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Abstract

Networks may need to be interconnected for various reasons such as inter- organiza-

tional communication, redundant connectivity, increasing data-rate and minimizing

delay or packet-loss, etc. However, the trustworthiness of an added interconnection

link cannot be taken for granted due to the presence of attackers who may compro-

mise the security of an interconnected network by intercepting the interconnections.

Namely, an intercepted interconnection link may not be secured due to the data

manipulations by attackers. In the first part of this dissertation, the number of in-

terconnections between the two networks is optimized for maximizing the data-rate

and minimizing the packet-loss under the threat of security attacks. The optimiza-

tion of the interconnectivity considering the security attack is formulated using a

rate-distortion optimization setting, as originally introduced by Claude E. Shannon

in the information theory. In particular, each intercepted interconnection is modeled

as a noisy communication channel where the attackers may manipulate the data by
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flipping and erasing of data bits, and then the total capacity for any given number

of interconnections is calculated. By exploiting such formulation, the optimal num-

ber of interconnections between two networks is found under network administrators

data-rate and packet-loss requirement, and most importantly, without compromis-

ing the data security. It is concluded analytically and verified by simulations under

certain conditions, increasing interconnections beyond an optimal number would not

be beneficial concerning the data-rates and packet-loss. In the second part of this

dissertation, the vulnerability of the interconnected network is analyzed by a prob-

abilistic model that maps the intensity of physical attacks to network component

failure distributions. In addition, assuming the network is susceptible to the attack

propagation, the resiliency of the network is modeled by the influence model and

epidemic model. Finally, a stochastic model is proposed to track the node failure

dynamics in a network considering dependency with power failures. Besides, the

cascading failure in the power grid is analyzed with a data-driven model that repro-

duces the evolution of power-transmission line failure in power grids. To summarize,

the optimal interconnectivity among networks is analyzed under security attacks,

and the dynamic interactions in an interconnected network are investigated under

various physical and logical attacks.

The proper application of this work would add minimum number of inter-network

connections between two networks without compromising the data security. The op-

timal number interconnections would meet network administrator’s requirement and

minimize cost (both security and monetary) associated with unnecessary connections.

This work can also be used to estimate the reliability of a communication network

under different types of physical attacks independently and also by incorporating the

dynamics of power failures.
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Chapter 1

Introduction

1.1 Overview and motivation

Modern communication networks are interdependent due to the service or support

(both infrastructural and logical) they receive from one another. These networks

are interconnected through the communication gateways, which we termed asthe

multilevel (ML) network. A ML network is composed of several interconnected and

interdependent sub-networks of varying sizes ranging from small to medium to large,

with varying security levels and capacities. Although almost all network infrastruc-

tures (military, commercial or private) can be represented by a single topological

level concept, it would be precise to model it using the concept of a ML network.

Therefore, the representation of such ML network architecture is important, because

it can represent the physical infrastructure and attributes of many of todays special

communication networks, such as communication networks that serve the military.

The infrastructural dependency among networks is primarily needed for efficient

communication between different networks. A similar terminology named multilevel

network is described in [1], where the term multilevel implies all five abstract layers

1



Chapter 1. Introduction

Figure 1.1: A physical topology for a ML communication network.

of OSI (open system interconnection) model. The authors in [2] have introduced a

framework termed multi-provider network. Akin to this effort, we have defined each

level of our ML network as the physical infrastructure of different networks. Figure

1.1 shows a prototype of a ML communication network of the types described here

for military communication. We categorize the physical infrastructure of an inter-

dependent communication system into three scales: small, medium and large. The

specifications of each scale are given in Table 1.1. For instance, the small, medium

and large networks can be military networks, wide area networks and commercial

networks, respectively.

Because of these interconnections many network-security issues may arise which

we describe in the following. At first, a secure network may be exposed to security

attacks through interconnections, such as an interconnection may be intercepted by

intruders/attackers [3]. Some example such attacks such as bit-flipping attack [3],

