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ABSTRACT 
 

Researchers have spent over 50 years improving the performance of HgCdTe 

infrared (IR) detectors and it is currently the dominant technology in the field; however, 

further improvement may be limited due to devices reaching the intrinsic limits of their 

constituent materials. To further improve the state-of-the-art in space-based IR detection, 

alternative material systems are being considered. The focus of this work is testing the 

space-environment viability of innovative device structures, namely unipolar barriers 

with Type-II superlattice (T2SL) absorbers, made from the 6.1 Å family of III-V 

elements which are theoretically superior performers while being less costly. 

Sensitive IR photo-detection using III-V material systems has been demonstrated; 

however, overall performance to-date has been hindered by short minority carrier 

lifetimes attributed to high concentrations of Shockley-Read-Hall (SRH) recombination 

centers. This problem is exacerbated when these materials are exposed to charged particle 
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irradiation, as is unavoidable for spacecraft electronics, due to displacement damage 

increasing the concentration of SRH defects.  

In this work, a measurement system was designed and constructed to directly 

measure the minority carrier recombination lifetimes of prototype IR detector structures 

at the wafer die level as functions of proton fluence and temperature, to include both 

HgCdTe and the new 6.1 Å T2SL nBn technology being considered. It is unique for two 

reasons: 1) it was designed to be portable which allows in-situ lifetime characterization 

vs. stepwise proton irradiation by deploying it to radiation sources across the country, and 

2) through cryogenic cooling, it maintains samples at mission operating temperatures 

throughout entire irradiation experiments which enables post-radiation annealing studies. 

The typical radiation test found in literature is a single, large dose performed at room 

temperature.  

The conclusions in this dissertation are derived from analyses on data acquired 

from this measurement system at a monoenergetic proton source. Radiation tolerances of 

the minority carrier lifetime and post-radiation annealing effects are compared between 

HgCdTe photodiodes and 6.1 Å T2SL nBn detector structures, the effects of doping and 

other design parameters on the lifetime damage factors in III-V materials are 

investigated, and a damage factor vs. proton energy (NIEL) study was performed on III-

V structures which allows spacecraft mission planners to extrapolate lifetime damage 

factors in these materials through any proton differential energy spectra of interest, i.e. 

satellite orbit. 
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Chapter 1 

 

Introduction 

 

1.1 The Infrared Spectrum and Applications 

 

Electromagnetic radiation exists in a continuum of wavelength as shown in Figure 1.1, of 

which only a small fraction is visible to the human eye. Specific wavelength ranges 

within are divided and named, from shortest to longest wavelength: gamma ray, x-ray, 

ultraviolet (UV), visible, infrared (IR), microwave, and radio. This radiation may be 

described as streams of mass-less particles (photons), each traveling at the speed of light 

in a wave-like pattern. Each photon contains a certain amount of energy which is 

inversely proportional to its wavelength: 𝐸𝑝ℎ𝑜𝑡𝑜𝑛 = ℎ𝑣 = ℎ𝑐/𝜆 (eV), where h is Planck’s 

constant, v is the frequency, c is the speed of light, and 𝜆 is the wavelength.  

Since its discovery in the early 1800’s by Sir Frederick William Herschel, IR 

radiation has been increasingly utilized in an abundance of technological applications 

throughout a wide range of industries. To mention a few, spectroscopy is used to identify 

compounds in atmospheric, astronomical, and biomedical research, fiber optics are used 

for telecommunications and high power lasers, and IR detectors are employed in thermal 

imaging from military target acquisition to skin cancer screening [1].  The focus of work 

discussed herein is the characterization of emerging material technologies aimed at 

creating superior space-based IR optoelectronic devices, specifically photodetectors. 
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Figure 1.1: The electromagnetic spectrum. Credit: NASA. 

Due to chemical and molecular absorption of IR radiation by the Earth’s atmosphere, 

there is a limitation on how far photons of certain wavelengths can travel for practical 

use. Much international effort has been exerted in creating empirical databases for 

modeling atmospheric absorption as a function of wavelength, viewing angle, and 

location on Earth [2]. Figure 1.2 shows the atmospheric transmission of the IR spectrum. 

 

Figure 1.2: Atmospheric transmission of infrared radiation [3]. 
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From this figure it should be noticed there exist sub-regions in the IR spectrum that 

exhibit very high transmission. These are known as atmospheric windows and their 

spectral ranges are roughly quantified in Table 1.1. The naming convention is as follows: 

near-infrared (NIR), short-wave-infrared (SWIR), mid-wave-infrared (MWIR), long-

wave-infrared (LWIR), and far-infrared (FIR). 

