbols”). In this section, we prove the formula

U †C~αU =
∑

{~β||~β|=|~α|}

det
(
u~α~β

)
C~β, (2.77)

for some matchgate unitary U , indexed by single particle transition matrix u ∈ SO(2n),

by induction on the number of Majorana factors k ≡ |~α|. Here, u~α~β is the ~α, ~β

submatrix of the single-particle transition matrix (i.e.
(
u~α~β

)
jk

= uαj ,βk). First

consider the case where k = 2, and let α1 < α2. We have

U †cα1
cα2
U =

(
U †cα1

U
)(

U †cα2
U
)

(2.78)
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=

∑
β1

uα1β1
cβ1

∑
β2

uα2β2
cβ2

 (2.79)

=

 ∑
{(β1,β2)|β1=β2}

+
∑

{(β1,β2)|β1<β2}

+
∑

{(β1,β2)|β1>β2}

uα1β1
uα2β2

cβ1cβ2

(2.80)

=

∑
β1

uα1β1
uα2β1

 I

+
∑

{(β1,β2)|β1<β2}

(
uα1β1

uα2β2
− uα1β2

uα2β1

)
cβ1cβ2 (2.81)

U †cα1
cα2
U =

∑
{(β1,β2)|β1<β2}

det
[
u(α1,α2)(β1,β2)

]
cβ1cβ2 , (2.82)

where, from Eq. (2.80) to Eq. (2.81), we used the canonical anticommutation relations,

Eq. (2.11), relabeling dummy indices β1 ↔ β2 on the third sum in Eq. (2.80). From

Eq. (2.81) to Eq. (2.82), we see that the identity term vanishes as its coefficient is

the inner product between two distinct row vectors of an orthogonal matrix. This

proves the statement for k = 2. Next, we assume the statement holds for general k

and use this assumption to prove the statement for k + 1. Without loss of generality,

assume αj < αk+1 for all j ≤ k. We now have

U †C~αcαk+1
U =

(
U †C~αU

)(
U †cαk+1

U
)

(2.83)

=

 ∑
{~β||~β|=|~α|}

det
(
u~α~β

)
C~β

∑
βk+1

uαk+1βk+1
cβk+1

 (2.84)

U †C~αcαk+1
U =

∑
{(~β,βk+1)||~β|=|~α|}

uαk+1βk+1
det
(
u~α~β

)
C~βcβk+1

(2.85)

Each of the terms in the sum above falls into one of two categories. Either (i) βk+1 ∈ ~β,

and C~βcβk+1
= ±C~β\βk+1

, or (ii) βk+1 /∈ ~β, and C~βcβk+1
= ±C~β∪βk+1

, with sign given

in both cases by (−1)|{j≤k|βj>βk+1}|. We first proceed to demonstrate that all of the

terms in category (i) vanish. Fix a particular configuration operator C~β\βk+1
. The
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coefficient on this operator in the right-hand side of Eq. (2.85) is given by a sum over

all indices γ which could have been removed from ~β to yield ~β\βk+1

∑
γ /∈~β\βk+1

uαk+1γ
det
[
u~α(~β\βk+1,γ)

]
=
∑
γ

uαk+1γ
det
[
u~α(~β\βk+1,γ)

]
, (2.86)

where we were able to cancel any sign factors on the terms inside the sum by reordering

columns in u so that the γ column appears at the rightmost position, using the

alternating sign property of the determinant. The equality is due to the fact that if

γ ∈ ~β\βk+1, then the determinant in that term evaluates to zero. Finally, we use the

multilinearity property of the determinant to bring the sum on to the last column, as

∑
γ

uαk+1γ
det
[
u~α(~β\βk+1,γ)

]
= det

[(
u~α,~β\βk+1

∑
γ uαk+1γ

u~αγ

)]
, (2.87)

i.e. the determinant of a matrix whose last column vector is
∑

γ uαk+1γ
u~αγ. The lth

element of this column is given by

∑
γ

uαk+1γ
uαlγ = δαk+1αl

(2.88)

again following from the fact that this sum is the inner product between two column

vectors of an orthogonal matrix. However, αk+1 > αl by assumption, so this sum

is actually always zero and the determinant in (2.87) vanishes. Each of the terms

in category (i) therefore vanishes, and the only terms in the r.h.s of Eq. (2.85) that

survive are in category (ii). We examine these terms by next fixing a particular

configuration operator C~β∪βk+1
. The coefficient on this operator in the right-hand

side of (2.85) is given by a sum over all indices γ that could have been added to ~β to

yield ~β ∪ βk+1 (we cannot cancel sign factors this time)
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∑
γ∈~β∪βk+1

(−1)|{j≤k+1|βj>γ}|uαk+1γ
det
[
u~α,(~β∪βk+1)\γ

]
= det

[
u(~α,αk+1),~β∪βk+1

]
.

(2.89)

To see that this equality indeed holds, relabel indices in ~β ∪ βk+1 such that βi < βi+1

for all i ≤ k, and suppose γ = βs in this labeling. Then we have

(−1)|{j≤k+1|βj>γ}| = (−1)(k+1)−s = (−1)(k+1)+s (2.90)

As αj < αk+1 for all j ≤ k, this is exactly the sign factor that would appear had we

expanded along the last [(k + 1)st] row of the matrix in the r.h.s. above, since βs

appears as the sth column of this matrix. We therefore have

U †C~αcαk+1
U =

∑
{~β||~β|=k+1} det

[
u(~α,αk+1)~β

]
C~β, (2.91)

which proves the statement for k + 1, given that it holds for k. This completes our

inductive proof of Eq. (2.77).

We therefore see that, not only do matchgate circuits preserve the linear space

of single Majorana operators under conjugation, but they also preserve each vector

space of degree-k Majorana configuration operators. This is not obvious, since it was

not immediately clear that such action would not decrease the number of Majorana

operators in a configuration by the relation c2
µ = I. As we saw above however, this

is essentially guaranteed by matchgate circuits preserving the linear space of single

Majorana operators and their unitarity, which guarantees they will preserve the

canonical anticommutation relations
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{U †cµU ,U †cνU} =
∑
η,λ

uµηuνλ{cη, cλ} (2.92)

= 2
∑
η,λ

uµηuνλδηλI (2.93)

= 2
(
uuT

)
µν
I (2.94)

{U †cµU ,U †cνU} = 2δµνI. (2.95)

These two properties together therefore imply that u will be orthogonal, and this was

the essential property for the coefficients on terms like c2
µ = I to vanish.

We are now in a position to reconcile the notion of what we will refer to as an

algebraic symmetry, obeyed by matchgate circuits, with the more conventional notion

of what we will refer to as a linear symmetry. The latter corresponds to conserved

quantities, which are identified in quantum mechanics with observables that commute

with the Hamiltonian. For example, suppose we have an operator L for which

[H,L] = 0 (2.96)

then it is straightforward to show that H preserves the degenerate eigenspaces of

L and vice-versa. That is, if |l〉 is an eigenstate of L with eigenvalue l, then so is

H|l〉, and a similar statement holds for eigenstates of H. The unitary time evolution

operator e−iHt is therefore block-diagonal in the degenerate eigenspaces of L, and so

the quantum number l remains conserved over time.

However, for general Gaussian fermionic time-evolution U (which may even be

generated by a time-dependent Hamiltonian −iH(t) = cT ·h(t) · c), there does not

seem to be a corresponding conserved observable L. The parity operator Z⊗n does

commute with all matchgate circuits with quadratic generators in the Majorana

operators, but it only has two degenerate eigenspaces, corresponding to eigenvalues

±1, which is not enough to account for the n+ 1 preserved linear spaces of Majorana
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configuration operators. Indeed, matchgate circuits are constrained by a symmetry in

the Heisenberg picture, over linear spaces of operators in H⊗H∗ rather than vectors

in the Hilbert space H. The corresponding conserved “observable” here is actually

Λ =
2n∑
µ=1

cµ ⊗ cµ (2.97)

since

(U ⊗ U)† Λ (U ⊗ U) =
2n∑
µ=1

(
U †cµU

)
⊗
(
U †cµU

)
(2.98)

=
2n∑

λ,η=1

(
2n∑
µ=1

uµλuµη

)
cλ ⊗ cη (2.99)

=
2n∑

λ,η=1

δληcλ ⊗ cη (2.100)

(U ⊗ U)† Λ (U ⊗ U) =
2n∑
λ=1

cλ ⊗ cλ = Λ (2.101)

That is, U ⊗ U preserves eigenspaces of Λ. Furthermore, any general unitary tensor

power (U ⊗ U) which preserves this operator must be a matchgate circuit, as

(U ⊗ U)† Λ (U ⊗ U) =
∑
~α~β

(
2n∑
µ=1

uµ~αuµ~β

)
C~α ⊗ C~β (2.102)

due to linear independence of the operators C~α ⊗ C~β, we must have that the sum in

parentheses is equal to δ~α~βδ|~α|1. This will only be the case if the action of U is to

preserve the number of Majorana operators in the configuration (due to δ|~α|1) and

map single Majorana operators to orthogonal linear combinations (due to δ~α~β). Since

any such orthogonal single particle transition matrix can be generated by a matchgate

circuit, Λ will only be preserved if U is a matchgate circuit.
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The action of matchgate evolution is therefore block diagonal over the linear space

of operators H⊗H∗, and the requirement that unitary evolution preserve algebraic

relations between operators, in addition to linearity, constrains the evolution to give

the relation between blocks by Eq. (2.77). This has implications for the computational

complexity of simulating some matchgate circuits classically, since the determinant

can be evaluated efficiently by a classical computer, as we show in Chapter 4. In the

next section, we review some basic results about the weak and strong simulation of

classically simulating matchgate circuits.

2.5 Computational Complexity of Matchgate Cir-

cuits

In this section, we summarize some results to give a picture of how matchgate

circuits fit into the framework of computational complexity. We begin by giving an

explicit construction for universal quantum computation by matchgate circuits on

nearest- and next-nearest-neighboring qubits, with computational basis preparation

and measurement, originally introduced by Jozsa and Miyake [JM08]. We go on

to summarize several results in the literature classifying the delicate computational

power of matchgate circuits.

To simulate universal quantum computation, it is sufficient to simulate arbitrary

product rotations and any 2-qubit entangling gate, such as the CZ gate, written in

the computational basis as

CZ = G(Z, I) =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 (2.103)

To achieve this, Jozsa and Miyake consider a logical encoding of a qubit by four



Chapter 2. Matchgates 30

physical qubits, as

|0L〉 = |0000〉

|1L〉 = |1001〉
(2.104)

In such an encoding, it is clear that logical CZ between nearest-neighboring logical

qubits can be simulated as a physical CZ between the last physical of the first logical

and the first physical of the second logical qubit, as

CZL|00L〉 = |000〉 ⊗ (CZ|00〉)⊗ |000〉 = |00L〉 (2.105)

CZL|01L〉 = |000〉 ⊗ (CZ|01〉)⊗ |001〉 = |01L〉 (2.106)

CZL|10L〉 = |100〉 ⊗ (CZ|10〉)⊗ |000〉 = |10L〉 (2.107)

CZL|11L〉 = |100〉 ⊗ (CZ|11〉)⊗ |001〉 = −|11L〉 (2.108)

as desired. This CZ can be simulated by a SWAP gate, since

CZ ≡ G(Z, I) (2.109)

= G(HXH, I) (2.110)

= G(H,H)G(I,X)G(X,X)G(H,H) (2.111)

CZ = G(H,H)SWAPG(X,X)G(H,H) (2.112)

and we see that the determinental constraint Eq. (2.3) is satisfied for every parity-

preserving gate in this factorization except for SWAP. A single-qubit logical gate is

applied as

AL = G(Z,X)1,2G(Z,X)3,4G(A,A)2,3G(Z,X)1,2G(Z,X)3,4, (2.113)
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since

G(Z,X) = G(Z, I)G(I,X) = CZ · SWAP. (2.114)

In this encoding, the first round of CZ does nothing (since it either acts on |00〉, |10〉,

or |01〉). The SWAP brings the |1〉, if it is present, from the outer (qubit 1 or 4) to

the inner two qubits, encoding the logical qubit in the {|00〉, |11〉} subspace of qubits

2 and 3. G(A,A) simply applies A to this subspace, and the next round of G(Z,X)

brings the logical qubit back to its original encoding. Clearly, we can measure any

logical qubit in the computational basis by measuring in the computational basis

either qubit 1 or 4 for this logical qubit. By preparing an arbitrary computational

basis state (in the logical encoding), applying a next-nearest-neighbor matchgate

circuit, and measuring in the computational basis, we can therefore simulate an

arbitrary universal quantum computation.

This result highlights the computational fragility of matchgate circuits acting

on computational-basis input with computational-basis measurements, since the

simple inclusion of SWAP gates to this class will extend it to quantum computational

universality. It begs the question, then, of how other seemingly innocuous adjustments

to this framework might affect its computational complexity. In Ref. [Bro16], it was

shown that the output probabilities of matchgate circuits can be efficiently calculated

by a classical computer when (i) the input is given in the computational basis and

multiple qubits of the output are measured in the computational basis (even if these

measurements are adaptive), and (ii) the input is given in an arbitrary product state

and a single qubit of the output is measured in the computational basis. In the latter

setting, when single qubits are measured in an arbitrary basis, the output probabilities

can be sampled efficiently by a classical computer, known as weak classical simulation.

This last setting will be our focus in Chapter 4, where we will show that localization

will allow us to compute expectation values and output probabilities for certain

families of matchgate circuits to exponential precision, even for arbitrary product

basis input and measurements.
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We therefore summarize some of the of Ref. [Bro16] in this section.

An important related result by Brod [BC14] shows that matchgate interactions on

any graph topologies which are not equivalent to either a ring or a line are sufficient

to simulate a universal quantum computation. Furthermore, it was shown by Brod

and Galvão in 2011 that any parity preserving non-matchgate (including SWAP) is

sufficient to endow matchgates with the power of universal quantum computation

[BGa11]. Matchgates are therefore quite delicate as a computational complexity

class. In particular, Van den Nest showed in 2010 that the class of matchgates to

compute a given function with some probability of success is equivalent to that of

linear threshold gates [VdN11a]. When this success probability is greater than 3
4
,

the only functions that can be computed are those that depend on only a single

bit of the input. In [VDN11b], it was shown that, for success probability ≥ 2
3
, the

complexity class of functions efficiently computable by matchgate circuits must lie

strictly within P . Namely, there are poly-time classically computable functions which

cannot be efficiently evaluated with matchgate circuits (on computational input with

computational basis measurements) with success probability ≥ 2
3
. Surprisingly, if this

were not the case, then the quantum algorithm performing Simon’s algorithm – one

of a handful of quantum algorithms known to demonstrate an exponential speedup

over any known classical algorithm – would admit a classically efficient simulation.

Finally, in Ref. [Bro16], it was shown that matchgate circuits with computational

basis input and arbitrary single-qubit measurements can be weakly simulated efficiently

by a classical computer. That is, a classical computer can efficiently sample from

the probability distribution generated by such processes. Though this is arguably a

more natural notion of classical simulatability for quantum computation, it is only

guaranteed to achieve polynomial accuracy with probability exponentially close to one

due to the Chernoff-Hoeffding bound [VdN11a]. One of our main results, demonstrated

in Chap. 4, concerns the complexity separation in calculating 〈U †Xbn/2cU〉 (i.e. an X

observable in the middle of the qubit chain) and 〈U †ZkU〉, for any qubit k. From Eq.

(2.77), we see that the former has a number of terms which scales exponentially in

the system size, whereas the latter has a constant number of terms. This is reflected
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in the fact that the latter has constant operator bond dimension [XS18a], yet the

optimal operator bond dimension of the former is likely exponential [SRF+13]. In

the next chapter, we utilize a quantum phenomenon known as Anderson localization,

introduced in Chap. 3 and further developed in Chap. 4, to show that simulating the

former quantity can be achieved with exponential accuracy and similarly exponential

confidence in certain systems.
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Chapter 3

Out-of-Time-Ordered Correlators

3.1 Introduction

When considering classical chaos in the framework of quantum mechanics, an ap-

parent paradox emerges. Quantum evolution, being inherently reversible, seems

ill-equipped to incorporate the exponentially rapid divergence between nearby phase-

space trajectories observed in classically chaotic systems. The two descriptions are

reconciled when nonlocal, highly entangled, degrees of freedom are incorporated into

the description of the classical system. From this perspective, the distinction of

“quantum chaotic” can be made for systems for which the local variables quickly mix,

or “scramble” into these nonlocally entangled degrees of freedom.

In a series of lectures in 2014 [Kit14, Kit15a], Alexei Kitaev, in examining the

role of holography in the famous black hole information paradox [AMPS13], drew an

analogy between two seemingly disparate, highly chaotic systems. The first of these

is a black hole in anti-de Sitter spacetime, with metric

ds2 = −f(r)dt2 +
1

f(r)
dr2 + rdΩ2 where f(r) ≡ r(r − a)

R2 , (3.1)

for scale parameters R and a. The second is the so-called Sachdev-Ye-Kitaev (SYK)
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model, with Hamiltonian

HSYK =
1

4 · 4!

N∑
j,k,l,m=1

Jjklmcjckclcm. (3.2)

Here, the {cj} are Majorana fermions, as defined in Chapter 2. The quartic interactions

between fermion modes in this Hamiltonian are defined on an all-to-all hypergraph,

with interaction strengths randomly drawn from an ensemble such that

Jjklm = 0 ∀j, k, l, m

1
3!

∑
k,l,m J

2
jklm = 0 ∀j

. (3.3)

Like black holes, which are believed to be the fastest scramblers in nature [SS14],

the SYK model has been found to demonstrate quantum chaotic evolution and

holographic behavior in the limit of many spins N � 1 and strong coupling βJ � 1,

where β is the inverse temperature of an ambient thermal bath to which the system is

weakly-coupled. The fast-scrambling behavior manifests as an early-time, exponential

divergence in the value of a particular four-point correlator between observables taken

at distinct times 0 and t

〈D(t)C(0)B(t)A(0)〉β − 〈C(0)A(0)〉β〈D(t)B(t)〉β ∼
1

N
eκt (3.4)

where κ = 2π
β

is analogous to the Lyapunov exponent in classically chaotic systems.

This quantity is known as the out-of-time-ordered correlator (OTO correlator), and

Eq. (3.4) is referred to as the “quantum butterfly effect.” This behavior is expected

to persist until κt ∼ O(1), after which quantum corrections become relevant [CDP17].

After a longer timescale tscr ∼ κ−1 lnN , known as the scrambling time, this quantity

once again decays to zero. It was conjectured that κ−1 can in fact be no greater

than 2π
β

in Ref. [MSS16], and it was shown how this exponent increases from zero
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to its limiting value in Ref. [CZZ17] as the coupling strength to the thermal bath is

increased.

Since its re-introduction, the OTO correlator has found wide application in contexts

beyond chaotic systems, and in-particular, it has been useful in characterizing the

absence of thermalization, known as Anderson and many-body localization in quantum

many-body spin systems. Localization is a uniquely quantum phenomenon, whereby

destructive interference between wavepackets scattering in a disordered potential

confines an initially localized disturbance to a bounded region near its initial position

for all time. As such, these systems display behavior at the opposite extreme to chaos,

and thus fail to thermalize. This is the regime we will consider for the remainder of

this thesis. In the coming sections, we will try to build some intuition for how this

quantity captures quantum chaotic behavior by showing its relation to other, more

conventional measures of chaos. In the final section, we will show how this quantity

has been used to demonstrate localizing behavior, thereby laying the foundation for

our coming results in the next chapters.

3.2 Formalism

3.2.1 Definitions

For our purposes, we will restrict to defining the infinite-temperature OTO correlator

between Hermitian observables A and B after some unitary evolution U for a time t

as

FAB(t) ≡ d−1 tr{AB(t)AB(t)} (3.5)

where d is the dimension of the Hilbert space and B(t) = U †BU . It is clear that

this quantity is related to the four-point correlator defined in Eq. (3.4) by taking the

special case where D(t) = B(t) and C(0) = A(0) and the expectation value is taken
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with respect to the infinite-temperature Gibbs state, or maximally mixed state I
d
.

This quantity is related to the so-called infinite-temperature out-of-time-ordered

commutator, which we define as

CAB(t) ≡ 1

2
√
d
||[A,B(t)]||F ≡

1

2
√
d

tr{[A,B(t)]†[A,B(t)]}1/2, (3.6)

where || · ||F is the Frobenius norm. It is straightforward to verify that, when A and

B are also unitary observables (i.e. A2 = B2 = I, such as in the case of n-qubit Pauli

observables), then we have

CAB(t)2 =
1

2
[1−FAB(t)] (3.7)

We have chosen our normalizations such that CAB(t) ∈ [0, 1] and FAB(t) ∈ [−1, 1]. In

general, when a unique Hamiltonian H is naturally defined, a dependence on nonzero

inverse temperature β can be included, as

FAB(t, β) ≡ Z−1 tr{e−βHAB(t)AB(t)}, (3.8)

where Z ≡ tr
(
e−βH

)
is the partition function at inverse-temperature β. In our

main results, we will generally consider time-dependent Hamiltonians, and so it is

more natural for us to restrict to the infinite-temperature case. We will discuss

several results at finite-temperature in this section, however. When discussing infinite-

temperature quantities, we will generally drop the dependence on β for notational

convenience, and only refer to β when we wish to draw attention to finite-temperature

dependence.
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3.2.2 Covariant Behavior under Unitary Transformation

Returning to the infinite-temperature case, we see that Eq. (3.6) can be related to

the following matrix

(%B(t))jk =
1

4d
tr
{

[P †j ,B(t)†][B(t),Pk]
}

(3.9)

where {Pj}j is a complete basis of operators for the Hilbert space (such as the basis

of d-dimensional Pauli matrices). We see CAB(t)2 = (%B(t))AA, and letting

UPjU
† =

∑
k

UkjPk, (3.10)

for unitary evolution U we furthermore see that %B transforms covariantly under such

evolution on B, as

(%B(t))jk =
1

4d
tr
{[
P †j ,
(
U †B†U

)] [(
U †BU

)
,Pk

]}
(3.11)

=
1

4d
tr
{[
UP †j U

†,B
] [
B,UPkU

†
]}

(3.12)

=
1

4d

∑
m,n

U∗mjUnk tr
{[
UP †mU

†,B
] [
B,UP †nU

†
]}

(3.13)

(%B(t))jk =
(
U †%B(0)U

)
jk

(3.14)

This clearly implies that %B is trace-normalized. Taking the {Pj}j to be the d-

dimensional Pauli matrices, we have

tr [%B(t)] =
1

4d

∑
j

tr
{[
P †j ,B(t)†

] [
B(t),Pj

]}
(3.15)

=
1

2d

∑
j

(
tr
[
B(t)†B(t)

]
− Re

{
tr
[
B(t)†P †jB(t)Pj

]})
(3.16)
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=
1

2d

{
d2||B(t)||F − d| tr [B(t)]|2

}
(3.17)

tr [%B(t)] =
1

2d

{
d2||B||F − d| tr (B)|2

}
, (3.18)

where, from Eq. (3.15) to Eq. (3.16), we expanded the commutators and used unitarity

of the Pauli matrices P †j Pj = I. From Eq. (3.16) to Eq. (3.17), we used the identity

1

d

∑
j

(
P †j

)
mn

(
Pj
)
pq

= δmqδnp (3.19)

for the d-dimensional Pauli operators. We will return to this identity in Section

3.3. Finally, we used unitary invariance to remove the time-dependence from B(t),

showing that the trace of %B is constant in time. We also have that %B is positive

since (%B(t))AA = CAB(t)2 > 0 for all operators A, as it is the Frobenius norm of the

commutator. These three properties—positivity, trace-normalization, and covariant

evolution—therefore lead us to expect that CAB(t) will evolve analogously to the

(square root of the) population of a certain basis state in the density matrix under

the Schrödinger evolution of global quantum state. This results from our use of the

Frobenius norm, which is the 2-norm for a vectorized operator, and we can even

tighten the analogy further by choosing B to be the Bloch operator of a density matrix.

This lets us see how quantum chaotic evolution “hides” population in the nonlocal

degrees of freedom, which make up exponentially many of the other populations in

this matrix.

3.2.3 Relation to the Lieb-Robinson Bound

Now let us consider A and B to be initially local operators in a quantum many-body

system, such as a spin chain. Here, CAB(t) can be intuitively understood as the degree

to which a “disturbance,” B, effects a response in the observable, A, at a time t later.

We can apply the bound relating the Frobenius norm to the induced vector 2-norm
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||A||F ≤
√
r||A||2, (3.20)

where

||A||2 ≡ sup|ψ〉6=0

||A|ψ〉||2
|||ψ〉||2

= λmax(A), (3.21)

i.e. the maximum singular value of A. Here, r is the rank of A. As r ≤ d, we have

CAB(t) ≤ 1

2
||[A,B(t)]||2 (3.22)

The right-hand side is bounded by the conventional Lieb-Robinson bound on quantum

lattice systems

||[A,B(t)]||2 ≤ K||A||2||B||2e−η[d(A,B)−vt], (3.23)

This inequality states that the degree of noncommutativity between the local ob-

servable A and time-evolved observable B(t) ≡ U †BU initially separated by lattice

distance d(A,B) > 0, such that [A,B] = 0, is exponentially decaying with de-

cay constant η > 0. It gives an effective speed at which disturbances propagate

[LR72, NS06, HK06, NS10].

Despite CAB(t) only lower bounding the Lieb-Robinson commutator in Eq. (3.22), it

is argued that CAB(t) is a good heuristic for this quantity. In particular, Ref.s [HZC17,

FZSZ17a] argue that CAB(t) can distinguish between propagation in the Anderson

localized and the many-body localized phases, in which more stringent bounds

than (3.23) are known to hold. In the former, we have the so-called zero-velocity

Lieb-Robinson bound
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||[A,B(t)]||2 . min (|t|, 1)e−ηd(A,B), (3.24)

and in the latter, propagation is confined to within the logarithmic lightcone, which

is bounded by

||[A,B(t)]||2 . e−η[d(A,B)−v log |t|]. (3.25)

We have neglected the overall normalization prefactors from Eq. (3.23) in these last

two bounds. We will discuss the precise physical setting in which the bounds apply

in a subsequent section. For now, we consider the relationship between the OTO

correlator and more conventional heuristic quantities in the next section, which is

often seen through various kinds of averaging.