2



Chapter 1. Introduction

Table 1.1: Specifications of each level in a ML network
``````````````̀Parameter

Network size
Small Medium Large

Number of nodes ∼ 100 ∼ 1000 ∼ 10000

Bandwidth low high high

Security high low low

(a) (b) (c)

Figure 1.2: Different types of logical attacks on networks: a) bit-flipping attack b)
jamming attack c) packet-dropping channel

.

jamming attack [4] and packet-dropping scenarios [5] shown in Fig. 1.2.

Apart form the above logical security issues, since the ML communication network

is a physical infrastructures various physical attacks can directly damage compo-

nents of a communication networks. For example, man-made attacks such as WMDs

(weapons of mass destructions), HEMPs (high-altitude electromagnetic pulses) and

natural disasters including earthquake (2006 earthquake in Taiwan), hurricane (Kata-

rina in the USA and Mexico in 2005), tornadoes, flood, lightening, snow/strom,

wildfires (2006 wildfires in California) are shown to damage components of commu-

nication networks. Figure 1.3a shows the emulation of a man-made attack (i.e.,low-

altitude EMP attack) on the central region of the USA [6]. This attack is shown

to be directly failed the components of the communication network. Figure 1.3b

shows the percent of wirelines and wireless subscribers that were out of service in

the affected areas in the USA and Mexico due to the 2005 hurricanes [7]. Here the

horizontal-axis represents the date, the vertical-axis is the percentage of subscribers

out of service. From the figure we see, for Katrina, the peak reaches nearly 50% of

3



Chapter 1. Introduction

(a) (b)

Figure 1.3: Effect of different types of physical attacks on networks: a) emulation
of a low-altitude EMP attack on the central region of the USA b) percentage of
wirelines and wireless subscribers that were out of service in the USA and Mexico
due to 2005 hurricanes

.

the total subscribers, which were approximately 3 millions subscribers.

Moreover, attacks may propagate among networks through interconnections. For

example, security attacks such as Malwares (Viruses, Worms) can propagate from

one node to another node [8] and a secure network node may be compromised due to

the propagation of threat/risk from less secure networks. An example of such attacks

is WannaCry ransomware attack in 2017, that affects 200,000 computers across 150

countries, total damages ranging from hundreds of millions to billions of dollars

(see Wikipedia/News articles). In addition, node removal (failure) can increase the

stress/traffic to other nodes, which may result in congestion [9]. Congestion-induced

Internet collapse occurred in October 1986, when the speed of the connection between

the Lawrence Berkeley Laboratory and the University of California at Berkeley, which

are located only 200 meter apart, dropped by a factor of 100 [10].

Further, the functionality of a ML communication network is dependent on the

uninterpretable power supply, i.e., proper operation of the power grid. However,

the power-grids are also vulnerable to physical attacks and natural disasters. For

instance, during northeastern USA and Canada blackout on August, 2003, 3,175
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communication networks of 1700 organizations (business entities, government, ed-

ucation institutions) suffered from abnormal connectivity outages. Of those, more

than 2,000 networks suffered severe connectivity outages for longer than 4 hours, and

over 1,400 networks for longer than 12 hours (some even longer than 48 hours) [11].

As we have seen the properly functionality of a communication network is heav-

ily dependent on various real-world physical and logical attacks. The vulnerability

analysis of the communication network to attacks is the main motivation of this

dissertation. Hence, this work is mainly about the analyzing the dynamics of com-

munication network under different types of attacks. We characterize how different

types of attacks affect the functionality of a network and considering these attacks

how we can find optimal interconnection among networks. In addition, the vul-

nerability and resiliency analysis of the ML network considering the attacks and

the influence of power failures can significantly improve the reliability analysis of a

realistic ML communication network.

1.2 Literature review

In this section, we review the works related each chapters of this dissertation. In

addition, we also point out the limitations of these works and briefly describe con-

tributions of this dissertations where necessary.

1.2.1 Prior work on optimizing inter-network connections

among networks

The literature related to the optimal inter-network connection can broadly be divided

into two parts: combating security attacks and optimizing interconnectivity among
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networks. First, we describe the security issues occur due to interconnections. Gen-

erally, an interconnected system comprised with individually secure systems is not

secure [12], because different networks usually have distinct security policies, control

structures, and infrastructural vulnerabilities, as in the case of interconnected mil-

itary and commercial networks for example [13]. Hence, by compromising a lower

secure system an attacker may compromise and access data from a highly secure

system through their interconnections [12]. In [13] Shake et. al. suggested using

highly secure gateway nodes for interconnecting a military network with commercial

networks. By adding some overhead to IPSec (IP Security) protocol for the mili-

tary data (packet) that are routed through commercial networks, a security measure

to overcome the attack issues was proposed in [14]. These complex authentication

procedures and cryptographic encryption algorithms can minimize the security vul-

nerabilities of networks. However, these methods come with associated costs of large

overhead bits, which, in turn, leads to the reduction of spectral efficiency [15] and

also may increase packet (information)-loss due to the limited transmission capacity

of the communication links. In addition, an error in the encrypted data may result

in serious decryption issues as the authors described in [16]: a good cryptographic

algorithm should be such that a one-bit error in the input to the decryptor should

result in about 50% of the decrypted bits to be wrong. Moreover, the distortion due

to packet-loss can be recovered by retransmitting the lost packets (as done in ARQ

(Automatic Repeat Request) protocol), which again results in a reduction of the

effective throughput of the networks. Security schemes for the physical layer rather

than the upper OSI (Open Systems Interconnection) layers were broadly discussed

in [17], and Harrison et. al. proposed to use error-correction coding for implement-

ing security measures in the physical layer [18], which is closely related to the work

presented in the chapter 2 from the security aspect. It is important to note that

the security issues may also occur due to attack on nodes of a network and these

attacks may propagate between networks through interconnections [19]. However,
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here capture a scenario where the attackers directly intercept the interconnections;

hence, compromise the security of a node indirectly, which is a realistic approach for

modeling the security aspect of the interconnected networks.

On the other hand, the literature of interconnectivity among different networks

has mainly been focused on military and commercial systems [13, 14]. However, in

all those works it was assumed that these interconnections are secure, and hence the

authors did not present any analytical procedures on how interconnection should be

made considering the security issues that may occur due to the added interconnec-

tions. To fill this gap, here we propose a mathematical model to incorporate the

security interceptions introduced by the added interconnections and solve for the

optimal number of interconnections between two communication networks analyt-

ically. Notably, there are analytical works on the optimization of interconnection

in cyber-physical systems, where the interdependency may lead to the cascading

failures in power grids, and subsequent failures of communication nodes which may

directly depend on power nodes [20–23]. These works have used the percolation

theory to optimize the interconnection in a cyber-physical system based on different

constraints [21–23]. However, the dynamics of the interconnectivity problem between

communication networks are different than the cyber-physical system.

1.2.2 Prior work on the vulnerability analysis of ML net-

works under attacks

Most existing analyzes of network failures start from a given (fixed) network topology

and then focus on various stressors [24,25]. Moreover, many of prior studies on phys-

ical stressors were limited to single or geographically-isolated small-size attacks or

disasters [26,27]. The impact of large-scale stressors on networks was first introduced

in [28]. Inherently, large-scale stressors lead to geographical-correlation amongst the
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failures of network components within the stressor’s geographical proximity. Geo-

graphical correlations among large number of component failures is modeled in [28]

based on the geographical proximity of network components from stressor centers.

However, the authors only considered a single stressor event at a time, and failure

of any network component within the range of stressor was assumed to be determin-

istic. However, multiple attack/disaster events can occur simultaneously and their

effects on network-component failure are not deterministic. A probabilistic failure

model with multiple circular stressor events has been proposed in [25]. However,

the authors assigned a fixed failure-probability to all network components, which

may not be realistic. Further, assumption of only circular-shaped stressors does not

completely capture the impacts of various stressors on a network. A more realis-

tic Gaussian shape function for modeling range and intensity of several stressors

was used in [29]. In addition, the authors also used a Strauss point process [30] to

characterize the geographical correlation among stressors. There are other works on

network failures where SRLG information was used to characterize the correlated

link failures in a network [31]. Following a stressor event and by assuming that all

components belong to an SRLG will fail with some (fixed) probability, a simple ap-

proach to model correlated failures in a network was proposed in [32]. Correlated

failures in networks were also studied based on attacks in the logical layers [33, 34].

In contrast to all previous works, we propose a probabilistic model for capturing the

intensity of various stressors. Furthermore, we devise a new formulation to compute

the failure probabilities of all components in a communication network considering

their coupled vulnerabilities.

1.2.3 Prior work on the propagation of attacks in a network

Attack propagation among different networks has particularly been studied between

military and commercial networks. In [35] the authors discussed the crucial dif-
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ferences between the commercial and military network. While interconnecting a

military network with commercial networks, Shake suggested to use highly secure

gateway nodes [13]. In [14] authors proposed to overcome security issues by adding

some overhead (IPSec protocol) to the military data (packet) that are routed through

commercial networks. Moreover, some of the major challenges in realizing a global

network (a network infrastructure that allows military to get information whenever

and wherever they need) were summarized in [36]. The authors in [37] proposed

a layered network protocol different than the OSI or TCP/IP to establish a global

communication network for performing military communications across the world.

Surprisingly, the mathematical modeling of propagation of security risk through

interconnections has not been studied much in literature. A relatively close work

is [38], where the authors tested different network topologies (e.g., stars, cliques,

cycles) to design the intra-connectivity structure of a network in order to maximize

the resiliency and connectivity. In contrast, our work deals with the interconnec-

tion among different independent subnetworks, specifically, between a highly secure

network and networks with relatively low level of security. Further, we have used con-

strained optimization formulations for maximizing efficient interconnections among

subnetworks.

On the other hand, there are analytical works on the propagation of failures in

cyber-physical networks, such as one closely related to our work is [39], where the

authors optimized the interdependency in cyber-physical network using the evil-rain

influence model. The major departure in this work from [39] is that, rather than

assuming all the nodes are vulnerable to attack, we have considered nodes in the less

secure network are vulnerable and the vulnerability is assumed to propagate to the

secure network.
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1.2.4 Prior work on the influence power-failures to the dy-

namics of networks

A substantial amount of work has been done on the topic of network reliability as

well as on cascading failures in interdependent systems (a brief review of the latter

can be found in [40]). Initially most of the works were concentrated on a single

network such as power grids, communication and computer networks, transporta-

tion networks, etc. [28, 41, 42]. However, the interdependency among cyber-physical

networks can lead to failure dynamics that cannot be captured by analyzing the net-

works independently [43–45]. Motivated by the massive power and communication

blackout in Italy on 28 September 2003, Buldyrev et al. modeled the network fail-

ure due to interdependency between power and communication networks based on

percolation theory [20]. In [46], the authors looked at the robustness of the coupled

communication and power networks. Although the authors in [20,46] have observed

the role of interdependency between two networks to design a robust network, they

did not consider the intra-dependency within. On the other hand, an influence model

has been used to capture the intra-dependency and the cascading failures within a

power grid [47]. Later Rahnamy-Naeini et al. [39] proposed a cascading resilient

interdependent power and communication network model based on the influence-

model framework and optimized the inter-dependency between two interdependent

networks. It was assumed in [39] that the total influence imposed on a communi-

cation node distributed among its neighbors and supporting power node. However,

as described in the previous section, a communication node can independently fail

due to power disruption as well as the failure of communication components, which

cannot be captured by the framework given in [39]. Therefore, in this work we focus

on the vulnerability of communication networks with two independent influences,

one from the neighboring communication nodes within the network and the other

from the supporting power nodes. To the best of our knowledge, these two types
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of influences have not been considered independently to analyze failure dynamics in

communication network.

1.2.5 Prior work on the cascading failures in power grids

Cascading failures in the power grid have been studied extensively. A review of the

state-of-the-art models of cascading failure along with their advantages and disad-

vantages can be found in [48]. Here we briefly describe the probabilistic models

that are closely related to the work presented in this chapter 6. In [49] a branching

process is used to parametrically model the dynamics of cascading failures, where

parameters of the branching process are estimated from real-world blackout data.

Later, in [50] the authors have modified the model presented in [49] by replacing the

constant parameter of the branching process with a more realistic variable propaga-

tion rate of the cascading failure. However, in both papers, the authors assumed all

the transmission lines have an identical impact on the evolution of cascading failure.

In [41] Rahnamy-Naeini et al. have proposed a Markov chain based abstract model,

named SASE (Stochastic Abstract-State Evolution), to analyze cascading failures in

a power grid considering operating constraints, such as load-shedding, power grid

loading level, and capacity estimation error. The SASE model is an analytically

tractable model that can predict the probability of blackout sizes in time as well

as the conditional distribution of the blackout sizes given the initial number of line

failures. We follow the similar simulation approach introduced in [41]. However,

in contrast to [41] that assumed single line failure for simulating cascading failures,

here we allow multiple line failures in our simulation, which mimics real-world cas-

cading failure dynamics more closely [51]. In [51] the authors have used the resistance

distance and pseudoinverse of the grid admittance matrix to analyze the cascading

failure in the power grid after a line failure. They have also proposed a heuristic

algorithm to calculate the set of initial line failures that result in a minimum ratio
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Figure 1.4: The contribution of this dissertation.

between the final demand after the cascade stopped and the initial demand when

the cascade started. Different from previous works, in chapter 6, we characterize the

evolution of cascading failures through the transmission lines of different capacities

by a nonlinear parametric model that is based on simulation data.

1.3 Contributions of this dissertation

The main thrust of this dissertation is to analyze the vulnerability of communica-

tion network to different types of physical and logical attacks. In addition, we also

take into account the dependency of the communication network on the vulnerability

of the supporting power grid. We form a ML communication network considering

security vulnerabilities of inter-network connections and propagation of security at-

tacks through connections. Then the resiliency of the communication network is also

analyzed considering the attack vulnerability of the power grids. Then a separate

work on cascading failures in the power grids is characterized through transmission

line failure evolution. The chronological dependency of the contributions of this

dissertation is shown in Fig. 1.4.

At first we look into problem how to interconnect two networks to form a ML

network (especially, a 2-level network) considering security interception on the in-

terconnecting links. The trade-off between security and data-rate enhancement is

analyzed by optimizing the number of connections between two networks under the
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threat of security attacks. The optimization of the inter-network connection for

maximizing the data-rate and minimizing the packet loss (represents the degrada-

tion of the quality of service) is formulated using a rate-distortion theory setting,

as originally introduced by Claude E. Shannon in communication theory. In par-

ticular, each added connection that is vulnerable to data manipulation by attackers

is modeled as a noisy communication channel. Subsequently, the Shannon entropic

capacity for any given number of connections is calculated, and the corresponding

packet-loss is modeled based on the required data rate. By exploiting such models,

the optimal number of connections between two networks is found under network ad-

ministrators’ data-rate and packet-loss requirements, and most importantly, without

compromising the data security. Moreover, the proposed theory identifies condition

on attacker’s data manipulation probability to differentiate scenarios of vulnerability

when increasing the number of connections between two networks. In the vulnerable

situation, this work provides a threshold on the optimal number of inter-network

connections that results in a point of diminishing returns in increasing the number

of connections.

So from the first problem, we will get a interconnected network which we name

as the ML network. However, various cyber-physical infrastructures such as com-

munication networks and power grids are known to be vulnerable to large-scale

stressors ranging from natural disasters to intentional attacks such as those ef-

fected by weapons of mass destruction and high-altitude electromagnetic pulses.

The stresses instigated by these events can cause damage to critical components

of the network infrastructure. In this second work, a general probabilistic model is

developed for assessing the vulnerability of a communication network under various

catastrophic events. A scalable ML network framework is proposed to capture the

inter-dependencies across various communication networks in the infrastructure. For

a given large-scale stressor, the initial-failure probability of each network compo-

nent is formulated independently and then by taking into account the failure of the
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components that it depends upon. This enables the modeling of a shared failure

among network components. Detailed simulations of a three-level network model are

performed and key network-performance metrics are computed including the total

network capacity, the maximum flow and the number of node failures. This work

paves the way to model and evaluate the reliability of critical communication net-

works under massive stressor events.

In the second problem, we have seen impact of attacks result in some initial fail-

ures in the ML network. Note that, these are not necessarily physical, mostly logical

security attacks e.g., cyber attacks. At this point, we ask, what if these initial fail-

ures propagate? What is the resiliency of the network in steady state? In this third

work, we maximize the interconnectivity among subnetworks under the constraint of

security risk. We model the dynamics of security risk propagation by the evil-rain

influence model and the SIR (susceptible-infected-recovered) epidemic model. By ex-

tensive numerical simulations using different network topologies and interconnection

patterns, it is shown that the efficiency of interconnectivity (vulnerability) increases

nonlinearly (linearly) with the number of interconnections among subnetworks. Fi-

nally, parametric models are proposed to find the number of interconnections for

any given efficiency of interconnectivity and resiliency of the secure network. The

importance of this work is that, we can know the status of a secure network when

that network is susceptible to attack propagation.

Till now, we have a model for initial failures in communication networks under

attack and analyzed the propagation of those initial failures and find steady state.

In other words, we have modeled the dynamics of communication network indepen-

dently. However, we have ignored one important part of the physical system, which is

power. As we know the functionality of a communication network depends on power

network as well and the vulnerability of power networks due to attack can directly

affect the supporting power supply components of the communication networks and
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can interrupt the functionality of the communication components. In other words,

both intra-dependency among various components inside a communication network

and inter-dependency with supporting power supply nodes can contribute to the

propagation of the initial failures. Under the probabilistic initial failures of the net-

work’s physical infrastructures, in the fourth work, we develop a stochastic model to

track the functional dynamics in a communication network considering dependency

among communication nodes as well as with power nodes. A closed-form analytical

formula is derived to find the steady state probabilities of all communication nodes

in the communication network which are influenced by power node’s functionali-

ties. The significance of this work is that it captures effect of power failure on the

communication network which is important for any real-world network.

Finally, the previous work assumed power nodes are independent on each other,

which is a simplistic assumption. Hence in the final work, we analyze the cascading

failure in the power grid by using a data driven model. In this work, a parametric

model is proposed that represents the propagation of transmission line failures in

the power grid. At first, by optimal DC power-flow simulations of the IEEE 118