Table 1.1: Atmospheric windows in the IR 

 
 

Photodetectors designed to sense in the MWIR and LWIR windows are the focus herein 

and are ideal for thermal imaging of hot (e.g. rockets and jet engines) and relatively cold 

(human body) objects, respectively, due to the wavelengths at which blackbody radiation 

for those temperatures peak. Heated objects, or bodies, each radiate photons in a 

continuum of wavelength but most are concentrated in the IR. Given the temperature of 

an object, its spectral radiance and exitance can be obtained using equations derived for 

blackbody emitters [4]: 

 𝐿𝑞,𝜆(λ, 𝑇) =
2𝑐

λ4[𝑒h𝑐/𝜆𝑘𝑇−1]
[

photon

s−cm2−sr−μm
] (1.1) 

 

 𝑀𝑞,𝜆(λ, 𝑇) =
2π𝑐

λ4[𝑒h𝑐/𝜆𝑘𝑇−1]
[

photon

s−cm2−μm
] (1.2) 

 

 

When Eq. 1.2 is plotted vs wavelength, as is done in Figure 1.3, it can be seen that hotter 

objects radiate more photons at shorter wavelengths (higher energies). This is why light 

bulb manufacturers advertise a temperature in Kelvin on a scale from “warm” to “cool.” 

These equations are for ideal blackbodies and therefore should be treated as upper limits.  

Atmospheric Window λ (μm) Application Examples

NIR 0.75-1 Pharmaceutical | Telecommunication | Agriculture | Spectroscopy

SWIR 1-2.5 Telecommuinication | Moisture Detection | Machine Vision| Spectroscopy | Mining

MWIR 3-5 Imaging through smoke and fog | Hot object thermal imaging

LWIR 8-12 Thermography | Body temperature thermal imaging | Night Vision

FIR 12-1000 Thermal Imaging | Biomedical
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Figure 1.3: Spectral photon flux exitance for various blackbody temperatures. 

In reality, most objects are not ideal blackbodies; therefore their radiance and exitance 

curves must be scaled down by a unitless emissivity factor (0 ≤ 휀 ≤ 1) which is a 

function of reflectivity, surface texture, temperature, and wavelength. 

The Wien Displacement Law quantifies the relationship between the wavelength 

of peak exitance and object temperature by setting the partial derivative of spectral 

photon flux exitance with respect to wavelength equal to zero and solving for wavelength 

at maximum exitance [4]: 

 
∂𝑀𝑞,𝜆(𝜆,𝑇)

𝜕𝜆
= 0 (1.3) 

 

 𝜆𝑚𝑎𝑥 =
3662

𝑇
[

μm

K
] (1.4) 

 

Using this relationship one can easily find, for example, that the wavelengths of peak 

exitance of a jet engine (~1200 K) and human body (~310 K) are 3.05 μm (MWIR) and 

11.8 μm (LWIR), respectively [5]. Separate photodetectors would have to be designed for 

each application, each optimized for detection around the maximum exitance of the 

intended targets while using a high transmission region of its IR atmospheric window. 



5 
 

1.2 Infrared Photo-detection 

Semiconductors are naturally suited for photo-detection because their bandgap energies 

(energy required to free an electron from the valence band to the conduction band for free 

travel) coincide with photon energies inside and near the visible wavelength bands. This 

enables the creation of practical devices. According to the photoelectric effect, for an 

electron to be generated by a photon and have a chance at being detected, the photon’s 

energy must be greater or equal to that of the semiconductor’s energy bandgap. This is 

illustrated in Figure 1.4 for GaAs where 𝐸𝑔 = 1.424 𝑒𝑉 at room temperature, thus it is 

only able to detect photons with energies > 1.424 eV, corresponding to wavelengths < 

870 nm (visible and NIR). If incident photon energies are too high, they are at risk of 

being absorbed by the surface of the detector and not making it to the active detection 

region, and if they are too low they will simply pass through the material with no effect. 

There are additional complications, such as reflectivity and absorption coefficients being 

functions of wavelength, and these must be considered in device design; however, the 

focus of this dissertation is on testing new material systems being created to produce 

specific energy bandgaps for reasons discussed later.  