3.3 Relation to the Frame Potential

It was shown by Roberts and Yoshida in 2016 that OTO correlators can be thought

of as a good measure for quantifying the “randomness” of an ensemble of unitary

time evolutions [RY17a]. To see this, we first define the Haar measure dU over the

group SU(d) as the unique (up to positive multiplicative constant) measure over the

group which is invariant under both left and right translations of the group action

∫
Haar

d(V U) =

∫
Haar

d(UV ) =

∫
Haar

dU ≡ 1, (3.26)

where we have chosen the normalization to be one in the last equality. We will assess

the randomness of ensembles of unitary operators E ≡ {pj,Uj}j, where pj is the

probability of enacting the unitary Uj, by comparing them to the Haar measure,

which can be thought of as completely uniform over the group. This comparison is

done through the frame potential, given by
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F
(k)
E =

∫
E
dU

∫
E
dV | tr{U †V }|2k, (3.27)

where
∫
E dU ≡ 1 as well. The quantity F

(k)
E can be thought of as quantifying the

distance to the Haar ensemble at the “kth level” in a way that we will now make

precise. Let

S =

∫
E
dU
(
U⊗k

)†
⊗ U⊗k −

∫
Haar

dU
(
U⊗k

)†
⊗ U⊗k (3.28)

be the difference in the kth moments between the Haar ensemble and the ensemble

E . The Frobenius norm of this operator is given by

||S||2F ≡ tr
(
S†S

)
= tr

{[∫
E
dUU⊗k ⊗

(
U⊗k

)†
−
∫

Haar

dUU⊗k ⊗
(
U⊗k

)†]
×
[∫
E
dU
(
U⊗k

)†
⊗ U⊗k −

∫
Haar

dU
(
U⊗k

)†
⊗ U⊗k

]}
(3.29)

= tr

[∫
E
dU

∫
E
dV
(
UV †

)⊗k
⊗
(
U †V

)⊗k
−
∫
E
dU

∫
Haar

dV
(
UV †

)⊗k
⊗
(
U †V

)⊗k
−
∫

Haar

dU

∫
E
dV
(
UV †

)⊗k
⊗
(
U †V

)⊗k
+

∫
Haar

dU

∫
Haar

dV
(
UV †

)⊗k
⊗
(
U †V

)⊗k]
(3.30)

= tr

{∫
E
dU

∫
E
dV
(
UV †

)⊗k
⊗
(
U †V

)⊗k
− 2

∫
E
dU

[∫
Haar

dV
(
V ⊗k

)†
⊗ V ⊗k

]
+

∫
Haar

dU

[∫
Haar

dV
(
V ⊗k

)†
⊗ V ⊗k

]}
(3.31)

=

∫
E
dU

∫
E
dV | tr

(
U †V

)
|2k −

∫
Haar

dU

∫
Haar

dV | tr
(
U †V

)
|2k (3.32)

||S||F = F
(k)
E − F

(k)
Haar (3.33)
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That is, the distance between moments of these ensembles (in Frobenius norm) is

the difference between frame potentials. From Eq. (3.30) to Eq. (3.31), we used

the translation-invariance of the Haar measure to perform the change-of-variables

UV † → V for all U ∈ E in the double-integrals over E and the Haar ensemble (the

variable-labels U and V are switched in the second of these), and then collected terms

by switching the ordering of one of the pairs of integrals. From Eq. (3.31) to Eq. (3.32),

we used the fact that
∫
E dU =

∫
Haar

dU = 1 to identify the last two terms in Eq. (3.31)

as being equal and used the fact that tr

[(
U †
)⊗k
⊗ U⊗k

]
= | tr (U) |2k. Finally, we

recognized the terms in Eq. (3.32) as frame potentials to arrive at Eq. (3.33).

||S||F is zero if and only if the kth moments of E and the Haar ensemble are equal

by the definition of S, and we see from Eq. (3.33) that this is true if and only if the

frame potentials of the two ensembles are equal. Since only the difference between

frame potentials appears on the right-hand-side of Eq. (3.33), and yet knowing that

the left-hand-side must be positive, we see that F
(k)
E is actually minimized at the

value of F
(k)
Haar. It known that F

(k)
Haar = k!.

Ensembles E with the property that their kth moments are equal to that of the

Haar ensemble are known as k-designs. k-designs have the property that

∫
E
dU
(
U⊗k

)†
ρU⊗k =

∫
Haar

dU
(
U⊗k

)†
ρU⊗k, (3.34)

for all ρ ∈ H⊗k in the k-fold tensor product Hilbert space. Defining

Φ
(k)
E (ρ) =

∫
E
dU
(
U⊗k

)†
ρU⊗k, (3.35)

as the k-fold E-channel, we see that Eq. (3.34) is the statement that

Φ
(k)
E = Φ

(k)
Haar, (3.36)
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or, put another way, a k-design is such that averaging any polynomial in k elements

of U and k elements of U † over the design gives the Haar average. A k-design is

automatically a (k − 1)-design, since we can choose ρ ≡ σ ⊗ I in Eq. (3.34), for any

σ ∈ H⊗(k−1), and trace over the identity on both sides to obtain the property satisfied

by a (k − 1)-design.

Eq. (3.19) is actually the statement that the Pauli operators form a 1-design up

to normalization. To see this, first note that

∫
Haar

dUU †ρU =
1

d
tr (ρ)I (3.37)

since

ρ =
1

d

∑
j

Pj tr{P †jA}, (3.38)

by the property that the Pauli operators form a basis, and thus

∫
Haar

dUU †ρU =
1

d

∑
j

tr{P †j ρ}
∫

Haar

dUU †PjU . (3.39)

Therefore, it suffices to show that this integral is zero unless Pj is the identity. To do

this, we make use of the d-dimensional Pauli algebra, which is generated by operators

X and Z, for which

ZX = ωXZ, (3.40)

where ω = e
2πi
d . Letting Pj ≡ XajZbj for aj, bj ∈ Zd (as Xd = Zd = I), we make the

change-of-variables U → XmZnU , which will not change the value of the integral by

the Haar property, Eq. (3.26), as
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∫
Haar

dUU †PjU =

∫
Haar

dU (XmZnU)†XajZbj (XmZnU) (3.41)

=

∫
Haar

dUU †
(
Zn†XajZn

)(
Xm†ZbjXm

)
U (3.42)

= ωnaj+mbj
∫

Haar

dUU †XajZbjU (3.43)∫
Haar

dUU †PjU = ωnaj+mbj
∫

Haar

dUU †PjU (3.44)

We can average this last line over all m and n ∈ Zd, using


1
d

∑d
n=1 ω

naj = δaj ,0

1
d

∑d
m=1 ω

mbj = δbj ,0

(3.45)

to obtain

∫
Haar

dUU †PjU = δaj ,0δbj ,0

∫
Haar

dUU †PjU . (3.46)

Therefore, this integral will only be nonzero if Pj = I, which, from Eq. (3.38), proves

the identity Eq. (3.37). Next, we show that Eq. (3.19) implies that Pauli operators

satisfy the 1-design property, as

1

d2

∑
j

(
P †j ρPj

)
mq

=
1

d2

∑
j,n,p

(
P †j

)
mn
ρnp
(
Pj
)
pq

(3.47)

=
1

d

∑
n,p

δmqδnpρnp (3.48)

1

d2

∑
j

(
P †j ρPj

)
mq

=
1

d
tr (ρ) δmq (3.49)

Thus,
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1

d2

∑
j

(
P †j ρPj

)
mq

=
1

d
tr (ρ) I (3.50)

as desired.

With this formalism in-hand, we are ready to see how the frame potential is

related to the OTO correlator. In Ref. [RY17a], it was shown that

1

d4k+2

∑
{Ai,Bi|i∈{1,...,k}}

|
∫
E
dU tr

[
A1

(
U †B1U

)
. . . Ak

(
U †BkU

)]
|2 =

1

d2(k+1)
F

(k)
E

(3.51)

where the sum over each Ai and Bi is taken over all Pauli operators. The left-hand-

side is an average over quantities like the four-point-correlator in Eq. (3.4). This

theorem is therefore the statement that, as the ensemble approaches a k-design, the

OTO correlator is decreased on-average. The proof simply follows from the 1-design

property of Pauli operators, Eq. (3.50). We begin by expanding the left-hand-side of

Eq. (3.51) as

1

d4k+2

∑
{Ai,Bi|i∈{1,...,k}}

|
∫
E
dU tr

[
A1

(
U †B1U

)
. . . Ak

(
U †BkU

)]
|2

=
1

d4k+2

∑
{Ai,Bi|i∈{1,...,k}}

∫
E
dU

∫
E
dV tr

[(
V †B†kV

)
A†k . . .

(
V †B†1V

)
A†1

]
× tr

[
A1

(
U †B1U

)
. . . Ak

(
U †BkU

)]
(3.52)

=
1

d4k+2

∑
{Ai,Bi|i∈{1,...,k}}

∑
m,n

∫
E
dU

∫
E
dV 〈m|

(
V †B†kV

)
A†k . . .

(
V †B†1V

)
A†1|m〉

× 〈n|A1

(
U †B1U

)
. . . Ak

(
U †BkU

)
|n〉 (3.53)

We next apply Eq. (3.50) to this expression iteratively, as
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1

d2

∑
A1

A†1|m〉〈n|A1 =
1

d
tr (|m〉〈n|) I =

1

d
δmnI (3.54)

1

d2

∑
B1

B†1V U
†B1 =

1

d
tr
(
V U †

)
I (3.55)

1

d2

∑
A2

A†2V
†UA2 =

1

d
tr
(
V †U

)
I (3.56)

...

With each application of Eq. (3.50), we replace the sum by the scalar shown above

times the identity, allowing us to apply Eq. (3.50) for the next iteration. Each sum

over Ai for i ≥ 2 contributes a factor of tr
(
V †U

)
, and each sum of Bi for i ≥ 1

contributes a factor of tr
(
V U †

)
. The final factor of tr

(
V †U

)
comes from taking

∑
m,n

〈m|V †U |n〉δmn = tr
(
V †U

)
(3.57)

where the Kronecker delta came from Eq. (3.54). Keeping track of factors of d (we

replaced d−2 → d−1, 2k times), we have

1

d4k+2

∑
{Ai,Bi|i∈{1,...,k}}

|
∫
E
dU tr

[
A1

(
U †B1U

)
. . . Ak

(
U †BkU

)]
|2

=
1

d2k+2

∫
E
dU

∫
E
dV tr

(
V U †

)k
tr
(
V †U

)k
(3.58)

=
1

d2(k+1)

∫
E
dU

∫
E
dV | tr

(
U †V

)
|2k (3.59)

=
1

d2(k+1)
F

(k)
E (3.60)

Lastly, we simply summarize a result of Ref. [RY17a], which may of be relevance

to quantum information, and deals with the complexity of a quantum circuit ensemble.

We define a member of such an ensemble as an n-qubit quantum circuit whose gates

are drawn randomly from a finite gate set G of g possible 2-qubit gates. The theorem
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states that the minimum number of such gates that need to be chosen, called the

circuit complexity K(E), to generate a given ensemble E with kth frame potential

F
(k)
E is lower-bounded, as

K(E) ≥ 2kn log(2)− logF
(k)
E

log(choices)
, (3.61)

where “choices” is the number of choices that can be made at each step (which

of g gates to apply as well as where to apply it). Note that changing the base of

the logarithm in this equation will not change the bound, since common conversion

factors will cancel. This bound shows that, as the ensemble becomes closer to

Haar random (decreasing F
(k)
E ), the complexity required to generate it increases. It

follows from a counting argument in a simple lower bound on F
(k)
E (for details, see

Ref [RY17a]). We continue to the next section by connecting the OTO correlator to

a more information-theoretic quantity, the Rényi entropy.

3.4 Relation to the Rényi Entropy

The α-Rényi entanglement entropy across a partition H = HA ⊗HB into subsystems

A and B for a state ρ is defined as

S
(α)
A ≡ 1

1− α
log tr (ραA) , (3.62)

where ρA ≡ trB (ρ). This quantity reduces to the conventional von Neumann entan-

glement entropy as α→ 1, as

lim
α→1

S
(α)
A = lim

α→1

1

1− α
log

 ∑
{j|pj 6=0}

pαj

 (3.63)
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= − lim
α→1

 ∑
{j|pj 6=0}

pαj

−1 ∑
{j|pj 6=0}

pαj log pj

 (3.64)

= −
∑
{j|pj 6=0}

pj log pj (3.65)

lim
α→1

S
(α)
A = − tr (ρA log ρA) ≡ S

(vn)
A . (3.66)

Here, pj, for which
∑

j pj = 1, are the eigenvalues of ρA, and we used the basis-

invariance of S
(α)
A in Eq. (3.63). From Eq. (3.64) to Eq. (3.65), we used L’Hôpital’s

rule with numerator log
(∑

{j|pj 6=0} p
α
j

)
and denominator 1− α to evaluate the limit.

In Eq. (3.65), we again used basis-invariance to recognize the quantity on the right-

hand-side as the von Neumann entropy. From Eq. (3.63), we see that for pure states,

for which pj = 1 for some j and pj = 0 otherwise, S
(α)
A = 0, as we would like. For

maximally mixed states, for which pj = 1
d

for all j, we have S
(α)
A = log d as we would

expect. For α > 1, S
(α)
A is otherwise monotonically decreasing in α for fixed ρA neither

pure nor maximally mixed.

We can apply the 1-design property, Eq. (3.19), locally, as the authors in [FZSZ17b]

did, to connect our form of the OTO correlator, F(t), as defined in Eq. (3.8) for

β = 0, to the second Rényi entanglement entropy at time t of an initial Gibbs state

locally quenched by an observable O, as

exp
(
−S(2)

A

)
=

1

dB

∑
B

tr
[
B(t)†

(
OO†

)
B(t)

(
OO†

)]
, (3.67)

where the sum is taken over all Pauli observables on subsystem B. Here, the system

is taken to be initially maximally mixed prior to the quench ρ = I
d
. After the quench,

the system is in the state OO† (with normalization such that tr
(
OO†

)
= 1), from

which it is evolved by the unitary dynamics U for a time t. This gives

1

dB

∑
B

tr
[
B(t)†

(
OO†

)
B(t)

(
OO†

)]
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=
1

dB

∑
B

tr
[(
U †B†U

)(
OO†

)(
U †BU

)(
OO†

)]
(3.68)

=
1

dB

∑
B

tr
{
U †
[
trB

(
UOO†U †

)
⊗ IB

]
U
(
OO†

)]
(3.69)

= tr

{
trB

[
U
(
OO†

)
U †
]2
}

(3.70)

1

dB

∑
B

tr
[
B(t)†

(
OO†

)
B(t)

(
OO†

)]
= exp

(
−S(2)

A

)
(3.71)

Letting ρO ≡ OO†, this can similarly be generalized to arbitrary α ≥ 2 ∈ Z, as

1

dα−1
B

∑
{Bi|i∈{1,...,α−1}}

tr

B1(t)ρOB2(t)ρO . . . Bα−1(t)ρOU
†

(
α−1∏
j=1

Bj

)†
UρO


=

1

dα−2
B

∑
{Bi|i∈{1,...,α−2}}

tr
{[

tr
(
UρOU

†
)
⊗ IB

]
UρOB2(t)ρO . . . Bα−1(t)

×ρOU †
(
α−2∏
j=1

Bj

)† (3.72)

= tr

{[
tr
(
UρOU

†
)
⊗ IB

]α−1 (
UρOU

†
)}

(3.73)

= tr
[
trB

(
UρOU

†
)α]

(3.74)

= exp
[
(1− α)S

(α)
A

]
(3.75)

Clearly, this reduces to Eq. (3.67) for α = 2. Here, the product over {Bj} is taken in

ascending order in j, so that the Hermitian conjugate of this product has B†1 as its final

factor, and this product over {B†j} is taken in descending order. Finally, this formula

may be generalized to the finite temperature β−1 case by taking ρO = Z−1Oe−βHO†

for some naturally-defined Hamiltonian H and partition function Z ≡ tr
(
e−βH

)
.

The OTOC can also be linked to the entanglement entropy of operators, as in

[HQRY16, XS18a]. Here, it is common to consider the thermofield double state with

inverse-temperature β on two copies of the system with energy eigenstates {|n〉}, as
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|Φ〉 = Z−1/2
∑
n

e−βEn/2|n,n〉 (3.76)

Applying unitary time-evolution U to one of these two copies (say, the first) gives

U1|Φ〉 = Z−1/2
∑
m,n

e−βEn/2umn|m,n〉 (3.77)

where umn ≡ 〈m|U |n〉. Contracting U on the thermofield double therefore corresponds

to an application of the Choi-Jamilkowski isomorphism, which maps an operator to

a state in a basis-dependent way for which the preferred basis is set as the energy

eigenstates of a particular Hamiltonian, with an additional weight given by the Gibbs

factor (though this is d−1/2 for β = 0). If U = e−iHt for the same Hamiltonian as in

the thermofield double, then we have

U1|Φ〉 = Z−1/2
∑
n,n

e−βEn/2e−iEnt|n,n〉 (3.78)

The operator entanglement of, say, X(t) at a time t is thus the entanglement of the

state X1(t)|Φ〉 across a partition into subsystems A1A2 and B1B2 (e.g. the input and

output degrees of freedom for one half of a qubit chain). In Ref. [HQRY16], a similar

result to Eq. (3.67) was shown, as

exp
(
−S(2)

A1A2

)
=

1

4n
∑
A,B

1

2n
tr
[
AX(t)†BX(t)AX(t)†BX(t)

]
(3.79)

where, again, the sum is over all Pauli strings in regions A and B of an n-qubit spin

chain. The authors of Ref. [XS18a] utilize this to prove the bound

S
(2)
B1B2

≤ − log

1− 1

2

∑
r∈B,Pr

||[X(t),Pr]||2
 (3.80)
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where the sum is over all sites r in region B and all single-site Pauli operators at

the r. Though a small second Rényi entropy does not immediately guarantee a good

matrix product operator approximation to X(t), the authors argue that it should

serve as a good heuristic to bound the bond dimension of such an approximation in

physical systems of interest. In the next section, we will examine some investigations

into this assumption in the context of Anderson and many-body localized systems.

This will provide a segue into our next chapter, where we will demonstrate our first

main result.

3.5 Localizing Systems

Localization is the quantum phenomenon whereby destructive interference between

wavepackets propagating in a disordered potential confines a particle to its initial

position for all time. Localizing systems therefore exhibit behavior at the opposite

extreme to that of chaotic systems. To provide a concrete example, consider the

disordered Heisenberg model on a 1-d lattice of n qubits

H =
n−1∑
j=1

(
XjXj+1 + YjYj+1

)
+

n∑
j=1

νjZj + J
n−1∑
j=1

ZjZj+1 (3.81)

H =
n−1∑
j=1

(
−ic2jc2j+1 + ic2j−1c2(j+1)

)
− i

n∑
j=1

νjc2j−1c2j

− J
n−1∑
j=1

c2j−1c2jc2j+1c2(j+1) (3.82)

where the νj are drawn randomly from a uniform distribution [−ν, ν], where ν is the

disorder strength. Eq. (3.82) is the Jordan-Wigner transform of this model. It is

well-known that for J = 0 and any nonzero value of the disorder strength ν, this

system exhibits Anderson-localized behavior. This implies that we have the so-called

zero-velocity Lieb-Robinson bound Eq. (3.24). We will elaborate on this bound in the

next chapter. Additionally, even for nonzero J and disorder strength below a critical
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value νc, the system is many-body localized. In this phase, propagation is limited to

the logarithmic lightcone, and Eq. (3.25) holds.

In general, many-body localized systems admit a phenomenological description

in terms of local, commuting integrals of motion {τ zj }, conventionally called, “l-bits”

[SPacA13, HNO14]

H =
∑
i

ξiτ
z
i +

∑
ij

Vijτ
z
i τ

z
j +

∑
ijk

Vijkτ
z
i τ

z
j τ

z
k + . . . . (3.83)

The “l-bits” τ z can be thought of as locally dressed Pauli-z operators, which all

commute ([τ zi , τ zj ] = 0 for all i, j). The coupling coefficients {ξi}, {Vij}, {Vijk} decay

exponentially as the distance between the spins i, j, k increase. From the Majorana

description of the system, Eq. (3.82), it is clear that when J = 0, we cannot have

higher order terms than quadratic in the Majorana modes, so the {Vij}, {Vijk} vanish

here, and we are left with a set of decoupled, locally dressed spins. In either the

many-body-localized or Anderson-localized phases, the Hamiltonian can be fully

diagonalized in the mutual eigenbasis of the {τ zj }. Thus, in Ref. [FZSZ17b], it is

shown that the infinite-temperature OTOC is given by

Fij(t) =
1

2n
∑
k

〈k|τxi (t)τxj τi(t)τj|k〉 (3.84)

Fij(t) = cos
(
4Vijt

)
(3.85)

Letting

Vij = Ṽije
−η|i−j|, (3.86)

where the Ṽij are uniformly distributed in [−V ,V ], and η is the localization length,

the disorder average over Ṽij gives
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Rényi Entropy Lightcone envelope
Thermal Linear increase Linear
Diffusive Sub-linear Sub-linear

MBL Logarithmic increase Logarithmic
AL Constant Constant

Table 3.1: Classification of dynamical-phase behavior by the Rényi Entropy and
lightcone envelope behavior of the OTO Correlator. See Ref. [FZSZ17b], and
references therein, for further details.

F ij(t) =
sin [4V exp (−η|i− j|) t]

4V exp (−η|i− j|) t
(3.87)

A similar result was shown in Ref. [Che16]. A key implication of these analytic results is

that the OTO correlator F ij(t) for many-body-localized systems decays polynomially,

rather than exponentially, as we would expect for chaotic systems. A similar behavior

is observed in Ref. [HL17]. The OTO correlator approaches a constant as V → 0

in Eq. (3.87), which demonstrates that the OTOC can distinguish the many-body-

localized from the Anderson-localized phase. In fact, in Ref. [HZC17], the authors

numerically demonstrate that the OTO correlator can detect the logarithmic light

cone to distinguish between these phases, where time-ordered lower-order correlators

(i.e. AB(t)) cannot, when J = 1 in Eq. (3.81) above. In Ref. [FZSZ17b], the authors

numerically demonstrate the correctness of Eq. (3.87). Furthermore, they show

that the Rényi entropy behaves similarly to the von Neumann entropy in both the

Anderson and Many-Body localized phases, justifying the approximation made in

Ref. [XS18a]. In Table 3.1, we give a classification summarizing the behavior of

the second Rényi entropy and lightcone-envelope behavior of the OTO correlator in

different dynamical phases.

In the next chapter, we will provide our first main result: a method for calculating

the OTO correlator analytically for observables undergoing matchgate evolution

whose direct, strong simulation is not known to be classically efficient. This will allow

us to determine when Anderson, and in the following chapter, many-body localization

has occurred, even though the direct simulation cannot be performed nominally.
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Chapter 4

Classical simulation of quantum

circuits by dynamical localization

4.1 Introduction

A peculiar phenomenon exhibited uniquely by quantum lattice systems is the sup-

pression of conductance in the presence of disorder. This effect, known as Anderson

localization [And58, LBCS10, Abr10, COR+13] in the single-particle setting and

many-body localization [GMP05, BAA06, OH07, PH10, VA14, BLCR15, BSHMB15]

in the interacting-multi-particle regime, is a result of interference, which confines a

local disturbance to a bounded region near its initial position for a very long time.

As a result, these systems do not act as thermal reservoirs for their own subsystems

[Deu91, Pal12, NH15, HNO+13, KBP14], since local subsystems retain information

about their initial conditions forever.

An important consequence of the fact that local quantum information does not

mix, or scramble, among nonlocal degrees of freedom in localizing systems is that many

properties of these systems can be efficiently simulated classically. Such properties

include local integrals of motion [KCA14, YQX16], Hamiltonians’ eigenbases [BN13,

YQX16, FWB+15, Hua15, YPC17, PKCS16], unitary time-evolution operators [BO07,
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icvcvPPcv08], and samples from their output distributions [DFT+18]. In light of

these many results, we ask the question of whether localization could manifest in

time-dependent quantum systems, such as those performing a quantum computation.

If this is possible, then it would allow for the efficient simulation of an otherwise

apparently complex quantum algorithm by classical means.

However, there are currently very few prior investigations into localization in the

time-dependent regime. Initial explorations into fluctuating disorder [BEO09, SD16]

and Floquet circuit ensembles [CL15] suggest that a form of localization persists in

these time-dependent cases, yet few analytic results are known in general. In this work,

we consider the setting of nearest-neighbor matchgate circuits, which are generated

by time-dependent spin-1/2 XY Hamiltonians, and can be mapped onto the dynamics

of free-fermions with arbitrarily time-dependent single-particle Hamiltonians by the

Jordan-Wigner transformation [Kni01, TD02, BK02, Bra06, JM08, dMT13, BC14].

These circuits therefore constitute the natural framework in which to study the

generalization of Anderson localization to quantum circuits.

Despite the encoding by free-fermion dynamics, some properties of these circuits

are not known to be classically simulatable. The example we consider is the Pauli-

expectation value 〈U †XjU〉 on an arbitrary qubit j in the output of a matchgate

circuit U from an initial arbitrary product state. Despite being local in the qubit

picture, this observable takes the form of a long-range correlation function in the

fermion picture and requires exponential resources to simulate by brute-force. We

solve this problem for circuits U describing localizing dynamics by exploiting the

confinement of their measurement observables in the Heisenberg picture. For time-

independent Hamiltonians, this confinement is described formally by the so-called

zero-velocity Lieb-Robinson bound [HSS12]

||[A,B(t)]|| . min (|t|, 1)e−ηd(A,B). (4.1)

This inequality states that the degree of noncommutativity between the local ob-

servable A and time-evolved observable B(t) ≡ U †BU initially separated by lattice
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distance d(A,B) > 0, such that [A,B] = 0, is exponentially decaying with de-

cay constant η > 0. It gives an effective speed at which disturbances propagate

[LR72, NS06, HK06, NS10], which goes to zero with increasing propagation time in

localizing systems. Correlations between distant lattice sites take exponential time to

develop [BHV06].

In the case where A and B are unitary, and the norm taken is the Frobenius norm

||O||2 ≡ tr
(
O†O

)
, the left-hand side of (4.1) is related to the infinite-temperature

out-of-time-ordered correlation function (OTO correlator, see Chapter 3). Without

loss of generality, we will refer to this quantity as the OTO correlator by the relation,

Eq. (3.7). This quantity has arisen as a useful diagnostic tool for studying scrambling

in chaotic quantum chaotic systems [MSS16, RY17b, AFI16, YH17, CDP17], including

black holes [SS14, Kit14, Kit15a, RSS15], and recently, for many-body localization

[SC17, Che16, HZC17, HL17, FZSZ17a]. As a first result, we provide an analytic

formula for this quantity when A and B are Pauli observables, and the time evolution

is described by a matchgate circuit. This is surprising considering that the evolution

itself cannot even be stored efficiently by a classical computer in general, and so it

constitutes an exponential speedup over the brute-force method. We next show that

this quantity bounds the average-case change in expectation-value magnitude from

truncating the Heisenberg evolution of B(t) to a subset of qubits and thus provides

a measure of the expected error incurred by such truncation. Finally, we provide

numerical analysis verifying the bound (4.1) for two natural models of time-dependent

disorder and construct phase diagrams demonstrating their transitions to localizing

dynamics and subsequent classical simulatability.