bus system, different types of data on the transmission line failures are collected,

which can capture the time evolution of the cascade. The probability that a line of

a given capacity fails is found to be well approximated by a power-law (the higher

is the capacity the lower the probability). Then based on these data, a discrete-

time parametric model is proposed to keep track of the failures of lines of different

capacities during a cascading failure event. The convergence of the evolution of line

failures to the steady state is analyzed. Finally, when compared to real-world data,

the model is shown to be capable of reproducing similar trends for the time evolution

of the failure dynamics. The significance of this work is that it can reproduce the

time-evolution of the failure dynamics of transmission lines in a power grid given the

grid topology.
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1.4 Organization of the dissertation

This dissertation is organized as follows. In chapter 2, we first form a ML (2-level)

network considering the security attacks on the added inter-network connections. We

formulate this problem is an interconnection optimization problem between two net-

works. The constraints of this optimization problem are data-rates and the packet-

loss. The outcome of this work is the following: a fundamental theoretical limit on

the number of interconnection using rate-distortion theoretic formulation that meets

users specified requirement.

The infrastructure of that ML network is vulnerable to large-scale physical attacks

ranging from natural disasters to intentional attacks such as WMDs, EMPs. These

types of catastrophic events can cause damage to critical components of the network

infrastructure. Then in chapter 3, the vulnerability of ML network to different types

of physical attacks is analyzed. We develop a probabilistic model for assessing the

vulnerability of a communication network under various catastrophic events.

In chapter 4, we dig a bit more into the problem: we model how these initial

attacks can propagate between networks and thus how it increases vulnerability of

a secure network due to the propagation of a threat/risk from less secure networks.

We also model resiliency of the network at steady state, (i.e. number of node sur-

vived when the attack propagation is stopped). in summary, we analyze how this

initial failures propagate between networks through interconnections and affect the

resiliency of the network in chapter 4.

In chapter 5, we extend the dynamical analysis of a communication network under

the influence of power failure due to attack. In other words, we develop a stochastic

model to track the functionality dynamics of a communication network consider-

ing both intra-dependency among communication nodes and inter-dependency with

power nodes. We derive a closed form analytical solution to track the functionality
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dynamics of a communication network considering dependency with power nodes.

In chapter 6, based on the data from optimal DC power-flow simulations of the

IEEE 118 bus system, a nonlinear parametric model for simulating the evolution of

transmission line failure in power grids is proposed.

Finally, we conclude our works and provide future research directions in chapter

7.

1.5 Publications resulting from the dissertation

A list of our publications, related to this dissertation, is as follows:

1. Pankaz Das, Rezoan A. Shuvro, Mahshid R. Naeini, Nasir Ghani, Majeed M.

Hayat. “Optimizing Interconnectivity among Networks for Maximizing Data

Rate and Minimizing Packet-loss under Security Attacks ,” to be submitted in

IEEE Transactions on Communications, 2018.

2. Pankaz Das, Rezoan A. Shuvro, Mahshid R. Naeini, Nasir Ghani, Majeed M.

Hayat, “Stochastic Functionality Dynamics of Communication Network under

the Influence of Power Failure, under preparation, 2018.

3. Pankaz Das, Mahshid R. Naeini, Nasir Ghani, Majeed M. Hayat, “On the Vul-

nerability of Multi-level Communication Network under Catastrophic Events,”

IEEE ICNC, San Jose, USA, 2017.

4. Pankaz Das, Rezoan A. Shuvro, Zhuoyao Wang, Mahshid R. Naeini, Nasir

Ghani, Majeed M. Hayat. “Stochastic Failure Dynamics in Communication

Network under the Influence of Power Failure.” IEEE WiMob, Rome, Italy,

2017.
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5. Pankaz Das, Rezoan A. Shuvro, Mahshid R. Naeini, Nasir Ghani, Majeed

M. Hayat “Efficient Interconnectivity among Networks under Security Con-

straint,” IEEE MilCom, LA, USA, 2018.

6. Pankaz Das, Rezoan A. Shuvro, Zhuoyao Wang, Majeed M. Hayat, Francesco

Sorrentino “A Data-Driven Model for Simulating the Evolution of Transmission

Line Failure in Power Grids,” IEEE NAPS, ND, USA, 2018.
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Optimizing interconnectivity

among networks under security

attacks

Interconnections refer to the communication links that connect two or more net-

works for mutual communication among network users. By the Code of Federal

Regulations (47CFR51.5) of the United States, “interconnection is the linking of two

or more networks for the mutual exchange of traffic.” The physical linkings between

two carrier’s networks or connections between a carrier’s facilities to its customers are

also referred as the interconnections in telecommunications networks ( [52] Ch. 10).

In general, interconnections among independent networks are inevitable for various

reasons including expansion of the communication capabilities among geographically-

distant networks for seamless communication among users across different networks,

establishing redundant/backup connections in case of failures in the primary system,

increasing data rate and minimize delay by rerouting through high-bandwidth net-

works when a network has a limited bandwidth, etc. In particular, interconnectivity

between a small-sized network (consisting of a smaller number of nodes with low
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link-bandwidth) and a large-sized network (comprising a more substantial number

of nodes with high link-bandwidth) is required for expanding the communication

range and data rate of the small network. For example, communication networks

such as military, private, and commercial networks, consist of their secure communi-

cation infrastructure, which may, however, interconnect with external networks for

the above-mentioned reasons. For instance, a wide range of commercial and non-

commercial communication systems and networks are used by military personnel to

support the military communications [53].

Clearly, without interconnections, there are no active communication links be-

tween the two networks; hence, the data packets of a network that are to be routed

through the network will be entirely dropped. In addition, when there are smaller

number of interconnections that results in the limited data exchange capability be-

tween the networks, the data transmission may face considerable delays. Moreover,

in the worst-case scenario, certain data packets may be dropped (idealizing the effect

of queuing delay to be considerably large or infinite). To remedy such situations, a

larger number of interconnection between networks may be thought of as a viable

solution. Therefore, the more interconnections one establish, the more data rate one

can achieve, and there will be less likelihood of packet-loss.

However, these interconnections can be intercepted by attackers, and once an

interception event occurs, attackers may manipulate the data packets (bits) that are

being transmitted through the interconnections. In particular, an intruder may in-

tercept a communication channel between nodes and may add or delete data/control

messages of sender and receiver ( [8] Ch. 8). For example, the LoRaWAN (Long

Range Wide Area Network) technology that is proposed for IoT (Internet of Things)

has a security vulnerability which may result in a bit-flipping attack, where the at-

tacker can change encrypted data without decrypting it. In [3], the authors showed

an example of bit-flipping in the data that produce wrong information output on
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the receiver side. Further, bit-flipping attacks are familiar to changes in the des-

tination address, digital signatures, and stream ciphers. Besides bit-flipping, the

data bits can be deleted by attackers in certain types of attacks such as in jamming

attacks [4], in packet erasure channels [54]. A communication channel considering

both insertion and deletion of data bits are described in [55] for the binary channels

and in [56] for non-binary channels. Therefore, interconnections come with the price

of security vulnerabilities to the system. Further, since each interconnection opens

a way of interception for the intruders, the more interconnection a network has, the

more prone it is to security attacks. Hence, it becomes important to find the number

of interconnection that gives the required data rate and minimize the packet-loss

without compromising the security of the network.

In this chapter, we respond to the following question: how many interconnections

two networks should have to maximize inter-network data rates while maintaining the

packet-loss below a threshold and limiting the level of compromise in the security of

the system? To answer this question, we first probabilistically model the attacker’s

interception as a nondecreasing function of the number of interconnections that cap-

tures the increase of interceptions due to the added interconnections. After inter-

ception attackers may manipulate the data thats goes through the interconnection

channel. To model the effect of data manipulation, each intercepted interconnection

is modeled as a noisy communication channel, where we think of noise as the data

manipulation by the attackers; in particular, manipulation refers to the flipping and

erasing of the data bits. Afterwards, we analytically find the Shannon capacity of

the intercepted interconnection channels. From Shannon’s channel coding theorem

( [57] Ch. 7), if one transmit data below the channel capacity, all the adverse effects

on the transmitted data can be corrected at the receiver side using channel coding.

Therefore, the gateway nodes always transmit below the Shannon capacity to undo

the harmful effect of attackers. Note that here the gateway nodes are those connect-

ing the two networks and knows (or estimates) the capacity of the interconnection

21



Chapter 2. Optimizing interconnectivity among networks under security attacks

channel. Hence, whenever the data rate of the interconnections exceeds the associ-

ated Shannon capacity, some data packets (bits) is dropped by the gateway nodes

to combat the security attacks. Here we define packet-loss distortion as the rate

of dropped packets from the source network due to the finite and limited Shannon

capacity of the interconnections. Considering a certain tolerance level on the packet-

loss distortion, we define the data rate of a network as the maximum transmission

rate that can be achieved without compromising security. Finally, we propose two

optimization formulations to find the optimal number of interconnections between

two networks based on the network administrator’s requirement on the data rate

and packet-loss distortion. Here the optimality of the number of interconnections

is defined with respect to the maximum data rate and minimum packet-loss distor-

tion. Most importantly, the optimization problems take into account the security

vulnerabilities (interception occurrence and data manipulations) due to added inter-

connections and find the optimal number of interconnections without compromising

the security at all. As such, we develop an optimal interconnection strategy between

two networks for maximum mutual-information exchange and minimize packet-loss

with combating the security interceptions of the data. The contributions in this

chapter can be summarized as follows:

1) The probabilistic model for the interception of interconnections by attackers

is introduced and the effect security attacks after interception is analyzed through

the data manipulations. Defining associated system parameters and finding the

optimal interconnectivity under the security attacks from the information-theoretic

perspective is an exciting application of the state-of-the-art rate-distortion theory

and Shannon’s channel capacity.

2) Analytic derivation of the closed-form formula for the capacity of an inter-

connection channel under any given data-manipulation capability of the attackers as

well as theoretical limit of the total Shannon capacity of the interconnections when
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Figure 2.1: The analogy between our formulation and the rate-distortion theory and
channel coding theorem in information theory.

maximum number of interconnections tends to infinity.

3) While finding optimal number of interconnections that can withstand under

security threats, two optimization sub-problems are formulated and analyzed under

two realistic constraints as follows:

a) maximizing the inter-network data rate while keeping the packet-loss below a

certain user-specified level,

b) minimizing the packet-loss while satisfying user’s data rate constraint.

Figure 2.1 demonstrates the analogy between the formulation proposed in this

chapter and the rate-distortion optimization and channel coding concept. In the sem-

inal work of Claude E. Shannon on information theory [57, 58], the rate-distortion

optimization provides a bound on the minimum data rate at the source (transmitter)

that is needed to satisfy a certain distortion requirement at the destination (receiver),

and the more data rate one provides, the less distortion is achievable. However, to

transmit data through a noisy channel reliably, the source-channel coding theorem

provides a bound on the maximum data rate (termed as channel capacity). Com-

bining both theories, to achieve the desired distortion, the source needs to have the

data rate given by rate-distortion theory, and that data rate has to be lower than the

channel capacity for reliable communication (please see Ch. 7 and Ch. 10 of [57] for
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details). Analogous to the rate-distortion optimization, here we increase the num-

ber of interconnections between the two networks, which, in turn, increase the data

rate to minimize the packet-loss distortion between two networks. Therefore, intu-

itively more interconnections mean higher data rates. However, since the attackers

intercept these interconnections for manipulating the data, we provide a maximum

bound on the number of interconnections (similar to the channel capacity) that gives

the maximum data rate between two networks without compromising the security of

the network. To the best of our knowledge, mathematical modeling of the security

issues introduced by added interconnections from information theoretical perspec-

tive (specially rate-distortion theory and source-channel coding theorem), and then

use of that formulation to find the optimal number of interconnections between two

networks has not been done heretofore.

This chapter is organized as follows. In Section 2.1, we present a realistic example

of the interconnectivity between a small military network and a large commercial

network. The adversary model is described in Section 2.2. The key definitions

and system parameters introduced and elaborated in Section 2.3. In Section 2.4, we

formulate two optimization problems and find the optimal number of interconnections

under packet-loss and data-rate constraints. Our conclusions and future work are

presented in Section 2.5.

2.1 A realistic example of the interconnectivity

between a small and a large network

Consider a large group of military personnel of a country that is stationed abroad

for certain operations. Groups of this nature are usually supported by an highly-

secure independent communication infrastructure consisting of a small number of
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Figure 2.2: The interconnection between a small and large network, and interception
of the interconnection by an attacker. An attacker may manipulate (add/delete)
data after the interception.

nodes. In addition, such a small-sized network with a small geographical range may

have limited connectivity to the outside world for security reasons. However, there

may be need for this network to have high-bandwidth connectivity to the outside

world for various practical reasons. For example, certain military personnel may need

to receive service from Internet service providers, communicate with headquarters

and exchange a large amount of data from databases of collaborating agencies when

needed, etc. One approach to address such need is to use satellite communication.

However, this system have relatively high cost with a substantial end-to-end delay

and lower data rate compared to terrestrial/fiber-optic network. Alternatively, the

small military network may resort to connecting to readily accessible commercial re-

sources with broad bandwidth to achieve a higher data rate. Furthermore, military

networks may also want to keep the commercial network as a redundant communi-

cation medium in case of emergency. Nevertheless, as pointed out in the previous

subsections, such interconnections with less secure communication networks may in-

crease the vulnerability of military networks to attacks. This realistic scenario is

replicated by modeling interconnection between two networks, where a highly secure

small network with limited data rate wants to connect with a less secure large network

for achieving high data rate. Beyond the military network and commercial network,

examples of highly-secure small networks and less-secure large networks may include
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private networks and intercontinental backbone networks, respectively. Figure 2.2

shows a scenario of the interconnection between a small and large network and the

possible security interception on the interconnections by attackers. Note that here

we provide a simple example with a small and large network from the application

perspective. However, this work may applicable to find optimal interconnection be-

tween any networks irrespective of their sizes as long as interconnections are prone

to attacks.

2.2 The attacker model

The following assumptions are made to model the attackers who may intercept in-

terconnections and manipulate the data causing the inter-network communication

insecure.

1) The attackers may intercept on the bit, packet, signal level of the transmitted

data as assumed in [59]. Without loss of generality, we assume attackers work on the

bit level since each data packet essentially consists of bits.

2) Interconnections cause a network to be susceptible to attack and the probability

of interception by attackers increases as we increase the number of interconnections

between a highly secure network and a network with lower security. This assump-

tion is very intuitive and realistic since having more interconnections increases the

likelihood of exposure of a network to the attackers. For example, it is shown in [12]

that, interconnecting a highly secure system with other systems of lower security

opens up paths for the data to be copied from the highly secure system to the lower

security system. Since the network is compromised due to the interconnections, our

assumption on the increase of security interceptions with more interconnections can

be argued to be reasonable.
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3) Attackers may have the capability of manipulating data that are transmitted

through the interconnection channels ( [8] Ch. 8). Our attack model represents

the worst-case attack scenario where the attackers may change every bit of a data

packet with some probability. However, in intentional attacks, the attackers may

manipulate specific burst of data if they know the importance of data, the scenario

we are not considering in this chapter.

4) Here we do not consider the effect of noise and interference on the data bits

to keep our focus on the security interception issues; namely, the interconnection

channel is noiseless and channels do not interfere with each other. However, an

additive parameter can be incorporated with the attackers capability parameter to

include the effect of noise.

2.3 Formulation of an equivalent channel for the

intercept-prone interconnection

Without loss of generality, we consider to interconnect two networks and refer to the

source network (Network 1) as the network that needs of connections (e.g., military

system), and the auxiliary network (Network 2) as the network that is available to

provide connections (e.g., commercial system). Clearly, without interconnections no

active communication links exist between two networks; therefore, all the packets of

Network 1 that are destined for Network 2 will be dropped. Further, here queuing

delay is assumed to be infinite for simplicity. Hence, whenever the data rate of the

source network is higher than the aggregated Shannon capacity of the added inter-

connections, the gateway nodes drop the surpassed packets. The system parameters

of this work are modeled and elaborated in the following subsections. Note that all

these system parameters described in the following subsections are used to find the
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optimal number of interconnections between two networks in the Section 2.4.

2.3.1 The number of interconnections (NX1X2
)

It is the number of communication links of certain data rate between the gateway

nodes of the two networks. We denote the number of interconnections between Net-

work 1 and Network 2 by NX1X2 , where X1 and X2 represent the gateway nodes of

networks 1 and 2, respectively. Some of the realistic attributes of these interconnec-

tions are as follows. 1) Interconnections are done through the gateway nodes, and a

gateway node in a network may connect to any gateway nodes of the other network;

namely, a gateway node in Network i may have any number of interconnections from

the set {0, 1, · · · , Ni}, where Ni is the number of gateway nodes in Network i. Hence

the maximum number of allowed interconnections between Network 1 and Network

2 is given by Nmax = N1N2. 2) The interconnection (channel) is a discrete memo-

ryless channel (DMC) ( [57] Ch. 7), and no feedback from the receiver is allowed,

since the feedback does not increase the capacity of a DMC ( [57] Ch. 7). 3) All

interconnections have a same bandwidth.

Note that all the numerical simulation results shown next are based on the follow-

ing network parameters: consider two networks that are being interconnected with

each other. Network 1 consists of 4 gateway nodes (N1 = 4), and Network 2 consists

of 25 gateway nodes (N2 = 25). Then the maximum number of interconnections

between two networks is Nmax = N1N2 = 100.

2.3.2 Interconnection channel formulation

Each interconnection channel is characterized by the following two probabilities.
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Figure 2.3: The probability of interceptions (pl) vs. the number of interconnections
(NX1X2) for three types of interception probability models. Here increasing number
of interconnection causes an increase in the probability of interceptions.

Interception probability (pl)

Due to the nature of the attacker model presented in Section 2.2, here each inter-

connection has a certain likelihood of interception, and more interconnections imply

more interceptions by attackers. Therefore, the probability of interception (pl) of an

interconnection can be expressed as a nondecreasing function of the number of inter-

connections NX1X2 . Since the minimum and maximum number of interconnections

are 0, Nmax, respectively, two extreme cases of the probability of interception are

pl = 0 when NX1X2 = 0, and pl = 1 when NX1X2 = Nmax. Here our assumption on

the explicit form of pl are linear, exponential, and logarithmic as expressed below,

Linear : pl =
NX1X2

Nmax

;

Exponential : pl =
eαNX1X2

eαNmax
, 0 ≤ α ≤ 1 = shape of the exponential function;

Logarithmic : pl =
log(NX1X2)

log(Nmax)
, log 0 := 0.

(2.1)

Note that any other form of pl which is a nondecreasing function of NX1X2 , may

also be used depending on the nature of interceptions. Figure 2.3 shows the proba-
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(a) Secure interconnection channel (b) Intercepted interconnection channel

Figure 2.4: The interconnection (channel) model between two networks. (a) Secure
interconnection with zero probability of data error (pe = 0); therefore, the capacity
is 1 bit. (b) The intercepted interconnection (channel) with the capacity Cl with
probability of erasing and flipping are pε and pf , respectively. Here, ε denotes the
erased packet (bits)..