 

Figure 1.4: The photo-electric effect. 
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To design materials for photo-detection in the MWIR and LWIR, the energy bandgaps 

must be significantly smaller than those used for visible light. This is problematic due to 

the relative ease, as illustrated in Figure 1.5, of thermally generated charge carriers 

(noise) to outnumber those that are photo-generated (signal).  

 

Figure 1.5: Energy bandgap diagrams for various semiconductors 

highlighting the increase in significance of thermal energy factor, kT, in 

smaller bandgaps. 

 

For an intrinsic semiconductor at equilibrium, the density of charge carriers is dependent 

upon temperature and bandgap energy, proportional to [6] 

 𝑛 ∝ 𝑇3/2𝑒−𝐸𝑔/2𝑘𝑇, (1.5) 

 

therefore cryogenic cooling is employed to decrease this kT factor in most MWIR and 

LWIR photodetectors. This reduces the normalized thermal generation rate which is 

desirable to minimize when creating a high performance photodetector [7].  

The electronic and optical properties of semiconductors are derived from their 

atomic structure (crystalline) and periodicity.  Atoms from group IV in the periodic table 

of elements are natural  semiconductors (i.e. Si and Ge) , while atoms from groups II, III, 
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V, and VI may be used to create binary, ternary, and quaternary semiconducting 

compounds such GaAs, HgCdTe, and InGaAsP, respectively. These compounds are 

created by carefully combining two or more elements during crystal growth which results 

in a semiconductor with a bandgap energy that is an interpolation (not necessarily linear) 

between those of constituent elements. For example, the ternary compound 𝐻𝑔1−𝑥𝐶𝑑𝑥𝑇𝑒 

is created by controlling the proportions of HgTe and CdTe which enables the tuning of 

its energy bandgap according to [8]: 

 𝐸𝑔 = −0.302 + 1.93𝑥 + (5.35 × 10−4)𝑇(1 − 2𝑥) − 0.310𝑥2 + 0.832𝑥3 (1.6) 

 

Fig. 1.6 shows Eg plotted vs x. Using this information one can design a 𝐻𝑔1−𝑥𝐶𝑑𝑥𝑇𝑒 

photo-detector tailored to specific IR applications with available detection wavelengths 

spanning from the SWIR to the FIR.  

 

Figure 1.6: Energy bandgap tunability of HgCdTe. 

 

This is highly convenient, however 𝐻𝑔
1−𝑥

𝐶𝑑𝑥𝑇𝑒  is not he best solution for all IR 

applications and not all semiconducting elements can be mixed arbitrarily. This is 

partially due to differences in the natural atomic spacing and configuration in each 
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element’s crystal lattice. When atoms having dissimilar lattice constants are forced 

together, compressive or tensile strain can alter electronic performance of the subsequent 

device. While this can lead to negative defects, strain can also be intentionally introduced 

to alter properties such as valence band structure and effective mass [9]. This is known as 

“strain engineering” and will be discussed in further detail later as it is relevant to many 

devices characterized in this work. Practical semiconductor compounds are shown in 

Figure 1.7 with solid lines indicating continuous bandgap energy tunability via mole 

ratios. 

  

Figure 1.7: Energy bandgaps as a function of lattice constant highlighting 

the 6.1 Å group. 

 

The focus of this work is to test the viability of newly developed semiconductor material 

systems combined with innovative device structures made from the 6.1 Å family (circled 

above) as superior alternatives for the long established, dominant HgCdTe technology in 

space-based photodetectors. Now that it has been established what is needed of 

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwinu5D39IDaAhUF3YMKHcAXDlUQjRx6BAgAEAU&url=http://www.mdpi.com/1424-8220/13/4/5054/htm&psig=AOvVaw2xsJuCBLYlETH-ryj_K3kf&ust=1521841855057175
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semiconductors to detect in the IR and why, recent efforts to improve the state of the art 

will be discussed. 

1.3 Established vs. Emerging IR Detector Technologies 

Lattice matching and energy bandgaps, as discussed above, are just a couple of many 

factors one must consider when designing a photodetector. Even if two different 

compounds can sense the same wavelengths, the differences in atomic structure may lead 

to only one being suitable for a particular application. Si and GaAs, for example, can both 

sense NIR wavelengths; however, since the electron mobility of GaAs is > 6x higher than 

that of Si, GaAs would make a better high speed detector for telecommunications. On the 

contrary, Si makes superior CMOS electronics due to its greater hole mobility. Substrate 

cost, atomic melting points, effective mass of charge carriers, domestic availability, 

fabrication yield, environment, and operating temperature all need to be considered when 

designing a high quality photodetector.  