4.2 Background

Define a matchgate G(V ,W ) to be the following 2-qubit unitary, written in the

(ordered) computational basis {|00〉, |01〉, |10〉, |11〉} as



Chapter 4. Classical simulation of quantum circuits by dynamical localization 58

G(V ,W ) =


V00 0 0 V01

0 W00 W01 0

0 W10 W11 0

V10 0 0 V11

 , (4.2)

where V ,W ∈ SU(2) are single-qubit unitaries (crucially, detV = detW ). G(V ,W )

preserves the eigenspaces of Z⊗Z and so may be written as eiL, where L is an element

of the vector space spanned by {X ⊗X,X ⊗ Y ,Y ⊗X,Y ⊗ Y ,Z ⊗ I, I ⊗Z}. When

the 2 qubits on which G(V ,W ) acts are a nearest-neighboring pair, L is an instance

of the 2-qubit spin-1/2 XY model. Such a Hamiltonian on n qubits is quadratic in

the 2n Majorana operators {cµ}, for µ ∈ {1, . . . , 2n}, given by the Jordan-Wigner

transformation

c2j−1 =
⊗j−1

k=1 Zk ⊗Xj

c2j =
⊗j−1

k=1 Zk ⊗ Yj
(4.3)

where c2
µ = I and cµcν = −cνcµ for all µ 6= ν ∈ {1, . . . , 2n}. It is straightforward to

verify that any such unitaries U generated by quadratics in the Majorana modes form

a group (see Chapter 2 for details), and that this group is exactly that of circuits

composed of nearest-neighbor matchgates [JM08]. Furthermore, such U preserve the

number of Majorana modes, as

U †cµU =
2n∑
ν=1

uµνcν , (4.4)

where u ∈ SO(2n) is a 2n × 2n orthogonal matrix. We introduce a Majorana

configuration as an ordered tuple of indices ~α ≡ (α1,α2, . . . ,αk) of degree |~α| ≡ k with

αj ∈ {1, . . . , 2n} and αj < αj+1 for all j ∈ {1, . . . , k}. The corresponding Majorana

configuration operator is the ordered product C~α ≡
∏|~α|

j=1 cαj , with Majorana indices
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ascending from left to right. Finally, denote by u~α~β the submatrix of u given by

taking the rows indexed by ~α and the columns indexed by ~β, i.e. (u~α~β)jk ≡ uαjβk .

Majorana configuration operators transform under matchgate evolution as

U †C~αU =
∑

{~β||~β|=|~α|}

det
(
u~α~β

)
C~β. (4.5)

That is, the degree of a Majorana configuration operator is preserved, and configura-

tion transition amplitudes are given by determinants of the corresponding single-mode

transition submatrices. We also note that

Zk = −iC(2k−1,2k) (4.6)

Xk = (−i)k−1C(1,...,2k−1). (4.7)

From Eq. (4.5), we see that the Heisenberg evolution of Zk will always consist of
(
n
2

)
terms, regardless of k. However, that of Xk will consist of

(
n

2k−1

)
terms, which may

scale exponentially with n if k also scales with n, such as for Xbn/2c in the center

of the chain. This is reflected in the fact that 〈U †ZkU〉 can always be computed

efficiently by a classical computer when the expectation values 〈C~β〉, for |~β| = 2, can

be, such as for product input [JM08]. On the other hand, U †XkU cannot even be

stored efficiently on a classical computer in the worst case, so the same strategy will

not work1. Nevertheless, localization will provide a means to efficiently approximate

this quantity, as we state formally below.

4.3 Analytic results

We are able to efficiently calculate the left-hand side of (4.1) in our setting by our

first result

1Though the distribution of such a measurement can be sampled efficiently, a weaker
form of simulation, by the method in Ref. [Bro16].
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Theorem 1 (Analytic OTO correlator) The OTO correlator for Pauli observables

A ≡ iaC~η and B ≡ ibC~α may be computed analytically as

1

2n+2 ||[A,U †BU ]||2 =
1

2

{
1± det[u~α[2n](I− 2P~η)u

T
[2n]~α]

}
,

where (P~η)jk = 0 if j /∈ ~η or k /∈ ~η, and (P~η)jk = δjk otherwise (i.e. P~η is the

projector onto the modes ~η). The sign factor is simply (−1)|~α||~η|+1.

The result follows from the Cauchy-Binet formula (see Appendix A.1). In fact, it is

possible to modify the Cauchy-Binet formula to obtain an analytic calculation of the

OTO correlator when A ≡ ns ·σs is any single-site Pauli observable (Appendices A.2

- A.4). This allows us to regard the OTO correlator as a quadratic form Ms, as

1

2n+2 ||[ns ·σs,U
†BU ]||2 ≡ n∗s ·Ms ·ns (4.8)

When the bound (4.1) holds, we can efficiently approximate the evolution in

Eq. (4.5) by truncating the sum to those ~β whose support lies strictly within a

constant subset of qubits. We model this truncation by the action of a completely

depolarizing channel

Es(O) =
1

4

O +
∑

k∈{x,y,z}

σksOσ
k
s

 , (4.9)

which takes any single-qubit operator to its identity component. With our second

result, we show that this truncation incurs a bounded error in the average case (see

Appendix A.5):

Theorem 2 (Average disturbance by truncation) Let Es be the completely depolarizing

channel on qubit s. The average change in expectation-value magnitude of U †BU

under depolarization on a set of qubits S is bounded by the OTO correlator as
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|〈U †BU〉 − 〈(⊗s∈SEs)[U †BU ]〉| ≤
∑
s∈S

√
n∗s ·Ms ·ns,

where ( · ) denotes an average over a product basis whose Bloch axes are orthogonal to

the vectors {ns}s, and Ms is as defined in Equation 4.8.

4.4 Numerical example

Theorem 1 is valid for every unitary time-evolution satisfying (4.4). However, we will

narrow the focus of our numerical analysis to two specific Hamiltonian models, each

of the form:

H(t) =
n−1∑
j=1

2µj(t)
(
XjXj+1 + YjYj+1

)
+

n∑
j=1

2νj(t)Zj (4.10)

In Model 1, we allow the local disorder to fluctuate in time about some mean

static disorder, and in Model 2, we allow interactions to fluctuate in space and time

about mean translationally invariant interactions. The fluctuations are chosen as

independent, identically distributed random samples taken from the interval [−∆, ∆]

every period δt = 0.25. We vary the strength of the mean value and the fluctuation

strength ∆ for each model, keeping the remaining parameter fixed. This is intended to

resemble a discrete-time control setup, wherein some of the parameters are constrained

but others may be varied with some control strength. The static limit, for which

∆ = 0, is well-understood (see e.g. Ref. [BO07]) and will provide a convenient

reference point. These models are summarized in Table 4.1.

As the Hamiltonian (4.10) is quadratic in the Majorana operators, its time-

evolution operator may be expressed as a matchgate circuit [JM08] and so we may

apply our Theorem 1. In Fig. 4.1, we plot representative profiles of the OTO correlator

(hereafter referred to as “light cones”) for B = Z50 (left) and B = X50 (right) for
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Parent Hamiltonian (4.10)

H(t) =
∑n−1

j=1 2µj(t)
(
XjXj+1 + YjYj+1

)
+
∑n

j=1 2νj(t)Zj

Model Fluctuation Fixed Varying
1 νj(t) = νj + (2/δt)κj(t) µ = 1 ν, ∆
2 µj(t) = µ+ (2/δt)κj(t) ν = 1 µ, ∆

Table 4.1: Summary of the time-dependent models considered in this work,
corresponding to the numerical phase diagram shown in Fig. 4.2. νj ∼ [−ν, ν]
are chosen uniformly randomly, and the κj(t) ∼ [−∆, ∆] are uniformly randomly
sampled every δt = 0.25

.

n = 100 in Model 1 in its ballistic (top), diffusive (middle), and localized (bottom)

phases. In the localized propagation, for which static disorder ν = 2 and ∆ = 0,

the bound (4.1) is satisfied, and the observable support remains confined. As we

increase fluctuations relative to static disorder in the middle plots, for which ν = 0.75

and ∆ = 1, we see that time-dependent fluctuations induce a transition to diffusive

propagation.

We identify the propagation phase of each profile by taking the principal singular

component of its light cone, treated as a numerical matrix (see Appendix A.6). We

argue that this gives an operationally meaningful, robust, and numerically inexpensive

means of extracting the envelope and decay profile.

We characterize the propagation phase by fitting the principal temporal component

of each lightcone to a polynomial and extract the exponent of the leading-order term

tm. In Fig. 4.2, we plot m for Z50 and X50 for our two models for n = 100, as in

Fig. 4.1, as phase diagrams. We identify the ballistic phase with regions where m is

very nearly one, the localized phase with regions where m is very nearly zero, and the

diffusive phase with regions where m is nearly 0.5. With this identification, we see

that as ∆→ 0, our results agree with the known limit of static local disorder in Model

1. Similarly, as ∆ becomes large, we see the emergence of a diffusive phase, which

is consistent with the results put forth in [BEO09]. Finally, we see that, for small

∆ 6= 0, the localized phase survives. This indicates the existence of new matchgate
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circuits for which localization may be applied to classically simulate 〈U †XkU〉 for

arbitrary k in a general product state input.

4.5 Discussion

We have presented examples where localization may be applied as a tool for classically

simulating quantum circuits which were a priori believed to be classically intractable.

This is achieved by an analytic calculation of the OTO correlator (presented in

Appendix A.4), followed by truncation to a subset of qubits for which this quantity

falls below a certain threshold.

One advantage of our method is that it gives the interior of the light cone in

addition to its envelope. In each phase, we see that the light cone interior for

X50 generally has a higher value than that for Z50. This is a consistent difference

between the profiles of these operators, which may have important consequences for

the complexity required to exactly simulate their expectation values, in a similar

fashion with [RY17b]. We attribute the emergence of a near-ballistic region in the X

phase diagram of Model 2, which is absent from the Z diagram, to this observation.

Though some amplitude propagates ballistically for both observables in this region,

this only manifests as a spreading of the exponential tails for Z. For X however, this

is exhibited as a ballistic spreading of the high-amplitude region due to interference

between its many constituent Majorana operators. This indicates that, at least in

the presence of fluctuating interactions, propagation behavior between different local

operators can be strikingly different.

We empirically observe, however, that the difference between X and Z observables

only emerges at late times, in the saturation value of the OTO correlator for each

of these operators. By examining the constant-position slices from the light cones

in Fig. 4.1 as functions of time, we observe a characteristic exponential early-time

behavior for these values, which is identical between X and Z propagation. Only as the

growth of these operators saturate to roughly their constant values do the differences
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emerge. This suggests that the evolution of low-degree Majorana configurations may

be useful as a good heuristic to observe the lightcone envelope, in a similar spirit to

the treatment given in Ref. [XS18c] for finding a low bond-dimension matrix product

operator approximation to the evolution of such observables in interacting-fermion

systems.

Although we chose here so-called matchgate circuits, related to the time evolution

of free fermions, because of their correspondence to Anderson localization, our method

is expected to have further applications and extensions. On the former, for example,

one may apply it to other random-circuit ensembles, such as those with Haar random

matchgates, as was studied in Ref. [SPH+18]. A preliminary analysis indicates that

propagation in this case scales logarithmically, rather than polynomially. On the

latter, we can extend our method to analyze universal quantum computation by

considering matchgate circuits acting on certain entangled input states, such as those

of Ref. [Bra06], as the method given in this chapter is independent of the input. In a

similar way as Anderson localization has been extended to many-body localization,

certain perturbative analysis (in analogy to that performed in [BG16] for Clifford

circuits) could probe possible dynamical localization in general quantum circuits as

well as simulating interacting fermions.
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Figure 4.1: Typical light cones for Z50 (left) and X50 (right) propagating through
the time-dependent disordered XY model (Model 1) with mean disorder strength
ν and fluctuation strength ∆, for n = 100 qubits. Light cones are taken as
the geometric mean of the determinant over 10 disorder realizations to preserve
exponential decay. Representatives of the ballistic (ν = 0, ∆ = 0, top), diffusive
(ν = 0.75, ∆ = 1, middle), and localized (ν = 2, ∆ = 0, bottom) phases are
shown. We note that, while the light cone envelopes for Z50 and X50 are always
nearly the same, the interior of that for X50 generally has a higher value.



Chapter 4. Classical simulation of quantum circuits by dynamical localization 66

Figure 4.2: Phase diagrams for the propagation of Z (left) and X (right) in
the presence of locally fluctuating disorder (top) and fluctuating interactions
(bottom). These are given by taking the fitted slopes m of the light cone envelopes.
Though this parameter is continuous, we see that several natural regions emerge:
ballistic (m ≈ 1), diffusive (m ≈ 0.5), and localized (m ≈ 0). Numbered points
correspond to the corresponding light cones in Fig. 4.1, where points (1) and
(3) on the y-axis meant to be located at ∆ = 0. The extended localized phase
demonstrates that localization survives under weak fluctuations.
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Chapter 5

Many-body-localization transition

in universal quantum circuits

5.1 Introduction

By now it is well-understood that quantum effects play a prominent role for information

propagation in many-body systems. Namely, the rate at which local disturbances

propagate into nonlocal degrees of freedom — or scramble — under unitary dynamics

is limited by the Lieb-Robinson bound [LR72]. This endows the system with an

effective “speed of light,” even without any invocation of relativity a priori. This

uniquely quantum phenomenon follows from the locality structure of the Hamiltonian

alone, and therefore is a ubiquitous property among quantum lattice systems.

A natural question, then, is how Lieb-Robinson-bounded propagation of quantum

information will affect the performance of a quantum computer. As any practical

realization of a quantum circuit will naturally possess some inherent notion of locality

due to its connectivity structure, it seems obvious that there is a minimum circuit

depth before the system will be able to access any given extensively nonlocal degree

of freedom. This is simply the number of gate layers needed for the support of a

local observable to interact with every qubit in the system. However, it may be
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possible for a more stringent bound to hold due to the particular nature of the

dynamics as well. An analogous situation can be seen in the many-body-localized

regime for Hamiltonian dynamics in the presence of a disordered local field and

perturbatively weak interactions [GMP05, BAA06, Imb16, SPacA13]. In such systems,

the support of a disturbance will propagate logarithmically, rather than linearly,

with time [HNO14, SC17, DLP+17, NKH14]. The minimum time needed for the

system to access extensively nonlocal degrees of freedom in this case is therefore

exponential in the system size. Since strong quantum correlations cannot be built

quickly, such systems admit many properties which are classically simulatable [BHV06,

icvcvPPcv08, BPM12, KCA14, BnYC+17]. We therefore ask whether a transition to

many-body-localized behavior exists in quantum circuits. Such a transition would be

tantamount to a complexity transition, for which a full understanding would be of great

importance. Furthermore, the dynamics of quantum circuits is closely related to that

of periodically-driven Floquet systems [CL15, KGRG16], where it has been shown that

many-body-localized behavior indeed survives [ARH16, PPHA15, PCPA15, MGS17].

A recent tool developed for the purpose of accessing many-body-scrambling is

the out-of-time-ordered (OTO) correlator, which was introduced by Kitaev to model

the fast-scrambling behavior of black holes [Kit15b]. Since then, the OTO correlator

has enjoyed success in describing the scrambling behavior of chaotic quantum sys-

tems. It has been used, for example, to study chaotic behavior in random quantum

circuit models [GH18, ZN18, ZC18, JHN18, XS18b, SPH+18, NVH18, vKRPS18] —

including those with conservation laws [RPv17, KVH17] — and the related dynamics

of random-matrix models [GHST18, KLP18, CZ18]. Conversely, it has been shown

that the OTO correlator is effective at detecting the absence of scrambling, as seen

in the many-body localized phase [FZSZ17b, HL17, Che16, XTAE, SBYX17]. In

fact, it is argued in Ref. [HZC17] that the OTO correlator is uniquely-suited to

this task. Such properties make the OTO correlator an ideal diagnostic for the

many-body-localization transition in quantum circuits and ensembles thereof. Never-

theless, utilizing this quantity to detect localization without a priori knowledge of

such behavior in the general, single-shot regime remains a challenge, since it would
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in principle require full simulation over an exponentially large Hilbert space. In

Ref.s [XS18a, SXS18], the authors utilize matrix product operators, truncated to

low bond dimension, to approximate the Heisenberg operator time evolution and

calculate the OTO correlator for scrambling and localizing systems. This method

can be viewed as a generalization of performing gate cancellations outside of the

trivial lightcone of a quantum circuit by taking the particular circuit dynamics into

account, and approximating the circuit inside the “true lightcone” by one of low

depth. In Ref. [SPH+18], the authors observe a many-body localization transition in

a Floquet model with Haar random local unitaries together with disordered 2-qubit

interactions, for which they employ a similarly clever tensor network contraction

scheme to reduce the complexity of their quantity (which is not the OTO correlator)

by an exponential factor, though it is still exponential overall. They also demonstrate

localizing behavior in a Floquet circuit model of random Gaussian-fermionic circuits,

which admits an efficient classical simulation.

In this chapter, we take advantage of the fact that any time evolution can be

written in terms of dynamics of interacting fermions [BK02], so that the OTO

correlator may be computed as a determinental formula as studied in our previous

work for non-interacting fermions [CM18]. We first derive an exact formula for

the OTO correlator for universal quantum circuits, expressed in terms of Gaussian-

fermionic evolution together with fermionic “interaction” gates, as a superposition of

exponentially many free-fermion trajectories. This formula is an alternating series

of determinants of sub-matrices of an orthogonal, symmetric matrix, which reflects

the fact that our fermionic interaction gates only permit transitions between certain

configurations of fermions. In a similar spirit as light-front computational methods

in quantum field theory, we restrict our formula to keep track of only the fastest

traveling modes, allowing us to replicate the action of an interaction gate by that of

a Gaussian-fermionic circuit coupling to a set of ancillary modes and approximate

the time-evolution efficiently (i.e. in-terms of a single determinant). We apply our

algorithm to a universal quantum circuit model consisting of alternating layers of non-

interacting fermion evolution, and interaction gates coupling alternating subsets of
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qubits, where we observe a transition to many-body-localized behavior as we increase

the disorder strength. Though we consider an ensemble-averaged Floquet model for

ease of presentation in this work, we emphasize that neither of these is necessary for

our algorithm. Our algorithm can be applied for any one-dimensional nearest-neighbor

quantum circuit, without need to work in the perturbatively-interacting regime, and

without the need for super-computing resources.

5.2 Background

5.2.1 Out-of-Time-Ordered Correlator

Our figure of interest is the infinite-temperature out-of-time-ordered (OTO) correlator,

defined between two observables A and B(t) ≡ UBU
†

for a system of Hilbert-space

dimension d and unitary time evolution U as

CAB(t) ≡ (4d)−1/2||[A,B(t)]||F , (5.1)

where ||A||F ≡
√

tr(A
†
A) is the Frobenius norm. When A and B are Hermitian and

unitary operators (e.g. qubit Pauli observables), we have the relation

CAB(t)2 =
1

2

{
1− d−1 tr [AB(t)AB(t)]

}
. (5.2)

Here, we will choose A = Xbn/2c and B = Zs for qubit s ∈ {1, 2, . . . ,n}. “Infinite

temperature” refers to the fact that the trace in Eq. (5.2) is the trace inner product

between AB(t)AB(t) and the infinite-temperature Gibbs state d−1I. This trace term

is sometimes referred to as the OTO correlator in the literature, and CAB is called the

OTO commutator. Here we will refer to either quantity as the OTO correlator, as

our meaning will be clear from context. The normalization in Eq. (5.1) is such that
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CAB ∈ [0, 1]. CAB is further bounded by the conventional Lieb-Robinson commutator

norm by the operator-norm inequality ||A||F ≤
√
d||A||2, as

CAB(t) ≤ 1

2
||[A,B(t)]||2 . ||A||2||B||2e−η(dAB−vt), (5.3)

where dAB is the initial lattice distance between A and B (dAB = |bn/2c − s| for our

choices of A and B), and the second inequality is the Lieb-Robinson bound [LR72].

This bound confines the support of B(t) to within an effective “lightcone” of speed v,

outside of which the amplitudes of B(t) in a local operator basis decay exponentially.

As stated above, a more stringent bound than Eq. (5.3) holds for many-body-

localized systems. Namely, support in such systems is confined to within a logarithmic

lightcone

CAB(t) . ||A||2||B||2e−η(dAB−v ln t). (5.4)

That is, disturbances take exponential time to propagate a given distance. This

behavior is intimately related to a logarithmic spreading of entanglement [FZSZ17b],

which is a signature of many-body localization [SBYX17, SC17, KCA14, BPM12,

icvcvPPcv08, SPacA13, BnYC+17, DLP+17, Imb16] (further, it has been shown to

be distinct from the Anderson-localized phase [HL17, Che16], in which the lightcone

width is constant in time [And58]).

Though Eq. (5.3) is an upper bound, we expect CAB(t) to give a good heuristic

for the lightcone, and in fact it was shown in Ref. [HZC17] that the OTO correlator

can detect the logarithmic lightcone where more conventional, two-point correlators

cannot. Averages of the OTO correlator are also useful, since they are be related to

the more familiar second Rényi entanglement entropy

S
(2)
M ≡ − log trM (trM ρ)2, (5.5)
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with respect to a subsystem M for ρ an infinite-temperature Gibbs state quenched to

the eigenbasis of an operator A. This relation is the so-called “OTOC-RE” theorem

[FZSZ17b]

exp
[
−S(2)

M (t)
]

=
∑
B∈M

tr [B(t)ΠAB(t)ΠA], (5.6)

where ΠA is the trace-normalized projector onto the eigenbasis of A, the sum is

taken over a local operator basis on M , and normalization is chosen such that∑
B∈M BijBlm = δimδlj, tr ΠA = 1. This connection was extended to operator

entanglement in Ref. [XS18a], building off of the work in [HQRY16], through the

bound

S
(2)
M (t) ≤ − log

1− 1

2

∑
{Pj |j∈M}

C2
APj

(t)

 , (5.7)

where here, the operator entanglement is that of the state related to the original

operator by contracting the operator on one side, say, subsystem r of the infinite-

temperature n-qubit thermofield double state

|Φ〉 = 2−n/2
∑

j∈{0,1}×n
|j〉r ⊗ |j〉r̃ (5.8)

and the sum taken in Eq. (5.7) is over all single-qubit Pauli operators {I,X,Y ,Z}

supported on M . Though a bounded second Rényi entropy does not guarantee a low-

bond-dimension matrix product operator approximation, it is argued in Ref.s [XS18a,

SXS18] that the lightcone envelope can be well-approximated using such a technique,

since any disturbance due to truncating the matrix product operator to limited bond

dimension cannot itself propagate outside of the lightcone. See also Ref.s [HQRY16,

CHJLY17], where the averaged OTO correlator has been related to the tripartite

second Rényi mutual information and the spectral form factor, respectively.
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5.2.2 Gaussian Fermionic Evolution

We next give a brief review of Gaussian fermionic evolution (also known as matchgate

circuits, see Ref.s [Kni01, TD02, BK02, Bra06, JM08, dMT13, BC14] for further

details), which we define in terms of the Jordan-Wigner transformation from Pauli

observables on n qubits to Majorana operators on 2n fermionic modes, as

c2j−1 = Z⊗(j−1)Xj c2j = Z⊗(j−1)Yj. (5.9)

These operators satisfy the canonical anticommutation relations {cµ, cν} = 2δµ,νI,

where δµ,ν is the Kronecker delta. Gaussian fermionic unitaries are those of the form

Ug = exp
(
cT ·h · c

)
, where c is the column vector of Majorana operators. Unitarity

and the canonical anticommutation relations restrict h to be a real, antisymmetric

matrix without loss of generality.

Majorana operators are preserved under commutation with quadratic terms, as

[cT ·h · c, cµ] = (−4h · c)µ. (5.10)

This implies that, under Gaussian evolution, we have

U
†

g cµUg =
(
e−4h · c

)
µ

. (5.11)

As h is an antisymmetric matrix, u ≡ e−4h ∈ SO(2n), and so Majorana operators form

a representation of the group SO(2n) under Gaussian fermionic evolution. Additional

representations can be constructed from ordered products of the Majorana operators

— called Majorana configuration operators — which we define as

C~α ≡ cα1
cα2

. . . cαk , (5.12)
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where ~α is an ordered k-tuple, for which 1 ≤ α1 < α2 < · · · < αk ≤ 2n. Under

Gaussian fermionic evolution, the Majorana configuration operators transform as

U
†

gC~αUg =
∑
~β

det
(
u~α~β

)
C~β, (5.13)

where u~α~β is the submatrix of u given by taking the rows indexed by ~α and the

columns indexed by ~β. Matrices of amplitudes {det
(
u~α~β

)
}~α~β, whose elements are

indexed by k-tuples, form a homomorphism of SO(2n) by the Cauchy-Binet formula

∑
~β

det
[
(u1)~α~β

]
det
[
(u2)~β~γ

]
= det

[
(u1u2)~α~γ

]
. (5.14)

Eq. (5.14) will prove useful for calculating operator amplitudes for arbitrary Pauli

operators under Gaussian fermionic evolution, in addition to the Majorana operators,

for which k = 1.

Finally, it will be convenient to define the following Gaussian operation, which

exchanges pairs of fermionic modes between qubits j and k

Sjk =
1

2

(
XjZ

⊗(k−j)−1Xk + YjZ
⊗(k−j)−1Yk + Zj + Zk

)
(5.15)

=
−i
2

(
c2jc2k−1 − c2j−1c2k + c2j−1c2j + c2k−1c2k

)
(5.16)

Sjk = −i exp
[π

4

(
c2jc2k−1 − c2j−1c2k + c2j−1c2j + c2k−1c2k

)]
(5.17)

This operation effects c2j−1
S↔ c2k−1 and c2j

S↔ c2k by conjugation.

It was shown, surprisingly, in Ref. [JM08], that Gaussian fermionic operations,

together with 2-qubit nearest-neighbor SWAP operations, are universal for quantum

computation. SWAP has a similar form to Eq. (5.16), with the important distinction

of a quartic term in the Majorana operators
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SWAPj,j+1 =
1

2

(
I +XjXj+1 + YjYj+1 + ZjZj+1

)
(5.18)

SWAPj,j+1 =
1

2

(
I − ic2jc2j+1 + ic2j−1c2(j+1) − c2j−1c2jc2j+1c2(j+1)

)
. (5.19)

In contrast to Eq. (5.10), the quartic term maps between Majorana configuration

operators of different degree under commutation, e.g.