bility of interceptions (pl) versus the number of interconnections (NX1X2) for three

types of interceptions given by (2.1). From the figure we see that increasing in-

terconnection increases the probability of interception. Note that all the numerical

simulation results shown in the subsequent sections are generated considering the

linear functional form of pl.

Probability of data manipulation (pe)

Clearly, while not intercepted the interconnection can be represented as a noise-

less communication channel which we termed as secure interconnection as shown

by Fig. 2.4a. In contrast, when the interconnection is intercepted, the attackers

may manipulate the data that are flowing through the interconnection channel with

some probability. Namely, the data bits in each interconnection can be jammed

(erased/blocked), and bits in a packet can also be deliberately flipped in malicious

attacks. Therefore, the interception results in a probability of data (bit) flipping (pf )

and data (bit) erasing (pε). The model for an intercepted interconnection is shown by
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Fig. 2.4b. The values of pf and pε are determined by the capability of attackers for

manipulating the ongoing data transmission through the interconnections. Further,

these values may be provided by the network administrators or may be estimated

from the historical data of security attacks. Note also that during sniffing, the at-

tackers may copy/eavesdrop the packets for their benefit; however, since it does not

directly change the data bits we model this scenario as the zero capability of ma-

nipulating. Hence, the total probability of data manipulation (i.e., data error) in an

interconnection channel due to the flipping and erasure is pe:= pε + pf .

2.3.3 Properties of interconnection channel

The capacity of an interconnection channel is the property of interest here since

it reflects how good or bad an interconnection channel is. Here we calculate the

following two capacities of interconnection channels to describe their behavior under

interception and manipulation.

Average capacity of an interconnection (C̄)

Considering two cases of an interconnection whether it is intercepted or not as shown

by Fig. 2.4, we can write the capacity of an interconnection as

C =

1, with probablity 1− pl,

Cl, with probablity pl,
(2.2)

where 1 and Cl (to be defined in Theorem 1) are the Shannon capacity of the secure

interconnection channel and intercepted interconnection channel, respectively. Note

that the Shannon capacity of an interconnection (channel) is given by the maximum

mutual information between the channel input and output, where maximization is

taken over the input (symbol) probability distribution [57]. Here we assume a DMC
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to represent each interconnection channel with binary input, and therefore, according

to Shannon’s channel capacity formulation, each interconnection can carry 1 bit of

data (information) in the secure case. On the other hand, we have following theorem

to find the capacity of an intercepted interconnection.

Theorem 2.3.1. Assume a discrete memoryless interconnection channel where bi-

nary input data may be flipped or erased by the attackers with a flipping probabil-

ity pf and erasing probability pε. The Shannon capacity of this channel is Cl =(
1− (pε + pf )

)
log2

(
1− (pε + pf )

)
+ pf log2 pf − (1− pε) log2

(
1−pε
2

)
bits, and this is

achieved by a uniform distribution on the input data.

Proof. Let us denote the input and output discrete random variable of the intercon-

nection channel are X = {0, 1} and Y = {0, ε, 1}, respectively, where ε denotes the

erased bit as shown by 2.4b. The mutual information I(X;Y ) between X and Y is

defined as [57]

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(y|x)p(x) log2

p(y|x)

p(y)
bits, (2.3)

where p is the probability mass function of X and Y with p(·) ≥ 0 and
∑

z∈Z p(z) = 1.

Let p(X = 0) = α. Then p(X = 1) = 1 − α. Using the given flipping and

erasing probability, we find p(Y = 0|X = 0) = 1− (pf + pε), p(Y = 0|X = 1) = pf ,

p(Y = ε|X = 0) = pε, p(Y = ε|X = 1) = pε, p(Y = 1|X = 0) = pf , p(Y = 1|X =

1) = 1− (pf + pε). Hence

p(Y = 0) =
∑
x∈X

p(Y = 0, X = x) =
∑
x∈X

p(Y = 0|X = x)p(X = x)

= (1− (pf + pε))α + pf (1− α) = α + pf − 2αpf − αpε,

p(Y = 1) =
∑
x∈X

p(Y = 1, X = x) = 1− α + 2αpf − pε + αpε,

p(Y = ε) = pε.
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Substituting these probabilities in (2.3) and after simplifying we get

I(X;Y ) = (1− pf − pε)α log2

(1− (pf + pε))

α + pf − 2αpf − αpε
+ pf (1− α) log2

pf
α + pf − 2αpf − αpε

+ pfα log2

pf
1− α + 2αpf − pε + αpε

+ (1− pf − pε)(1− α) log2

(1− pf − pε)
1− α + 2αpf − pε + αpε

.

(2.4)

The Shannon capacity of a DMC is given by the following formula ( [57] Ch. 7)

Cl = max
p(x)

I(X;Y ). (2.5)

To maximize I(X;Y ), we differentiate (2.4) with respect to p(x) = α and setting

the result to zero to get α = 1
2
.

Now substituting α = 1
2

in (2.4), we find the capacity of the interconnection

channel

Cl = (1−(pε+pf )) log2(1−(pε+pf ))+pf log2 pf−(1−pε) log2(
1− pε

2
) bits. (2.6)

Corolary 2.3.2. The capacity of an intercepted interconnection Cl = 1 − pε bits

if pf = 0 which is the capacity of a binary erasure channel (BEC), and Cl = 1 +

pf log2 pf + (1 − pf ) log2(1 − pf ) bits if pε = 0 which is the capacity of a binary

symmetric channel (BSC).

Proof. Substituting pf = 0 and pε = 0 in (2.6) it is straightforward to find the

capacity of BEC and BSC, respectively.

Corolary 2.3.3. The Shannon capacity of an intercepted interconnection (Cl) is no

higher than the raw-link (secure) capacity of the interconnection.
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Proof. It can be seen from the Theorem 1 that Cl can be at most equal to 1 when

there are no flipping and erasing, i.e., pf = 0 and pε = 0. For all other any other

values of pf and pε, Cl < 1. However, the capacity of a secure interconnection is

always 1.

Figure 2.5a shows the Shannon capacity of a fully intercepted interconnection Cl

concerning the attackers’ data manipulation probability pe for various pf ’s and pε’s.

Two extreme cases of the interconnection channel, namely BSC (pf = 0), and the

BEC (pε = 0), are shown by the dashed and dotted line, respectively. The solid black

line shows the interconnection capacity (calculated by (2.6)) when both erasure and

flipping manipulate the data bits equally i.e., pf = 0.5pe and pε = 0.5pe. In this

scenario, the capacity (Cl) is decreasing with the increase of pe and Cl = 0 when

pe = 2
3
. This is because pf = 1

3
and pε = 1

3
, when pe = 2

3
. Hence one-third of the

data bits are deleted, and one-third of the data bits are flipped, and also one-third

of the data bits are received correctly. Since the receiver does not know which data

bits are flipped and which are intact, then the uncertainty is maximum at pe = 2
3
,

and hence the capacity is zero. Moreover, Cl starts to increase again after pe = 2
3

and reach to 0.5 at pe = 1. This is because the receiver knows all the received data

bits are flipped and interprets 0 as 1, and 1 as 0. Hence all the flipped bits can

be corrected which is 50% of the total bits since pf = 0.5 when pe = 1. Note that

in all the numerical simulations to follow, we assume equal contributions from both

flipping and erasure. However, our model can capture any other combination of the

flipping and erasing.

Lemma 2.3.4. Assume a discrete memoryless interconnection channel as shown in

Fig. 2.4b, where the probability for data flipping and erasing are given by pf and pε,

respectively. The Shannon capacity of the interconnection channel is zero (Cl = 0)

if the probability of data flipping (pf) is equal to the probability of data transmission

correctly (1− pf − pε), irrespective of the probability of data erasing (pε).
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Figure 2.5: The capacity of an interconnection channel. (a) The capacity of the
intercepted interconnection (channel) Cl vs. pe for various combinations of pf and
pε. (b) The expected capacity of the intercepted interconnection (channel) C̄ vs. pe
for various values of pl.

Proof. Analytically, it can be proved by substituting pf = 1−pf −pε or pf = 1−pε
2

in

(2.6). Intuitively, when the probability of bit-flipping and the probability correctly

sent-bits are same, the uncertainty at the receiver side is maximum, i.e., the receiver

cannot decide whether a received bit is flipped or not-flipped with equal probability.

Since the uncertainty is maximum, therefore, the capacity is zero. It is independent

of the portion of erasing since the erased bits are not adding anything to the capacity

of the channel.

Hence, by considering both cases of the capacity of an interconnection given by

(2.2), the average Shannon capacity of an interconnection channel with an intercep-

tion level pl is

C̄ = E[C] = (1− pl) + plCl = 1− pl(1− Cl) bits/interconnection, (2.7)

where E denotes the expectation operator. Figure 2.5b shows the expected capacity

C̄ as a function of pe for different values of pl. Notice that, C̄ decreases as we

increase the interception probability (pl). Hence for any given pe, the average capacity
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of interconnection channel (C̄) decreases with the probability of interception (pl).

Further, when an interconnection is fully intercepted, i.e., pl = 1, then we get C̄ = Cl.

The total expected Shannon capacity (CT )

In this subsection, we find the total capacity for the given number of interconnections.

Since there are NX1X2 active interconnections, we assume the combined interconnec-

tion channel of NX1X2 interconnections forms a product DMC. In a product DMC,

the input and output of the channels are the Cartesian product of input and output

of the interconnection channels, respectively, and the channel transition probabilities

are independent conditioned on the inputs ( [60] Ch. 3). The total expected Shannon

capacity of NX1X2 interconnections (capacity of a product DMC) is given by ( [60]

Ch. 3)

CT =

NX1X2∑
i=1

C̄i = NX1X2C̄ = NX1X2(1− pl(1− Cl)) bits/second (bps), (2.8)

where C̄i = C̄ is due to the identical bandwidth of all NX1X2 interconnection which

is assumed in Section 2.3 A. We write the the capacity unit as bps since we assume

the product DMC is used once in one second, i.e., NX1X2 interconnections are used

in parallel per second.

Figure 2.6a shows the total expected Shannon capacity (CT ) versus the number

of interconnections (NX1X2) for different data manipulation (error) probabilities (pe).

Note the behavior of CT : initially, as we increase the number of interconnections CT

increases; however, after a certain number of interconnections CT does not increase

with the number of interconnections. In worst-case (pe = 2
3
), it becomes zero when

the interconnections are fully intercepted (i.e., pl = 1). The behavior of CT is

explained as follows. First it can seen from (2.8) CT is a scaled version of C̄. From

the definition of C̄ given by (2.7), we observe that C̄ is a weighted average of 1 and
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Figure 2.6: (a) The total expected Shannon capacity (CT ) vs. the number of inter-
connections for various data manipulation (error) probabilities (pe). (b) The total
Shannon capacity (CT ) in 3D vs. pe and pl.

Cl; hence, C̄ is always between Cl and 1. In the extreme cases, when pl = 0, C̄ = 1,

and when pl = 1, C̄ = Cl ≤ 1. This implies that CT is always between NX1X2Cl and

NX1X2 ; hence, it is equal to NX1X2 when pl = 0, and to NX1X2Cl when pl = 1. Recall

that since pe does not depend on pl, Cl has a fixed value for a given pe. Now when

pe = 2
3
, we get Cl = 0 and CT = NX1X2Cl = 0 when pl = 1. Note also that there is a

certain range of pe, in which the increase in the number of interconnections results in

the decrease of total channel capacity (as depicted in Fig. 2.6b). Finally, the most

important but unintuitive observation is that adding more connection beyond the

minimum required number is not productive to get more data rates, i.e., CT . This

is due to the security issues introduced by the added interconnections.

Now we describe four extreme cases of the CT for all ranges of pe and pl. First,

the total expected Shannon capacity (CT ) vs. pe and pl is shown in Fig. 2.6b.

Case 1 (pl = 0): When there are no interconnections (NX1X2 = 0), the intercep-

tion probability is zero (pl = 0) because the network is not exposed to security risk
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through interconnections. As a result, attackers cannot manipulate data of a secure

network through interconnections. Note also that when pl = 0, CT does not depend

on pe. This region is shown by the solid black oval in Fig. 2.6b.

Case 2 (pe = 0): When the data manipulation probability is zero (pe = 0),

Cl = 1, which implies CT is equal to the NX1X2 . This is because all the interconnec-

tion channels are secure without data manipulation error since pe = 0. Intuitively,

attackers intercept the interconnections; however, since pe = 0, attackers’ capabil-

ity of changing data (flipping/dropping) through the interconnections is zero. The

dash-dotted red oval shows this region in Fig. 2.6b.

Case 3 (pl = 1): When all the interconnections are fully intercepted, CT depends

on the value of pe (i.e., Cl). For any given pe, CT = NX1X2Cl. The dashed blue oval

shows this region in Fig. 2.6b.

Case 4 (pe = 2
3
): When the data manipulation probability is 2

3
, we observe the

worst-case scenario, i.e., Cl = 0. Therefore, C̄ = (1 − pl), and CT = (1 − pl)NX1X2 .

This bound is the minimum capacity we get for any number of interconnections.

Because at this value of pe, attackers manipulate the data such a way the capacity

of the intercepted interconnection becomes zero (Cl = 0). Hence the total capacity

is zero when pl = 1. This is shown by the solid red line in Fig. 2.6a.

The following theorem answers an important question regarding interconnection

in the limit: what if network administrators have capability of making an infinite

number of interconnections?

Theorem 2.3.5. Assume two networks are interconnected with a finite number of

interconnections and hence the intruders can introduce bounded interceptions. With

infinite possibilities on the number of interconnections, the probability of interception

is zero, and the total expected Shannon capacity is equal to the number of finite

interconnections.
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Proof. Here we prove it for the linear interception probability (pl), the proof for

other interception probabilities are similar. Here for a finite number of interconnec-

tions, we have NX1X2 < ∞. Moreover, given infinite possibilities on the number of

interconnections, we can find pl by taking the limit on the Nmax as

lim
Nmax→∞

pl = lim
Nmax→∞

NX1X2

Nmax

= 0,

which implies C̄ = 1 and CT = NX1X2 bits/second.

In other words, the above theorem says if there is an option to have an infinite

number of interconnections, then having a finite number of interconnections would

result in zero probability of interception. Intuitively, this is because when there are

many interconnections, attackers will not have enough knowledge on the interconnec-

tions that are used by two networks; hence, the likelihood of an active interconnection

being intercepted is zero.

Note that here we assume the values of pe does not depend on NX1X2 and pl. This

assumption is not necessary but can be realistic in some scenarios, where attacker’s

capability of data manipulation is independent of how many interconnections are

established, i.e., attackers have a fixed capability of data manipulation on every

interconnection. Another way to model pe can be that it is increasing with NX1X2 ,

since more interconnections may enable the adversaries to manipulate more data

than they can do with fewer connections. In the appendix A, we show CT by varying

pe as a function pl i.e., as a function of NX1X2 .

2.3.4 Packet-loss distortion (Dl)

From the previous subsections, we know each interconnection has a Shannon capacity

given by the interconnection (channel) model, and we also know the total expected

Shannon capacity for NX1X2 interconnections. The significance of the total expected
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Figure 2.7: (a) The packet-loss distortion model at the source network, d denotes
the lost packet, pd is the dropping probability of a packet. (b) The total packet-loss
distortion (Dl) vs. the source data rate (Rs).

Shannon channel capacity comes from Shannons channel coding theorem: for any

δ > 0, if the data rate is less than the channel capacity, then probability of data

error can be made less than δ by channel coding of sufficiently large block length; on

the other hand, if data rate is grater than the channel capacity, then the probability

of error becomes greater than 0.5 when block length goes to infinity [57]. Note that

here we interested to undo the malicious effect of attackers to maintain a secure

communication. Hence, when the data rate of the source network exceeds the total

expected Shannon capacity of the interconnections, some packets will be dropped by

the gateway nodes1. From this observation, we model the packet-loss distortion as

follows: if the source network data (packet) rate is Rs bps and the total expected

1Recall that here we are not considering the role of a queue and the associated queuing
delay for simplicity, i.e., the delay is assumed to be infinite in this chapter. However, the
queuing delay can be incorporated in the model as follows. Each gateway node holds some
packets until its queue is full since the node has a queue of finite size. From the basic
network theory, we know that the queuing delay increases exponentially with the increase
of incoming data rate to the node [8].
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Shannon capacity CT bps, a reasonable formula for the probability of packet-loss is

pd =

0, Rs ≤ CT

1− CT
Rs
, Rs > CT .

(2.9)

Since the loss of a packet (bits) is quantitatively similar to the erasure of a bit in

the conventional erasure channel, it is reasonable to model the packet-loss distortion

as an erasure channel. Figure 2.7a shows the packet-loss distortion model at the

source network, where d denotes the dropped/lost packet. Here for simplicity, we

assume each packet consists of one bit, and a packet-loss implies an one-bit drop.

Hence the total packet-loss distortion is given by Dl = pdRs bps. Figure 2.7b

shows the total packet-loss distortion versus source data rate for a different number

of interconnections. Here when there is no interconnection, i.e., NX1X2 = 0, then the

gateway nodes drop everything (solid black line). However, as we increase the number

of interconnection the distortion (Dl) decreases, but it starts to increase again when

the source data rate (Rs) is higher than the total expected Shannon capacity (CT )

of the interconnections. Recall that for the various number of interconnections we

get different CT ’s.

2.4 Optimal number of interconnections between

two networks

In this section, we find the optimal number of interconnections between two networks

based on the network administrators specified criteria such as the maximum data rate

and minimum packet-loss distortion.
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2.4.1 Optimal number of interconnections under the packet-

loss constraint

At first, we seek to answer the following question: for any desired packet-loss dis-

tortion what is the maximum data rate an interconnected network can achieve, i.e.,

what is the optimal number of interconnections that gives the maximum data rate by

satisfying the specified packet-loss constraint?

To answer the above question, we define the data rate of the source network

considering the normalized packet-loss distortion pd as

Rs(pe, pd) =
CT

1− pd
=
C̄NX1X2

1− pd
, pd 6= 1, (2.10)

where Rs is also a function of pe, since C̄ depends on pe.

The source network data (packet) rate (Rs) versus the number of interconnections

(NX1X2) for several given normalized packet-loss distortions (pd) is shown in Fig.

2.8, where we set pe = 0.25, 0.35, 0.55 in three sub-figures, respectively. The solid

red line indicates the total Shannon capacity (CT ) for the given interconnections,

which is the maximum data rate one can achieve without having any distortions

(pd = 0). However, we see if one can tolerate more distortions, then he/she can

achieve higher data rates for a given number of interconnections (shown by the

uparrow in the figure). In addition, observe that Rs is a concave-like function of

NX1X2 and it achieves a maximum for some values of NX1X2 (the rate is maximum

somewhere inside the black oval shown in the figure). To find the optimal number

of interconnection that attains the maximum data-rate for any given distortions we

solve the following optimization problem.

In words, we find the optimal number of interconnections that maximizes the data

rate of the source network over the number of interconnections and also satisfies any
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Figure 2.8: The source network data rate (Rs) with respect to the number of inter-
connections (NX1X2) for several normalized packet-loss distortion (pd) under three
pe’s. For any pe’s, the data-rate increases if we increase the packet-loss distortion.

desired distortion constraint (p∗d). Mathematically,

R∗s(pe, pd) = max
0≤NX1X2

≤Nmax
Rs(pe, pd) s.t. pd ≤ p∗d. (2.11)

The output argument of this optimization problem is the optimal number of

interconnections, call it N∗X1X2
. We solve this optimization problem as follows: note

that to maximize Rs(pe, pd), we need to minimize its denominator. Since 0 ≤ pd ≤

p∗d < 1, then 1 ≥ 1 − pd ≥ 1 − p∗d > 0. Hence as pd → 0, R∗s(pe, pd) → CT , and,

as pd → 1, R∗s(pe, pd) → ∞. As a result, if we increase pd the denominator of Rs

decreases and we get the higher value of Rs. Therefore, we replace pd in (2.11) by

its maximum value p∗d to get

R∗s(pe, pd) = max
0≤NX1X2

≤Nmax
Rs(pe, p

∗
d) = max

0≤NX1X2
≤Nmax

CT
1− p∗d

= max
0≤NX1X2

≤Nmax

C̄NX1X2

1− p∗d

= max
0≤NX1X2

≤Nmax

(
(1− pl) + plCl

)
NX1X2

1− p∗d

= max
0≤NX1X2

≤Nmax

NX1X2 −
N2
X1X2

Nmax
+ Cl

N2
X1X2

Nmax

1− p∗d
(using linear pl =

NX1X2

Nmax

)

= max
0≤NX1X2

≤Nmax

NX1X2 −
N2
X1X2

Nmax
(1− Cl)

1− p∗d
.
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(2.12)

Note that the objective function of (2.12) is a quadratic function ofNX1X2 with the

optimization variable NX1X2 is an integer and these types of optimization problems

are called mixed-integer quadratic programming (MIQP) problem. Since NX1X2 is

a positive integer, we cannot directly optimize (2.12) due to the NP completeness

of this problem. However, MIQPs can be optimized by using branch-and-bound

algorithm with the well-known optimization tool Gurobi optimization [61]. The

Gurobi optimizer gives a solution in the integer form specifying the gap between the

upper bound and lower bound of the optimal solution, which we found to be very

small for our problem (less than 10−6% for an Nmax = 100).

On the other hand, we can solve (2.12) analytically if we assume NX1X2 is a real

number. Then, for any given distortion p∗d, it is easy to show that the objective func-

tion of (2.12) is a concave function of the number of interconnections (see appendix

B). Since the function is concave, if there exists a locally optimal point it will the

global optimal point ( [62] Ch. 4 Section 4.2.2). Hence if there exists a number of

the interconnection that gives the maximum data rates it will be unique (uniqueness

of the number of interconnections). In addition, if the objective function is differ-

entiable then the function is continuous on a closed interval; hence, by the extreme

value theorem the function have a maximum and minimum on the interval (existence

of the number of interconnections). We first differentiate the objective function of

(2.12) with respect to NX1X2 and set it to zero to get

NX1X2 =
Nmax

2(1− Cl)
.

Hence by checking whether the solution NX1X2 lies in the domain constraint Ω,

the optimal number of interconnections for achieving the maximum data rate is

N∗X1X2
=


Nmax

2(1−Cl)
, if 0 ≤ Cl ≤ 0.5,

Nmax, if 0.5 < Cl ≤ 1 (due to the extreme value theorem).
(2.13)
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Figure 2.9: The rate-distortion curve that maximum achievable rate for any given
distortions. Here the optimal number of interconnections with analytical solution are
N∗X1X2

= 77.7951, 63.2870, 51.5875 and with numerical solution by Gurobi optimizer
are N∗X1X2

= 78, 63, 52 for pe = 0.25, 0.35, 0.55.

Note that in the analytical approach since we have assumed N∗X1X2
is a real num-

ber, we need to round the N∗X1X2
to the nearest integer if N∗X1X2

is not an integer.

As mentioned earlier the gap between the optimal solution and integer solution by

Gurubi optimizer is quite small, i.e., the rate difference between the optimal analyt-