 

1.3.1 II-VI: HgCdTe 

Researchers have spent over 50 years maturing and improving the performance of 

HgCdTe detectors and it is currently the dominant technology in the field. Its energy 

bandgap is highly tunable, as shown above, which makes it very versatile; however, it is 

challenging to grow and uncertainty in the mole fraction ratio during crystal growth, x in 

Eq. 1.6, can result in non-uniformities in cutoff wavelength, even among an array of 

adjacent pixels [4]. LWIR detectors are especially sensitive to this. Further improvement 

may be limited due to the minority carrier lifetimes reaching their intrinsic limit via 
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Auger recombination [10]. To further improve the state of the art of IR photo-detection, 

other material systems are currently being considered as viable alternatives. 

 

1.3.2 III-V: 6.1 Å T2SL 

IR detector development using Type-II superlattices (T2SL) has been a recent focus using 

the 6.1 Å family of materials (AlSb, GaSb, InAs) due to their longer intrinsic Auger 

lifetimes and abilities to sense longer wavelengths while operating at higher 

temperatures, relative to HgCdTe [7]. Multiple quantum wells (QW) with thin barrier 

layers between constitute a superlattice (SL). The thin barriers allow wave functions 

between neighboring quantum wells to overlap and charge carriers to tunnel through. The 

end result is a semiconductor with a synthesized, or engineered, energy bandgap smaller 

than those of the constituent semiconductor compounds [11]. This is illustrated in Figure 

1.8. In Type-I SLs, the charge carriers are confined in the same layers, while in T2SLs 

the electrons and holes are confined in different layers. 

 

Figure 1.8: Quantum structures, where (a) is a single QW, (b) is two QWs, 

and (c) is an SL composed of multiple, closely spaced QWs. 

 

This has been made possible with advances in crystal growth technology, specifically 

Molecular Beam Epitaxy (MBE), where it is possible to control periodicities and 
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symmetries of crystal lattices through application of very thin layers (on the order of a 

single atomic layer at a time) of each desired element or compound.  

 These systems were proposed for use in IR detectors in 1987 by D.L. Smith and 

C. Mailhiot [12] and shortly thereafter Youngdale et al. empirically demonstrated Auger 

lifetimes in an InAs/GaInSb T2SL material that were >100x superior (longer) than those 

in HgCdTe [13]. The significance of this is that these III-V T2SL systems, in theory, have 

better potential performance than that of HgCdTe due to more desirable (less restrictive) 

intrinsic limitations. Research and development efforts have been poured into these III-V 

T2SL material systems ever since in effort to push performance to their full theoretical 

potential. Sensitive photo-detection using these material systems have been demonstrated 

in both the MWIR [14,15,16,17] and LWIR [18]; however, overall performance to date 

has been hindered by short minority carrier lifetimes (much shorter than those of 

HgCdTe) attributed to high concentrations of Shockley-Read-Hall (SRH) recombination 

centers [19], which will be discussed in section 2.3.  

 Multiple efforts have been taken to improve the performance of these III-V T2SL 

material systems by incorporating potential barrier structures during crystal growth. 

These are intended to mitigate generation-recombination (G-R) currents caused by the 

SRH trap centers. Notable designs include the M-structure [17], W-structure [20], and 

nBn structure [15]. Many unipolar barrier detector structures were characterized in this 

work, and an example of an nBn detector structure is shown in Figure 1.9. The barriers 

have been proven to significantly reduce dark and surface currents by impeding the flow 

of majority carriers while still allowing free flow of the photo-generated minority carriers 

[21]; however, short minority carrier lifetimes remain problematic. 
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 It was noticed in work by Svennson et al., by varying the thicknesses of T2SL 

periods in InAs/GaSb, that carrier lifetime improved when GaSb content decreased [22].  

 

Figure 1.9: Energy band diagram of an ideal unipolar barrier detector 

structure: (a) unbiased, (b) biased. 

  

This has led to an industry-wide change in research focus from the InAs/GaSb T2SL 

material system to that of the so-called “Ga-free” InAs/InAsSb T2SL in which 

Steenbergen et al. reported a significantly higher minority carrier lifetime in a LWIR 

energy bandgap of  > 412 ns [23]. 