[ZjZj+1, c2j−1] = −2c2jc2j+1c2(j+1), (5.20)

and in general

[ZjZj+1,C~α] =

2(ZjZj+1)C~α |~α ∩ ~qj| odd

0 |~α ∩ ~qj| even
, (5.21)

where ~qj ≡ (2j − 1, 2j, 2j + 1, 2j + 2). For ~α ⊆ ~qj, (ZjZj+1)C~α = ±C~qj/~α, and

[ZjZj+1, ck] = 0 for k /∈ ~q. Since Eq. (5.20) is analogous to a pair-production process

for Majorana operators, we will refer to it as an “interaction” between modes.

Finally, in Ref. [CM18], it was shown that the infinite-temperature OTO correlator

has an analytic closed-form expression when the unitary evolution is a Gaussian

fermionic operation and A ≡ iaC~η and B ≡ ibC~η are Pauli operators (for integer a

and b), as

C2
AB(t) =

1

2

{
1± det

[
u~α[2n]

(
I− 2P~η

)
uT

[2n]~α

]}
, (5.22)

where the sign factor is simply (−1)|~α||~η|+1, and P~η is the projector onto the modes ~η

(i.e. it is diagonal with ones on the diagonal for modes in ~η and zeroes elsewhere). In

the following sections, we demonstrate a similar approach to that of Ref.s [XS18a,
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SXS18] to approximate the OTO correlator by considering interactions acting on only

the fastest-traveling Majorana modes, near the lightcone edge, where we can effect

the action of an interaction by an equivalent Gaussian fermionic transformation and

apply Eq. (5.22).

5.3 Results

5.3.1 A. Universal Circuit Model

Our universal circuit model is shown in Fig. 5.1. It consists of alternating layers

between disordered Gaussian fermionic evolution and products of quartic fermion

gates. The Gaussian fermionic evolution is given by

HXY ({νj}) =
n−1∑
j=1

(
XjXj+1 + YjYj+1

)
+

n∑
j=1

νjZj (5.23)

HXY ({νj}) = −i
n−1∑
j=1

(
c2jc2j+1 − c2j−1c2(j+1)

)
− i

n∑
j=1

νjc2j−1c2j (5.24)

with the {νj} a random local potential, chosen uniformly from the interval [−ν, ν]. We

will demonstrate the existence of a many-body-localization transition to logarithmic

scrambling at a disorder value of νc ∼ 0.8. When interactions are absent, however,

propagation in this model is Anderson-localized for any nonzero disorder.

The quartic fermion “interaction” gates are of the form

exp(−iπ
4
ZjZj+1) =

1√
2

(I − iZjZj+1) (5.25)

For ~α ⊆ ~qj, we have

e
iπ
4
ZjZj+1C~αe

− iπ
4
ZjZj+1 = (iZjZj+1)(|~α| mod 2)C~α. (5.26)
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Figure 5.1: (Color online) Our alternating circuit model of-interest, consisting of
repeated layers of the form shown above. Global layers are periods of localizing
Gaussian fermionic dynamics, with local disorder configuration {νj} and duration
δt. Local gate layers consist of “interaction gates, which are non-Gaussian. The
positions of these layers are alternated between qubits 1 and 2 being the left-most
qubits to interact.

It is crucial to our approximation that this gate be a Clifford operation (i.e. it

preserves the set of Majorana configuration operators). This gate is equivalent to

SWAP gate up to Gaussian fermionic gates, as

e
iπ
4 SWAP = exp

(
−iπ

4
ZjZj+1

)
exp

[
5iπ

4

(
Zj + Zj+1

)]
Sj,j+1. (5.27)

Thus, the inclusion of these gates extends Gaussian fermionic operations to computa-

tionally universal quantum circuits.
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Figure 5.2: (Color online) A Gaussian fermionic circuit whose evaluation is used
to prove Eq. (5.28). The circuit is depicted in the qubit picture, with pairs of
circuit wires representing collections of arbitrarily many qubits. As such, all
Majorana configuration operators (C~α, C~S, and C†~S′) are drawn with support
all the way up to the top qubit, since there may in principle be a string of
Pauli-Z operators up to this qubit if the number of Majorana operators in the
configuration is odd. Nevertheless, we do assume that ~S ′ ⊆ ~Ar. That is, if |~S ′| is
odd, then C†~S′ only acts as a string of Z operators on the qubits corresponding

to modes ( ~Al, ~Bl,B, ~Br), and so all Gaussian fermionic gates commute with C†~S′
on these qubits. Crossing lines represent the Gaussian fermionic operation of
rearranging subsets of fermionic modes (i.e. products of {Sjk} defined in the text)
while preserving these subsets’ internal ordering, but possibly applying phases.
Similarly, Ug,1 and Ug,2 are Gaussian fermionic unitaries. The self-contracted
wires at the bottom represent a partial trace over this subset of qubits (notice
we can reliably trace over the last subset since no Majorana configurations will
have support here). The dotted and dot-dashed boxes indicate which portion
of the circuit to contract in one step during its evaluation, followed by the
contraction over everything else in the second step. For example, the dot-dashed-
box contraction consists of conjugating C~α by Ug,1, exchanging modes B and ~Ar,

and tracing over ~Ar with respect to C†~S′ in the first step. Next, the modes B

and ~Al are exchanged and Ug,2 is applied in the second step. This contraction
partitioning corresponds to the left-hand-side of Eq. (5.28). The dotted box
consists of applying all Gaussian fermionic unitaries in the first step, and then
performing the partial trace with respect to C†~S′ in the second step (remember,

C†~S′ commutes with Gaussian fermionic unitaries on modes outside of ~Ar). This

contraction partitioning corresponds to the right-hand-side of Eq. (5.28). As these
two contractions must evaluate to the same operator, their equivalence implies
the equality.
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5.3.2 Exact Formula

In Appendices B.1 and B.2, we prove an exact formula for a general quantum circuit

expressed as a product of Gaussian fermionic evolution and interaction gates. This

formula follows from a modification to the Cauchy-Binet formula (5.14):

∑
~β⊆ ~B≡( ~Bl, ~Br)

det
[
(u1)~α,~β∪~S′

]
det
[
(u2)~β∪~S,~γ

]

= (−1)|
~S||~S′| det

0|~S|×|~S′| (u2)~S~γ

(u1)~α~S′ (u1)~α ~B (ũ2) ~B~γ

 . (5.28)

Letting B be the set-complement of
(
~Al, ~Bl, ~Br, ~Ar

)
in the set of all modes (see

Fig. 5.2), ~S, ~S ′ ⊆ B are fixed sets of modes which are not summed over. ~Bl is a

contiguous subset of modes to the “left” of and disjoint from B, and ~Br is a contiguous

subset of modes to the “right” of and disjoint from B. Furthermore,

ũ2 ≡
(
I− 2δ|~S|+|~S′|=1(mod 2)P ~Bl

)
u2. (5.29)

That is, ũ2 = u2 unless |~S| and |~S ′| have opposite parity, in which case the rows of

u2 corresponding to the modes ~Bl are multiplied by (−1) to obtain ũ2. Eq. (5.28)

was proved for the special case where ~S = ~S ′ in Ref. [CM18].

Though we prove Eq. (5.28) rigorously in Appendix B.2 using properties of

determinants, a simple pictorial proof can be seen in Fig. 5.2 (for details of this

version of the proof, see Appendix B.1). This figure depicts a circuit consisting of fixed

evolution by Gaussian fermionic unitaries Ug,1, Ug,2, and rearrangements of fermionic

modes (the crossing wires, which are products of the {Sjk}) with the ancillary modes

( ~Al, ~Ar). The self-contracted wires at the bottom represent a partial trace taken on

the last subset of qubits. The modified Cauchy-Binet formula, Eq. (5.28), follows

from considering the two equivalent ways we can choose to evaluate this circuit: either
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Figure 5.3: (Color online) The action of an interaction gate V ≡ e−i(π/4)ZZ ,
acting on the modes ~q can be reproduced by exchanging the modes ~q with an
ancilla occupied by V †C~α∩~qV , and taking the partial trace with respect to C~α∩~q.

Note that, since CT
~α∩~q potentially only differs from C~α∩~q by a sign, the product

V †C~α∩~qV C
T
~α∩~q does not have support on the qubits above it due to the parity-

preserving property of V . Choosing the dotted contraction-ordering in Fig. 5.2
above, whereby the partial trace is taken at the very end, we can iterate the
application of this identity and compute the OTO correlator as the single trace
of a Majorana configuration under Gaussian fermionic evolution, with respect to
the appropriate Majorana configuration output by the interaction gates.

we contract everything in the dotted box and perform the partial trace afterward,

or we contract everything in the dot-dashed box (including taking the partial trace)

and perform the remainder of the Gaussian fermionic evolution afterward. These

two different contraction orderings yield the same operator (since they are the same

circuit), yet the former evaluates to the right-hand-side of Eq. (5.28), and the latter

evaluates to the left-hand-side. See the caption under Fig. 5.2 or Appendix B.2 for

details.

We construct an exact formula for the OTO correlator of universal quantum

circuit dynamics by iteratively applying Eq. (5.28). Since our interaction gate is

parity-preserving, Eq. (5.28) can be realized as the identity shown in Fig. 5.3, whereby

the input modes to the interaction are exchanged with the appropriate output modes

on an ancilla, and the ancilla is traced over. Choosing the contraction corresponding

to the dotted box in Fig. 5.2 (i.e. performing all traces at the end) we can calculate

the OTO correlator as a series of terms of a similar form to Eq. (5.22), summed over

all exponentially-many inputs to each interaction gate. Each such input configuration
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can be thought of as a particular “computational path” in the operator space of

Majorana configurations, and the OTO correlator is realized as a superposition over

all of these paths, which will interfere in general. Our algorithm for exactly calculating

the OTO correlator then proceeds as follows:

Exact series for the OTO correlator:

Given:

1. Universal quantum circuit U ≡ U1U2 . . . UN on n qubits with g interaction gates.

2. Pauli observables A ≡ iaC~η and B ≡ ibC~α, for integers a and b.

Construct: An orthogonal, symmetric matrix K from which the infinite-temperature

OTO correlator CAB(t)2 can be calculated as a sum of minors from K, as

1− 2CAB(t)2

=
∑

~B=
⋃g
i=1

~βi⊆ ~A(N)

~B
′
=
⋃g
i=1

~β
′
i⊆ ~A

′
(N)

(−1)f( ~B, ~B
′
) det

[
K[ ~B′,V( ~B),~α][ ~B,V( ~B′),~α]

]
(5.30)

for ancillary modes, ~A(N), ~A
′
(N), integers {f( ~B, ~B′)}, and V the map relating the Ma-

jorana configuration-tuple input to a set of interaction gates V ⊗g to the configuration-

tuple of the output.

1. Let u(0) ≡ I2n, the 2n× 2n identity matrix, and ~A(0) ≡ (), the empty tuple.

2. For j ∈ (1, . . . ,N):
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(a) If Uj is Gaussian fermionic, corresponding to u ∈ SO(2n)

i. u(j) ≡ u(j−1)

(
I ~A(j−1)

⊕ u
)

ii. ~A(j) ≡ ~A(j−1)

(b) If Uj = exp
(
− iπ

4
ZijZij+1

)
, an interaction gate between qubits (ij, ij + 1),

on modes ~qj ≡
(
2ij − 1, 2ij, 2ij + 1, 2ij + 2

)
i. Let ~B ≡

(
~A(j−1), [2n] + | ~A(j−1)|

)
, where addition indicates adding

a fixed value to every index of the set. Let q̃j ≡ ~qj + | ~A(j−1)| and

qj ≡ ~B/q̃j

ii. u(j) ≡

 04×4 Iq̃j ~B(
u(j−1)

)
~B,q̃j

(
u(j−1)

)
~B,B

IB, ~B


iii. ~A(j) ≡ ([4], ~A(j−1) + 4)

3. (a) Let ~p ≡ [2n] + | ~A(j)|, ~B ≡
(
~A(j), ~p

)
(b) Let R ≡ (−1)|~η|

(
I2n − 2P~η

)
, a 2n × 2n diagonal matrix whose diagonal

elements are (−1)|~η|+1 for modes in ~η and (−1)|~η| otherwise.

(c) K ≡

0| ~A(j)|×| ~A(j)|

(
uT

(j)

)
~A(j), ~B(

u(j)

)
~B, ~A(j)

(
u(j)

)
~B,~p

R
(
uT

(j)

)
~p, ~B


The phases (−1)f( ~B, ~B

′
) are calculated by iterated application of Eq. (5.28) every time

an interaction is applied in step 2(b) and are calculated explicitly in Appendix B.3.

5.3.3 Approximative method

Though our formula in Eq. (5.30) is exact, the number of terms in the sum scales

exponentially in the number g of interaction gates (though each term can be evaluated

using only polynomial resources in the number of qubits). We therefore make the

physical restriction to the fastest traveling modes, which allows us to approximate the

lightcone envelope by a series truncated to a single determinant corresponding to an
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Figure 5.4: (Color online) We approximate the action of an interaction gate
on the lightcone using the identity shown above (a similar identity holds when
the identity input is replaced with a Z). Namely, the effect of conjugating an
interaction gate on a single Pauli X or Y is equivalent (up to normalization) to
performing a local Z rotation on that qubit, together with exchanging (via a
Gaussian operation Sjk) a Pauli Z with an ancilla A, which is then traced over.

effective Gaussian fermionic evolution. Our workhorse identity is shown graphically

in Fig. 5.4 and given by:

Conditional Gaussian evolution: For a Majorana operator cµ, with µ ∈ (2j −

1, 2j), we have

e
iπ
4
ZjZj+1cµe

−iπ
4
ZjZj+1 =

1

2
trA

[(
e
iπ
4
Zjcµe

−iπ
4
Zj
)(

S
†

j+1,AZASj+1,A

)]
,

(5.31)

e
iπ
4
ZjZj+1

(
cµZj+1

)
e
−iπ
4
ZjZj+1 =

1

2
trA

[(
e
iπ
4
Zjcµe

−iπ
4
Zj
)(

S
†

j+1,AZj+1Sj+1,A

)
ZA

]
(5.32)

Similar identities hold for µ ∈ (2j + 1, 2j + 2).

The identities above relate the action of an interaction gate on an operator at

the lightcone edge to that of a corresponding equivalent Gaussian fermionic gate,

allowing us to approximately simulate it classically. By similar logic to that argued

in Ref.s [XS18a, SXS18], we expect the propagation of any error introduced in this

approximation to be bounded by the speed of light of the underlying dynamics. Such

error results from terms in the operator expansion of B(t) which are not of the form

shown in Eq.s (5.31) or (5.32) (or the corresponding form for µ ∈ (2j+ 1, 2j+ 2)). We
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Figure 5.5: (Color online) The lightcone boundary as calculated by Eq. (5.33)
for Gaussian fermionic evolution (no interaction gates) on n = 100 qubits and
disorder strength ν = 1, averaged over 25 disorder realizations, with δt = π/4.
We see that the boundary spreads, leaving a depletion region in the center, and
becomes wider with time. (Inset) The boundary at the time slice indicated by
the dotted line, at t = 5π

2
, together with CXZ at the same time. We see clearly

a region where the lightcone has very nearly the exact value of the boundary,
indicating that our approximate method becomes exact in this region, since the
underlying assumption to the approximation is perfectly satisfied here.

calculate the weight of the assumption-satisfying terms using the modified Cauchy-

Binet formula (5.14). Let

(−i)bB(t) =
∑
~β

det
(
u~α~β

)
C~β (5.33)

That is, assume B = ibC~α and that the evolution up to time t is described by a

Gaussian fermionic operation as in Eq. (5.13). Additionally, let
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b2
s(t) ≡


∑

~β with XsI
⊗(n−s)

or YsI
⊗(n−s)

present

det
(
u~α~β

)2

(s ≥ bn/2c)

∑
~β with I

⊗(s−1)
Xs

or I
⊗(s−1)

Ys present

det
(
u~α~β

)2

(s ≤ bn/2c)
. (5.34)

This is the total weight of the terms which do not commute with exp
(
iπ
4
ZsZs±1

)
and

which correspond to the right or left lightcone edge being found at qubit s. The

condition in the upper sum (for which s ≥ bn/2c) will only be met if there exists

a tuple ~β′ for which ~β = (~β′, 2s − 1) or ~β = (~β′, 2s). Similarly, for B ≡ Xbn/2c,

the condition in the lower sum (for which s ≤ bn/2c) will only be met if there

exists a tuple ~β′ for which ~β = ([2s − 2], 2s − 1, ~β′) or ~β = ([2s − 2], 2s, ~β′), where

[2s − 2] = (1, 2, . . . , 2s − 2) (since we know the total number of modes in ~β must

be odd for B = Xbn/2c). We therefore apply the modified Cauchy-Binet formula,

Eq. (5.28), to calculate this quantity exactly (see Appendix B.4 for the full expression).

For an illustration of the efficacy of this measure for the boundary, see Fig. 5.5.

We utilize this quantity bs(t), together with our conditional Gaussian evolution

identities Eq.s (5.31), (5.32) in our approximation algorithm for the OTO correlator,

which proceeds as follows:

Approximation to Interaction by Conditional Gaussian Evolution:

Given: B(t − δt), described by an orthogonal matrix u as in Eq. (5.33) and a

global tolerance ε

Approximate: VjB(t− δt)V
†

j for Vj = exp
(
− iπ

4
ZjZj+1

)

1. Calculate bs(t) for all s ∈ (1, . . . , 2n).
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Figure 5.6: (Color online) Average (per pixel) Frobenius-norm error between the
exact and approximate lightcones on 6 qubits for disorder values ν ∈ {1, 2, 3, 4}
(see Fig. 5.7 for an example at disorder ν = 10) as a function of the variationally
optimized free parameter ε, averaged over 25 samples. We see the clear emergence
of a local minimum at ε ∈ [0.2, 0.4] as the disorder is increased above ν ∼ 1.
This is due to the fact that, when the Gaussian fermionic evolution is nearly
delocalized, the decision of whether to keep an interaction gate makes negligible
difference for small system size, since interaction gates cannot extend the lightcone
beyond a ballistic profile.

2. For s ∈ (1, . . . , 2n), if bs(t) ≥ ε:

If s ≥ bn/2c and j = s,

or s ≤ bn/2c and j = s− 1:

Replace Vj with a Gaussian operation by Eq. (5.31) for µ ∈ (2s− 1, 2s).

Each approximation step introduces an extra ancillary qubit (see Fig. 5.4), but once

again, we can perform the trace over the entire ancillary system as one with the trace

in Eq. (5.2) (notice that the normalization is kept consistent as we add each ancillary

qubit). This allows us to straightforwardly apply Eq. (5.22) to calculate the OTO

correlator.



Chapter 5. Many-body-localization transition in universal quantum circuits 87

Figure 5.7: (Color online) A comparison between the output of our algorithm
and a brute-force calculation done on n = 6 qubits with disorder ν = 10, ε = 0.2,
δt = π/4, averaged over 50 disorder realizations. We see good agreement at the
interior of the lightcone, though edge fluctuations become more prominent under
the approximation.

Figure 5.8: (Color online) A comparison between the output of our algorithm
and an exact calculation, which scales exponentially in the number of interaction
gates, but efficiently in the number of qubits, for disorder value ν = 10, δt = π/4,
and two interaction gates at qubits (17, 18) at times t = 3π

2
, 3π (red circles).

We consider only a single disorder instance here, so edge fluctuations are more
pronounced. We nevertheless observe good agreement between the envelopes of
the two lightcones at the optimized value ε = 0.2.
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5.3.4 Variational Optimization of the Free Parameter

The free parameter ε in our algorithm effectively decides where we would like to

truncate the free-particle lightcone. Since the lightcone edge will actually have some

finite width (related to the decay length η in the bounds Eq.s (5.3) and (5.4)), this free

parameter is necessary. A key assumption of our algorithm is that errors introduced

inside the lightcone envelope will not change the propagation of the envelope itself,

since such errors cannot travel faster than the speed of light. It is therefore important

that we capture this lightcone edge precisely, without applying our approximation

to interactions that fall outside of the lightcone of the exact dynamics. We are able

to remove the free parameter by variationally optimizing the Frobenius norm of

our approximate lightcone relative to the exact, brute-force calculation for small

system size. In Fig. 5.6, we demonstrate the emergence of a local minimum in the

average-case Frobenius norm error between our approximation at given ε and the

brute-force calculation for n = 6 qubits, as a function of ε, as we tune the disorder

strength from ν = 1 to ν = 4. We attribute this the appearance of this local minimum

to the fact that, at low disorder, we expect the decision of whether to keep a given

interaction gate to be less important, since an interaction cannot extend the lightcone

beyond a ballistic one. The appearance of a local minimum is therefore consistent

with the emergence of a genuine many-body-localization transition. In Fig. 5.7, we

compare the output of our algorithm to that of a brute-force calculation at ε = 0.2,

the optimal value, for n = 6, averaged over 50 disorder realizations of strength ν = 10,

where we observe good agreement (we choose high disorder here so that features of

the lightcone can be seen within a region 6 qubits wide). In Fig. 5.8, we examine the

correctness of our algorithm in the opposite extreme, where the number of qubits

is large (n = 30) and the number of interaction gates is limited to two (at the red

circles), using our exact formula Eq. (5.30). We see excellent agreement between

the lightcone envelopes at disorder strength ν = 10, again at the optimized value of

ε = 0.2.
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Figure 5.9: (Color online) Lightcone transition from ballistic propagation at low
disorder (ν < νc ≈ 0.8) to logarithmically localized propagation at high disorder
(ν > νc), averaged over 103 disorder realizations. A characteristic feature of the
localized phase is a region where the OTO correlator is maximized (> 0.6) about
the location of the initial excitation.

5.4 Many-body location transition

Our main numerical result is shown in Fig.s 5.9 and 5.10, where we demonstrate that

our universal circuit model, consisting of alternating disordered Gaussian fermionic

evolution and interaction gates as in Fig. 5.1, exhibits a many-body-localization

transition in CXZ(t) as we tune the disorder strength across a critical value νc ≈ 0.8.

In Fig. 5.9, we plot the lightcone propagation for disorder values ν ∈ {0, 0.7, 0.8, 2}

across the critical disorder strength for 103 samples of the disorder. We note a clear
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Figure 5.10: (Color online) The OTO correlator value at a fixed qubit (s = 25)
for the four disorder values shown in Fig. 5.9. We see that below the critical value,
the OTO correlator approaches a limiting value of 1/

√
2, the Page scrambled

value (see main text), and a lower limiting value in the localized regime. We plot
this limiting value as a function of disorder strength (inset), where we see a clear
deviation from Page scrambling for disorder values ν ≥ νc ≈ 0.8.

emergence of a highly localized region of maximal value (CXZ ≈ 0.7), which persists

for all time in this figure when the disorder strength is greater than νc. This is

approximately the operator Page-scrambled value of 1√
2

[SS08], where the operator

X15(t) has equal weight for all four possible Pauli operators {Is,Xs,Ys,Zs} at a given

site s. That is, contracting X15(t) on one side of the thermofield double state Eq. (5.8)

and tracing over all but qubit s and s′ on subsystems r and r̃, respectively, would

give the 2-qubit maximally mixed state 1
4
I. Commutation with Zs keeps only the

weights on {Xs,Ys}, each of which are 1
4
. Adding these and taking the square root

gives the value of CXZ to be approximately 1√
2
. Our numerics are therefore consistent

with the fact that, within the localized region, the operator Xs is approximately

Page scrambled. Since this property is preserved under Clifford-gate evolution, such

as by our interaction gate, the existence of this Page-scrambled region justifies our

approximation to neglect the action of such gates acting inside the lightcone, since

they would have negligible effect on the lightcone interior.
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Figure 5.11: (Color online) The principal singular vector, u1(t), of the lightcone
in Fig. 5.9 for ν = 2, treated as a numerical matrix, and plotted on a logarithmic
(base 10) x-axis. Logarithmic scrambling is observed by this method for t ≥ 11π

4
, as

prior to this, the principal-singular-vector behavior is dominated by a ballistically-
spreading low-amplitude component.

In Fig. 5.10, we plot a spatial slice of each of the lightcones in Fig. 5.9 at s = 25.

We see that below the critical value of νc = 0.8, the limiting value is very nearly the

Page value 1/
√

2, while above the critical value, it begins to decrease with ν. In the

inset, we plot the limiting value (which we take as the maximum) as a function of

disorder strength, where we see that it clearly begins to deviate strongly from the

Page value as we increase the disorder past the critical value. In Fig. 5.11, we plot

the principal temporal singular vector of the ν = 2 lightcone in Fig. 5.9, treated as a

numerical matrix, against a logarithmic x-axis for t ≥ 11π
4

. The principal singular

component of this matrix is the closest product approximation to the lightcone in

Frobenius norm, and so this provides a robust, numerically inexpensive means of

analyzing the dynamical phase (see Appendix A.6 for details). Prior to t = 11π
4

, this

principal vector is dominated by a ballistically-spreading low-amplitude component

(see Fig. 5.9), but for t ≥ 11π
4

, we see the OTO correlator growth is linear on this

semi-logarithmic plot, indicating that the lightcone is logarithmic after this time. We

choose to neglect this early-time behavior since we are primarily interested in the
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long-time asymptotic growth of the OTO correlator for our model.

5.5 Discussion

We have demonstrated a transition to many-body localizing behavior in a universal

circuit model composed of Gaussian fermionic evolution and fermionic interaction

gates. This behavior is demonstrated by the transition to a logarithmic lightcone, seen

clearly in Fig. 5.9 when the disorder is greater than the empirically observed value

νc ∼ 0.8. Though we choose a specific model of alternating interactions and disordered

free-fermionic evolution for clarity of presentation, we emphasize that our algorithm

is completely general beyond this setting, since any universal quantum circuit can be

decomposed as a product of Gaussian fermionic evolution and interaction gates, and

does not require an ensemble average in principle.