ical solution and the sub-optimal solution found by the Gurobi optimizer is actually

negligible when comparing both results in Fig. 2.9.

Interestingly, the optimal number of interconnections that gives the maximum

rate is only depends on Nmax (maximum number of interconnection the networks

can have) and pe (attackers data manipulation capability). However, the maximum

rate using these optimal interconnection for any distortion p∗d does depend on the

packet-loss distortion the source network can tolerate and is given by

R∗s(pe, pd) =
N∗X1X2

C̄

1− p∗d
=


Nmax

4(1−Cl)(1−p∗d)
, if 0 ≤ Cl ≤ 0.5,

NmaxCl
(1−p∗d)

, if 0.5 < Cl ≤ 1,
(2.14)

where Cl is given by (2.6) for a given pf and pε.

45



Chapter 2. Optimizing interconnectivity among networks under security attacks

The analytical and numerical solution result in a rate-distortion curve shown as

in Fig. 2.9. Observe that the maximum rate increases with the increase of the

normalized distortion. The significance of this rate-distortion curve is that based on

the desired packet-loss distortion tolerance it can provide the maximum rate one can

achieve without compromising the security at all.

2.4.2 Optimal number of interconnections under data rate

constraint

The previous subsection gives us the maximum rate achievable under a given dis-

tortion constraint. In this subsection, we are interested in the following question:

for any desired data rate R∗s given by a network administrator, what is the minimum

packet-loss distortion one can achieve over all possible set of interconnections? Like

the previous question, this one is also immensely important from the application per-

spective, where administrator’s primary concern is the data rate. Mathematically,

the optimization problem can be expressed as

p∗d(pe, R
∗
s) = min

0≤NX1X2
≤Nmax

pd(pe, Rs) s.t. Rs ≥ R∗s, (2.15)

where pd(pe, Rs) is defined in (2.9).

Figure 2.10 shows the normalized packet-loss distortion (pd) concerning the num-

ber of interconnections (NX1X2) for various data rates of the source network (Rs)

under three pe’s. We see pd decreases as we increase NX1X2 ; however, pd increases

again if the Rs becomes high. As depicted by black uparrow, for any given number

of interconnections, if we increase Rs then pd also increases. Contrary to the rate

versus interconnection curve shown in Fig. 2.8, here we observe that the pd versus

NX1X2 curve is a convex-like function of the number of interconnections. Further,

there exists a minimum number of interconnection that specifies the minimum dis-

tortion for the source network for a given any given Rs (shown by solid magenta
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Figure 2.10: The normalized packet-loss distortion (pd) vs. the number of intercon-
nections (NX1X2) for various given rates (Rs) under three pe’s.

ovals in Fig. 2.10). This minimum number of interconnections also varies with the

values of pes. Finally, we see that increasing the number of interconnections beyond

the minimum amount is not productive in terms of minimizing the packet-loss dis-

tortion. This minimum number of interconnections is termed as the optimal number

interconnections, which we found by solving (2.15) analytically as described below.

From the definition of pd(pe, Rs) (see (2.9)), we see that pd is increasing with

respect to the rate Rs for a given total Shannon capacity CT . Therefore, since we

want to minimize pd, we take the minimum of the rate constraint and set Rs = R∗s.

Then (2.15) becomes

min
0≤NX1X2

≤Nmax
pd(pe, R

∗
s) = max

0≤NX1X2
≤Nmax

0, R∗s ≤ CT ,

1− CT
R∗s
, R∗s > CT .

(2.16)

In (2.16), CT is the function of NX1X2 and it is evident that to minimize pd(pe, R
∗
s),

we need to maximize CT . From the definition of CT in (2.8) and it characterization

curve shown in Fig. 2.6a, we see that for a given pe (i.e., Cl) and Nmax, there exists

an NX1X2 (i.e., N∗X1X2
) that results in the maximum CT which we denote by C∗T (to

find the C∗T , similar argument from the previous subsection can be used due to the

concave nature of the CT and assuming NX1X2 is a real number). Then we have the
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following two cases:

case I : If R∗s ≥ C∗T , then N∗X1X2
is the optimal number of interconnections and

the corresponding minimum packet-loss distortion is equal to 1− C∗T
R∗s

.

case II : If R∗s < C∗T , then we will have zero packet-loss distortion (i.e., p∗d(pe, R
∗
s) =

0). Note that CT is concave function of NX1X2 given by (2.8) (where C∗T is the

maximum of CT ), and since R∗s is strictly smaller than C∗T , then there are at most

two points at which CT and the line R∗s intersect. To find those two intersection

points let us solve the CT = R∗s. Using linear interception probability pl =
NX1X2

Nmax
,

we can write CT = NX1X2 −
N2
X1X2

Nmax
(1 − Cl). Therefore, from CT = R∗s, we get

the following quadratic equation N2
X1X2

(1 − Cl) − NmaxNX1X2 + NmaxR
∗
s = 0. The

solution of this quadratic equation is given by NX1X2 =
Nmax±

√
N2
max−4(1−Cl)NmaxR∗s
2(1−Cl)

.

Since we want the minimum number of interconnections then the optimal number of

solution N∗X1X2
=

Nmax−
√
N2
max−4(1−Cl)NmaxR∗s
2(1−Cl)

, Cl 6= 1. Note that NX1X2 is a real and

nonnegative number because N2
max−4(1−Cl)NmaxR

∗
s ≥ 0, hence R∗s ≤ Nmax

4(1−Cl)
, Cl 6= 1

(this is not assumption and this condition hold automatically when R∗s < C∗T , see

appendix C). Notably, for any Nmax and pe (i.e., Cl), we get the upper bound of the

data-rate R∗s that one can support without any packet-loss distortion. Finally, when

Cl = 1, the quadratic equation becomes N2
X1X2

(1− 1)−NmaxNX1X2 +NmaxR
∗
s = 0,

and hence the optimal number interconnection N∗X1X2
= R∗s.

Since we assume NX1X2 is a real number in above two cases, we need to round

N∗X1X2
to the nearest integer to find the (sub-optimal) number of interconnections in

the integer form. Figure 2.11 shows the numerical results of the minimum distortion

versus rate curve for three values of pe. We know that for each pe, we have a

maximum total capacity C∗T that results from a unique N∗X1X2
. Thus whenever the

rate is lower than C∗T , we have zero distortion. When the rate crossed C∗T , the

packet-loss distortion monotonically increases with rates.
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Figure 2.11: The distortion-rate curve

2.5 Summary and conclusions

In this chapter, we have formulated the optimal interconnectivity problem among

two networks considering the security interceptions that may be introduced by the

added interconnections. We have solved the optimal interconnection problem from

two following perspectives: 1) for any given level of allowed packet-loss distortion,

we have found the minimum number of interconnections that offers maximum data

rate (shown in Fig. 2.8); 2) for any desired data rate, we have also found the mini-

mum number of interconnections that allows communication between two networks

with the minimum packet-loss distortion (shown in Fig. 2.10). Since the number

of interconnections is optimal, we have shown that adding more connection beyond

the minimum required number is not productive to overcome the packet-loss as well

as to increase the data rates. In other words, we have proved that, there exists an

optimal number of interconnections that specifies the maximum allowable data rate

and minimum packet-loss distortion between two networks (shown in Fig. 2.9 and

Fig. 2.11). Note that if the attackers ability of data manipulation (flipping/erasing)

changes then the number of optimal interconnections will also change. Most impor-
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tantly, using the Shannon capacity that ensures the existence of a suitable channel

coding, our formulation outputs the optimal number of interconnections without

compromising data security of the network.
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Chapter 3

Vulnerability of communication

networks under physical attacks

The functional reliability of many networks largely depends on the geographical

topologies of networks as well as on the locations and impact (geographical extent and

severity) of stressors [28, 63,64]. Note that stressors imply those events that impose

physical stresses (intense electromagnetic field, heat, pressure, etc.) over a network

and can trigger network component failures. As we are dealing with large-scale

stresses in this work, stressors and attacks/disasters will be used interchangeably.

For example, in the case of a communication network, various network components

such as switches, amplifiers/repeaters, multiplexers and links (fibers, copper cables,

antennas, etc.) can fail either directly from the stressor-events or indirectly as a result

of damage to the components or systems that support the communication network,

e.g., outage of power [65, 66]. Based on the geographical extent and severity of

stresses, the functionality of various networks can be impaired at different scales.

Clearly, the physical topology of the network and the nature of stressors should be

taken into consideration together in the analysis of network reliability.
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Initial damage from certain stressors, e.g., WMDs, HEMPs and natural disasters,

may exhibit a high degree of spatial correlation. Similar to an earlier work [29], we

assume a Strauss point process to model the correlated locations of multiple stressors

that may occur simultaneously. Furthermore, while in [29] the authors only consider

a fixed-form Gaussian degradation function, we generalize it to several degradation

functions (e.g., linear, circular and Gaussian) to describe different types of stress

influences. This function will also be selected probabilistically to capture uncertainty

in the types of stressors. Note that, a degradation function defines the shape, range

and intensity of a stressor over a geographical area.

Inherently, the components of ML communication network possess different types

of security and tolerance requirements based on their importance in the network.

For instance, a military network or a fiber backbone network has extra security

and more robustness to stressors than a commercial network due to the significance

of these networks. We propose an extended probabilistic SRLG formulation that

considers inherent connections among network components to calculate their coupled-

vulnerabilities to stressors. The advantage of our new SRLG approach is that it does

not require any upper layer (e.g., IP layer) information and allows us to compute the

failure probability of each component based on failure of components that it depends

on. Finally, we provide analytical and simulation results to demonstrate the overall

behavior of a realistic ML network under different types of correlated stressor events.

3.1 Probabilistic model for failures of communi-

cation network-component

The goal of this section is to map the spatial distributions of various stressors to a

probability distribution for the network components being functional while consid-
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ering their coupled vulnerabilities.

3.1.1 Modeling correlated stressors

In general, multiple stressors can occur simultaneously either in one geographical

location or they can spread over different locations depending upon the nature of

stressors. Akin to the work done in [29], we have used the Strauss point process

to represent spatially-inhomogeneous and spatially-correlated stressor centers. The

Strauss point process enables us to model multiple stressor events simultaneously.

The locations of these stressors are spatially correlated with each other on a geo-

graphic plane [30].

The spread and intensity of these stressors can be different depending upon the

inherent shape and strength of stressors. For instance, a tornado yields different

geographical impact than a nuclear attack or an earthquake. Based on literature

survey, we have found three degradation functions, namely Gaussian [29], circular [67]

and linear [24], that may reasonably characterize various real-world stressors. Figure

3.1 depicts one realization of these three types of degradation functions. A brief

description of them is provided below.

Gaussian: Gaussian stressor intensity degrades according to the Gaussian func-

tion as the spatial distance from the location of occurrence increases. The variance

of the Gaussian function specifies the range and intensity of the stressor on a ge-

ographic plane. Many real-world attacks and disasters exhibit a Gaussian nature

approximately [29].

Circular : Given a stressor center, a circular degradation function is completely

described by two parameters: radius of the circle and intensity of the stressor at the

center. Intuitively, the only network component residing within the circle is affected

and the intensity at any location is inversely proportional to its distance from the
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Figure 3.1: Three types of stressors on a simulated ML communication network.
Nodes with three colors represent physical nodes of three communication networks
which are placed on a (2500 × 1000) plane.

stressor-center.

Linear : We observed from the statistics of tornadoes that it can occur in any

geographical location in USA. Typically, a tornado has a radius of 80 meters and

length of 3 kilometers [68]. We consider the Poisson point process to model the

locations of occurrence of the stressors. Unlike other disasters, a tornado has almost

equal strength over the region it spreads. Hence, a uniform intensity all over the line

is assumed.

3.1.2 Mapping stressor intensities to the distributions of fail-

ures of network components

We denote the stressor(s) event by W = w. We adopt the following assumption from

[29]: Assumption 1. Upon occurrence of a catastrophic stressor event (e.g., WMD,

HEMP, natural disaster, etc.), the initial failure of any network component does not

depend on other components. Due to Assumption 1 and given a stressor eventW = w,

the joint failure probability of all network components can be written as the prod-

uct of their individual failure probabilities. For nodes we have p(v1, v2, ..., vN |W =
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w) =
∏N

i=1 p(vi|W = w) and for links we have p((v1, v2), ..., (vN−1, vN)|W = w) =∏
(vi,vj)∈E p((vi, vj)|W = w), where p(vi|W = w) and p((vi, vj)|W = w), denote the

failure probability of the ith node and the (vi, vj) link, respectively.

Next we find the failure probability of each network component using the following

procedure. Clearly, the likelihood of network component failure increases with the

intensity of stressor and decreases with component’s internal tolerance. Hence, we

define the failure probability of ith node as

p(vi|W = w) = min

(
Iw(xi, yi)

Ivi(r, c)
, 1

)
, (3.1)

where Iw(xi, yi) ≥ 0 captures the aggregated intensity of stressor at node vi’s location

(xi, yi), and Ivi(r, c) > 0 is the internal node tolerance. We define Ivi(r, c) by taking

into account two realistic physical attributes of a node: Ivi(r, c) := r + c, where r ∈

(0, rmax] is a parameter to capture the resistance (e.g., shielding against HEMP [65])

assigned to a node based on its importance (e.g., higher node-degree or a backbone

node) in the network. In addition, c ∈ (0, cmax] captures the security requirement of

a node being a network component in the ML network. The values of r and c can

be estimated from the historical data. Note that, Iw(xi, yi) is non-negative due to

the fact that stressor intensity can only be positive or zero. Intuitively, all network

components possess some resistance to the physical stressors that indicate Ivi(r, c) is

a positive quantity. Hence, we have 0 ≤ p(vi|W = w) ≤ 1, thus p(vi|W = w) is a

probability.

In order to find the link failure probability, we first find the stressor intensities

over all points on the link. Then we take the maximal stressor intensity to consider

maximum impact of the stressor to that link. Since a link can have an infinite

number of points, we have taken L(vi,vj) number of points on the (vi, vj) link to find

the maximum stressor intensity. The link failure probability for the (vi, vj) link can
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be written as

p((vi, vj)|W = w) = min

 max
l∈{1,...,L(vi,vj)

}
Iw(xl, yl)

I(vi,vj)(r, c)
, 1

 , (3.2)

where (xl, yl) is the location of the lth point on (vi, vj) link. I(vi,vj)(r, c) is the

tolerance of the (vi, vj) link that we define as the average of internal tolerances of

the two nodes connected by the link: I(vi,vj)(r, c) :=
Ivi (r,c)+Ivj (r,c)

2
. The averaging

of node tolerances in calculating the link tolerance is realistic. For example, if two

nodes are very important then the link connecting them is assumed to have a great

importance.

3.1.3 Characterizing coupled vulnerabilities among compo-

nents of a network

We model the coupled vulnerabilities among network components using a variation

of SRLG. First note that the functional vulnerability of a node directly affects the

functionality of all links connected to it. Clearly, if a node fails then the links

attached to it cannot be used anymore for communication. Therefore, for a stressor

event W = w, by taking into account the coupled vulnerabilities between nodes and

links, we find the failure probability of (vi, vj) link as

psrlg((vi, vj)|W = w) = P((vi, vj) ∪ vi ∪ vj|W = w)

= p((vi, vj)) + p(vi) + p(vj)− p((vi, vj))p(vi)−

p(vi)p(vj)− p((vi, vj))p(vj) + p((vi, vj))p(vi)p(vj),

(3.3)

where the last line follows from Assumption 1. For simplicity of notation, condition-

ing on the stressor event W = w is removed from the second line. We summarize the

link-failure as Observation 1: The increase in failure probability of a communica-

tion node increases the failure probability of all links attached to it. Similarly, link
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failures can cause node failures as well. For example, a HEMP wave that hampers

a link can be carried through the link to the nodes connected to it. We can express

the failure probability of the ith node considering all associated link failures as

psrlg(vi|W = w) = P(vi ∪ (
⋂
j∈N

(vi, vj))|W = w)

= p(vi) + p(
⋂
j∈N

(vi, vj))− p(vi)p(
⋂
j∈N

(vi, vj)),
(3.4)

where {j ∈ N : vj ∈ Neighbor(vi)} is the index set of the neighbors of node vi. Again,

conditioning on a stressor event W = w is dropped from the notation. We now have

Observation 2: The increase in failure probability of all links attached to a node

elevates the failure probability of that node.

3.2 Performance measures

In this section, we define several parameters to evaluate the performance of network

under different stressor scenarios.

Definition 1. Total expected capacity (TEC) of network : This metric measures

the accumulated average (expected) capacity of all network links. Total capacity of a

communication network: C =
∑

(vi,vj)∈E Cij, where Cij is the capacity of the (vi, vj)

link. Cij is a random variable that we define as

Cij =

cij, with probablity p(cij) = 1− p((vi, vj)|W = w),

0, with probablity p(0) = p((vi, vj)|W = w),

where cij is the true capacity of the (vi, vj) link. We find the TEC of a network by

taking conditional expectation (E[·|·]) over C given a stressor W = w:

TEC = E[C|W = w] =
∑

(vi,vj)∈E

cij (1− p((vi, vj)|W = w)) .
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Definition 2. Total expected number of node failures : Since the number of func-

tional nodes is an important parameter for any network, we calculate the total ex-

pected number of node failures among N nodes after the occurrence of a stressor

event. We define a random variable that captures the functionality of the ith node

as follows

Xi =

1 if the ith node fails with probablity p(vi|W = w),

0 if the ith node is functional.

The total number of node failures can be expressed as XT =
∑N

i=1Xi. Then the

total expected number of failed nodes is E[XT |W = w] =
∑N

i=1 p(vi|W = w).

Definition 3. Max-flow between two nodes [28] : This parameter allows us to find

the maximum data rate possible between any two fixed nodes in a network.

3.3 Simulation results

For simulation, a three-level communication-network architecture is presented that

is scalable both in the number of levels as well as the size of the network in each level.

Figure 3.2 depicts a prototype of the physical infrastructure of a ML communication

network, which is composed of three real networks: TeliaSonera, Level 3 and Sprint.

The physical topology dataset of these three networks are available in [69]. Note

that each of TeliaSonera, Level 3 and Sprint networks consists of 21, 99 and 264

nodes, respectively, which are located all over USA. Three connections from both

Level 3 and Sprint network are made with the TeliaSonera network based on the

geographical distance between nodes and their associated node degrees. We have

evaluated the performance of the ML communication network under different types

of stressor scenarios. For each scenario we have generated 500 random samples with

2 stressor events. All links have a capacity of 1 Gbps (Gigabits per second) and
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Figure 3.2: A physical topology of a ML communication network composed of three
real networks: TeliaSonera, Level 3 and Sprint.

intermediate point distance on links is approximately 10 miles. Node tolerances are

assigned uniformly in (0, 2]. Moreover, the radius of the circular stressor is assumed

to be 200 miles. For a line stressor, the line-direction is considered to be a free

parameter within 0-360 degrees, since the line stressor can move to any direction

after its occurrence.

Figures 3.3 and 3.4 depict the total expected number of node failures and the

TEC of the ML network, respectively, for three different types of stressors. As ex-

pected, the TEC decreases and the total expected number of node failures increases

with the increase of the parameter value of stressor. Depending on the stressor, the

horizontal axis (parameter of the stressor) refers to the variance of the Gaussian

stressor or the intensity at the center for circular stressor or the length of line for

linear stressor. Notice that the network performance becomes worse for all scenarios

while we consider the effect of SRLG among the network components. This is be-

cause one component failure contributes to the increase of failure probability of other

components (Observations 1 and 2). For the particular parameter values assumed in
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Figure 3.3: Total expected number of failed nodes in the network under different
types of stressors with (w) and without (w/o) SRLG effects.

Figure 3.4: TEC of the network under various stressors with and without SRLG.

simulation, the ML communication network is less vulnerable under Gaussian stres-

sor; however, different parameter values may yield different results, which is intuitive.

Figure 3.5 illustrates the Max-flow between two arbitrary fixed nodes (denoted
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Figure 3.5: Maximum flow between two fixed nodes with SRLG.

by S and D in Fig. 3.2) in the network following a stressor. Here we have directly

calculated the Max-flow considering the SRLG. Clearly, Max-flow achievable between

these two nodes under normal operation is 3 Gbps, but due to the impact of stressors

some nodes/links fail, thus the actual Max-flow between these two nodes is reduced.

3.4 Summary and conclusions

The reliability of a ML network is largely affected by the catastrophic attacks and

natural disasters. In this chapter, we have described different types of correlated

stressors that can potentially degrade the reliability of a communication network. We

have also calculated the coupled-vulnerabilities among network components using a

realistic SRLG formulation. Simulation results have shown that the inherent coupling

among communication-network components notably increases their vulnerabilities to

the large-scale stressors.
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Resiliency of the multilevel

network under failure propagation

A communication network (e.g., military, private, commercial network) usually has

its own independent and secure network infrastructure. However, an independent

secure network may choose to connect with other networks to receive services and

use it as a redundant communication medium whenever needed. Therefore, inter-

connections among independent subnetworks are inevitable for various reasons in-

cluding the seamless communication among users of different networks, expansion

of the communication capabilities among geographically-distant networks, backup

communications in case of failures in the primary network, etc. In particular, inter-

connectivity between a small-sized network (consisting of a smaller number of nodes

with lower link-bandwidth) and a large-sized network (consisting of a larger num-