For example, it would be interesting to see how the algorithm does to examine the

performance of actual near-term quantum algorithms, such as a quantum adiabatic

optimization algorithm (QAOA) [FGG14], which are characterized by a quantum

circuit of the repeating structure seen in Fig. 5.1, variationally optimized over some

parameterization of the repeated unit cell. As our algorithm is naturally suited to

such a structure, we therefore expect it to reveal new classes of systems which exhibit

localization in this setting as well.
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Chapter 6

Autonomous quantum-correlated

Maxwell demon

6.1 Introduction

With the discovery of his famous gedanken experiment, James Clerk Maxwell started

physics on the long road to the unification of thermodynamics with information

theory [MNV09, Jar13, PHS15]. Nearly 200 years later, with the ever-advancing

miniaturization of devices [BdLS+12, CL01, GLW+02, HCR+07, MHG+12], the idea

that one could exploit detailed knowledge of a system’s microstate as a thermodynamic

resource no longer seems like a mere idealization [VdBKL12, MQJ13, HBS14, SSBJ14,

SIKS15, Hor15, BS14]. To the contrary, we hope to someday soon push our technology

to the regime where quantum effects become relevant [RÅR+11, DJ13, Jac12, Cav90,

Scu01, HHH+05, HSAL11, Zur03, OHHH02, Seg08, LJR15, GHR+16]. Since there

are more delicate constraints on correlations in the quantum world, like strong

subadditivity of von Neumann entropy, as well as a variety of monogamy relations

(exclusive tradeoffs) among different kinds of correlations, it is timely to consider

a question unforeseen in Maxwell’s time: how can correlations be harnessed for the

performance of these devices in the fully general quantum setting?
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This significant question has been studied extensively from different perspectives,

and it has been mentioned that correlations can yield an advantage in performing cer-

tain thermodynamic tasks, such as work extraction [PLHH+15, dRHRW16, FWU13,

OHHH02, RASK+14, BHL+14, DL09, GKNBK15, HPLHA13]. In this chapter, we

focus on two key challenges: (i) accounting for the contribution of correlations to the

second law of thermodynamics, and (ii) comparing quantum and classical correlations

as thermodynamic resources on the same footing. Regarding (i), it is important

to notice that the system is coupled to external degrees of freedom in quantum

open-system dynamics, and the resulting correlations can be utilized, in principle,

by an external, classical agent to “measure” the system and gain knowledge in the

framework of feedback control [SIKS15]. However, this utilization of correlations

should be distinguished from the way an internal agent like a quantum Maxwell

demon, or a part of the quantum system, handles correlations, since the latter is

the scenario we are interested in here. Regarding (ii), the majority of prior works

[RÅR+11, Zur03, Cav90, Llo97, Jac12, PLHH+15, Def13] defines quantum and clas-

sical Maxwell demons in such a manner that the classical version is treated as a

limiting case (typically with a fixed basis). This obviously makes the classical demon

at most as powerful as the quantum one, but it may not immediately imply that

classical correlations are at most as useful as quantum correlations for the demon

who can handle both kinds.

To address the point (i), we study a quantum system which exhibits an information-

work tradeoff independently of any external agent. Following a pioneering work of

the classical autonomous Maxwell demon studied in Ref. [MQJ13], we consider a

scenario in which a qubit, in contact with two heat reservoirs of different temperatures,

accesses sequentially many memory qubits, and analyze their correlations in the fully

quantum regime. We think this to be among the simplest models to exhibit the

thermodynamic features akin to a quantum Maxwell demon. For the point (ii), as

defined formally in the next section, we stress that our demon is identical regardless

of the nature of information in its memory. This allows us to unambiguously define

work performed by the demon, since there has otherwise been difficulty in doing so
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due to the intrinsic “uncertainty” of quantum systems [GEW16, GA15, Åbe13, BT06,

GH13, HO13, SM10, SSP13, DRRV11, WNW15].

Here, we discover a new nonequilibrium phase of our demon: refrigeration against

a thermal gradient coincident with memory erasure at the expense of correlations. We

find that correlations enable our demon to exploit quantum coherence to realize an

advantage over its classical counterpart. To handle the complexity of correlations, we

apply a tool from condensed matter physics — the matrix product density operator

formalism — which makes tractable our calculations in the fully quantum-correlated

regime. This technique exploits the fact that correlations built under local interactions

change locally [VGRC04, ZV04, Eis13, Or14]. It thus gives a powerful tool for treating

correlations in the thermodynamic framework, a task which has otherwise remained

formidable. We expect our proof-of-principle to inspire a cross-fertilization of quantum

many-body physics and quantum information with quantum thermodynamics.

Section 6.2 is an introduction and overview of the autonomous quantum demon.

In section 6.3.1, we apply techniques from quantum information theory to derive

its effective second law constraint. We give an analytic solution using our matrix

product density operator formalism in section 6.3.2. In section 6.3.3, we demonstrate

the existence of a phase of simultaneous refrigeration and erasure in the presence of

correlations, and in section 6.3.4, we demonstrate the quantum advantage. Finally,

we close with a discussion in section 6.4.

6.2 Overview of the Model

Our autonomous Maxwell demon (Fig. 6.2) is a generalization of the model proposed

in Ref. [MQJ13]. The “demon” D is a qubit spanned by orthonormal basis states

|g〉 and |e〉 with energy gap Ee − Eg = ∆. It interacts sequentially with qubits

in an infinitely long one-dimensional array M, called the memory. The qubits in

M are energetically degenerate and may be initially correlated, though they are

noninteracting amongst themselves. The memory thus acts only as an informational,
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Figure 6.1: A snapshot of our quantum Maxwell demon. The demon qubit D
interacts sequentially with each qubit in a memory M via an open-system process
in contact with two thermal reservoirs of different temperatures. For a given
interaction, M is the currently interacting qubit, M̄ the subsystem of previously
interacting qubits, and M̃ that of qubits yet to interact. The joint state of
DM is described by a matrix product density operator with periodic boundary
conditions, though we take sufficiently many interactions that the system has
reached a periodic steady state. Interaction with the shared system D allows the
possibility to build further correlations within M̄ , hence the double-line.

and not an energy, resource. When discussing a given interaction, we will refer to

the interacting memory qubit simply as M , the system of memory qubits which have

previously interacted as M̄ , and that of those which are yet to interact as M̃ . For

each such qubit, we define a “classical basis” {|0〉, |1〉}. In what follows, we choose the

qubit Pauli-z operator of D, ZD, to be diagonal in its energy eigenbasis and that of

M , ZM to be diagonal in its classical basis. We are free to choose a phase convention,

which we keep fixed, in defining the Pauli-x and -y operators, X and Y respectively,

of these systems. We will also need

2σ0 = I + Z 2σ+ = X + iY (6.1)

2σ− = X − iY 2σ1 = I − Z (6.2)
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e

Th Tc

Ee - Eg = Δ

Figure 6.2: The transition diagram of an individual interaction between the demon
qubit and a memory qubit. Solid arrows represent possible stochastic transitions,
allowed by exchanging a unit ∆ of energy with the associated reservoir, with
transition rates satisfying the detailed balance condition. For example, intrinsic
transitions coupled with the thermal reservoir of temperature Th change only the
state of the demon, whereas cooperative transitions coupled with that of Tc(< Th)
change the joint state of the demon and the memory qubit, leaving a record on
the memory. The dashed arrows indicate the cyclic processes which refrigerate
(pump energy against the gradient), with the horizontal dot-dashed transitions
provided by the memory shift. Note both refrigerative processes result in a net
flip of the memory qubit from “0” to “1”.

on these systems as well. Finally, we will use

ζ ≡
〈
σ0
M

〉
−
〈
σ1
M

〉
= 〈ZM〉 (6.3)

as a shorthand for the population bias of M in its z basis.

The device operates cyclically; D interacts with M for an interaction time τ before

M moves by one site to the right, and the sequence repeats. Each interaction consists

of two simultaneous processes, each in contact with a different thermal reservoir. In

the first, the demon undergoes intrinsic transitions, wherein it exchanges a unit ∆ of

energy with a “hot” reservoir at temperature Th. In the second, the joint system DM

undergoes cooperative transitions, wherein the demon exchanges ∆ of energy with a

“cold” reservoir at temperature Tc < Th, and the interacting qubit is flipped. Intrinsic

transitions occur with rates Γg→e and Γg←e, and cooperative transitions with rates

Γg0→e1 and Γg0←e1. These rates are chosen so as to satisfy detailed balance
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Γg→e
Γg←e

= e−βh∆ (6.4)

Γg0→e1
Γg0←e1

= e−βc∆, (6.5)

where the βi = 1/Ti are the inverse temperatures, and we have chosen units such that

the Boltzmann factor is one. We thus describe each transition by a Lindblad jump

operator

Lg→e =
√

Γg→eσ
−
D ⊗ IM Lg0→e1 =

√
Γg0→e1σ

−
D ⊗ σ

−
M (6.6)

Lg←e =
√

Γg←eσ
+
D ⊗ IM Lg0←e1 =

√
Γg0←e1σ

+
D ⊗ σ

+
M . (6.7)

Finally, we define

ε ≡ tanh

[
(βc − βh) ∆

2

]
(6.8)

as a parameter quantifying the magnitude of the thermal gradient.

Formally, our interaction sequence is generated by the time-dependent Lindbladian

LDM(t) =
∞∑
j=1

L(j)
DMΘ(jτ − t)Θ [t− (j − 1)τ ] , (6.9)

where L(j)
DM is the time-independent interaction Lindbladian between D and the

jth qubit in M, described by the aforementioned Lindblad jump operators (see

Appendix C.1 for details). Θ is the Heaviside theta function, and so these factors

“switch on” the interaction L(j)
DM for t ∈ [(j − 1)τ , jτ). In the limit of many interactions,

the system reaches a periodic steady state ρ
(ss)
DM, for which

ρ
(ss)
DM = ρDM (nτ) = ρDM [(n+ 1)τ ] , (6.10)
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where

ρDM(t) ≡ Φt [ρDM(0)] = e
∫ t
0 LDM(s)ds [ρDM(0)] (6.11)

is the state of the full system at time t, and n ∈ Z+ is a sufficiently large positive

integer. In what follows, we will only be interested in the performance of the device

over a single interaction in periodic steady state. We therefore omit the explicit time

dependence where appropriate and denote quantities corresponding to the outgoing

qubit in the interaction as primed and those to the incoming as unprimed (e.g.

ρM ≡ ρM(nτ) and ρ′M ≡ ρM [(n+ 1)τ ]). Similarly, we will refer to the corresponding

interaction Lindbladian simply as LDM , dropping the qubit label for convenience.

There are two special cases of this model which are of interest to us. The first is

the classical case, in which the evolution during each interaction is constrained to

population dynamics in the eigenbasis of ZD⊗ZM . The interaction LDM is “classical”

in the sense that, if the initial state of DM is diagonal in this basis, then the evolution

will remain so throughout. That is to say that the evolution does not mix together

populations and coherences in this basis. Additionally, it drives the state of DM to a

unique fixed point ρ
(fp)
DM = ρ

(fp)
D ⊗ ρ(fp)

M , which is a product of classical states of D and

M .

The second special case is the uncorrelated case, in which the state of M is initially

a product, and we neglect any correlations that are built over repeated interactions

with the demon. Though the full dynamics, generated by LDM(t), is a sequence of

local quantum operations, it may either build or consume correlations in the full

state, since there is a common degree of freedom, D, between all of them. In general,

one or both of these special cases may hold.

Figure 6.2 shows two cyclic processes over which energy is pumped against the

thermal gradient (dashed arrows). The horizontal bit-flip transitions (dot-dashed

arrows), which complete each cycle, are provided by the translation of the memory.

If the sum of the probabilities of these processes is greater than that for the reverse
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processes, then there is a net flow of energy against the gradient, and we say the

system is refrigerating. Note that both processes flip the qubit from the |0〉 state to

the |1〉 state, so a record of the refrigeration is left on the memory. We thus define

Qh→c ≡
∆

2

(
ζ ′ − ζ

)
(6.12)

as the heat flow from the hot reservoir to the cold reservoir during the interaction,

which is negative when the system is refrigerating. Note that this property of the

model removes any ambiguity in our definition of work. We also define

∆SM ≡ S(ρ′M)− S(ρM), (6.13)

where

S(ρ) ≡ − tr (ρ log ρ) (6.14)

is the von Neumann entropy. The change ∆SM represents the entropy dumped onto

the memory. When ∆SM < 0, the memory is being erased.

In the uncorrelated classical regime, our model reduces to that of Ref. [MQJ13],

where it was first introduced. There, it was shown that

Qh→c(βc − βh) + ∆SM ≥ 0, (6.15)

in this regime. We refer to Eq. (6.15) as the local Clausius inequality. It represents a

strict tradeoff between the refrigeration (Qh→c < 0) and erasure (∆SM < 0) phases

of the device. This tradeoff can be understood geometrically. In the absence of
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correlations or quantum coherence, the interacting qubit is driven monotonically

along the z-axis of the Bloch sphere to its fixed point, ρ
(fp)
M , which has positive bias

ζ(fp) = ε > 0. Erasure and refrigeration correspond to approaching this fixed point

from ζ < ε and ζ > ε, respectively. So long as this evolution is monotonic, the

tradeoff is necessarily strict.

It is noted in Ref. [MQJ13] that when correlations cannot be neglected, this result

generalizes to

Qh→c(βc − βh) + ∆SM ≥ ∆ID:M , (6.16)

where

∆IA:B = I(A : B)′ − I(A : B) (6.17)

is the change in the quantum mutual information

I(A : B) ≡ S(ρA) + S(ρB)− S(ρAB). (6.18)

∆ID:M can be either positive or negative in general, so the tradeoff in Eq. (6.15)

becomes no longer strict. This suggests the possibility of a third thermodynamically

nontrivial phase, in which the device is refrigerating and erasing simultaneously. We

expect this to occur when correlations between D and M induce non-monotonic

evolution on M alone. However, Eq. (6.16) is inconvenient in that it does not involve

only terms that can be calculated from the evolution on the memory alone and so

requires knowledge of the periodic steady state Eq. (6.10). One of our contributions

is to provide a constraint free of this limitation, which is also strict in the presence of

correlations and makes their utility as a thermodynamic resource manifest.



Chapter 6. Autonomous quantum-correlated Maxwell demon 102

6.3 Main Results

6.3.1 Global Clausius Inequality

Our first result is to recover the Second Law in terms of the relevant thermodynamic

variables in the fully quantum correlated case. This is the global Clausius inequality,

which we state as a theorem

Theorem 3 The global Clausius inequality,

Qh→c(βc − βh) + ∆SM −∆IM :M̃ ≥ 0, (6.19)

which represents an information-work tradeoff of the thermodynamic quantities de-

fined above, holds for a periodic steady state in the fully quantum correlated regime.

Accordingly, simultaneous refrigeration and erasure is possible only if it is attended

by the consumption of correlations.

Eq. (6.19) represents a strict three-way tradeoff between refrigeration, erasure, and

the generation of correlations ∆IM :M̃ , all of which may be calculated from knowledge

of the initial and final states of the memory alone. The minus sign on ∆IM :M̃ places

consumption of correlations as a resource; the more negative this term, the more

negative the local terms can be.

To provide a sketch of the proof of Theorem 3 (full details can be found in

Appendix C.2), we first note

Qh→c(βc − βh) + ∆SMM̃ ≥ ∆ID:MM̃ , (6.20)

which follows in the same manner as Eq. (6.16) from monotonic evolution to the fixed

point ρ
(fp)
DM , but including the system M̃ as an ancilla. Next, we have
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∆ID:MM̃ = I(D : MM̃)′ − I(D : MM̃) (6.21)

≥ I(D : M̃)′ − I(D : MM̃) (6.22)

∆ID:MM̃ ≥ I(D : MM̃)− I(D : MM̃) = 0. (6.23)

The first inequality follows from strong subaddivity: mutual information is nonin-

creasing under partial trace. The last step follows from the periodic steady state

condition, Eq. (6.10). That is, the mutual information between D and the qubits

yet to interact — MM̃ before the interaction and M̃ after the interaction — is a

constant across interactions in steady state. Thus

Qh→c(βc − βh) + ∆SMM̃ ≥ 0, (6.24)

and using

∆SMM̃ = ∆SM + ∆SM̃ −∆IM :M̃ , (6.25)

where ∆SM̃ = 0 due to the fact that M̃ does not participate in the interaction,

therefore gives the result.

We see that simultaneous refrigeration and local erasure is not forbidden by

Eq. (6.19) so long as correlations are consumed, but it remains to be seen that our

model actually exhibits such behavior. We address this in the following sections.

6.3.2 Matrix Product Density Operator Solution

The matrix product state formalism has been very successful as an efficient rep-

resentation of the quantum correlations present in a one-dimensional spin-chain

[FNW92, Vid03, PGVWC07]. Because dynamics in contact with a thermal bath are
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dissipative, we need a generalization of this formalism to mixed states and classical cor-

relations. This is the matrix product density operator (MPDO) formalism, introduced

in Ref.’s [VGRC04, ZV04], and further developed in Ref.’s [BL14, WJS+16, CCBn15].

The MPDO description of a mixed state of N d-dimensional spins with periodic

boundary conditions is given by

ρMPDO =
∑
~i

tr

(
P

N∏
j=1

Aij

)
N⊗
j=1

σij , (6.26)

where the ij ∈ {0, 1, +,−}, and the Aij are χj−1 × χj matrices corresponding to the

spin at site j. P is the path-ordering operator, which places operators of higher

j to the left in the product. It was shown in Ref. [VGRC04] that the description

Eq. (6.26) can be obtained from a corresponding pure matrix product state by tracing

out ancillary degrees of freedom on each of the spins. It thus reduces to those for

pure matrix product states and classically correlated distributions as special cases.

Because we are interested in the periodic steady state behavior of our model, we

restrict ourselves to the single-site translationally invariant case where the Aij are

independent of the site label j. We thus have that the χj = χ are all equal. This

quantity is known as the bond dimension of the MPDO, which quantifies the degree to

which the state is correlated. Note that, in this representation, the state is specified

by d2χ2 complex parameters, an exponential improvement — when bond dimension

is polynomial in N — over the O(dN) complex parameters required to specify each

of the matrix elements of ρMPDO individually.

In our model, we let ρM(0) = ρMPDO be the parameterization of the initial quantum

correlated state of the memory M, which is uncorrelated with the initial state of D.

We first solve the Lindblad master equation for an individual interaction

dρDM
dt

= LDM (ρDM) (6.27)

analytically in Mathematica, obtaining an expression for the quantum operation
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Figure 6.3: A pictorial representation of our time evolution method, which relies
on a matrix product density operator (MPDO) description, for n = 3. On the left
is a schematic depiction of our interaction sequence, with quantum operations
vectorized so as to let us represent the sequence as a quantum circuit. The shared
degree of freedom is the demon qubit D, and the remaining degrees of freedom are
the memory M. We indicate that a particular qubit is not acted upon by a given
quantum operation by drawing the qubit’s line over the quantum operation’s
box. We parameterize the sequence as a matrix product operator (MPO), shown
on the right, with physical indices labeled according to the corresponding qubit
degrees of freedom.

φτ ≡ eLDM τ . (6.28)

We then update our initial state ρDM(0) to ρDM(nτ) ≈ ρ
(ss)
DM according to the sequential

evolution, Eq. (6.11), using the method schematically depicted in Fig.s 6.3 and 6.4.

Here, we have vectorized the Hilbert space so as to represent quantum operations as

matrices and density matrices as vectors (see Ref. [ZV04] for details). In Fig. 6.3, we

apply a generalization of the result from Ref. [SSV+05] to parameterize our series of

sequential quantum operations as a matrix product operator (MPO). Fig. 6.4 shows

the update, which is performed by simply multiplying the initial MPDO, ρDM(0),

by the MPO, Φnτ . This scheme permits us to only store 3× 4D2
(b) parameters: the

tensor corresponding to MM̃ , that to M̄ , and a boundary tensor to D. The full

details are given in Appendix C.3.
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Figure 6.4: We multiply our initial MPDO, for which the state of M is transla-
tionally invariant and uncorrelated with that of D, by the MPO describing our
interaction sequence to obtain an approximation to the steady state. This is done
by performing a sequence of index contractions, shown on the left as dotted boxes.
The approximation to the steady state, which is valid for sufficiently large n, is
shown as the resulting MPDO on the right. All boundary conditions are taken to
be periodic.

We next apply the classicality of our interaction, φτ , to simplify our MPDO

description for ρ
(ss)

DMM̃
in terms of operationally-defined quantities as our second main

result

Theorem 4 The periodic steady state of DMM̃ prior to the interaction on M may

be expressed as

ρ
(ss)

DMM̃
=
∑
~k

p~kρ
(~k)
D ⊗ ρ

(~k)

MM̃
, (6.29)

where the ~k ∈ {0, 1}n are classical bit strings of length n, which correspond to classical

records on the memory subsystem M̄ . p~k is the probability of the record ~k (
∑

~k p~k = 1),

and ρ
(~k)

MM̃
is the reduced state of MM̃ conditioned upon that record. ρ

(~k)
D is the reduced
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state of D upon interacting with the string of uncorrelated classical pure qubits specified

by ~k, which is classical.

The proof and formal expressions for p~k, ρ
(~k)
D , and ρ

(~k)

MM̃
can be found in Appendix

C.3. Theorem 4 says that the steady state is always separable and given by a convex

combination over all possible classical histories of the memory. Note that the memory

part ρ
(~k)

MM̃
could contain quantum coherence. It is convenient in that it expresses the

steady state ρ
(ss)

DMM̃
in terms of the input (the p~k and the ρ

(~k)

MM̃
) and the interaction

(the ρ
(~k)
D ) separately. This will allow us to engineer states of M so as to achieve a

desired thermodynamic behavior. It is also a useful analytic tool when it is tractable

(i.e. there are relatively few terms in the sum). We further demonstrate its utility by

using it to prove that the demon’s performance in steady state is invariant under local

phase rotations on the memory, which we state formally in the following corollary

The Clausius terms, Qh→c, ∆SM , and ∆IM :M̃ , take the same values for the input

states ρM(0) and U z,ϕM [ρM(0)] in steady state, where

U z,ϕM (ρM) =
(
e−i(ϕ/2)Z

)⊗n
ρM

(
ei(ϕ/2)Z

)⊗n
(6.30)

constitutes an individual rotation about the z axis applied transversally to every

qubit in M.

To see this, we first note that we calculate ρ
(ss)

DMM̃
for U z,ϕM [ρM(0)] by making the

replacement

ρ
(~k)

MM̃
7→ U z,ϕ

MM̃

(
ρ

(~k)

MM̃

)
(6.31)

in Eq. (6.29). This is because transversal phase rotations do not affect the probabilities

of classical measurements p~k, nor the states ρ
(~k)
D by their definition. Furthermore, the

states ρ
(~k)
D are classical and so invariant under phase rotation. We thus have
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∑
~k

p~kρ
(~k)
D ⊗ U

z,ϕ

MM̃

(
ρ

(~k)

MM̃

)
=
∑
~k

p~k U
z,ϕ

DMM̃

(
ρ

(~k)
D ⊗ ρ

(~k)

MM̃

)
(6.32)

∑
~k

p~kρ
(~k)
D ⊗ U

z,ϕ

MM̃

(
ρ

(~k)

MM̃

)
= U z,ϕ

DMM̃
(ρDMM̃) . (6.33)

That is

(ID ⊗ U z,ϕM )(ρ
(ss)
DM) = U z,ϕDM(ρ

(ss)
DM), (6.34)

where I is the identity superoperator. We see from Eq. (6.34) that LDM commutes

with U z,ϕM on ρ
(ss)
DM , as the cooperative transition term commutes with U z,ϕDM , and

the intrinsic transition and Hamiltonian terms commute with U z,ϕM (Appendix C.1).

Corollary 6.3.2 therefore follows from the fact that all of the terms in Eq. (6.19) are

invariant under transversal phase rotations on ρMM̃ and ρ′MM̃ .

6.3.3 Simultaneous Refrigeration and Erasure

We first examine a special case, which is simple enough that the calculation of

Eq. (6.29) is analytically tractable but also correlated enough to reveal nontrivial

thermodynamic behavior.

Consider the family of Greenberger-Horne-Zeilinger (GHZ)-correlated states

parametrized by a bias ζ,

|ψ〉M =
1√
2

(√
1 + ζ|0〉⊗N +

√
1− ζ|1〉⊗N

)
, (6.35)

with N sufficiently large to allow the system to reach a periodic steady state. There

exists a non-equilibrium phase of simultaneous refrigeration (Qh→c < 0) and erasure
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of memory (∆SM < 0), when the memory is initially prepared to be the quantum

entangled state |ψ〉M with a bias ζ and a temperature gradient ε in the region

illustrated in Fig. 6.5. We see that the reduced state on each qubit for any state in

the family Eq. (6.35) is locally classical with bias ζ, and that for ζ = ±1, |ψ〉M is a

product. For ζ ∈ (−1, 1) however, the state is entangled, with maximal entanglement

at ζ = 0.

For this family, we calculate the Clausius terms in Eq. (6.19) analytically by

letting the system undergo n interactions — so that it reaches periodic steady state

— and tracing out M̄ . In Eq. (6.29), only two classical histories appear in the sum,

and we have

ρMM̃ =
∑

k∈{0,1}

[
1 + (−1)kζ

2

](
σk
)⊗(N−n)

, (6.36)

and

ρ′MM̃ =
∑

k∈{0,1}

[
1 + (−1)kζ

2

]
ρ
′(k)
M ⊗

(
σk
)⊗(N−n−1)

, (6.37)

where

ρ
′(k)
M = trDM̄

{
Φ(n+1)τ

[
ρD(0)⊗ σkM ⊗

(
σk
)⊗n
M̄

]}
(6.38)

is the state of M following its interaction for an uncorrelated tape of pure qubits in

state |k〉, in periodic steady state. The global entropy change ∆SMM̃ then takes the

particularly simple form

∆SMM̃ =
1

2

[
(1 + ζ)S(ρ

′(0)
M ) + (1− ζ)S(ρ

′(1)
M )
]

, (6.39)
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Note that this quantity is always nonnegative. By comparison, the local quantities

∆SM = S

[(
1 + ζ

2

)
ρ
′(0)
M +

(
1− ζ

2

)
ρ
′(1)
M

]
− S

[
1

2
(I + ζZ)

]
(6.40)

and

Qh→c =
∆

2

[(
1 + ζ

2

)
ζ ′(0) +

(
1− ζ

2

)
ζ ′(1) − ζ

]
, (6.41)

where ζ ′(i) = tr
(
ZMρ

′(i)
M

)
, may be either positive or negative. Using the expressions for

the ζ ′(i) given in Ref. [MQJ13], we analytically construct an analogous nonequilibrium

phase diagram, Fig. 6.5, for τ = 0.3 (in units of 1/∆, where we have set ~ = 1). We see

that the effect of the correlation is to introduce a region of simultaneous refrigeration

and erasure near the uncorrelated phase transition triple point at ε = ζ = 0. ζ thus

decreases below zero over the interaction in this region, indicating a deviation from

monotonicity in the reduced evolution of M . This is the primary role of correlations in

our thermodynamic model: in periodic steady state, initial correlations in M induce

classical correlations between D and M to prior to their interaction, allowing ρM to

pass through hitherto inaccessible regions of the Hilbert space in its evolution.

We examine this more closely in Fig. 6.6, where we plot the quantities in the local

Clausius inequality, Eq. (6.15), for the input given in Eq. (6.35) as a function of τ

for ε = 0.01 and ζ = 0 as compared to the corresponding terms for product input

with the same reduced state on every qubit. In Fig. 6.7, we plot the generation of

correlations ∆IM :M̃ = ∆SM −∆SMM̃ . We first note that, though correlations are

always being consumed, the demon is not always able to use this to its advantage.

This is as we expect, since the behavior must approach that of the uncorrelated case

as τ → ∞. For τ . 0.54, we see increasing simultaneous refrigeration and erasure

with additional interaction time. Past τ ≈ 0.54, additional interaction time does not

afford better thermodynamic performance, and eventually, we see that correlations
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ζ

ε
Refrigeration

Erasure

Both

Figure 6.5: The nonequilibrium phase diagram for input states from the
GHZ-correlated family described in Observation 6.3.3, analogous to Fig. 2 in
Ref. [MQJ13], for τ = 0.3 (units of 1/∆ for ~ = 1). For ζ = ±1, the input is a
product, and it is entangled for ζ ∈ (−1, 1), with the strongest correlations at
ζ = 0, for which it is the GHZ state. Note that, for every state in this family, the
reduced state of any qubit is diagonal in the z basis. We see that correlations
shift the phase boundaries so as to induce a region of simultaneous refrigeration
and erasure near the uncorrelated phase transition triple point (ε = ζ = 0).

actually begin to hinder the demon’s erasure at τ ≈ 1.6. Finally, we see that the

demon’s behavior approaches that of the uncorrelated case as τ becomes large, as we

expect.

We see from the diagonal form of ρMM̃ that we would have had the same effect if

the input had been prepared in the equivalent classically correlated (i.e. diagonal in

the computational basis) state

ρ
(c)
M =

1

2

[
(1 + ζ)

(
σ0
)⊗N

+ (1− ζ)
(
σ1
)⊗N]

. (6.42)
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Figure 6.6: Dependence of the Clausius terms, Qh→c(βc − βh) and ∆SM , on the
interaction time, τ when ε = 0.01 in comparing the GHZ-state (ζ = 0) to its
un-correlated counterpart (the product of its single-qubit reduced states, which
are all maximally mixed). The reduced evolution of the interacting memory qubit
is monotonic when there is a strict tradeoff of refrigeration and erasure; both
cannot be simultaneously negative. This is obeyed by the uncorrelated input, but
the correlated input shows a departure from monotonicity for τ . 2.2. For long
enough interaction times, the effect of correlations is “washed out” as the terms
for correlated input approach the values for their uncorrelated-input counterparts.

We are then led to ask: is there anything to be said for the role of quantumness in

this model? To address this, we consider another example, which will give our final

result.
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Figure 6.7: Generation of correlations ∆IM :M̃ between the interacting qubit M
and the qubits M̃ yet to interact, as a function of the interaction time τ , for the
GHZ input of Fig. 6.6. τ is in units of 1/∆ for ~ = 1, and ε = 0.01. Correlations
are always being consumed, and so this term offsets the others in the Clausius
inequality such that simultaneous refrigeration and erasure does not violate the
second law for this input family. The dotted line is at ∆IM :M̃ = − ln 2 and is
meant to provide a visual aid, as it represents the maximal possible consumption
of correlations for this state.

6.3.4 Quantum Thermodynamic Advantage

As a final result, we observe that correlations can enable our model to exploit quantum

coherence to gain a thermodynamic advantage. Using an arbitrary orthonormal ~n

basis,

|+~n〉 = cos (θ/2) |0〉+ eiφ sin (θ/2) |1〉, (6.43)

|−~n〉 = sin (θ/2) |0〉 − eiφ cos (θ/2) |1〉, (6.44)

with θ ∈ [0,π], and φ ∈ [0, 2π), we define two states: (i) the GHZ-correlated input
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family in an ~n basis ρ
(q)
M = |ψ〉〈ψ|ψM such that

|ψ〉M =
1√
2

(√
1 + ζ~n|+~n〉⊗N +

√
1− ζ~n|−~n〉⊗N

)
, (6.45)

with N sufficiently large to allow the system to reach steady state, and (ii) its

corresponding classically-correlated family,

ρ
(c)
M =

∑
~k

(
N⊗
j=1

σkj

)
ρ

(q)
M

(
N⊗
j=1

σkj

)
(6.46)

with the kj ∈ {0, 1}, obtained by eliminating all off-diagonal matrix elements from ρ
(q)
M

in the z basis. The quantum entangled state ρ
(q)
M is advantageous in memory erasure

over the classically-correlated mixed state ρ
(c)
M , whose bias for every single-qubit

reduced state is identical to that of ρ
(q)
M .

This comparison might correspond to the scenario where the experimenter only has

the ability to prepare correlations in a fixed basis, versus that where the experimenter

has this ability in addition to the ability to perform phase rotations in an orthogonal

basis. Thanks to Corollary 6.3.2, we know that this second ability is the only addition

over the first needed to observe the full range of thermodynamic performance. Because

the states ρ
(q)
M and ρ

(c)
M allow for all possible classical histories with some probability,

the demon’s performance cannot be easily calculated with Eq. (6.29) as with Eq. (6.35).

We thus obtain our results numerically using the MPDO description.

In Fig. 6.9, we plot the exact region for which the advantage exists (i.e. ∆S(q) <

∆S(c) and ∆S(q) < 0). We see here clearly the azimuthal symmetry of Corollary 6.3.2

and that this advantage sharply disappears as θ → 0. In Fig. 6.9 for ε = 0.01, we show

the difference in erasures between the quantum and classical inputs as a function of

τ . The quantum coherent state ρ
(q)
M has an advantage when this quantity is negative.

This plot bears some resemblance to Fig. 6.6. This is no coincidence. In the same

way as classical correlations in DM can allow the Bloch vector of M to momentarily

move away from its fixed point along the z-axis, they can also allow it to do so in the
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Figure 6.8: The 3-dimensional surface whose enclosure is the set of local Bloch
vectors for which the locally coherent GHZ-correlated family attains a quantum
erasure advantage over its corresponding classically correlated family, whose
off-diagonal elements in the z basis have been projected out. Here, τ = 0.3 and
ε = 0.01. We see clearly the predicted azimuthal symmetry about the z-axis, and
the advantage vanishes along this axis as we expect, since two inputs are the
same in this case.

x-y plane, though the effect is smaller by several orders of magnitude. This deviation

from monotonicity appears as an erasure advantage since our interaction φτ treats

the classical and coherent components of the evolution separately. The refrigerative

performances of the two inputs are thus identical as we expect.

What is remarkable is that even though both ρ
(q)
M and ρ

(c)
M share the same classical

histories in Eq. (6.29), the small amount of coherence on the reduced state ρ
(q)
M seems

to be able to seed the production of more coherence. This is especially surprising given

the fact that our dynamics φτ also has many classical features. The explanation is

that the coherences on the conditional states of M for each classical history interfere

such that there is more coherence on ρM after the evolution than before.
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Figure 6.9: The difference between the erasure performance for the quantum
correlated locally coherent input state and that of its decohered counterpart for
ε = 0.01, φ = π/2, θ = 0.01, and ζ~n = −0.02 as a function of the interaction time
τ . A quantum advantage is demonstrated when this quantity is negative. We see
that the advantage is several orders of magnitude smaller and lost much faster
than the advantage afforded by classical correlations of Fig. 6.5

6.4 Conclusion

We have shown that our model of an autonomous Maxwell demon can utilize cor-

relations in its memory to gain a thermodynamic advantage over its uncorrelated

counterpart. That is, as predicted by the global Clausius inequality, it performs

simultaneous refrigeration and erasure, which is impossible without correlations, and

exploits quantum coherence to enhance the performance of memory erasure. This

work represents a proof-of-principle, and we hope that it paves the way to invent a

quantum thermodynamic device which is more well-suited to utilizing correlations.

There are two concluding discussions. First, in this work, entanglement did not

demonstrate a genuine advantage over classical correlations. This is because of the

long-range nature of GHZ correlations. Namely, tracing out a distant subsystem gives

a classically correlated state, but does not affect the thermodynamic performance,

which is determined by the local interaction between the demon qubit and one of
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memory qubits. However, as long as we explored shortly, short-range correlated states

appear to lose the simultaneous refrigeration-erasure phase. So more demanding

numerical calculation seems to be needed to generalize beyond these simple initial

states, to address the question about strict supremacy of entanglement.

Second, thanks to the simplicity of our model, it could provide a feasible ex-

perimental test of quantum coherence as a thermodynamic resource. The au-

tonomy of the model is convenient to brings it closer to the realm of quantum

heat engines [SZAW03, GEV02, LPS10, CRVdB12, EKLVdB12, GKAK13, VFG13,

BR13, CPAA13, CPAA14, Ali14, LBA15], and in particular those considered in

Refs. [SGKA13, VW09, VSHW11]. These experiments relate to a two-level system

(TLS) in a cavity with a buffer gas, driven by a laser field. The demon in this case

is the TLS, while the two thermal reservoirs are the buffer gas and electromagnetic

modes of the cavity. The memory is realized by the laser. Our work demonstrates

that even classical correlations in the laser could provide an advantage in refrigerating

the cavity, as would correlated coherences in the energy eigenbasis of the TLS. Thus,

this model might represent a promising step in designing small heat engines which

take advantage of correlations.
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Chapter 7

Summary and Outlook

We have shown in this thesis how an understanding of propagation in quantum

many-body systems is essential to the design and implementation of a quantum

computation. With our first two main results, we demonstrated an application of the

many-body-localization transition of condensed matter physics to the performance

of a quantum computer. The essential idea behind this thesis is that, when the

dynamics of a quantum computation are too disordered, propagation in the quantum

system is limited to a regime where it can be simulated classically. In Chapter 4,

we demonstrated how this could be done for computations which are simulated by

noninteracting particles, and we extended to the interacting regime in Chapter 5. A

key feature of many-body localization in the latter example is localization at a critical,

nonzero value of the disorder. Finally, in Chapter 6, we, with the aid of matrix

product density operators, were able to demonstrate how the presence of quantum

correlations can enhance the performance of an autonomous quantum Maxwell demon.

One relevant question for future work is how localization affects other quantum

computational tasks, and the first that comes to mind is error-correction. In quantum

error-correction, the quantum information of interest is actually encoded in degrees of

freedom which are inaccessible to natural decoherence processes, and so it is protected

from the errors caused by these processes. A notable class of examples is the ground

states of topologically ordered systems, such as the Kitaev toric code, which are
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highly entangled. It would of-course be useful if the collective many-body dynamics

of such systems also forced these error processes to localize, allowing us to quickly

correct them before they could corrupt our logical quantum information.

Another clear application that we touched on in Chapter 5 is that of quantum adia-

batic optimization algorithms (QAOA). These algorithms are generated by repetitions

of a unit-cell unitary, which is then optimized to solve a particular computational

task. It has been shown, even for low-depth instances, that these algorithms possess

an advantage over classical computers for some problems. Naturally, we expect

localization to hinder the performance of these algorithms, since that would generally

render them classically simulatable. Nevertheless, it would be interesting to connect

a transition in classical complexity to the many-body localization transition exhibited

by such algorithms, as localizing QAOA circuits could reveal easy instances of classical

problems that we were hitherto unaware of.
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Appendix A

“Classical simulation of quantum

circuits by dynamical localization”

A.1 Proof of Theorem 4.1

For convenience, we begin by first quickly re-deriving Eq. (3.7) here. Let A and B be

two Pauli operators (i.e. A† = A, B† = B, and A2 = B2 = I) and U be a matchgate

unitary, then we have

||[A,U †BU ]||2F = tr{[A,U †BU ]†[A,U †BU ]} (A.1)

= − tr{[A,U †BU ]2} (A.2)

= − tr
[
A
(
U †BU

)
A
(
U †BU

)
− A

(
U †BU

)(
U †BU

)
A

−
(
U †BU

)
AA

(
U †BU

)
+
(
U †BU

)
A
(
U †BU

)
A
]

(A.3)

= tr
[
2I − 2A

(
U †BU

)
A
(
U †BU

)]
(A.4)

||[A,U †BU ]||2F = 2
{

2n − tr
[
A
(
U †BU

)
A
(
U †BU

)]}
(A.5)

From Eq. (A.2) to Eq. (A.3), we used Hermiticity of A and B, and we expanded
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the expresion in Eq. (A.4). From this equation to Eq. (A.5), we used A2 = B2 = I,

and from the fourth to the fifth line, we used tr(I) = 2n on n qubits. Dividing by a

normalization of 2n+2 on both sides, we have

1

2n+2 ||[A,U †BU ]||2F =
1

2

{
1− 1

2n
tr
[
A
(
U †BU

)
A
(
U †BU

)]}
(A.6)

Next, we assume A = iaC~η and B = ibC~α for some integers a and b, such that ia and

ib ensure that A and B are Hermitian, respectively. E.g., for A, this implies

A† = (−i)aC†~η (A.7)

A† = (−i)a(−1)
1
2
|~η|(|~η|−1)C~η, (A.8)

where C†~η = (−1)
1
2
|~η|(|~η|−1)C~η, since the individual Majorana modes are Hermitian and

we need 1
2
|~η|(|~η| − 1) anticommutations between individual distinct modes to reverse

the order of |~η| modes. Since A† = A, Eq. (A.8) implies

iaC~η = (−i)a(−1)
1
2
|~η|(|~η|−1)C~η, (A.9)

and multiplying both sides of this equation by iaC†~η gives

i2aI = (−1)
1
2
|~η|(|~η|−1)I. (A.10)

Thus, i2a = (−1)
1
2
|~η|(|~η|−1), and similarly, i2b = (−1)

1
2
|~α|(|~α|−1). Continuing from the

dynamical term in Eq. (A.6), we have
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1

2n
(−1)

1
2

[|~α|(|~α|−1)+|~η|(|~η|−1)] tr
[
A
(
U †BU

)
A
(
U †BU

)]
=

1

2n
tr
[
C~η

(
U †C~αU

)
C~η

(
U †C~αU

)]
(A.11)

=
1

2n
∑

{~β,~β
′||~β|=|~β′|=|~α|}

det
(
u~α~β

)
det
(
u~α~β′

)
tr
(
C~ηC~βC~ηC~β

′

)
(A.12)

=
1

2n
(−1)|~α||~η|+

1
2
|~η|(|~η|−1)

∑
{~β,~β

′||~β|=|~β′|=|~α|}

(−1)|~η∩
~β| det

(
u~α~β

)
× det

(
u~α~β′

)
tr
(
C~βC~β

′

)
(A.13)

= (−1)|~α||~η|+
1
2

[|~α|(|~α|−1)+|~η|(|~η|−1)]
∑

{~β,~β
′||~β|=|~β′|=|~α|}

(−1)|~η∩
~β|

× det
(
u~α~β

)
det
(
u~α~β′

)
δ~β~β′ (A.14)

1

2n
tr
[
A
(
U †BU

)
A
(
U †BU

)]
= (−1)|~α||~η|

∑
{~β,~β

′||~β|=|~β′|=|~α|}

(−1)|~η∩
~β|

× det
(
u~α~β

)
det
(
u~α~β′

)
δ~β~β′ (A.15)

From Eq. (A.12) to Eq. (A.13), we used

C~ηC~β = (−1)|
~β||~η|+|~η∩~β|C~βC~η (A.16)

C2
~η = (−1)

1
2
|~η|(|~η|−1)I (A.17)

and similarly from Eq. (A.13) to the Eq. (A.14), as well as the fact that |~β| = |~α|.

We recognize that

det
[
(I− 2P~η)~β~β′

]
= (−1)|~η∩

~β|δ~β~β′ (A.18)

where P~η is the projector onto modes ~η. We therefore have
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1

2n
tr
[
A
(
U †BU

)
A
(
U †BU

)]
= (−1)|~α||~η|

∑
{~β,~β

′||~β|=|~β′|=|~α|}

det
(
u~α~β

)
det
[
(I− 2P~η)~β~β′

]
det
(
u~α~β′

)
(A.19)

= (−1)|~α||~η| det[u~α[2n](I− 2P~η)u
T
[2n]~α], (A.20)

which follows from the Cauchy-Binet formula. This therefore proves the theorem

1

2n+2 ||[A,U †BU ]||2 =
1

2

{
1− (−1)|~α||~η| det[u~α[2n](I− 2P~η)u

T
[2n]~α]

}
(A.21)

A.2 Modified Cauchy-Binet Formula

Here we prove

∑
{~β⊂ ~B||~β|=|~α|−|~S|}

det
(
u~α,~β∪~S

)
det
(
v~α,~β∪~S

)
= (−1)|

~S| det

 0|~S|×|~S| vT
~S~α

u~α~S u~α ~BvT
~B~α


(A.22)

for ~S disjoint from ~B. We first rearrange rows and columns inside the matrices u

and v in the l.h.s. of (A.22) to bring each of them to a fiducial form, u′ and v′,

respectively. These are such that u′
~α
′ ~S
′ = u~α~S and u′

~α
′ ~B
′ = u~α ~B (and similarly for

v′), for ~α′ ≡ [|~α|] and ~S ′ ≡ [|~S|]. That is, we bring the rows ~α to the top and the

columns ~S to the left inside the matrices u and v without changing the internal

ordering of these tuples, nor the ordering of ~B. This is done purely for convenience

of presentation and will not affect the argument, as we will undo the rearrangement

in the end. We will continue to refer to the numbers of elements in these rearranged

tuples by those of their unprimed counterparts (i.e. using |~S| instead of |~S ′|), as they
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are equal. Since this rearrangement is done for both u and v, any resulting sign

factor acquired due to the alternating sign property of the determinant will cancel in

the product, and we have

∑
{~β⊂ ~B||~β|=|~α|−|~S|}

det
(
u~α,~β∪~S

)
det
(
v~α,~β∪~S

)
=

∑
{~β⊂ ~B′||~β|=|~α|−|~S|}

det
[
u′
~α
′
(~S
′
,~β)

]
det
[
v′
~α
′
(~S
′
,~β)

]
, (A.23)

We will next need the Laplace “expansion by complimentary minors” formula

det (u) =
∑

{ ~H|| ~H|=k}

ε
~H,~L det (u ~H~L) det (uH̄L̄) , (A.24)

where ε
~H,~L = (−1)

∑k
j=1(Hj+Lj), ~L is a fixed subset of the columns of u of size k, the

sum is over all subsets ~H of rows of u of size k, and L and H are the set-complements

of ~L and ~H in the sets of all columns and rows of u, respectively. This is the analogous

formula to expanding the determinant by minors of a fixed column, generalized to a

subset of columns ~L. Applying Eq. (A.24) to the columns ~S ′ of u′ and v′ on the r.h.s.

of (A.23) gives

∑
{~β⊂ ~B||~β|=|~α|−|~S|}

det
(
u~α,~β∪~S

)
det
(
v~α,~β∪~S

)

=
∑

{~β⊂ ~B′||~β|=|~α|−|~S|}

 ∑
{ ~H⊂~α′|| ~H|=|~S|}

ε
~H,~S
′
det
(
u′~H~S

′
)

det
(
u′
~α
′\ ~H,~β

)
×

 ∑
{~L⊂~α′||~L|=|~S|}

ε
~L,~S
′
det
(
v′~L~S′

)
det
(
v′
~α
′\~L,~β

) (A.25)

=
∑

{ ~H⊂~α′|| ~H|=|~S|}
{~L⊂~α′||~L|=|~S|}

ε
~H,~S
′
ε
~L,~S
′
det
(
u′~H~S

′
)

det
(
v′~L~S′

)
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×

 ∑
{~β⊂ ~B′||~β|=|~α|−|~S|}

det
(
u′
~α
′\ ~H,~β

)
det
(
v′
~α
′\~L,~β

) . (A.26)

We next apply the Cauchy-Binet formula to the sum in square brackets, as

∑
{~β⊂ ~B′||~β|=|~α|−|~S|}

det
(
u′
~α
′\ ~H,~β

)
det
(
v′
~α
′\~L,~β

)
= det

(
u′
~α
′\ ~H, ~B

′v′T~B′,~α′\~L

)
. (A.27)

Notice that the matrix in the determinant of the r.h.s. above is simply u′
~α
′ ~B
′v′T~B′~α′

with the rows ~H and columns ~L removed (i.e. instead of removing the rows and

columns and then multiplying, we can multiply and then remove rows and columns

from the product). This gives

∑
{~β⊂ ~B||~β|=|~α|−|~S|}

det
(
u~α,~β∪~S

)
det
(
v~α,~β∪~S

)
=

∑
{ ~H⊂~α′|| ~H|=|~S|}
{~L⊂~α′||~L|=|~S|}

ε
~H,~S
′
ε
~L,~S
′
det
(
u′~H~S

′
)

det
(
v′~L~S′

)
det

[(
u′
~α
′ ~B
′v′T~B′~α′

)
~α
′\ ~H,~α

′\~L

]
.

(A.28)

The next step is to “put back in” the rows ~H and columns ~L. We do this by treating

(A.28) as an expansion of the determinant of a larger matrix by complimentary minors

of rows v′T~S′~α′ and then columns u′
~α
′ ~S
′ . Working backwards, we see that the sum over

~H in Eq. (A.28) evaluates to

∑
{ ~H⊂~α′|| ~H|=|~S|}

ε
~H,~S
′
det
(
u′~H~S

′
)

det

[(
u′
~α
′ ~B
′v′T~B′~α′

)
~α
′\ ~H,~α

′\~L

]

= det

[(
u′
~α
′ ~S
′

(
u′
~α
′ ~B
′v′T~B′~α′

)
~α
′
,~α
′\~L

)]
(A.29)

To put the rows back in, we note that
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det
(
v′~L~S′

)
= det

(
v′T~S′~L

)
= (−1)|

~S| det
[(

0|~S|×|~S| v′T~S′~α′
)
~S
′~L
′

]
, (A.30)

where ~L′ is related to ~L by L′j = Lj + |~S| for all j ∈ {1, 2, . . . , |~L| = |~S|}. Shifting the

columns over by |~S| inside the determinant gives the overall factor of (−1)|
~S|. Thus,

the sum over ~L in Eq. (A.28) evaluates to

∑
{~L⊂~α′||~L|=|~S|}

ε
~L,~S
′
det
(
v′~L~S′

)
det

[(
u′
~α
′ ~S
′

(
u′
~α
′ ~B
′v′T~B′~α′

)
~α
′
,~α
′\~L

)]
= (−1)|

~S|
∑

{~L⊂[|~α|+|~S|]||~L|=|~S|}

ε
~L,~S
′
det
[(

0|~S|×|~S| v′T~S′~α′
)
~S
′~L

]

× det

[(
u′
~α
′ ~S
′ u′

~α
′ ~B
′v′T~B′~α′

)
~α
′
,~α
′\~L

]
(A.31)

= (−1)|
~S| det

 0|~S|×|~S| vT
~S~α

u~α~S u~α ~BvT
~B~α

 . (A.32)

In the first equality, we apply Eq. (A.30) together with the fact that, for each term

in the sum for which ~L contains any of the first |~S| columns, the matrix in the first

determinant factor of that term contains at least one column of all zeros, and so the

term evaluates to zero. This brings the second line to a form which we recognize to

be an expansion by complementary minors of the rows ~S ′ in the larger matrix in the

third line. Finally, we use u′
~α
′ ~S
′ = u~α~S (and similarly for the other submatrices) to

undo our initial row and column rearrangements and therefore obtain the formula,

Eq. (A.22).

A.3 Fixed-Parity Sum

Here we prove
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∑
{~βl⊂ ~Bl,~βr⊂ ~Br||~βl|+|~βr|=|~α|−|~S|,

|~βr| mod 2 = p}

det
[
u~α,(~βl,~S, ~βr)

]
det
[
v~α,(~βl,~S, ~βr)

]

=
(−1)|

~S|

2

det

 0|~S|×|~S| vT
~S~α

u~α~S u~α ~BvT
~B~α


+(−1)p det

 0|~S|×|~S| vT
~S~α

u~α~S u~α ~B

(
I− 2P ~Br

)
~B ~B

vT
~B~α

 , (A.33)

where ~S is disjoint from ~B ≡ ( ~Bl, ~Br). The statement follows simply from

 ∑
{~βl⊂ ~Bl,~βr⊂ ~Br||~βl|+|~βr|=|~α|−|~S|,

|~βr| even}

−
∑

{~βl⊂ ~Bl,~βr⊂ ~Br||~βl|+|~βr|=|~α|−|~S|,
|~βr| odd}


× det

[
u~α,(~βl,~S, ~βr)

]
det
[
v~α,(~βl,~S, ~βr)

]

=

 ∑
{~βl⊂ ~Bl,~βr⊂ ~Br||~βl|+|~βr|=|~α|−|~S|,

|~βr| even}

(−1)|
~βr| +

∑
{~βl⊂ ~Bl,~βr⊂ ~Br||~βl|+|~βr|=|~α|−|~S|,

|~βr| odd}

(−1)|
~βr|


× det

[
u~α,(~βl,~S, ~βr)

]
det
[
v~α,(~βl,~S, ~βr)

]
(A.34)

=
∑

{(~βl, ~βr)⊂ ~B||~βl|+| ~βr|=|~α|−|~S|}

(−1)|
~βr| det

[
u~α,(~βl,~S, ~βr)

]
det
[
v~α,(~βl,~S, ~βr)

]
(A.35)

In Eq. (A.34), we used the fact that (−1)|
~βr| = 1 in the former sum, and (−1)|

~βr| = −1

in the latter. In Eq. (A.34), we simply combined the sums over all even-sized ~βr and

all odd-sized ~βr with the same summand into the sum over all (~βl, ~βr). We next apply

the steps we used to prove the modified Cauchy-Binet formula, except now applying

det
[
(I− 2P ~Br

)(~βl,~βr)(~β
′
l,~β
′
r)

]
= (−1)|

~βr|δ~βl~β
′
l
δ~βr~β

′
r

(A.36)
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to evaluate the sum with the sign factor (−1)|
~βr| which appears in the place of

Eq. (A.27). This gives

 ∑
{~βl⊂ ~Bl,~βr⊂ ~Br||~βl|+|~βr|=|~α|−|~S|,

|~βr| even}

−
∑

{~βl⊂ ~Bl,~βr⊂ ~Br||~βl|+|~βr|=|~α|−|~S|,
|~βr| odd}


× det

[
u~α,(~βl,~S, ~βr)

]
det
[
v~α,(~βl,~S, ~βr)

]
= (−1)|

~S| det

 0|~S|×|~S| vT
~S~α

u~α~S u~α ~B(I− 2P ~Br
) ~B ~BvT

~B~α

 , (A.37)

from Eq. (A.22). Applying this, together with

 ∑
{~βl⊂ ~Bl,~βr⊂ ~Br||~βl|+|~βr|=|~α|−|~S|,

|~βr| even}

+
∑

{~βl⊂ ~Bl,~βr⊂ ~Br||~βl|+|~βr|=|~α|−|~S|,
|~βr| odd}


× det

[
u~α,(~βl,~S, ~βr)

]
det
[
v~α,(~βl,~S, ~βr)

]
= (−1)|

~S| det

 0|~S|×|~S| vT
~S~α

u~α~S u~α ~BvT
~B~α

 (A.38)

we solve for the sums over even |~βr| and odd |~βr| individually to obtain Eq. (A.33)

above.