ber of nodes with higher link-bandwidth) required for expanding the communication

range and data rate of the small network. For example, a wide range of commercial

and non-commercial communication systems and networks are used to support the

military communications [53].
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Owing to interconnections, the subnetworks of an ML network become interde-

pendent through the communication gateways due to the exchange of information

among each other. However, different networks usually have distinct security policies,

control structures, and infrastructural vulnerabilities, as in the case of military and

commercial networks for example [13]. Therefore, interconnections in ML networks

can increase the vulnerability of a secure subnetwork due to threat propagation from

less secure subnetworks. As a result, the composition of the individually secure sys-

tem with different security policies is not secure [12]. For example, due to different

levels of securities, the inter-operation and data sharing between military and com-

mercial systems through interconnections may increase the probability of breaching

security of the military node [13]. Moreover, in a ML network, if a node in a sub-

network is compromised by attackers then there is a possibility that a node in the

other subnetwork may be compromised through the interconnected gateways. For

example, interconnecting a highly secure network with the public Internet results in

an increased vulnerability to the secure network by exposing it to cyber threats such

as injection of malwares (viruses, worms), packet sniffing, denial-of-service (DoS)

attacks (Section 1.6, [8]). In wireless networks, the internetwork links can be eaves-

dropped along with a strong possibility of jamming and sniffing [8, 70]. In fact, an

adversary may get access to the top-secret data [12], which they can use for their ben-

efit, such as eavesdropping links among nodes to extract critical information, locate

the mobile nodes or military troops thus endanger their lives, traffic analysis [13],

etc.

Clearly, interconnectivity among subnetworks needs to be addressed in order to

compose an efficient and resilient ML network. In this work, we define the efficiency

of interconnectivity of a ML network and model the resiliency (vulnerability) of a

secure subnetwork due to the propagation of security risk through interconnections.

The dynamics of security risk propagation are captured by two models, namely the

evil-rain influence model [71] and the SIR (susceptible-infected-recovered) model [72].
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In addition, we formulate two optimization problems that maximize the efficiency

of interconnectivity with a constraint on the vulnerability/resiliency. We use dif-

ferent network topologies and interconnection patterns in our simulation and find

the resiliency of a secure military network due to interconnections with vulnerable

commercial networks. Based on simulation data, we propose two parametric analytic

expressions in order to find the optimal number of interconnections that maximizes

the efficiency of the ML network under resiliency or vulnerability constraints.

4.1 Vulnerability of a secure network

We have found that the dynamics of security risk propagation among subnetworks

can be characterized by the existing evil-rain influence model and SIR epidemic

model. These models are also used to model the propagation of a threat/risk in a

network [38, 39]. Below we demonstrate how these two models are used to capture

the propagation of security risks among subnetworks through interconnections.

4.1.1 The SIR epidemic model

The epidemic model is a dynamical model that captures the spread of a disease

in a network of large populations [72]. Among different versions of the epidemic

model, we use the SIR model to characterize the dynamics of risk propagation in a

network. In the SIR model, all the nodes are susceptible to attack initially, as such

one or more nodes can be infected by attackers. The infected node compromises its

neighbors with a transmission probability, denoted by τ . Moreover, the infected node

will be recovered/removed at the following time step by the recovery mechanism of

the SIR model. In the SIR model, the resiliency of a network G with N nodes is
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defined as [38]

R(G) = 1− E[Nf ]− E[Ni]

N − E[Ni]
, (4.1)

where E[extend of a cascade] is the average number of nodes eventually infected due

to the propagation of security risk from initially compromised nodes. Note that

0 ≤ R(G) ≤ 1, where R(G) is 0 if all nodes are compromised.

In our ML network, a node in a less secure subnetwork is attacked initially; then

the compromised node infects its neighbors with probability τ . Since the secure

subnetwork is also a part of the ML network, the attack also propagates to the

secure network.

4.1.2 The evil-rain influence model

The influence model is a networked Markov Chain (MC) framework for modeling

interactions among nodes in a network. The internal functional dynamics of each

node is captured by an MC and the influence received by a node from its neighbor

is between 0 and 1, with the total influence received by a node from all its neighbors

summing up to 1 [71]. A special case of the influence model is the “evil-rain model,”

where two autonomous external nodes, named “source of failures” and “source of

repairs,” are responsible for injecting failures and reparation in the network, respec-

tively. We model the risk propagation from one node to other node through influences

between the nodes; i.e., the probability of propagation of risk between two nodes is

equal to the influence among them.

In a network G with N nodes, the expected number of compromised node (vul-

nerability) is given by [71]

V (G) = 1T (I− F)−1u, (4.2)
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where u is an N -dimensional vector that represents the external attack probability

of each node, 1 is a column vector where all elements are 1, and I is an N × N

identity matrix. Moreover, F is the interconnection structure that represents influ-

ences between nodes as (for 3 subnetworks): F =


F11F12F13

F21F22F23

F31F32F33

, where Fij denotes

the interconnection matrix between subnetwork i and j. Fij(l, k) = 0 indicates that

there is no connection between the lth node of network i and kth node network j.

Moreover, Fij(l, k) = c, 0 < c ≤ 1, implies that there is a connection with influence

strength c between the lth node of network i and kth node network j. The higher

the value of strength c the easier is the propagation of security risk from a compro-

mised node to its neighbor, which could be, for instance, due to the lack of security

solutions installed in their interface.

Similar to the resiliency in the SIR model, we define the resiliency as the fraction

of nodes that are not compromised:

R(G) := 1− V (G)

N
. (4.3)

4.2 Maximizing interconnectivity in ML networks

In this section, we maximize the efficiency of interconnectivity of a ML network under

the resiliency and vulnerability constraints.

4.2.1 Efficiency of interconnectivity

Recall that the interconnectivity among different types of networks is essential for

communicating outside their territory, redundant communication medium, etc., thus

forming the ML network. The efficiency of connectivity among nodes for a network
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G with N nodes is [73]

W (G) =
1

N(N − 1)

∑
u∈V

∑
v∈V−{u}

1

d(u, v)
, (4.4)

where V is the set of N nodes, d(u, v) is the shortest path distance between node u

and v and g is the attenuation of the connection which is assumed to be 1. In words,

W (G) is the efficiency of information exchange among nodes over the network. The

efficiency of connection between node u and v is inversely proportional to the shortest

path distance between them. Note that, d(u, v) =∞ implies there is no connection

between node u and v, and d(u, v) = 1 implies there is a direct connection between

u and v. In addition, with no connections among any nodes W (G) = 0 i.e., no node

can communicate with other nodes in G. Interconnections enable communications

among nodes (e.g., in a network where all nodes are directly connected with each

other, W (G) = 1).

As we are interested in the interconnectivity among subnetworks, we define the

efficiency of interconnectivity of a ML network Gm as

Ŵ (Gm) := W (Gm)−W (G0), (4.5)

where G0 represents the ML network without any interconnections among the sub-

networks.

4.2.2 Interconnectivity optimization

Since different mathematical formulations are used in the SIR and evil-rain model for

modeling the dynamics of risk propagation, we formulate two optimization problems

based on these two models, which are described below.

First, for the SIR model, we maximize the efficiency of interconnectivity with a
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constraint on the resiliency as

max
eij ,i 6=j

Ŵ (Gm) subject to R(Gs) ≥ Rs, (4.6)

where Rs is the minimum resiliency that is required for a secure subnetwork Gs,

eij ∈ {0, 1} represents the connection between node i and j, Gm is the ML network.

Similarly, using the evil-rain model we maximize the efficiency of interconnectivity

under the vulnerability constraint,

max
Fij ,i 6=j

Ŵ (Gm) subject to V (Gs) ≤ Vs, (4.7)

where Vs is the maximum vulnerability of the secure subnetwork Gs, Fij is defined

in the previous section and here i 6= j since we optimize interconnection between

different networks.

Note that, both optimization problems given by (4.6) and (4.7) are nonlinear and

non-convex, for which no simple closed-form analytical solution or optimal algorithm

exists. However, we recur to data from the numerical simulations in order to solve

these optimization problems parametrically, which is demonstrated in the following

section.

4.3 Numerical simulation

In this section, we introduce several network topologies and interconnection patterns

followed by a description of the generation of ML network. We then find the efficiency

of interconnectivity and resiliency for different number and patterns of interconnec-

tions using both SIR and evil-rain model and propose our parametric models based

on simulation data.
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4.3.1 Network topologies and interconnection patterns

We have considered different types of state-of-the-art network graphs to form a ML

network. Erdos-Renyi (ER) graph [72]: ER graphs are random graphs where

each node connects to other nodes independently with a given probability. Barbasi

and Albert (BA) graph [72]: In a BA graph, each new node connects with some

given number (a constant) of nodes with preferential attachment, which results in

a scale-free graph. Telia Carrier (TC) network: TC network is a real-world

physical network topology with 21 nodes and 25 links, which are located over the

USA [69].

We have used following link patterns to simulate the interconnectivity among

subnetworks. Assortative Link (AL): Here the nodes with highest-degrees in one

subnetwork connects to the nodes with highest-degree nodes in the other subnetwork,

and so on. Disassortative Link (DL): The highest-degree nodes in one subnetwork

connect to the nodes with the lowest-degree in the other subnetwork. Random

Link (RL): Here connections among nodes are assigned randomly between two

subnetworks. 1-1 Link (1-1): Nodes are connected with shortest physical distances,

i.e., a node in one subnetwork connects with the closest node in other subnetworks.

4.3.2 Multilevel network generation

We generate a 3-level network similar to the one shown in Fig. 1.1. When all three

constituent subnetworks of the 3-level network are the ER graph, we denote it as the

ER-ER-ER network. Similarly, we form the BA-BA-BA network and the ER-TC-BA

network. The physical topology graph of the TC network can be found in [69]. Since

the TC network has 21 nodes, we have used 21 nodes for generating the BA and

ER network. Moreover, the TC network is an connected graph and we generate the

BA and ER networks so that these networks are also form two connected graphs.
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In particular, for ER network, we assign edges between nodes with probability p

such that the generated graph is an connected graph (here we use p = 0.18 and

check whether the graph is connected). An connected BA graph is formed by using

the algorithm proposed in [74] with an average node-degree equal to 3.2 and power-

law exponent is 2.8. As shown in Fig. 1.1, we assume the level-1 network is the

highly secure military network, whereas level-2 and level-3 networks are commercial

networks with a lower level of security. While interconnecting these subnetworks to

form a 3-level network, we have used the same number of interconnections to connect

the military network with two commercial networks. The connection patterns are

AL, DL, RL, and 1-1. Here, two commercial networks are used as two backup

communication infrastructures for the military network, which can be scaled to any

number of networks.

4.3.3 Simulation results

First, we discuss the simulation results of the SIR model. To simulate the SIR model,

we assume a node in the less secure subnetwork (commercial network) is attacked

(compromised) initially. Then the compromised node propagates the security threats

to its neighbors in the 3-level network with a probability τ . Resiliency (R(G)) is

calculated by using (4.1), where E[extend of a cascade] is computed by averaging

over 1000 realizations of the SIR model with one initial failure.

Figure 4.1 shows the resiliency of the military network versus the number of

interconnections for the ER-ER-ER, BA-BA-BA and ER-TC-BA network. Here the

resiliency decreases as we increase the number of interconnections. This is because

with more interconnections the risk easily propagates to the military network from

commercial networks. Observe that the DL connection performs better than the AL

connection, which is due to the fact that the military nodes with smaller degrees
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are connected to commercial nodes. Hence, even if an interconnected military node

is compromised, due to its smaller degree the probability of compromising many

neighbors is low.

Figure 4.2 shows the efficiency of interconnectivity of the 3-level network for dif-

ferent number of interconnections, which can be computed by (4.5). Here, as we

increase the number of interconnections the efficiency of interconnectivity increases

due to new communication paths between subnetworks. Moreover, with AL connec-

tion the efficiency of interconnectivity of the 3-level network is higher than that for

the DL connection, which is due to the higher node-degrees of the interconnected

nodes.

The vulnerability versus the efficiency of interconnectivity for three ML networks

is shown in Fig. 4.3. The vulnerability of the military network increases with the

efficiency of the network. Moreover, for any given efficiency the higher the value of τ ,

the vulnerability becomes higher due to the larger transmission probability of risks

from the compromised nodes.

Finally, Fig. 4.4 shows the results using the evil-rain model for the ER-ER-ER

network due to space limitations. As described in the model, here commercial net-

works have the “source of failures” with a given probability (0.20 in the simulation),

thus failures start from the commercial network and propagate to the military net-

work. However, the military network has the “source of repairs” with a probability

(0.20 in the simulation), which prevents the failure of complete network. We can

observe the similar trend as in the SIR model. Thus we conclude that the intercon-

nection increases vulnerability of the secure military network. At the same time, the

efficiency of interconnectivity among subnetworks also increases.
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Figure 4.1: Resiliency versus the number of interconnection for the ER-ER-ER, BA-
BA-BA, and ER-TC-BA networks
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Figure 4.2: The efficiency of interconnectivity versus the number of interconnection
for the ER-ER-ER, BA-BA-BA, and ER-TC-BA networks
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Figure 4.3: The vulnerability of the military network versus the efficiency of inter-
connectivity for the ER-ER-ER, BA-BA-BA, and ER-TC-BA networks

4.3.4 Parametric model for the resiliency and efficiency

Motivated by the observed trends in the simulation data, we propose two parametric

models for the efficiency of interconnectivity and resiliency for any given number of
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Figure 4.4: Simulation results using the evil-rain influence model for the ER-ER-ER
network

interconnection. From Fig. 4.1, observe that the resiliency is approximately linear

with respect to the number of interconnections. We propose a parametric expression

for the resiliency (R(τ,G)) with l number of interconnections as,

R(τ,G) = a(τ,G) + lb(τ,G), (4.8)

where a(τ,G), b(τ,G) are two parameters estimated from simulation data, G repre-

sents the network graph, τ is the transmission probability. We obtained the follow-

ing values of the optimally fitted parameters: a = 0.997, b = −0.007 (ER-ER-ER

network), a = 0.998, b = −0.017 (BA-BA-BA network), a = 1.001, b = −0.005

(ER-TC-BA network), which were then used to generate the fitted lines in the Fig.

4.5(a).

Interestingly, as shown in Fig. 4.2, the efficiency of interconnectivity follows a

nonlinear relationship with the number of interconnection (l), which we approximate

as the following,

Ŵ (τ,G) = α(τ,G)lβ(τ,G) + γ(τ,G). (4.9)

Here the values of optimally fitted parameters: α = 0.0828, β = 0.2984, γ = −4 ×

10−4 (ER-ER-ER network); α = 0.0959, β = 0.2678, γ = −3.2 × 10−3 (BA-BA-BA
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Figure 4.5: Parametric fitting of the resiliency and efficiency of interconnectivity for
different ML networks with four interconnection patterns. Here τ = 0.3.

network); α = 0.0854, β = 0.2678, γ = −4.7 × 10−5 (ER-TC-BA network); which

were then used to find the fitted lines in the Fig. 4.5(b).

The values of parameters in (4.8) and (4.9) are computed by fitting the simulation

data so as to minimize the overall mean-square-error (MSE). Higher-order polyno-

mials with added complexities might yield more accurate fitting of the data. Apart

from the complexity, the higher-order polynomials might over-fit the data points

which is a serious drawback for prediction [75]. Therefore, we trade-off the complex-

ity with slight inaccuracy to keep the model simple and avoid possible over-fitting

error. Note that we have derived the parametric model for the SIR model due to

space constraints. However, the model parameters can also be tuned for the evil-rain

influence model as both models show qualitatively similar trends.

Our parametric models have great importance in deriving key insights. For in-

stance, based on the given constraints (resiliency or vulnerability), one can obtain

the number of interconnections by (4.8) and corresponding efficiency of interconnec-

tivity by (4.9), that solves both optimization problems. One can also compute the

efficiency of the ML network and resiliency of a secure network provided the num-
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ber of interconnections. Moreover, the solution is independent of interconnection

patterns (AL, DL, RL, 1-1) assuming the MSE tolerance.

4.4 Summary and conclusions

In this chapter, we have analyzed the dynamics of risk propagation in ML networks

using the SIR epidemic model and evil-rain influence model. It is shown that in-

creasing the number of interconnections among subnetworks results in a nonlinear

increase of efficiency of the ML network; however, interconnectivity also decreases the

resiliency of a secure network linearly. In order to maximize the efficiency of intercon-

nection under resiliency/vulnerability constraints, we have proposed two parametric

models. These models can be used to find the number of interconnections for ex-

changing information within the ML network when some subnetworks are vulnerable

to security attacks.
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Chapter 5

Dynamics of communication

network under the influence of

power failure

In the previous chapter, we did not consider failures in other infrastructures, such

as the power grid, supplying electricity for the communication network, which is

not true in reality. Modern network infrastructures are known to be interdependent

due to the service they receive from each other [43]. For example, smart grids are

dependent on the communication network due to the supervisory control and data

acquisition (SCADA) system. On the other hand, communication networks rely on

the power grids for their power supply. Similar interdependencies exist in other

networks such as traffic systems, water networks, airline networks, water transport

networks and sewer networks.

The physical infrastructures of the communication network are known to be vul-

nerable to various large-scale failures. Different types of natural disasters and attacks

(e.g., earthquakes, hurricanes, weapons of mass destruction (WMDs), high-altitude
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electromagnetic pulses (HEMPs), etc.) can directly damage the critical network com-

ponents such as switches, routers, amplifiers, electro-optical converters, fiber-optic

line driver modules, receiver boxes, etc. [76]. Some real examples of catastrophic

disasters that cause a massive infrastructural destruction of communication network

include hurricane Katarina in USA and Mexico (2005), earthquake in Taiwan (2006),

wildfires in California (2007), rail tunnel fire in Baltimore (2001), 9/11 attack that

caused damage of telecommunication hub near world trade center [77, 78]. In ad-

dition, a strong electromagnetic pulse (EMP) generated by an HEMP, can produce

high electrical currents within a short period of time. Such electrical pulses might get

coupled with long-haul metallic conductor lines (e.g., landline communication sys-

tems, undersea optical fiber with copper power line, etc.) and fail the components

connected to those lines [76,79,80].

The above mentioned initial failures can affect the failures of other network com-

ponents inside a communication network in several ways: a) if all the neighboring

nodes of a node fail then the node becomes disconnected from the network (or from

the giant component), which implies that it is no longer playing a significant role

in the network communication and can be considered as failed [20]; b) an HEMP

wave that hampers a node due to high electrical current that can be carried through

the links and may fail the neighboring communication nodes [76]; c) node removal

(failure) can overload the other nodes, that in turn, might induce congestion in the

communication networks [81]. For instance, congestion-induced Internet collapse was

occurred in October 1986, when the speed of the connection between the Lawrence

Berkeley Laboratory and the University of California at Berkeley, which are located

only 200 meter apart, dropped by a factor of 100 [10]. As such, the failure of a com-

munication node inside a network might influence functionality of the neighboring

nodes. These types of influences among the communication nodes are termed as the

intra-network influence.
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Moreover, all communication nodes need power (direct or backup) to stay func-

tional, therefore, the vulnerability of power networks can directly affect the support-

ing power supply components of the communication networks and can interrupt the

functionality of the communication components. For example, due to northeastern

USA and Canada blackout on 14–16 August 2003, 3175 communication networks

of 1700 organizations (business entities, government, education, etc.) suffered from

abnormal connectivity (voice/data) outages [11]. In addition, when a direct power

supply is not available, assume a battery changes its state from functional to non-

functional with a certain probability due to changes its internal state. As a result

the communication components that are relying on batteries will be influenced by

such a change of state, and therefore will have a higher probability of changing to the

non-functional state. For instance, due to mismanagement of backup power supplies,

the Delta airlines data center failure occurred on August 8th, 2016, that causes can-

cellation of more than 300 flights, inconveniencing hundreds of thousands of people

all over the world and costing Delta Airlines an estimated 150 million dollar [82]. In

this work, we termed these influences as the inter-network influence.

Apart from the failure influences described above, in a repairable network the