A.4 Exact Calculation of the OTO Correlator

Here we give an explicit calculation of the matrix Ms, defined implicitly by

1

2n+2 ||[ns ·σs,U
†C~αU ]||2F ≡ n∗s ·Ms ·ns (A.39)
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for some single-spin operator ns ·σs acting on qubit s, matchgate unitary U , and

Majorana configuration C~α, where ||A||2 ≡ tr
(
A†A

)
. Since we are only considering

a single spin s, we drop the spin labels on n ≡ ns and M ≡Ms in this section for

convenience, choosing to label the components of these objects by subscripts instead.

We begin by expanding the r.h.s., using this definition and Eq. (2.77)

1

2n+2 ||[n ·σs,U
†C~αU ]||2F

=
1

2n+2 tr


 ∑
k∈{x,y,z}

nkσ
k
s ,

∑
{~β||~β|=|~α|}

det
(
u~α~β

)
C~β

†

×

 ∑
k
′∈{x,y,z}

nk′σ
k
′

s ,
∑

{~β′||~β′|=|~α|}

det
(
u~α~β′

)
C~β
′

 (A.40)

=
1

2n+2

∑
k,k
′∈{x,y,z}

n∗knk′

×
∑

{~β||~β|=|~α|}
{~β′||~β′|=|~α|}

det
(
u~α~β

)
det
(
u~α~β′

)
tr

{[
σks ,C~β

]† [
σk
′

s ,C~β
′

]}

(A.41)

Thus

Mkk
′ ≡ 1

2n+2

∑
{~β||~β|=|~α|}
{~β′||~β′|=|~α|}

det
(
u~α~β

)
det
(
u~α~β′

)
tr

{[
σks ,C~β

]† [
σk
′

s ,C~β
′

]}
(A.42)

We can obtain the diagonal elements of M, for which k = k′, from Theorem 1. It

remains, then, to calculate the off-diagonal elements of M. Clearly, M = MT by the

cyclic property of the trace and the fact that the sum over ~β and ~β′ is symmetric in

these indices. Furthermore, we must have Mxz = Myz = 0 since there are no ~β and

~β′ for which |~β| = |~β′| and which describe the same Pauli string on every spin except
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s, with a Xs (or Ys) present on one and a Zs present on the other. This is because

the former are always described by exactly one Majorana operator and the latter by

either two or zero Majorana operators. Therefore, we are only left to calculate Mxy.

In this case, we have

Mxy =
1

2n+2

∑
{~β||~β|=|~α|}
{~β′||~β′|=|~α|}

det
(
u~α~β

)
det
(
u~α~β′

)
tr

{[
Xs,C~β

]† [
Ys,C~β

′

]}
(A.43)

The only nonvanishing terms will be those for which ~β and ~β′ describe the same Pauli

string on every spin except for s and for which there is a Ys present for C~β and an

Xs present for C~β
′ . We examine the conditions under which an operator σk

′

s will be

present in C~β. Let ~β =
(
~βl, ~βs, ~βr

)
, where ~βl ⊂ [2(s− 1)] consists of all indices less

than 2s− 1, and ~βr ⊂ [2s] consists of all indices greater than 2s (corresponding to

the spins to the left and right of s, respectively). We have

Xs present only if either : ~βs =

(2s− 1) and |~βr| even

(2s) and |~βr| odd

Ys present only if either : ~βs =

(2s) and |~βr| even

(2s− 1) and |~βr| odd
(A.44)

Zs present only if either : ~βs =

(2s− 1, 2s) and |~βr| even

() and |~βr| odd

When |~βr| is odd, then C~β and C~β
′ will have a relative phase of −1 between them

since XsZs = −iYs, but YsZs = iXs. Additionally taking into account the fact that

[Xs,Ys] = −[Ys,Xs] gives
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Mxy =

 ∑
{(~βl,~βr)||~βl|+|~βr|+1=|~α|,

|~βr| odd}

−
∑

{(~βl,~βr)||~βl|+|~βr|+1=|~α|,
|~βr| even}


× det

[
u~α(~βl,2s−1,~βr)

]
det
[
u~α(~βl,2s,~βr)

]
(A.45)

Mxy = det

 0 uT
(2s)~α

u~α(2s−1) u~α(2s−1,2s)

(
I− 2P[2s]

)
(2s−1,2s)(2s−1,2s)

uT
(2s−1,2s)~α

,

(A.46)

therefore completing the calculation. For completeness, we list the elements of M,

once again, below

Mxx =
1

2

{
1− (−1)|~α| det[u~α[2n](I− 2P[2s−1])u

T
[2n]~α]

}
(A.47)

Myy =
1

2

{
1− (−1)|~α| det[u~α[2n](I− 2P[2(s−1)]∪(2s))u

T
[2n]~α]

}
(A.48)

Mzz =
1

2

{
1− det[u~α[2n](I− 2P(2s−1,2s))u

T
[2n]~α]

}
(A.49)

Mxy = Myx

= det

 0 uT
(2s)~α

u~α(2s−1) u~α(2s−1,2s)

(
I− 2P[2s]

)
(2s−1,2s)(2s−1,2s)

uT
(2s−1,2s)~α


(A.50)

Mxz = Mzx = Myz = Mzy = 0 (A.51)

A.5 Proof of Theorem 4.2

Here we prove the statement

|〈O〉 − 〈(⊗s∈SEs)(O)〉| ≤ 1√
2n+2

∑
s∈S

||[ns ·σs,O]|| ≡
∑
s∈S

√
n∗s ·Ms ·ns, (A.52)
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where the average ( · ) is taken over a product basis {⊗nj=1|(−1)`jn⊥j 〉}`∈{0,1}×n whose

Bloch axes are orthogonal to the {ns}s, and Es is the depolarizing channel on qubit

s, given by

Es(O) =
1

4

O +
∑

k∈{x,y,z}

σksOσ
k
s

 . (A.53)

This channel has the effect of projecting O onto its component which acts only as

the identity on site s. We further assume that O is a traceless Hermitian operator.

We first show that the left-hand side of Eq. (A.52) is bounded by the trace norm for

any averaging orthonormal basis set {|j〉}j and Hermitian operator A, as

|〈A〉| ≡ 1

2n

2
n∑

j=1

|〈j|A|j〉| (A.54)

=
1

2n

2
n∑

j=1

|
2
n∑

k=1

U∗kjdkUkj| (A.55)

≤ 1

2n

2
n∑

j,k=1

|dk||Ukj|2 (A.56)

=
1

2n

2
n∑

k=1

|dk| (A.57)

|〈A〉| ≤ 1

2n
tr |A| (A.58)

From the first to the second line, we used the fact that we assume A to be a Hermitian

operator, and so can be diagonalized as A = U †DU , for D a diagonal matrix. From

the second to the third line, we applied the triangle inequality, and from the third

to the fourth line, we rearranged sums and used the fact that
∑2

n

j=1 |Ukj|
2 = 1. The

resulting quantity is the trace norm.

Without loss of generality, let S = {1, 2, . . . , |S|}. Then we have, for any input

state
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|〈O〉 − 〈(⊗s∈SEs)(O)〉| = |〈O〉+

|S|−1∑
k=1

[
〈
(
⊗kj=1Ej

)
(O)〉 − 〈

(
⊗kj=1Ej

)
(O)〉

]
− 〈(⊗s∈SEs)(O)〉| (A.59)

= |
|S|∑
k=1

{
〈
(
⊗k−1
j=1Ej

)
(O)〉 − 〈

(
⊗k−1
j=1Ej

)
[Ek(O)]〉

}
|

(A.60)

|〈O〉 − 〈(⊗j∈SEj)(O)〉| ≤
|S|∑
k=1

|〈
(
⊗k−1
j=1Ej

)
(O)〉 − 〈

(
⊗k−1
j=1Ej

)
[Ek(O)]〉|, (A.61)

where, from the first to the second line, we expressed the difference as a telescoping sum

(let ⊗0
j=1Ej(O) ≡ O) and applied the triangle inequality in the third line. Next, we

use the fact that, for any single-spin input |n⊥〉, the depolarized operator expectation

value is the same as that of the dephased operator in any basis orthogonal to the

input. That is, let (n ·σ) |n⊥〉 = eiφ| − n⊥〉 for some phase φ, and we have

|〈O〉 − 〈Es(O)〉| = |〈O〉 − 〈1
2

[O + (n ·σs)O (n ·σs)]〉| (A.62)

|〈O〉 − 〈Es(O)〉| = 1

2
|〈O〉 − 〈(n ·σs)O (n ·σs)〉| (A.63)

on input state |n⊥〉 on qubit s. Furthermore, taking the same quantity for in-

put state | − n⊥〉 has the effect of exchanging O and (n ·σs)O (n ·σs) inside the

absolute value, leaving it unchanged. Thus, we average over a product basis of

{⊗nj=1|(−1)`jn⊥j 〉}`∈{0,1}×n on both sides of Eq. (A.61) and apply Eq. (A.63) to obtain

|〈O〉 − 〈(⊗s∈SEs)(O)〉| ≤ 1

2n+1

|S|∑
k=1

tr |
(
⊗k−1
j=1Ej

)
(O)

−
(
⊗k−1
j=1Ej

)
[(nk ·σk)O (nk ·σk)] | (A.64)

|〈O〉 − 〈(⊗s∈SEs)(O)〉| ≤ 1

2n+1

|S|∑
k=1

tr |O − (nk ·σk)O (nk ·σk) |, (A.65)
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using the bound (A.58) in the second line and the fact that the depolarizing channel

cannot increase the trace distance between operators in the third. Finally, we apply

the operator norm inequality

tr |A| ≡ tr
√
A†A ≤

√
r trA†A ≤

√
2n trA†A, (A.66)

where r ≤ 2n is the rank of A, together with the fact that

tr
{

[O − (nk ·σk)O (nk ·σk)]
† [O − (nk ·σk)O (nk ·σk)]

}
= ||[nk ·σk,O]||2F , (A.67)

for || · ||F the Frobenius norm, to arrive at our result

|〈O〉 − 〈(⊗s∈SEs)(O)〉| ≤ 1

2n+1

∑
s∈S

tr |O − (ns ·σs)O (ns ·σs) | (A.68)

≤
√

2n

2n+1

∑
s∈S

||[ns ·σs,O]||F (A.69)

|〈O〉 − 〈(⊗s∈SEs)(O)〉| ≤ 1√
2n+2

∑
s∈S

||[ns ·σs,O]||F ≡
∑
s∈S

√
n∗s ·Ms ·ns.

(A.70)

We remark that the bound is a sum of terms which are always between zero and one,

and by Markov’s inequality, we can use this result to bound the fraction of these

basis states for which the change in expectation value exceeds some threshold δ

µ [|〈O〉 − 〈(⊗s∈SEs)(O)〉| ≥ δ] ≤ 1

δ

∑
s∈S

√
n∗s ·Ms ·ns. (A.71)
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Since we expect each of these terms to be exponentially decaying outside of the

lightcone, depolarizing in this region should only induce a change in expectation value

greater than the threshold for some exponentially small set of input states. This

affords us exponential precision so long as we are willing to tolerate a fixed fraction

of these “pathological” states. Finally, since we had a freedom in choosing which

basis over which to depolarize in Eq. (A.63), we may optimize each of the {ns}s over

the subspace for which they are orthogonal to the Bloch axes of the input to make

this bound as restrictive as possible.

A.6 Numerical Analysis

We characterize the propagation of B(t) by taking the singular value decomposition

in discrete time

||[ns ·σs,B(tk)]||F =
∑
j

λjuj(tk)vj(s), (A.72)

where tk ≡ kδt, and λ1 > λ2 > . . . for the singular values λj. We take the

function u1(t) to represent the light cone envelope and v1(s) the decay profile of

||[ns ·σs,B(t)]||F outside of this envelope. This method has several advantages: (i)

the principal singular value component is the closest product approximation to the

light cone, and so has the form of the right-hand-side of Eq. (4.1) in the main text; (ii)

the singular values themselves give the error incurred in the approximation; and (iii)

the principal singular value component is robust to fluctuations from specific disorder

realizations, greatly reducing the number of samples needed. It therefore gives an

operationally meaningful, robust, and numerically inexpensive means of extracting

the envelope and decay profile, which is completely general beyond the setting of

matchgate circuits considered here.

In Fig. A.1, we plot the results of our analysis for the X-light cones of Fig. 4.1 in

the main text. We see that the envelopes (linear scale on top left, and log-log scale
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X50X50

X50

Figure A.1: (Color online) (Top, left) Envelopes of the X-light cones in Fig. 1
in the main text, given by the principal temporal components of their singular
value decompositions. (Top, right) Envelopes on a log-log plot, with fitted slopes
displayed. Note the saturation of the ballistic case around t ' 6 is a boundary
effect; otherwise, it is expected to be a straight slope. (Bottom, left) Singular
values in these decompositions on log-log scale, which demonstrate the error in
truncating to a product function; we see that these decay by several orders of
magnitude over the first ten. (Bottom, right) Light cone decay profiles, given by
the principal spatial vectors; these profiles are very nearly Gaussian, rather than
exponential.

on top right) u1(t) propagate as polynomials with different exponents m, which we

take to be indicative of the dynamical phases of these profiles.
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Appendix B

“Many-body-localization transition

in universal quantum circuits”

B.1 Modified Cauchy-Binet Formula with Differ-

ent Background Sets – Diagrammatic Proof

Here, we prove Eq. (5.28) using the diagrammatic proof shown in Fig. 5.2. This

figure depicts a particular quantum circuit composed of general Gaussian fermionic

evolution on modes ( ~Bl,B, ~Br), rearrangements between these modes and the ancillary

mode-sets ~Al and ~Ar, and a partial trace over the qubits corresponding to the ancillary

modes ~Ar. As stated in the main text, the equivalence between two different ways of

evaluating this circuit implies the identity. This equivalence is given by the operator

equality

(
FB ~Al

Ug,2

)†{
C~S tr ~Ar

[(
Ug,1FB ~Ar

)†
C~α

(
Ug,1FB ~Ar

)
C†~S′

]}(
FB ~Al

Ug,2

)
= tr ~Ar

[(
Ug,1FB ~Ar

FB, ~Al
Ug,2

)†
C~SC~α

(
Ug,1FB ~Ar

FB ~Al
Ug,2

)
C†~S′

]
(B.1)
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where the operators FB ~Ar
and FB ~Al

are rearrangements of fermionic modes. We

choose these operators to have corresponding single-particle transition matrices

fB ~Al
=



0 0 I 0 0

0 (−1)|
~S|+|~S′|I 0 0 0

I 0 0 0 0

0 0 0 I 0

0 0 0 0 I


(B.2)

fB ~Ar
=



I 0 0 0 0

0 I 0 0 0

0 0 0 0 I

0 0 0 I 0

0 0 I 0 0


(B.3)

where F †
B ~Al

cµFB, ~Al
≡
(
fB ~Al
· c
)
µ
, and similarly for fB ~Ar

. The blocks in the matrices

above act on modes ~Al, ~Bl, B, ~Br, ~Ar, respectively. In Eq. (B.1), we made use of

the fact that ~S ′ ⊆ ~Ar, so C~S
′ commutes with

(
FB ~Al

Ug,2

)
, which acts as the identity

on these modes. The right-hand-side of this equation corresponds to the dot-dashed

contraction ordering in Fig. 5.2, and the left-hand-side corresponds to the dotted

contraction ordering. Labeling the indices of our block matrices in the same way as

in Eq.s (B.2) and (B.3), we thus have

u1fB ~Ar
=



I 0 0 0 0

0 (u1) ~Bl ~Bl 0 (u1) ~Bl ~Br (u1) ~BlB

0 (u1)B ~Bl 0 (u1)B ~Br (u1)BB

0 (u1) ~Br ~Bl 0 (u1) ~Br ~Br (u1) ~BrB

0 0 I 0 0


(B.4)

and similarly
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fB ~Al
u2 =



0 (ũ2)B ~Bl (ũ2)BB (ũ2)B ~Br 0

0 (ũ2) ~Bl ~Bl (ũ2) ~BlB (ũ2) ~Bl ~Br 0

I 0 0 0 0

0 (ũ2) ~Br ~Bl (ũ2) ~BrB (ũ2) ~Br ~Br 0

0 0 0 0 I


, (B.5)

where ũ2 is as defined in Eq. (5.29) This gives, from the left-hand-side (dot-dashed

contraction ordering) of Eq. (B.1)

(
FB ~Al

Ug,2

)†{
C~S tr ~Ar

[(
Ug,1FB ~Ar

)†
C~α

(
Ug,1FB ~Ar

)
C†~S′

]}(
FB ~Al

Ug,2

)
= 2|

~Ar|/2
∑
~β

det

[(
u1fB ~Ar

)
~α,(~β,~S

′)

](
FB ~Al

Ug,2

)†
C~SC~β

(
FB ~Al

Ug,2

)
(B.6)

= 2|
~Ar|/2

∑
~γ

∑
~β

det

[(
u1fB ~Ar

)
~α,(~β,~S

′)

]
det

[(
fB ~Al

u2

)
(~S,~β),~γ

]C~γ (B.7)

= 2|
~Ar|/2

∑
~γ


∑

~β=(~βl,~βr)

(−1)(|
~S|+|~S′|)|~βl| det

[
(u1)~α,(~βl,~βr,~S

′)

]
× det

[
(u2)(~S,~βl,~βr),~γ

]}
C~γ (B.8)

= 2|
~Ar|/2

∑
~γ


∑

~β=(~βl,~βr)

(−1)(|
~S|+|~S′|)|~βl|+|~S

′||~βr|+|~S||~βl|

× det
[
(u1)~α,(~βl,~S

′
,~βr)

]
det
[
(u2)(~βl,~S,~βr),~γ

]}
C~γ (B.9)

= 2|
~Ar|/2

∑
~γ

(−1)|
~S
′|(|~S|−|~γ|)

×


∑

~β=(~βl,~βr)

det
[
(u1)~α,(~βl,~S

′
,~βr)

]
det
[
(u2)(~βl,~S,~βr),~γ

]C~γ. (B.10)

To obtain Eq. (B.7), we expanded the Gaussian fermionic evolution of the Majorana

configuration by Eq. (5.13) (since we take ~Ar to correspond to the fermionic modes
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on a collection of qubits, | ~Ar| must be even). From Eq. (B.7) to Eq. (B.8), we used

the block-matrix forms in Eq.s (B.4) and (B.5) to re-ëxpress the series in terms of

minors of u1 and u2 only. To obtain Eq. (B.9), we rearranged rows and columns in u1

and u2, acquiring a phase. To obtain Eq. (B.10), we simplified the phase using the

relation |~βl|+ |~βr| = |~γ| − |~S| (since the sub-matrix of u2 must be square). Similarly,

we have

u1fB ~Ar
fB ~Al

u2 =



0 (ũ2)B ~Bl (ũ2)BB (ũ2)B ~Br 0

0 (u1) ~Bl ~B (ũ2) ~B ~Bl (u1) ~Bl ~B (ũ2) ~BB (u1) ~Bl ~B (ũ2) ~B ~Br (u1) ~BlB

0 (u1)B ~B (ũ2) ~B ~Bl (u1)B ~B (ũ2) ~BB (u1)B ~B (ũ2) ~B ~Br (u1)BB

0 (u1) ~Br ~B (ũ2) ~B ~Bl (u1) ~Br ~B (ũ2) ~BB (u1) ~Br ~B (ũ2) ~B ~Br (u1) ~BrB

I 0 0 0 0


(B.11)

Thus, the right-hand-side (dotted contraction ordering) of Eq. (B.1) gives

tr ~Ar

[(
Ug,1FB ~Ar

FB ~Al
Ug,2

)†
C~SC~α

(
Ug,1FB ~Ar

FB ~Al
Ug,2

)
C†~S′

]
= 2|

~Ar|/2
∑
~γ

det

[(
u1fB ~Ar

fB ~Al
u2

)
(~S,~α)(~γ,~S

′)

]
C~γ (B.12)

= 2|
~Ar|/2

∑
~γ

det

 (ũ2)~S~γ 0|~S|×|~S′|

(u1)~α ~B (ũ2) ~B~γ (u1)~α~S′

C~γ (B.13)

= 2|
~Ar|/2

∑
~γ

(−1)|
~S
′||~γ| det

0|~S|×|~S′| (u2)~S~γ

(u1)~α~S′ (u1)~α ~B (ũ2) ~B~γ

C~γ, (B.14)

where ~B ≡ ( ~Bl, ~Br). From Eq. (B.12) to Eq. (B.13), we similarly used the block-

matrix form of Eq. (B.11) to re-ëxpress the minor in Eq. (B.12) in-terms of minors of

u1 and ũ2 only. From Eq. (B.13) to Eq. (B.14), we again rearranged columns in the

matrix determinant, acquiring a phase, and used the fact that (ũ2)~S~γ = (u2)~S~γ , since

~S is disjoint from ~Bl.
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Setting Eq.s (B.14) and (B.10) equal by Eq. (B.1), canceling corresponding factors

of 2|
~Ar|/2, and using linear independence of the {C~γ} gives

(−1)|
~S
′|(|~S|−|~γ|)

∑
~β=(~βl,~βr)

det
[
(u1)~α,(~βl,~S

′
,~βr)

]
det
[
(u2)(~βl,~S,~βr),~γ

]

= (−1)|
~S
′||~γ| det

0|~S|×|~S′| (u2)~S~γ

(u1)~α~S′ (u1)~α ~B (ũ2) ~B~γ

 (B.15)

= (−1)|
~S
′||~S| det

0|~S|×|~S′| (u2)~S~γ

(u1)~α~S′ (u1)~α ~B (ũ2) ~B~γ

 (B.16)

B.2 Modified Cauchy-Binet Formula with Differ-

ent Background Sets – Determinental Proof

Here we prove Eq. (5.28) using determinental identities. Let u1 and u2 be orthogonal

matrices, and let ~α, ~β, ~γ, ~S, ~S ′ be tuples, for which

|~β| = |~α| − |~S ′| = |~γ| − |~S|, (B.17)

and


~S, ~S ′ ⊆ B

~B ≡
(
~Bl, ~Br

)
~β =

(
~βl, ~βr

)
where ~βl ⊆ ~Bl and ~βr ⊆ ~Br

(B.18)

for ~B a contiguous set of indices and ~Bl, ~Br, and B all disjoint. We will show

∑
~β

det
[
(u1)~α(~βl,~S

′
,~βr)

]
det
[
(u2)(~βl,~S,~βr)~γ

]
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= (−1)|
~S||~S′| det

0|~S|×|~S′| (u2)~S~γ

(u1)~α~S′ (u1)~α ~B (ũ2) ~B~γ

 , (B.19)

where the sum is over all tuples ~β consistent with the constraints. We first rearrange

columns in u1 and u2 such that the first ~B constitutes the first | ~B| columns, as

∑
~β

det
[
(u1)~α(~βl,~S

′
,~βr)

]
det
[
(u2)(~βl,~S,~βr)~γ

]
=
∑
~β

(−1)|
~βl|(|~S|+|~S

′|) det
[(

u′1
)
~α(~S′,~β)

]
det
[(

u′2
)
(~S,~β)~γ

]
(B.20)

where u′1 and u′2 are the rearranged matrices. If |~S| and |~S ′| have the same parity,

then the sign factor inside the sum is 1. Otherwise, it evaluates to (−1)|
~βl|, which we

absorb onto u′2 by multiplying its columns in ~Bl by (−1) to obtain ũ′2. This gives

∑
~β

det
[(

u′1
)
~α(~S′,~β)

]
det
[(

ũ′2
)
(~S,~β)~γ

]

=
∑
~β

∑
~H

ε
~H~S
′
det
[(

u′1
)
~H~S
′
]

det
[(

u′1
)
~α/ ~H,~β

]
×

∑
~L

ε
~L~S det

[(
ũ′2
)
~S~L

]
det
[(

ũ′2
)
~β,~γ/~L

] (B.21)

=
∑
~H,~L

ε
~H~S
′
ε
~L~S det

[(
u′1
)
~H~S
′
]

det
[(

ũ′2
)
~S~L

]

×

∑
~β

det
[(

u′1
)
~α/ ~H,~β

]
det
[(

ũ′2
)
~β,~γ/~L

] (B.22)

=
∑
~H,~L

ε
~H~S
′
ε
~L~S det

[(
u′1
)
~H~S
′
]

det
[(

ũ′2
)
~S~L

]
det
[(

u′1
)
~α/ ~H,( ~Bl, ~Br)

(
ũ′2
)
( ~Bl, ~Br),~γ/~L

]
(B.23)

=
∑
~L

ε
~L~S det

[(
ũ′2
)
~S~L

]
det
[(

u′1
)
~α~S
′
(
u′1
)
~α,( ~Bl, ~Br)

(
ũ′2
)
( ~Bl, ~Br),~γ/~L

]
(B.24)
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=
∑
~L

ε
~L~S det

[
0|~S|×|~S′|

(
ũ′2
)
~S~L

]
det
[(

u′1
)
~α~S
′
(
u′1
)
~α,( ~Bl, ~Br)

(
ũ′2
)
( ~Bl, ~Br),~γ/~L

]
(B.25)

= (−1)|
~S
′||~S| det

0|~S|×|~S′|
(
ũ′2
)
~S~γ(

u′1
)
~α~S
′
(
u′1
)
~α( ~Bl, ~Br)

(
ũ′2
)
( ~Bl, ~Br)~γ

 (B.26)

From Eq. (B.21) to Eq. (B.22), we used the Laplace expansion by complementary

minors formula, where ε
~H~L = (−1)

∑| ~H|
i=1Hi+

∑|~L|
i=1 Li . From Eq. (B.22) to Eq. (B.23), we

used the Cauchy-Binet formula for the sum on ~β. From Eq. (B.23) to Eq. (B.24), we

identify the sum on ~H with the Laplace expansion by complementary minors. From

Eq. (B.24) to Eq. (B.25), we include a block of zeroes in ũ′2 so as to identify the sum

on ~L as a second Laplace expansion by complementary minors from Eq. (B.25) to

Eq. (B.26). However, since including this block of zeroes shifts the indices of ~L by

|~S ′|, this incurs an additional factor of (−1)|
~S||~S′| from ε

~L~S.

Finally, we may rearrange columns and use the fact that (ũ2)~S~γ = (u2)~S~γ to

recover the formula

∑
~β

det
[
(u1)~α(~βl,~S

′
,~βr)

]
det
[
(u2)(~βl,~S,~βr)~γ

]

= (−1)|
~S||~S′| det

0|~S|×|~S′| (u2)~S~γ

(u1)~α~S′ (u1)~α ~B (ũ2) ~B~γ

 . (B.27)

B.3 Exact Formula for the OTO Commutator

Let a unitary consisting of one interaction gate with two periods of Gaussian fermionic

be given by U = Ug,1VjUg,2, for Gaussian fermionic operations Ug,{1,2} and Vj =

exp
(
− iπ

4
ZjZj+1

)
≡ V . As in the main text, let ~qj = (2j − 1, 2j, 2j + 1, 2(j + 1)) ≡ ~q

(since the index j can be seen from context). From Eq. (5.2), we see that it suffices

to calculate
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d−1 tr [AB(t)AB(t)] = d−1(−1)
1
2

[|~α|(|~α|−1)+|~η|(|~η|−1)]

× tr
[
C~η
(
Ug,1VjUg,2

)†
C~α
(
Ug,1VjUg,2

)
C~η
(
Ug,1VjUg,2

)†
C~α
(
Ug,1VjUg,2

)]
,

(B.28)

where A = iaC~η and B = ibC~α for integers a and b, and for which i2a = (−1)
1
2
|~α|(|~α|−1)

and i2b = (−1)
1
2
|~η|(|~η|−1) from the relations A2 = B2 = I (we have assumed A and B

to be Hermitian and unitary). From Eq. (5.13), we have

U †g,1C~αUg,1 =
∑
~β

det
[
(u1)~α~β

]
C~β (B.29)

Let ~β = (~βq ∪ ~βq), where ~βq = ~β ∩ ~q and ~βq = ~β ∩ q, for q the complement of ~q

in [2n] ≡ (1, 2, . . . , 2n), the full set of modes. Since ~q is contiguous, we can apply

Eq. (B.27) to obtain

(
Ug,1V Ug,2

)†
C~α
(
Ug,1V Ug,2

)
=
∑
~β

det
[
(u1)~α~β

] (
V Ug,2

)†
C~β

(
V Ug,2

)
(B.30)

=

min(|~q|,|~α|)∑
k=0

∑
{~βq ||~βq |=k}

∑
~βq

det
[
(u1)~α,(~βq∪~βq)

] (
V Ug,2

)†
C(~βq∪~βq)

(
V Ug,2

)
(B.31)

=

min(|~q|,|~α|)∑
k=0

∑
{~βq ||~βq |=k}

iϕ(~βq)
∑
~βq

det
[
(u1)~α,(~βq∪~βq)

]
U †g,2C(V(~βq)∪~βq)Ug,2 (B.32)

=

min(|~q|,|~α|)∑
k=0

∑
{~βq ||~βq |=k}

iϕ(~βq)
∑
~βq

det
[
(u1)~α,(~βq∪~βq)

]
×
∑
~γ

det
[
(u2)(V(~βq)∪~βq),~γ

]
C~γ (B.33)

=

min(|~q|,|~α|)∑
k=0

∑
{~βq ||~βq |=k}

iϕ(~βq)
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×
∑
~γ

∑
~βq

det
[
(u1)~α,(~βq∪~βq)

]
det
[
(u2)(V(~βq)∪~βq),~γ

]C~γ (B.34)

=
∑
~γ


∑

{(k,~βq)||~βq |=k}

iϕ(~βq)(−1)|
~βq ||V(~βq)| det

0|V(~βq)|×|~βq |
(u2)V(~βq)~γ

(u1)~α~βq (u1)~αq (u2)q~γ


C~γ

(B.35)

≡
∑
~γ

 ∑
{(k,~βq)||~βq |=k}

iϕ(~βq)(−1)|
~βq ||V(~βq)| det

{[
u(1,2)

]
[V(~βq),~α],[~βq ,~γ]

}C~γ.

(B.36)

In Eq. (B.31), we split the sum into sums over ~βq, ~βq. In Eq. (B.32), we let

V †C~βq
V = iϕ(~βq)CV(~βq)

. (B.37)

using the fact that V commutes with any modes not in ~q, and that the set ~q is

contiguous. From Eq.s (B.32)-(B.35), we applied Eq. (B.27) (ang grouped sums for

notational convenience). In Eq. (B.36), we defined

u(1,2) ≡

 0|~q|×|~q| (u2)~q[2n]

(u1)[2n]~q (u1)[2n]q (u2)q[2n]

 . (B.38)

It is straightforward to show that u(1,2) is itself orthogonal for orthogonal u{1,2}, as

u(1,2)u
T
(1,2) =

 0|~q|×|~q| (u2)~q[2n]

(u1)[2n]~q (u1)[2n]q (u2)q[2n]


 0|~q|×|~q|

(
uT

1

)
~q[2n](

uT
2

)
[2n]~q

(
uT

2

)
[2n]q

(
uT

1

)
q[2n]


(B.39)

=

 I~q~q I~qq

(
uT

1

)
q[2n]

(u1)[2n]q Iq~q (u1)[2n]~q

(
uT

1

)
~q[2n]

+ (u1)[2n]q

(
uT

1

)
q[2n]

 (B.40)
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=

 I~q~q 0~q[2n]

0[2n]~q I[2n][2n]

 (B.41)

u(1,2)u
T
(1,2) = I (B.42)

In Eq. (B.40), we applied the orthogonality of u{1,2} when contracted along the indices

[2n]. From Eq. (B.40) to Eq. (B.41), we used the facts


I~qq = 0~qq

(u1)[2n]~q

(
uT

1

)
~q[2n]

+ (u1)[2n]q

(
uT

1

)
q[2n]

= u1u
T
1 = I

(B.43)

It is straightforward to show that uT
(1,2)u(1,2) = I as well. We can therefore iterate

this procedure for conjugation by an additional interaction gate, V ′, acting on the

subset of qubits ~q′, as

U
†
C~αU ≡

(
Ug,1V Ug,2V

′Ug,3
)†
C~α
(
Ug,1V Ug,2V

′Ug,3
)

(B.44)

=
∑
~λ


∑

{(k,~βq)||~βq |=k}{(
k
′
,~γ
q
′
)
||~γ
q
′ |=k′

}
i
ϕ(~βq)+ϕ

(
~γ
q
′
)
(−1)|

~βq ||V(~βq)| (B.45)

×

∑
~γ

det

{[
u(1,2)

]
[V(~βq),~α]

[
~βq ,
(
~γ∪~γ

q
′
)]} det

[
(u3)[

~γ∪V
(
~γ
q
′
)]
~λ

]C~λ

=
∑
~λ


∑

{(k,~βq)||~βq |=k}{(
k
′
,~γ
q
′
)
||~γ
q
′ |=k′

}
i
ϕ(~βq)+ϕ

(
~γ
q
′
)
(−1)

|~βq ||V(~βq)|+
(
|~βq |+|~γq′ |

)
|V
(
~γ
q
′
)
|

(B.46)

× det

 0|V
(
~γ
q
′
)
|×
(
|~βq |+|~γq′ |

) (u3)V
(
~γ
q
′
)
~λ[

u(1,2)

]
[V(~βq),~α]

(
~βq ,~γq′

) [
u(1,2)

]
[V(~βq),~α]q′ (u3)q′~λ

C~λ



Appendix B. “Many-body-localization transition in universal quantum circuits”147

=
∑
~λ

∑
{(k,~βq)||~βq |=k}{(
k
′
,~γ
q
′
)
||~γ
q
′ |=k′

}
i
ϕ(~βq)+ϕ

(
~γ
q
′
)
(−1)

|~βq ||V(~βq)|+|~γq′ ||V
(
~γ
q
′
)
|

× det

{[
u(1,2,3)

][
V
(
~γ
q
′
)

,V(~βq),~α
][
~γ
q
′ ,~βq ,~λ

]}C~λ, (B.47)

where

u(1,2,3) ≡


0|~q′|×|~q′| 0|~q′|×|~q| (u3)~q′[2n]

(u2)~q~q′ 0|~q|×|~q| (u2)~qq′ (u3)q′[2n]

(u1)[2n]q (u2)q~q (u1)[2n]~q (u1)[2n]q (u2)qq′ (u3)q′[2n] .

 (B.48)

From Eq. (B.46) to Eq. (B.47), we cancelled a phase of (−1)
|~βq ||V(~γ

q
′ )| by exchanging

columns ~βq ↔ ~γq′ inside the determinant to yield a phase of (−1)
|~βq ||~γq′ | and used the

fact that (−1)
|~βq |

(
|~γ
q
′ |+|V

(
~γ
q
′
)
|
)

= 1 by the parity-preserving property of V . It is clear

that u(1,2,3) is orthogonal by the orthogonality property of u(1,2). We can continue to

iterate this process, g times for g interaction gates present, incurring an ancillary set

of modes ~qi for every iteration i ∈ {1, 2, . . . , g}. Let ~B =
⋃g
i=1

~βi for ~βi ⊆ ~qi, and let

M be the orthogonal matrix obtained as the result of these iterations. We have

(
Ug,1V1Ug,2 . . . VnUg,n+1

)†
C~α
(
Ug,1V1Ug,2 . . . VnUg,n+1

)
=

∑
~B⊆
⋃g
i=1 ~qi

i
∑g
i=1 ϕ(~βi)(−1)

∑g
i=1 |~βi||V(~βi)|

∑
~γ

det
{

M[V×g( ~B),~α][ ~B,~γ]

}
C~γ,

(B.49)

where the ~βi ⊆ ~B are ordered in descending order of i when indexing the rows and

columns of M inside the determinant, and the length |~γ| of the tuple ~γ is such that

the determinant inside the matrix is square.

We next calculate the OTO correlator as
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tr
[
C~η

(
U
†
C~αU

)
C~η

(
U
†
C~αU

)]
=

∑
~B, ~B
′⊆
⋃g
i=1 ~qi

i
∑g
i=1[ϕ(~βi)+ϕ(~β′i)] (B.50)

× (−1)
∑g
i=1[|~βi||V(~βi)|+|~β

′
i||V(~β

′
i)|]
∑
~γ,~γ
′

det
{

M[V×g( ~B),~α][ ~B,~γ]

}
× det

{
M[V×g( ~B′),~α][ ~B′,~γ′]

}
tr
(
C~ηC~γC~ηC~γ′

)
1

2n
(−1)

1
2
|~η|(~η−1) tr

[
C~η

(
U
†
C~αU

)
C~η

(
U
†
C~αU

)]
=

∑
~B, ~B
′⊆
⋃g
i=1 ~qi

i
∑g
i=1[ϕ(~βi)+ϕ(~β′i)]

(B.51)

× (−1)
∑g
i=1[|~βi||V(~βi)|+|~β

′
i||V(~β

′
i)|]
∑
~γ,~γ
′

(−1)
1
2
|~γ|(|~γ|−1)+|~η||~γ|+|~η∩~γ|

× det
{

M[V×g( ~B),~α][ ~B,~γ]

}
det
{

M[V×g( ~B′),~α][ ~B′,~γ′]

}
δ~γ~γ′

1

2n
(−1)

1
2

[|~η|(~η−1)+|~α|(~α−1)] tr
[
C~η

(
U
†
C~αU

)
C~η

(
U
†
C~αU

)]
=

∑
~B, ~B
′⊆
⋃g
i=1 ~qi

i
∑g
i=1[ϕ(~βi)+ϕ(~β′i)](−1)|

~B|+| ~B′|+ 1
2

∑g
i=1[|V(~βi)|−|~βi|] (B.52)

×
∑
~γ,~γ
′

det
{

M[V×g( ~B),~α][ ~B,~γ]

}
det
[
(−1)|~η|(I− 2P~η)~γ~γ′

]
× det

{
M[V×g( ~B′),~α][ ~B′,~γ′]

}
1

2n
(−1)

1
2

[|~η|(~η−1)+|~α|(~α−1)] tr
[
C~η

(
U
†
C~αU

)
C~η

(
U
†
C~αU

)]
=

∑
~B, ~B
′⊆
⋃g
i=1 ~qi

i
∑g
i=1[ϕ(~βi)+ϕ(~β′i)](−1)|

~B|+| ~B′|+| ~B|| ~B′|+ 1
2

∑g
i=1[|V(~βi)|−|~βi|]

(B.53)

× det

 0| ~B′|×| ~B| MT
~B
′[V×g( ~B′),~α]

M[V×g( ~B),~α] ~B (−1)|~η|M[V×g( ~B),~α][2n]

(
I− 2P~η

)
MT

[2n][V×g( ~B′),~α]


(B.54)

1

2n
(−1)

1
2

[|~η|(~η−1)+|~α|(~α−1)] tr
[
C~η

(
U
†
C~αU

)
C~η

(
U
†
C~αU

)]
=

∑
~B, ~B
′⊆
⋃g
i=1 ~qi

(−1)
| ~B|+| ~B′|+| ~B|| ~B′|+

∑g
i=1

[
|~βi|
(∑

j∈~βi
j
)

+|~β′i|
(∑

j∈~β′i
j

)
+δ|~βi|,3

+δ|~β′i|,3

]

× det
[
K (~η)[ ~B′,V×g( ~B),~α][ ~B,V×g( ~B′),~α]

]
, (B.55)
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where, letting ~Q =
⋃g
i=1 ~qi,

K (~η) =

 0| ~Q|×| ~Q| MT
~Q[ ~Q,[2n]]

M[ ~Q,[2n]] ~Q (−1)|~η|M[ ~Q,[2n]][2n]

(
I− 2P~η

)
MT

[2n][ ~Q,[2n]]

 . (B.56)

From Eq. (B.51) to Eq. (B.52), we use the fact that

(−1)
1
2

(|~α|+2k)(|~α|+2k−1) = (−1)
1
2
|~α|(|~α|−1)+k(2|~α|−1)+2k

2

(B.57)

(−1)
1
2

(|~α|+2k)(|~α|+2k−1) = (−1)
1
2
|~α|(|~α|−1)(−1)k (B.58)

for |~γ| = |~α|+ 2k and 2k = |V
(
~B
)
| − | ~B|. The latter quantity is guaranteed to be

even by the parity-preserving property of V . By the same property, we have

(−1)
∑g
i=1(|~βi||V(~βi)|+|~β

′
i||V(~β

′
i)|) = (−1)

∑g
i=1(|~βi|+|~β

′
i|) (B.59)

(−1)
∑g
i=1(|~βi||V(~βi)|+|~β

′
i||V(~β

′
i)|) = (−1)|

~B|+| ~B′| (B.60)

From Eq. (B.54) to Eq. (B.55), we used the particular form for the function ϕ(~βj),

from

V
†

i C~βi
Vi =

C~βi
|~βi| even

(−i)(−1)
∑
j∈~βi

j
Cβi |

~βi| odd
, (B.61)

where βi = ~qi/~βi, and the phase comes from the fact that ZjZj+1 = −C~qj and

C~qjck = (−1)|~qj |−kC~qj/k for |~qj| = 4. We see there is a factor of −i for every ~βi for

which |~βi| is odd. Since the sub-matrix inside the determinant of Eq. (B.55) must be

square, we must have

| ~B′|+ |V×g
(
~B
)
|+ |~α| = | ~B|+ |V×g

(
~B′
)
|+ |~α| (B.62)
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|V×g
(
~B
)
| − | ~B| = |V×g

(
~B′
)
| − | ~B′| (B.63)

1

2

g∑
i=1

[
|V×g

(
~βi

)
| − |~βi|

]
=

1

2

g∑
i=1

[
|V×g

(
~β′i

)
| − |~β′i|

]
, (B.64)

and thus

(−1)
1
2

∑g
i=1[|V

×g(~βi)|−|~βi|] = i
1
2

∑g
i=1{[|V×g(~βi)|−|~βi|]+[|V×g(~β′i)|−|~β

′
i|]} (B.65)

(−1)
1
2

∑g
i=1[|V

×g(~βi)|−|~βi|] = (−1)
∑g
i=1

(
δ|~βi|,3

+δ|~β′i|,3

)
i
1
2

∑g
i=1[||V

×g(~βi)|−|~βi||+||V
×g(~β′i)|−|~β

′
i||],

(B.66)

and the exponent on the factor of i is the number of ~βi for which |~βi| is odd, which

cancels the corresponding factor of −i from Eq. (B.61).

B.4 Exact formula for Lightcone Boundary

We want to calculate

b2
s(t) ≡


∑

~β with XsI
⊗(n−s)

or YsI
⊗(n−s)

present

det
(
u~α~β

)2

(s ≥ bn/2c)

∑
~β with I

⊗(s−1)
Xs

or I
⊗(s−1)

Ys present

det
(
u~α~β

)2

(s ≤ bn/2c)
. (B.67)

As stated in the main text, we can apply the Jordan-Wigner transformation on the

strings satisfying the condition in each sum to obtain

b2
s(t) =


∑

~β
′

{
det
[
u~α(~β′,2s−1)

]2

+ det
[
u~α(~β′,2s)

]2
}

(s ≥ bn/2c)∑
~β
′

{
det
[
u~α([2s−2],2s−1,~β

′)

]2

+ det
[
u~α([2s−2],2s,~β

′)

]2
}

(s ≤ bn/2c)
.

(B.68)
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Each of these sums is of the form in Eq. (5.28), which we can evaluate to obtain

−b2
s(t) =



det

 0 uT
2s−1,~α

u~α,2s−1 u~α[2(s−1)]u
T
[2(s−1)]~α

 (s ≥ bn/2c)

+ det

 0 uT
2s,~α

u~α,2s u~α[2(s−1)]u
T
[2(s−1)]~α


det

 0(2s−1)×(2s−1) uT
([2(s−1)],2s−1),~α

u~α,([2(s−1)],2s−1) u~α[2s]u
T
[2s]~α

 (s ≤ bn/2c)

+ det

0(2s−1)×(2s−1) uT
([2(s−1)],2s),~α

u~α,([2(s−1)],2s) u~α[2s]u
T
[2s]~α



.

(B.69)

We see that b2
s(t) can therefore be evaluated efficiently as the sum of only two

determinants of polynomially-sized matrices.
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Appendix C

“Autonomous quantum Maxwell

demon”

C.1 Exposition of the Interaction Lindbladian

Here we give the details of our interaction Lindbladian LDM . As mentioned in the

main text, the intrinsic and cooperative transitions are characterized by the Lindblad

jump operators

Lg→e =
√

Γg→eσ
−
D ⊗ 1M (C.1)

Lg←e =
√

Γg←eσ
+
D ⊗ 1M (C.2)

for the intrinsic transitions, and

Lg0→e1 =
√

Γg0→e1σ
−
D ⊗ σ

−
M (C.3)

Lg0←e1 =
√

Γg0←e1σ
+
D ⊗ σ

+
M (C.4)
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for the cooperative transitions. Here, σ± = 1
2

(X ± iY ) are the qubit ladder operators,

and σ{x,y} are qubit Pauli-x and -y operators. Once again, the transition rates are

chosen to satisfy detailed balance

Γg→e
Γg←e

= e−βh∆ Γg0→e1
Γg0←e1

= e−βc∆. (C.5)

Finally, the demon has an intrinsic Hamiltonian

ĤD = ∆|e〉〈e| = ∆

2
(1D − ZD) , (C.6)

and so the full dynamics of the interaction are generated by the Lindbladian

LDM (ρDM) = −i[ĤD ⊗ 1M , ρDM ] +
∑
i

Li (ρDM) , (C.7)

where

Li (ρDM) = LiρDML
†
i − 1

2
{L†iLi, ρDM}, (C.8)

is the term corresponding to a particular jump operator. [., .] and {., .} are the

commutator and anticommutator, respectively, and we have chosen units such that

~ = 1. As mentioned in the main text, Lg0→e1 and Lg0←e1 commute with U z,ϕDM as

defined in Corollary 6.3.2, due to the fact that σzD ⊗ σzM commutes with σiD ⊗ σjM for

i, j ∈ {x, y}. Clearly Lg→e, Lg←e, and the Hamiltonian terms commute with U z,ϕM .

LDM has a fixed point ρ
(fp)
DM , for which
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LDM
(
ρ

(fp)
DM

)
= ρ

(fp)
DM (C.9)

and given by a product

ρ
(fp)
DM = ρ

(fp)
D ⊗ ρ(fp)

M , (C.10)

where

ρ
(fp)
D =

1

1 + eβh∆

 1 0

0 eβh∆

 (C.11)

in the energy eigenbasis, and

ρ
(fp)
M =

1

1 + e(βh−βc)∆

 1 0

0 e(βh−βc)∆

 (C.12)

in the z basis. The form of this fixed point will be important for the following proofs.

C.2 Generalized Clausius Inequality

Here we give a proof of Eq.s (6.15, 6.16, 6.20). As stated in the main text, we have

monotonic evolution to the fixed point in a single interaction (φτ ⊗ IM̃)

D(ρDMM̃ ||ρ
(fp)
DM ⊗ ρM̃)−D(ρ′DMM̃ ||ρ

(fp)
DM ⊗ ρM̃) ≥ 0 (C.13)
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where

D(ρ||σ) = −S(ρ)− tr (ρ lnσ) (C.14)

is the quantum relative entropy. Using

ln (ρA ⊗ ρB) = ln ρA ⊗ 1B + 1A ⊗ ln ρB (C.15)

tr
[
ρAB

(
ÔA ⊗ 1B

)]
= tr

(
ρAÔA

)
≡
〈
ÔA

〉
(C.16)

and

tr
[(
ρ′D − ρD

)
ln ρ

(fp)
D

]
= 0, (C.17)

from the periodic steady state condition on D, additionally with the fact that the

interaction acts as the identity on M̃ , Eq. (C.13) reduces to

∆SDMM̃ + tr
[(
ρ′M − ρM

)
ln ρ

(fp)
M

]
≥ 0 (C.18)

Next, we note that

〈
ln ρ

(fp)
M

〉
= ∆

2
(βh − βc) (1− ζ)− ln

[
1 + e(βh−βc)∆

]
(C.19)

All of the constant terms cancel in the difference, and so we are left with
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tr
[(
ρ′M − ρM

)
ln ρ

(fp)
M

]
=

∆

2
(ζ ′ − ζ)(βc − βh) (C.20)

Defining Qh→c ≡ ∆
2

(ζ ′ − ζ), Eq. (C.18) gives

Qh→c(βc − βh) + ∆SDMM̃ ≥ 0 (C.21)

Finally, we use the definition of quantum mutual information

S(ρDMM̃) = S(ρD) + S(ρMM̃)− I(D : MM̃) (C.22)

and the fact that ∆SD = 0, again from the periodic steady state condition on D, in

Eq. (C.21) to obtain Eq. (6.20)

Qh→c(βc − βh) + ∆SMM̃ ≥ ∆ID:MM̃ (C.23)

Eq. (6.16) follows in the same manner, but without including M̃ , and Eq. (6.15)

requires neglecting correlations (∆ID:M ≈ 0).

C.3 Matrix Product Density Operator

Update Method

We describe our matrix product quantum operation shown in Fig. 6.3 by its action

on the product basis elements in Eq. (6.26). Using a generalization of the result in
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Ref. [SSV+05] from vectors to operators as in Ref. [ZV04], we update each element

by n sequential interactions, Φnτ , as

Φnτ

(
σiDD

n⊗
j=1

σij

)
=
∑
i
′
D,~i
′

tr

(
BiDP

n∏
j=1

Ci
′
jij

)
σi
′
D
D

n⊗
j=1

σi
′
j , (C.24)

where

(
Ci
′
i
)
αβ

= tr

[(
σαD ⊗ σi

′

M

)†
φτ

(
σβD ⊗ σ

i
M

)]
(C.25)(

BiD
)
αβ

= tr
[
(σαD)† ρD(0)

]
δiDβ, (C.26)

δiDβ is the Kronecker delta, and the σiD are the basis elements for D. These expressions

follow from completeness under the trace inner product for this operator basis

〈A,B〉tr = trA†B (C.27)

A =
∑
i

〈
σi,A

〉
tr
σi (C.28)

Thus, after rearranging,

ρDM(nτ) =
∑

iD,~i tr
[ (
BiD ⊗ 1

)
P
∏N

j=n+1

(
1⊗ Aij

)
×P

∏n
j=1

(∑
k C

ijk ⊗ Ak
) ]
σiDD

⊗N
j=1 σ

ij , (C.29)

and in the next interaction, we make the replacement

1⊗ Ain+1 7→
∑
k

Cin+1k ⊗ Ak. (C.30)



Appendix C. “Autonomous quantum Maxwell demon” 158

We see that this leaves the description of Eq. (C.29) approximately unchanged for

sufficiently large N , n. This is the aforementioned periodic steady state of the system.

Finally, we trace out all previously interacted degrees of freedom to obtain

ρDMM̃ =
∑
iD,~i

tr
[ (
BiD ⊗ 1

)
P

N∏
j=n+1

(
1⊗ Aij

)
×

(∑
k

Dk ⊗ Ak
)n ]

σiD
N⊗

j=n+1

σij , (C.31)

where

Dk =
∑
l

C lk trσl. (C.32)

After the next interaction, we have

ρ′DMM̃ =
∑
iD,~i

tr
[ (
BiD ⊗ 1

)
P

N∏
j=n+2

(
1⊗ Aij

)
×

(∑
k

Cin+1k ⊗ Ain+1

)(∑
k

Dk ⊗ Ak
)n ]

σiD
N⊗

j=n+1

σij . (C.33)

We now simplify Eq. (C.31) using is the classicality of our interaction, φτ , which

implies D± = 0. Rearranging, and making the identifications

ρ
(~k)
D =

∑
iD

tr

[
BiDP

(
n∏
j=1

Dkj

)]
σiDD , (C.34)

p~kρ
(~k)

MM̃
=
∑
~i

tr

[
P

(
N∏

j=n+1

Aij

)(
n∏
j=1

Akj

)]
N⊗

j=n+1

σij , (C.35)
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for ~k ∈ {0, 1}n gives our Theorem 4

ρDMM̃ =
∑

~k p~kρ
(~k)
D ⊗ ρ

(~k)

MM̃
, (C.36)

where

ρ
(~k)
D = P

n∏
j=1

T kj [ρD(0)] , (C.37)

ρ
(~k)

MM̃
=

1

p~k
trM̄

[(
1MM̃

n⊗
j=1

σkj

)
ρM(0)

]
, (C.38)

and

T kj (ρD) ≡ trM φτ

(
ρD ⊗ σ

kj
M

)
, (C.39)

p~k = tr

[(
1MM̃

n⊗
j=1

σkj

)
ρM(0)

]
. (C.40)

The classicality of the ρ
(~k)
D follows from the uniqueness of the fixed point of the

transfer operator T k, which is the periodic steady state of the demon upon interacting

with a string of uncorrelated pure classical qubits, |k〉⊗n, and found in Ref. [MQJ13].

Because this fixed point is classical and unique, T k must be dephasing in the energy

eigenbasis, and so the ρ
(~k)
D are classical as well.
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