normal functionality of a component can increase the probability of proper function-

ality of its neighbors. It can also influence the repair-ability of a failed component

with some probability. For example, functional nodes can share traffic with each

other and can reduce the probability of overloading (congestion) of a communication

node due to high traffic.

It is clear from above discussion that the role of both intra- and inter-dependencies

should be taken into account to capture actual functional dynamics in a communi-

cation network. In this work, we develop a dynamical stochastic model to analyze

the failure dynamics in a communication network considering both intra- and inter-

dependency that exist in cyber-physical systems. The intra-dependency among com-
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munication nodes is captured using the influence model. The inter-dependency of the

communication network with the supporting power supply infrastructures is modeled

using an independent influence from each power node to the corresponding communi-

cation node. Under both influences, we derive an analytical closed-form equation to

evaluate the steady-state probability of the communication network nodes. Numeri-

cal simulation has been carried out using a Sprint communication network topology

to demonstrate the vulnerability of the communication network under intra-influence

among communication nodes and the inter-influence from the supporting power sup-

ply nodes.

5.1 Influence model for network functionality

5.1.1 Influence model

Influence model is a networked Markov chain framework where the state evolution

of each node in the network depends upon its internal Markov chain as well as the

state of its neighbors and their influences on the node [71,83]. Here we describe the

influence among communication nodes nodes by a simple example. Figure 5.1 shows

the network infrastructure for the communication network with six nodes considering

power nodes (batteries) as a special node for the supporting power supply. Notice

that the network of interest consists of two types of nodes: communication nodes,

denoted by n1, n2, ..., n6, and power nodes denoted by b1, b2, ..., b6. There are two

types of independent influences. First, the intra-network influence, i.e., the influence

among communication nodes. Assuming uniform influence among all communication

nodes for the network shown in Figure 5.1, we can express the intra-network influence
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Figure 5.1: An example of the influence model for the communication network with
power nodes.

matrix, Dc, as

Dc =



1/4 1/4 0 0 1/4 1/4

1/4 1/4 1/4 0 0 1/4

0 1/4 1/4 1/4 0 1/4

0 0 1/4 1/4 1/4 1/4

1/4 0 0 1/4 1/4 1/4

1/6 1/6 1/6 1/6 1/6 1/6


,

where Dcij is the influence received by ith communication node from the jth commu-

nication node. However, the Dc matrix does not capture the power influence on the

communication node (inter-network influence), which we described in the following

subsection.

5.1.2 Interdependent influence model

The influence model requires the sum of all the influences imposed on a node to be

one. Consider a network where a communication node is influenced by its neighbors
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as well as the state of the supporting power node. According to the influence model,

the total influence needs to be distributed between the power and communication

nodes. As a result, even though the supporting power node fails there is still some

probability that the communication node will be functional. However, in reality

we know that if the supporting power node (direct power or battery) fails then the

communication node fails certainly [20]. In particular, the backup supplies (e.g., bat-

tery, storage energy) provide power to the corresponding communication nodes for

their normal operation when main power source fails by WMDs, HEMPs, or natural

disasters. If a backup supply is working then the functionality of the correspond-

ing communication node will depend on the intra-network influence. Whenever the

backup supply fails the corresponding communication node will fail too. This scenar-

ios cannot be captured by the traditional influence model. To consider this power

influence, we model two separate influences on a communication node: a) intra-

network influence (captures the influences among communication networks and adds

up to one) and b) inter-network influence (captures the influence from the power

node to the communication node and adds up to one). These two influences imposed

on a communication node can independently fail a communication node. Interde-

pendent influence model captures both intra- and inter-influences that can affect the

functionality of a communication node in a communication network.

5.2 Failure dynamics in interdependent influence

model

We assume finitely many nodes and denote the functionality status of ith node,

i ∈ {1, ..., N}, as 0 if the node is off/failed and 1 if the node is on/functional. We

represent the state of the ith communication node at time k without the power influ-

ence as ni[k]. Similarly, bi[k] denotes the state of the ith power node at time k. And
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Table 5.1: Functionality state (si[k]) of the ith communication node considering
power influence

ni[k] bi[k] si[k]

0 0 0

0 1 0

1 0 0

1 1 1

si[k] represents state of the ith communication node at time k with power influence.

To make the analysis simpler, we assign the same self influence Db to all power nodes;

however, Db can be node dependent (we omit explicit node dependence).

Since the state of a communication node depends on its internal state and the

state of the corresponding power node, we define si[k] as

si[k] = ni[k]bi[k]. (5.1)

Using (5.1), the state of the ith communication node with power influence, si[k], can

be expressed as shown in table 5.1.

5.2.1 Modeling initial failures in communication networks

Recall that, initial failures in communication networks and power nodes occur due to

large-scale stressors such as intensional attacks or natural disasters. At time k = 0,

following a stressor event W = w (e.g., WMD, HEMP), the conditional expectation

of the ith communication node’s state is given by

E
[
si[0]

∣∣W = w
]

= P(si[0] = 1|W = w) = E
[
ni[0]bi[0]

∣∣W = w
]

= E
[
ni[0]

∣∣W = w
]
E
[
bi[0]

∣∣W = w
]

= P(ni[0] = 1
∣∣W = w)P(bi[0] = 1

∣∣W = w),

(5.2)
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where P(·) defines the probability of an event. The 3rd line follows from the fact that

at time k = 0 given a stressor W = w, the failure probability of all nodes are mutually

independent [29]. The initial failure/survival probability, P(si[0] = 1
∣∣W = w), under

a stressor (attack/disaster) event can be found from a model that captures the impact

of the stressors

p(vi|W = w) = min

(
Iw(xi, yi)

Ivi(r, c)
, 1

)
, (5.3)

where Iw(xi, yi) ≥ 0 captures the aggregated intensity of stressor at node vi’s location

(xi, yi), and Ivi(r, c) > 0 is the internal node tolerance (please refer to the chapter 3

for details).

5.2.2 Evolution of the state probabilities

In this subsection, we analyze the stochastic dynamics of the communication net-

work by looking at the evolution of the node state probabilities. Note that, having

determined P(si[0] = 1
∣∣W = w) using (5.2), the initial state of all communication

nodes at time k = 0 can be simulated independently using corresponding probability

of the nodes. Assembling initial states for all N nodes, we express the state vector

for all communication nodes at time k = 0 as s[0] =
[
s1[0] s2[0] ... sN [0]

]T
, where

T is the matrix transpose operator.

Next, in order to find the state of ith communication node with power influence at

time k = 1, we need to know P(si[1] = 1), which is E
[
si[1]

]
. We adopt the recursive

relation between the current states and previous states, but with the newly added

power influence. First, we proceed to find E
[
si[1]|s[0]

]
= P(si[1]

∣∣s[0]) as follows

E
[
si[1]

∣∣s[0]
]

= E
[
ni[1]bi[1]

∣∣s[0]
]

(5.4a)

= E
[
ni[1]

∣∣s[0]
]
E
[
bi[1]

∣∣s[0]
]

(5.4b)

= dTi s[0]P(bi[1] = 1|s[0]), (5.4c)
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where (5.4b) follows from the fact that ni[1] and bi[1] are independent given s[0]. Also

in (5.4c), E
[
ni[1]

∣∣s[0]
]

= dTi s[0], is due to the influence in communication network

from previous states, where dTi is the ith row of the Dc matrix. Specifically (5.4c)

states that the conditional probability of ith node to be functional at time instant

k = 1 is equal to the sum of influences from all the functional nodes times functional

probability of the corresponding power node at that time.

Note that P(bi[1] = 1|s[0]) needs to be calculated in order to compute (5.4). We

use the following lemma to find it.

Lemma 5.2.1. P(bi[1] = 1|s[0]) = DbP(bi[0] = 1).

Proof. Recall that the power nodes do not depend on the communication nodes.

Therefore, bi[1] can be found from its previous state bi[0], which we do not know

directly given s[0]. Hence, we apply the law of total probability to find

P(bi[1] = 1|s[0]) = P(bi[1] = 1|si[0])

= P(bi[1] = 1|si[0] = 1)P(si[0] = 1) + P(bi[1] = 1|si[0] = 0)P(si[0] = 0).
(5.5)

For the first term in (5.5), observe from the Table I that {si[0] = 1} = {bi[0] =

1, ni[0] = 1}. Therefore, P(bi[1] = 1|si[0] = 1) = P(bi[1] = 1|{bi[0] = 1, ni[0] = 1}) =

p
(
bi[1] = 1|bi[0] = 1

)
= Db, since a power node only influences itself. For the second

term in (5.5), we have

P(bi[1] = 1|si[0] = 0) =
∑

b∈{0,1}

P(bi[1] = 1, bi[0] = b|si[0] = 0)

=
∑

b∈{0,1}

P(bi[1] = 1|si[0] = 0, bi[0] = b)P(bi[0] = b|si[0] = 0)

=
∑

b∈{0,1}

P(bi[1] = 1|bi[0] = b)P(bi[0] = b|si[0] = 0)

=
∑

b∈{0,1}

DbP(bi[0] = b|si[0] = 0) = DbP(bi[0] = 1|si[0] = 0).

(5.6)
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With above results we can rewrite (5.5) as

P(bi[1] = 1|s[0]) = P(bi[1] = 1|si[0]) (5.7a)

= DbP(si[0] = 1) +DbP(bi[0] = 1|si[0] = 0)P(si[0] = 0) (5.7b)

= Db

(
P(si[0] = 1) + P(bi[0] = 1, si[0] = 0)

)
(5.7c)

= Db

(
P(bi[0] = 1, ni[0] = 1) + P(bi[0] = 1, ni[0] = 0)

)
(5.7d)

= DbP(bi[0] = 1), (5.7e)

where (5.7c) follows from Bayes rules and (5.7d) is due to the fact that: {si[0] =

1} = {bi[0] = 1, ni[0] = 1}, and {bi[0] = 1, si[0] = 0} = {bi[0] = 1, ni[0] = 0}.

By substituting (5.7) into (5.4) we obtain

E
[
si[1]

∣∣s[0]
]

= dTi s[0]×DbP(bi[0] = 1) = dTi s[0]×DbE
[
bi[0]

]
. (5.8)

Similarly, we can find the state of all communication nodes at time k = 1 and

express those states in a vector form:

E
[
s[1]
∣∣s[0]

]
=


dT1 s[0]×DbE[b1[0]]

dT2 s[0]×DbE[b2[0]]
...

dTNs[0]×DbE[bN [0]]

 =


DbE[b1[0]]

DbE[b2[0]]
...

DbE[bN [0]]

 ◦


dT1 s[0]

dT2 s[0]
...

dTNs[0]



= Db




E[b1[0]]

E[b2[0]]
...

E[bN [0]]

1T ◦


dT1

dT2
...

dTN



 s[0]

= Db

(
(E
[
b[0]

]
1T ) ◦Dc

)
s[0] = DbE

[
b[0]

]
◦ (Dcs[0]),

(5.9)

where ◦ denotes the entry-wise/Hadamard product and 1 denotes all column vector

with all elements 1.
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Following same procedure as detailed above, we can obtain the state of the ith

communication node at time k = 2 as follows

E
[
si[2]

∣∣s[0]
]

= E
[
E
[
si[2]

∣∣s[1]
]∣∣∣s[0]

]
(5.10a)

= E
[
dTi s[1]×DbE

[
bi[1]

]∣∣∣s[0]
]

(5.10b)

= DbE[bi[1]]× dTi E
[
s[1]
∣∣s[0]

]
(5.10c)

= DbE[bi[1]]× dTi
(
DbE[b[0]] ◦ (Dcs[0])

)
, (5.10d)

where (5.10a) we used smoothing property of conditional expectation, (5.10b) and

(5.10d) are follow from (5.8) and (5.9), respectively. Next, as done in (5.9), we can

write the state vector of all communication nodes at time k = 2 as

E
[
s[2]
∣∣s[0]

]
=


DbE[b1[1]]× dT1

(
DbE[b[0]] ◦ (Dcs[0])

)
DbE[b2[1]]× dT2

(
DbE[b[0]] ◦ (Dcs[0])

)
...

DbE[bN [1]]× dTN
(
DbE[b[0]] ◦ (Dcs[0])

)



=


DbE[b1[1]]dT1

DbE[b2[1]]dT2
...

DbE[bN [1]]dTN


(
Db

(
(E[b[0]]1T ) ◦Dc

)
s[0]
)

=

(
Db


E[b1[1]]1T

E[b2[1]]1T

...

E[bN [1]]1T

 ◦


dT1

dT2
...

dTN


)(

Db

(
(E[b[0]]1T ) ◦Dc

)
s[0]
)

= D2
b

(
(E[b[1]]1T ) ◦Dc

)(
(E[b[0]]1T ) ◦Dc

)
s[0].

(5.11)

Generalizing for all k ≥ 0 we have

E
[
s[k + 1]

∣∣s[0]
]

= Dk+1
b

[(
(E[b[k]]1T ) ◦Dc

)(
(E[b[k − 1]]1T ) ◦Dc

)
...
(
(E[b[1]]1T ) ◦Dc

)(
(E[b[0]]1T ) ◦Dc

)]
s[0].

(5.12)
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To simplify (5.12) and express it using only the initial state, we find E
[
b[k]

]
, k > 0,

as

E
[
bi[k]

]
= P(bi[k] = 1) (5.13a)

= E
[
E
[
bi[k]

∣∣bi[k − 1]
]]

(5.13b)

= E
[
Dbbi[k − 1]

]
(5.13c)

= Dk
bE
[
bi[0]

]
, (5.13d)

where (5.13b) is due to the smoothing property of conditional expectation, and

(5.13d) is the result of applying smoothing property repeatedly. Repeating (5.13)

for all i and expressing (5.13) in matrix form we have

E
[
b[k]

]
1T = Dk

bE
[
b[0]1T

]
. (5.14)

Finally, by substituting (5.14) into (5.12) we obtain

E
[
s[k + 1]

∣∣s[0]
]

=Dk+1
b

[(
(Dk

bE
[
b[0]1T

]
) ◦Dc

)(
(Dk−1

b E [b[0]] 1T ) ◦Dc

)
...(

(D1
bE [b[0]] 1T ) ◦Dc

)(
(D0

bE[b[0]]1T ) ◦Dc

)]
s[0]

= D
(k+1)(k+2)/2
b

(
(E
[
b[0]

]
1T ) ◦Dc

)k+1
s[0].

(5.15)

If we assume Db = 1, which means that a power node receives full influence from

its previous state only, then in the limit as k →∞ (5.15) can be expressed as

lim
k→∞

E
[
s[k + 1]

∣∣s[0]
]

= lim
k→∞

(
(E[b[0]]1T ) ◦Dc

)k+1
s[0]

=

0, 0 ≤ E[b[0]] < 1

1πT
c s[0], E

[
b[0]

]
= 1,

(5.16)

where πc is the left eigenvector of Dc and is normalized to 1; the justification for this

limit is given below.
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The result given by (5.16) gives us the steady state probability of each commu-

nication node considering impact of the corresponding power node. For a connected

network that results in an ergodic network influence matrix, all nodes in the bi-

nary influence model always reach a consensus state: all zeros or all ones (Theorem

3.6 [71]). Here, (5.16) gives us a new but intuitive conclusion: when all the batteries

are always functional, the functionality of communication nodes only influenced by

their intra-influence; whereas, when all batteries have some positive probability of

initial failure, then all the communication nodes will eventually fail. Equations (5.1)

- (5.16) results in next theorem which incorporates the influence of batteries in a

communication network.

Theorem 5.2.2. Assume a connected communication network (i.e., ergodic network

matrix Dc) that has associated power node with each communication node. Also as-

sume that s[0] is the initial state of all communication nodes with the power influence

and πc is the normalized left eigenvector of Dc. Then all the communication nodes

will eventually fail if all the power nodes have some positive initial failure probabili-

ties. However, if all the power nodes are always functional then all the communication

nodes will survive (fail) with equal probability given by πT
c s[0]

(
1− πT

c s[0]
)
.

5.3 Simulation results

Figure 5.2 depicts the physical topology of the Sprint network given in [69]. Sprint

network consists of 264 nodes and 313 links, which are located all over United States

of America (USA) as shown in Fig. 2. We have used this real network topology

to validate our analytical model that captures the influences among communication

nodes as well as power nodes to track the failure dynamics in communication network.

The influence among the network nodes are defined based on the degree of the nodes.

For example, if a node has degree d then the influences it receives from its neighbors
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Figure 5.2: Topology of the Sprint network.

are given by 1/(d + 1). The addition of 1 in the denominator with d is due to the

self-loop influence. We find the steady state of the network (all communication nodes

functional/non-functional) using Monte-Carlo simulation. All results are averaged

over 1000 experiments with 5000 time steps in each experiment. Here we define the

failure of all communication nodes as the network failure.

At first, we assume that all power nodes are “on” throughout the time, i.e.,

when E
[
b[0]

]
= 1, to show the impact of intra-influences among communication

nodes. (5.16) demonstrates the case when all node power nodes are “on”, the steady

state of the communication nodes depends on eigenvector of Dc (i.e., intra-influences

among communication nodes) and initial states of communication nodes. Earlier

in this section, we define Dc based on the node-degrees. Here, the initial failure

probabilities of all the communication nodes are drawn from an uniform distribution

form {[0, 0.1], [0.1, 0.2], ... , [0.9, 1]}. Uniform distribution accounts for various

stressor intensities imposed on the communication nodes based on their relative

distance from the stressor center as well as tolerance to the stressors. In addition, we

use different ranges of the initial failure probabilities to model stressors with various
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attack strengths. Fig. 5.3 shows the probability of network failure versus average

initial failure probability of all communication nodes. As we can see the Monte Carlo

simulation result matches closely with our theoretical result given in (5.16). In other

words, when all the power nodes are always functional, the network failure probability

due to intra-influences and initial failures found in (5.16) validated by the simulation

results. In addition, when E
[
b[0]

]
< 1 (for any non-zero initial failure probabilities of

all power nodes), network failure will occur almost surely at the steady state, which is

shown in Fig. 5.3. Recall that, this is due to propagation of the initial power failures

through their inter-influences to corresponding communication nodes. Knowing that

the inter-influences will cause network failure at steady state, we look at the time

taken for the network to go to the steady state for different initial failure probabilities

of power nodes. This steady state reaching time metric will allow network operator to

estimate the time they will get before the complete network failure based intensity

of attacks/disasters, take proactive actions to prevent this network collapse. As

considered for communication nodes, we assigned uniform initial failure probabilities

to the power nodes. Fig. 5.4 illustrates that the time to network failure decreases

with the increase of the initial power failure probability. Furthermore, the larger

initial failure probabilities of the communication nodes (denoted by pn) accelerates

faster failure of the network. We can see that larger initial damage by catastrophic

stressors can cause failure of the network at a faster rate, which becomes worse when

both communication and power nodes vulnerable to attack. Therefore, making at

least one of the infrastructures robust against massive disasters we can prolong the

time of network collapse.

Earlier results in this Section demonstrate the cases of complete network fail-

ures considering impact of intra and inter-influences. As described in Section I, in a

repairable network intra-influences among communication nodes can reduce overload-

ing neighboring nodes. To incorporate repair-ability, we assign an ergodic transition

matrix to each communication nodes. This added repair-ability feature can prevent
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Figure 5.3: Validation of theoretical result by Monte-Carlo simulation: probability
of network failure considering impact of initial communication node failures. For
E
[
b[0]

]
= 1, intra-influences among communication nodes are responsible initial

failure propagation and results in network failure, which is proportional to initial
failure probabilities. When E

[
b[0]

]
< 1, inter-influences from power nodes cause

network failures for any average initial communication failure probabilities.
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Figure 5.4: Time steps needed for network failure (with intra-influences and inter-
influences) based on different average initial failure probabilities of power nodes.

the complete network failure as demonstrated below by simulation. 5.5 depicts the

distribution of number of communication node failures considering both intra- and
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Figure 5.5: Distribution of number of communication node failures with intra influ-
ences only and with both with intra- and inter-influences considering repair-ability
of the communication nodes.

inter-influences. Without loss generality, in the simulation we use an arbitrary tran-

sition matrix (

0.95 0.05

0.80 0.20

) for all communication nodes, where first and 2nd states

are functional and failed states of communication nodes, respectively. We can see

that without inter-influences (solid line: no initial power node failure) distribution

has mean failures of 15 communication nodes which are due to intra-influences in

communication networks, whereas with inter-influences the mean shifted to larger

value (156 and 252 for two cases); however, network does not got to complete failure

state due to repair-ability that propagates in the network through intra-influences.

5.4 Summary and conclusions

The initial failure of a communication node can occur in two ways: direct failure of

the communication node by a stressor or due to the power outage (direct supply or

stored energy it requires for its operation). These initial failures can cause failures of
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neighboring network components due to their inherit dependency on each other. We

have proposed a dynamical model to track the functionality of the communication

network following a destructive event. Our model captures intra-dependency among

communication nodes as well as the power influence on the communication node to

analyze the failure dynamics in communication networks. We provide a tractable

mathematical framework to predict the functionality state of the communication

network in steady state. We conclude that both intra- and inter-dependencies are

responsible for propagating failures in communication networks.
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Chapter 6

A data-driven model for simulating

the line failure in power grids

The power grid is a critical infrastructure in our society as almost all of our activities

rely on electrical power. However, power grids are failure-prone. Man-made attacks

such as weapons of mass destruction, high-altitude electromagnetic pulses, and nat-

ural disasters such as earthquakes, tornadoes, hurricanes, etc., can cause damage

to critical components of any physical infrastructure [84]. For a power-grid, these

include failures of transmission lines, generators, and transformers. For instance,

in 2003 the initial failure of transmission lines and generating units contributed to

extensive power blackouts in the United States and Canada [85]. Besides, power

generation and consumption must be balanced for stable operation of a power grid.

Initial failures can instigate instability, which, in turn, may cause additional failures

(generally transmission lines and generators), and so on. Moreover, failures in com-

munication network and human operator’s error may contribute to propagate the

initial failures [86, 87]. This phenomenon of continuing and uncontrolled successive

failures of grid components is termed as a cascading failure [49].

94



Chapter 6. A data-driven model for simulating the line failure in power grids

A cascading failure in the power grid is a complex process due to a large number of

components, physical attributes, and operating parameters governing the operation

of the grid. For example, by considering only two parameters, namely, load growth

and power fluctuations, it was shown in [88] that a cascading failure may result

in an abrupt breakdown of a power grid. Moreover, in [89] the authors showed

that cascading failures cannot be exactly captured by graph-theoretic epidemic and

percolation models. The reason is that whenever a transmission line fails the next

line failure can occur anywhere in the power grid, not necessarily at the neighboring

lines, as typically assumed in an epidemic model. Real-world power outages also

exhibit such noncontiguous line failure propagation [90,91].

In addition to the noncontiguous nature of the transmission line outages, it has

been observed that the failure of high-capacity transmission lines usually has a higher

impact on the propagation of cascading failures in a power grid than the failure of

low-capacity lines [92]. In fact, the system is designed to better protect these high-

capacity lines. Hence, it becomes important to relate the propagation of transmission

line failures in the power grids to the capacities of the failed lines. In this work,

we recur to data from optimal DC power-flow simulations in order to characterize

the evolution of cascading failures by also taking into account the capacities of the

transmission lines. We perform numerical simulations on the IEEE 118 bus system

using MATPOWER [93] under various operating conditions. Then we propose a

parametric model that captures the dynamics of the evolution of transmission line

failure in a power grid. With the proposed parametric model, we keep track of

failures through lines of different capacities.

This chapter is organized as follows. A brief description of the relevant cascading

failure models from the literature is given in Section 1.2.5 . In Section 6.1, we present

the simulation data generated by MATPOWER on the IEEE 118 bus system. The

proposed parametric model is introduced and elaborated in Section 6.2. In Section
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6.3, we compare the results obtained from the model with real-world data. Our

conclusions and future work are presented in Section 6.4.

6.1 Simulation data

We have used MATPOWER (a MATLAB package) [93] to simulate cascading fail-

ures by solving optimal DC power-flow equations on the IEEE 118 bus system. The

optimal power-flow solution by MATPOWER is a quasi-static approach for sim-

ulating the cascading failures in the power grid, which is extensively used in the

literature [41, 94, 95]. We have used the IEEE 118 bus system since it is a simple

approximation of real power grids of the United States. The power transmission

line capacities are assigned from the set of capacities C = {20 MW, 60 MW, 120

MW, 200 MW, 332 MW}, and the total number of lines with these capacities are

38, 58, 56, 20, 7, respectively. The cardinality of the set C is denoted by |C|, and here

|C| = 5. In addition to the number of initial line failures (denoted by Fi), some other

relevant grid operating characteristics that can affect the cascade are the power-grid

loading level (r), the load-shedding constraint level (θ), and the capacity estimation

error (e) [41]. Here r is defined as the ratio between the total demand and the total

generation capacity of the power grid; θ ∈ [0, 1] represents the load controlling capa-

bility of the power grid; it is 1 if no load shed can be performed, and it is 0 if all the

loads are shed-able whenever needed. Moreover, e controls the capacity estimation

error measured by the control center and is defined as e :=
Coptj −αj
Coptj

∈ [0, 0.5], where

Copt
j is the estimated optimal power-flow through the transmission line of capacity

j ∈ C and αj ∈ C is the power-flow threshold of the line above which the protection

relay trip the transmission line [41]. Note that here we are following [41] in looking

at these parameters.

In our simulations, we start with more than one random initial transmission line
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Table 6.1: Number of failures of a line of capacity j at next time step following
failure of a line capacity i; NF:= No Failure.

XXXXXXXXXXXXi(MW)
j(MW)

20 60 120 200 332 NF

20 24557 17663 3213 115 20 12776

60 23163 5382 2765 59 10 4623

120 13617 2046 523 24 2 1167

200 4234 125 64 1 0.25 8

332 1602 83 21 0.25 1 1

NF 0 0 0 0 0 ∞

failure (due to “N − 1 security,” which ensures that if only one transmission line

fails the power grid can compensate for that failure without further failures). Then

we track the number of failures of transmission lines with different capacities at the

following time steps. We run simulations and collect different types of data: 1) the

number of failed lines of capacity j (j ∈ C) at time k + 1 following the failure of a

line of capacity i (i ∈ C) at time k (k = 1,· · · , K, where K is the number of time

steps); 2) the total number of transmission lines failed when the cascade stops; 3)

the time step at which the cascade stops. We describe these data individually in the

following three subsections. All these data are then incorporated into a model for

the evolution of failures of transmission lines in a power grid, presented in Section

IV.

6.1.1 The number of failed lines of capacity j at time step

k+1 following the failure of a line of capacity i at time

step k

Table I shows the number of failures of a line of capacity j at time k + 1 following

the failure of a line of capacity i at time k, for Fi = 4, r = 0.85, θ = 0.2, e = 0.45.
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Figure 6.1: Probability of failures of a line of capacity j at time k+1 following failure
of a line of capacity i at time k.

The simulation data are collected using 10,000 runs with random initial failures of

transmission lines. For each run, we track the transmission line failures until the

cascade stops. Once the power grid reaches the cascade stop state it remains in that

state (i.e., no more failures), therefore in Table I, we use the symbol infinity (∞) to

indicate the no failure (NF) state. The numbers in Table I are calculated as follows:

if there is only one line failure with capacity c ∈ C at time k then we use that line

as the source line (rows in Table I) that causes the next line failures (columns in

Table I) at time k + 1. For example, let a line with capacity 60 MW fail at time k

and three lines of capacities 20 MW, 60 MW and 120 MW fail at time k + 1. Then
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looking at the second row (60 MW) we add a 1 to the first column (20 MW), a 1

to the second column (60 MW), and a 1 to the third column (120 MW). However,

if there is more than one line failure at time k then we assume that the next line

failures at time k + 1 occur due to equal contributions from all of the previous line

failures. For instance, if there are m line failures at time step k and l failures at time

k + 1, then each of the m lines (respective capacity rows in the Table I) contributes

a fraction 1
m

to the failing of each of the l lines (respective capacity columns in the

Table I).

Figure 6.1 shows the probability of failure of a transmission line with capacity

j at time k + 1 due to the failure of a line with capacity i at time k, denoted by

pi(j), for a given r, θ, e, and different values of Fi. In all the three panels, we see

that the probability of failure for the low-capacity lines is larger than for the high-

capacity lines. While the decreasing trend of failure probabilities with increasing

line capacities follows for all lines, there is a transition occurs when the line capacity

increases approximately above 41 MW (circled in Fig. 1). Namely, we see that

for line capacities j lower (higher) than 41 MW the lower capacity lines are more

vulnerable to failure than the higher (lower) capacity lines. We incorporate these

observations in a model that is presented in the next section.

6.1.2 The total number of transmission lines failed when the

cascade stops

Figure 6.2(a) is a histogram of the total number of transmission lines failed when the

cascade stops and Fig. 6.2(b) shows a histogram of the total number of transmission

lines of different capacities failed when the cascade stops. In addition, the ratios

between the number of eventually failed transmission lines and the total number of

transmission lines for different capacities are shown in Table II. Table II shows that
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(a) Histogram of total number of failed lines
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Figure 6.2: Histogram of the total number of transmission lines failed when the
cascade stops. Here Fi = 4, r = 0.85, θ = 0.2, e = 0.45.

Table 6.2: Ratio between the number of eventually failed lines and total number of
lines for different capacities.

hhhhhhhhhhhhhhhhhhParameters
Capacity (MW)

20 60 120 200 332

As in Fig. 6.1(a) 0.71 0.29 0.18 0.1 0.14

As in Fig. 6.1(b) 0.76 0.35 0.18 0.1 0.14

As in Fig. 6.1(c) 0.74 0.31 0.21 0.15 0.28

overall the higher capacity lines are less vulnerable to cascading failures, which can

also be seen from Fig. 6.2(b). This observation, that lines of different capacities

are more-or-less prone to fail provides the main motivation for this study. As an

example, considering the worst-case failure for each transmission line (i.e., for any

transmission line we take the largest number of failure from 10,000 runs), the total

number of eventually failed lines of 20 MW, 60 MW, 120 MW, 200 MW, 332 MW,

capacities are found to be 29, 19, 14, 5, 3, respectively (with the parameters as in

Fig. 6.1(c)).
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Figure 6.3: Histogram of the number of time step at which the cascade stops. Here
Fi = 4, r = 0.85, θ = 0.2, e = 0.45.

6.1.3 The time step at which the cascade stops

In Fig. 6.3 we show the normalized frequency (probability) for the time steps at which

the cascade stops. From this data, we see that a large majority of the cascades stops

at time step k = 3 and the average time at which the cascade stops is equal to 3.55.

6.2 Parametric model

In this section, we propose a parametric model to reproduce the dynamics of trans-

mission line failures that we have seen from the optimal DC power-flow simulations.

In this model, we incorporate the three types of data described in Section III A, B,

and C.

From Fig. 6.1 we observe two main trends affecting the evolution of line failures.

Observation 1 : The low-capacity lines are more vulnerable to failures than the high-

capacity lines, i.e., pi(j) is a decreasing function of the line capacity j. Observation 2 :

pi(j) is an increasing function of the capacity i for small j and a decreasing function

101



Chapter 6. A data-driven model for simulating the line failure in power grids

0 100 200 300 400
 j (MW)

0

0.2

0.4

0.6

0.8

1

p i(j
)

i = 20 MW
i = 60 MW
i = 120 MW
i = 200 MW
i = 332 MW

Figure 6.4: Power-law fitting (solid line) for the probability of failures of a line of
capacity j at next time step following failure of line of capacity i. Here Fi = 4, r =
0.85, θ = 0.2, e = 0.45.

of the capacity i for large j (due to the transition shown in Fig. 6.1).

Based on these observations, we propose a parametric equation to capture the

probabilities of line failure evolution,

pi(j) = αjβ(1 + γi(j − jth)), (6.1)

where the term αjβ, α > 0, β < 0 reflects Observation 1. The term 1 + γi(j − jth)

reflects Observation 2 ; this latter term is larger (smaller) than 1 when j is smaller

(larger) than jth. The values of α, β, γ, and jth are computed by fitting the data in

Fig. 6.4 so as to minimize the overall mean square error. For our data we obtained

the following values of the optimally fitted parameters: α = 2415, β = −2.6, γ =

−9.95× 10−6, and jth = 41, which were then used to generate the fitted solid line in

Fig. 6.4. Note that the value jth = 41 captures the transitions observed in Fig. 6.1.

An important assumption in (6.1) is that the line failure curve follows a power-

law. This assumption is consistent with the long tail of the probability curve shown

in Fig. 6.4.
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6.2.1 Dynamical model for the failures of transmission lines

Our discrete-time model for the evolution of failures of transmission lines of different

capacities j ∈ C is the following,

Xj[k + 1] = Xj[k] + Fj[k]σ
(∑
i∈C

pi(j)
(
Xi[k]−Xi[k − 1]

))
, (6.2)

where Xj[k] is the number of failed lines of capacity j at time k, Fj[k] = (F ∗j −Xj[k])

is the number of functioning lines of capacity j at time k. We set the initial conditions

in the model as follows: Xj[k] = 0 for k < 0, and we assume a certain number of

initial failures occurring at time k = 0. Here F ∗j is the total number of transmission

lines of capacity j that eventually fail when the cascade stops (from Section III B).

Moreover, pi(j) is given by (6.1). Finally, σ(y) is a sigmoidal function defined as

σ(y) :=


0, if y ≤ 0

1, if y ≥ κ

y
κ
, otherwise,

(6.3)

where κ is a constant to be determined from the simulation data. By definition,

σ ∈ [0, 1] and σ(y) approaches 0 for small y and approaches 1 for large y. Note that,

the product of σ and Fj[k] gives the number of functional line of capacity j that will

fail at time k.

Figure 6.5 shows the evolution of failure probabilities of lines with different ca-

pacities given by the σ evaluated at k = 1, 2, ..., 14. Here we have used κ = 3.55 in

all simulations, since it is the average time found in section 6.1.3. Besides, setting

κ = 3.55 enables the trend of total line failure generated by the model to better

replicate the trend of real-world line failure data, as we will show later in Fig. 6.7.

From (6.2), we see that for any line with capacity j ∈ C, the number of failed lines

at time step k+1 can be obtained by adding the new failed lines at time step k to the
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Figure 6.5: Time-evolution of failure probabilities of transmission lines with discrete
time steps.

total number of failed lines that failed until time step k. The number of new failed

lines of capacity j at time step k is given by Fj[k]σ
(∑

i∈C pi(j)
(
Xi[k]−Xi[k− 1]

))
.

A steady state is reached when there are no new line failures. Hence, the conditions

for the steady state for each line of capacity j are the following: either Fj[k] = 0 for

all j ∈ C, indicating there are no more functional lines to fail or
∑

i∈C pi(j)
(
Xi[k]−

Xi[k − 1]
)

= 0 indicating the number of new line failures is zero. However, because

pi(j) > 0, this can only happen for Xj[k+1] = Xj[k] for all js, i.e, no new failures at

the previous time step. Iterating this backward in time this is only possible if there

are no new failures at the initial time 0.

We rewrite the (6.2) for all j ∈ C,

Xj[k + 1] = Xj[k] + Fj[k]σ
(∑
i∈C

pi(j)
(
Xi[k]− Yi[k]

))
,

Yj[k + 1] = Xj[k].

(6.4)

Theorem 6.2.1. Assume some Xj[0] > 0, Xj[k] = 0 for k < 0 and pi(j) > 0. The

evolution of transmission line failure given by (6.2) asymptotically converges to the

equilibrium point Xj[k] = F ∗j , Yj[k] = F ∗j for all j ∈ C.
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Proof. Let us write the state of the system at time k in column vector form as

X[k] = (X20[k], X60[k], ..., X332[k]), Y[k] = (Y20[k], Y60[k], ..., Y332[k]), and Z[k] =

[XT [k],YT [k]]T , where T denotes the matrix transpose operator. Then (6.4) can be

rewritten in vectorial form

Z[k + 1] = f(Z[k]), (6.5)

where f is a continuous function. We consider the equilibrium point Xj = F ∗j , Yj =

F ∗j for all j which corresponds to Fj = 0 for all j, i.e., there are no more functional

lines of any types to fail. We label this equilibrium point as Z̄ = [X̄T , ȲT ]T , where

X̄ = (F ∗20, ..., F
∗
332) and Ȳ = (F ∗20, ..., F

∗
332). In order to show convergence to the

equilibrium point Z̄, we need to show there exists a Lyapunov function V(Z) in a

region of attraction D := {Z ∈ R|C|×|C| : 0 ≤ Xj ≤ F ∗j , 0 ≤ Yj ≤ F ∗j for all j ∈ C}

(Theorem 1, Section 9.6 [96]). We define

V(Z) :=
∑
j∈C

(Xj[k]− F ∗j )2 + (Yj[k]− F ∗j )2. (6.6)

It is easy to check the Lyapunov function defined by (6.6) satisfies all three properties

of a Lyapunov function for the discrete-time system given by (6.5), namely, it is a

continuous function, it has a unique minimum at Z̄, and ∆V(Z) := V(f(Z))−V(Z) <

0 at any point in D except Z̄ [96]. To verify the latter condition, note that for

0 ≤ Xj[k] < F ∗j and 0 ≤ Yj[k] < F ∗j ,

V(f(Z)) = V(Z[k + 1]) =
∑
j∈C

(Xj[k + 1]− F ∗j )2 + (Yj[k + 1]− F ∗j )2

=
∑
j∈C

(
F ∗j −Xj[k]

)2(
1− σ(·)

)2
+
(
F ∗j −Xj[k − 1]

)2(
1− σ(·)

)2
, (by (6.4))

<
∑
j∈C

(F ∗j −Xj[k])2 + (F ∗j −Xj[k − 1])2 = V(Z),

where we have used 0 < σ ≤ 1, since σ = 0 only when the system is already in the

equilibrium state. This proves the asymptotic stability of the equilibrium point Z̄;

therefore, the cascade stops at Z̄, i.e., at Fj[k] = 0 for all j ∈ C.
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Figure 6.6: Time-evolution of failures of transmission lines versus the discrete time
steps: (a) line failures data using the model in (6.2), (b) optimal power-flow simu-
lation of IEEE 118 bus system using MATPOWER, where the vertical bars are the
standard deviation of the number of line failures.

Figure 6.6(a) shows the time-evolution of line failures of different capacities

given by our dynamical model. Figure 6.6(b) shows the line failure data from op-

timal power-flow simulation using MATPOWER with initial conditions Fi = 4, r =

0.85, θ = 0.2, e = 0.45. Here we average the line failures over 10,000 runs where

the vertical bars in Fig. 6.6(b) show the standard deviation of the number of line

failures. Comparing Fig. 6.6(b) with Fig. 6.6(a), we can see that the trends of

average line failure generated by the model and MATPOWER simulation follow a

similar pattern.

6.3 Comparison of model results with real-world

data

In this section, we compare our model results of the total (cumulative) line failure

with real-world data that are collected from two real-world cascading failure events
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Figure 6.7: Total number of failed lines obtained from the proposed model and real-
world cascading failure data: (a) total line failures in the July 1996 black (solid
line), August 1996 WSCC blackout (dashed lines) (b) total line failures data using
the proposed model with different value of κ.

[97, 98]. It can be seen from the Fig. 6.7, the trend of total line failures from the

model (Fig. 6.7(b)) is qualitatively similar to the trends observed from the real-world

data (Fig. 6.7(a)) (here Fig. 6.7(a) is reproduced from [41].). In Fig. 6.7(b), the

parameter κ of (6.3) controls the slope of the total line failure curve in the simulation.

Note that the failure behavior in the initial phase of real data is slightly different

than the initial phase of our model results. This is because the simplified discrete-

time approximation of the model does not correspond exactly with the actual time of

the real-world cascading failure event, namely, in our model a time step corresponds

to the time when line failures occur whereas for a real-world cascading failure there

are some time gaps between the increments of line failures. Note also that the total

number of line failures (vertical axis) are different for both figures, which are due to

different power-grid topologies used to compare model results with real-world data

(as we do not have topologies of the power grids described in [97,98]).
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6.4 Summary and conclusions

In this chapter, we have proposed a data-driven parametric model to characterize

the dynamics of the propagation of transmission line failures in the power grid.

This model describes the evolution of cascading failure through transmission lines of

different capacities. Due to unavailability of all the relevant quantities from the real-

world cascading failure data, we have used the data generated by the optimal power-

flow simulator (MATPOWER) to feed the parametric model. We have demonstrated

that our model can reproduce the trends in the dynamics of line failure in the power

grid considering capacities of the transmission lines and compared model results with

real-world data. Our model outputs an estimate of the total capacity loss due to the

failure of transmission lines during cascading failures at any time step.
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Future Work

This dissertation analyzes the vulnerability of a communication network from many

aspects including the interception of inter-network connection, reliability of networks

due to physical attacks, propagation of initial failures/attacks in the interconnected

network, etc. In addition, the vulnerability of communication network due to inter-

dependency with power grids is investigated and cascading failure in the power is

simulated. In this chapter we describe some possible directions of future research

that can be evolved from this dissertation.

For the inter-network connection optimization, as of now, we have considered

all the interconnections are identical an assumption may not hold in the practical

scenario. Thus we are currently working on the optimal interconnection considering

the variations in link capacities (or QoS of the links). Moreover, generalizing the

binary channel model to arbitrary size packet model and analyzing various natures

of data manipulations by intruders after the interception (e.g., manipulations of a

burst of the data packet), are also other possible extensions of this work. Analysis

with finite queuing delay would also make this work more realistic.

While modeling intensity of physical attacks on the physical infrastructure, the
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dynamics of network functionality needs to be studied under temporal correlation

among different types of stressors in the future. Moreover, robust techniques need

to be devised to minimize the impact of catastrophic stressors on the network.

The parametric model for finding the resiliency and efficiency of a secure network

is derived from simulation data, not by solving the optimization problem analytically.

The analysis of the optimality of the proposed optimization problems and the trade-

off between accuracy and complexity of the parametric model are left as future works.

Besides, validating the parametric model with data from the real-world network is

also a part of our future study. The generalization of this work for modeling the non-

homogeneous propagation of security risks (i.e., τ and c may vary based on the types

of security risks and links) would better capture the real-world threat propagation

in the ML network.

Further, as a future work, the theory developed in this dissertation, specifically

the interdependent influence model, can be extended to include more states (e.g.,

alarm state) of communication nodes and heterogeneous influences among commu-

nication network components. Moreover, capturing influences from communication

node to power nodes (e.g., smart grids) as well as the interactions among power

nodes will also be part of future research to make this model more realistic.

The data-driven model presented in this dissertation provides a simple approach

for reproducing the cascading failure behavior in power-grids from the simulation

data. The major limitation of our data-driven parametric model is that the model

needs to be calibrated when used on different network topologies. However, the

model parameters can be estimated by the optimal power-flow simulation given the

power grid topologies such as IEEE 300, Polish grid, etc. In addition, incorporation

of generator dynamics into the problem would make this problem to capture more

realistic cascading failures.
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Appendix A

CT vs. NX1X2
when pe varies

(a) α = 0 (b) α = 0.2

(c) α = 0.6 (d) α = 1

Figure A.1: The total Shannon capacity (CT ) vs. the number of interconnections
(NX1X2) when pe is a function of pl.

Here we express pe as a function of pl. We define pe := αpl, where α is a parameter

between 0 and 1. Figure A.1 shows the total Shannon capacity (CT ) vs. the number
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of interconnections (NX1X2) when pe is a function of pl. We see that when pe varies

with NX1X2 we get a variation in CT ’s, which will change the current analysis of

finding optimal interconnection.

113



Appendix B

Proof of the concavity of the

objective function of (2.12)

A function f : D ∈ R→ R is said to be a convex function if it satisfies the following

two conditions [62]: 1) the domain D of the function f is a convex set, and 2) for any

two points x, y ∈ D, the function satisfies the following condition, f(θx+(1−θ)y) ≤

θf(x) + (1− θ)f(y),

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y),

where θ is in the range 0 ≤ θ ≤ 1. One way to check the concavity of a differentiable

function is by differentiating it twice, i.e., f is concave if and only if f
′′ ≤ 0 and its

domain is convex.

Note that the interval [0, Nmax] a line segment on real line which is a convex

set [62]. Now differentiating the objective function of (2.12) twice with respect to

NX1X2 we get 2
1−p∗d

(−1 + Cl). Since 0 ≤ Cl ≤ 1, 2
1−p∗d

(−1 + Cl) ≤ 0. Hence, the

objective function of (2.12) is concave.
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N2
max − 4(1− Cl)NmaxR∗s ≥ 0

Since Nmax

(
Nmax − 4(1−Cl)R∗s

)
≥ 0 and Nmax ≥ 0, we need to show Nmax − 4(1−

Cl)R
∗
s ≥ 0, or Nmax ≥ 4(1− Cl)R∗s. If R∗s < C∗T , 4(1− Cl)R∗s < 4(1− Cl)C∗T , and

4(1− Cl)C∗T = 4(1− Cl)N∗X1X2
C̄ (by (2.8) and for optimality NX1X2 = N∗X1X2

),

=

4(1− Cl) Nmax
2(1−Cl)

C̄, if 0 ≤ Cl ≤ 0.5,

4(1− Cl)NmaxC̄, if 0.5 < Cl ≤ 1
(by (2.13))

=

2NmaxC̄, if 0 ≤ Cl ≤ 0.5,

4(1− Cl)NmaxC̄, if 0.5 < Cl ≤ 1

=

2Nmax(1−
N∗X1X2

Nmax
(1− Cl)), if 0 ≤ Cl ≤ 0.5,

4(1− Cl)Nmax(1−
N∗X1X2

Nmax
(1− Cl)), if 0.5 < Cl ≤ 1

(by (2.7) and linear pl),

=

2Nmax(1− 1
2(1−Cl)

(1− Cl)), if 0 ≤ Cl ≤ 0.5,

4(1− Cl)Nmax(1− (1− Cl)), if 0.5 < Cl ≤ 1
(by (2.13))

=

Nmax, if 0 ≤ Cl ≤ 0.5,

4(Cl − C2
l )Nmax, if 0.5 < Cl ≤ 1

=

Nmax, if 0 ≤ Cl ≤ 0.5,

≤ Nmax, if 0.5 < Cl ≤ 1, (Cl = 0.5)
.

Hence, from both inequalities we see that 4(1− Cl)R∗s ≤ Nmax.
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