 In summary, despite their current struggle with short minority carrier lifetime, III-

V T2SL material systems have a number of attractive advantages over HgCdTe: crystal 

growth is easier to control resulting in higher uniformity across wafers [24], it has 

stronger atomic bonds and structural stability [25], its GaSb substrates are orders of 

magnitude less expensive than the CdZnTe used for HgCdTe [4], mature III-V growth 

and processing technologies stood up by the solid-state laser industry can be leveraged, 

effective masses combined with strain engineering reduce tunneling and Auger 

recombination [26], and domestic availability is not problematic. 
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1.4 Radiation Tolerance 

Even if the full optoelectronic performance potential of these 6.1 Å T2SL IR detectors 

eventually becomes realized, they must also fare well in the harsh environment of space 

if they are to become viable alternatives to HgCdTe as space-based sensors. There has 

been much effort put into characterizing the degradation of electronics in these 

conditions, which are unavoidable for satellite-based detectors 

[27,28,29,30,31,32,33,34,35]. There, different species of charged particles (e.g. heavy 

ions, protons, and electrons) exist in spectra of kinetic energies which are highly location 

dependent (i.e. selected satellite orbit trajectory and altitude as shown in Figure 1.10).  

 

Figure 1.10: Kinetic energy spectra of protons vs. satellite orbit [36]. 

 

Earth’s magnetic field captures the energetic charged particles from solar wind and 

cosmic rays, and they remain in belts circling the planet at altitudes from 500 to 58,000 

km. James Van Allen is credited to their discovery, hence they are known as the Van 
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Allen radiation belts which are depicted in Figure 1.11. The inner and outer belts are 

dominated by protons and electrons, respectively. 

 

Figure 1.11: Van Allen Radiation Belts around Earth. Credit: NASA 

 

Electronics in this environment can be affected by these charged particles through several 

different mechanisms which are listed in Table 1.2 for convenient comparison. Proton 

irradiation is the focus of this work as electrons are more easily shielded [37] and less 

dominant in orbits of interest intended for space-detectors discussed herein. In a study of 

radiation shielding by C. Dale et al. it was found that, not only does increasing shield 

thickness rapidly result in diminishing returns in proton mitigation, when charged 

particles travel through thicker metals (Ta and Al) they can actually increase radiation 

through the creation of secondary protons and neutrons with higher probability [38].  
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Table 1.2: Effects of the space environment on spacecraft electronics 

Mechanism Effect Source 

Total Ionizing Dose 

(TID) 
Degradation of electronics 

Trapped protons 

Trapped Electrons 

Solar Protons 

Displacement Damage 
Degradation of opto-  

and micro-electronics 

Trapped protons 

Trapped Electrons 

Solar Protons 

Neutrons 

Single-Event Effects 

Data corruption 

Noise in data 

System shutdowns 

Electronic damage 

Heavy ions 

Solar protons 

Trapped protons 

Neutrons 

Surface Charging 

Biasing of instrument 

readings 

Power drains 

Physical damage 

Hot and cold 

plasma 

Deep Dielectric 

Charging 

Biasing of instrument 

readings 

Electrical discharges 

High energy 

electrons 

 

If the kinetic energy of a charged particle is high enough it will induce displacement 

damage in a semiconductor, which is the physical relocation of its atoms within its crystal 

lattice causing defects such as vacancy-interstitial pairs leading to important device-level 

electronic changes [39]. Most of its energy is spent ionizing atoms by creating electron-

hole pairs, while the remaining ~0.1-1% is spent impacting atoms with elastic or inelastic 

nuclear collisions. This fractional energy that causes displacement damage is known as 

non-ionizing energy loss (NIEL). A more elegant definition of NIEL is the energy a 

particle imparts to a solid through non-ionizing mechanisms. This damage mechanism is 

explained in detail by Marshall and Marshall in regard to satellite sensor design [40].  

By performing “ground-truth” irradiation experiments in controlled laboratory 

environments, the performance degradation of spacecraft electronics vs. charged particle 
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irradiation can be measured. Essentially, this accelerated aging of spacecraft electronics 

on the ground in effort to predict their long term survivability in space. “Damage 

factors,” which are measured rates of change vs. charged particle irradiance, are assigned 

to optoelectronic parameters under test [41]. These damage factors are highly dependent 

on the kinetic energy; therefore they must be specified along with the energies used for 

each experiment. As counterintuitive as it may seem, proton-induced damage in 

semiconductors is stronger for lower energy protons as they are more probable to end up 

embedded in the crystal lattice. This has even been performed intentionally to create p-n 

junctions in HgCdTe as an alternative to the diffusion technique [42].  As will be shown 

in a later chapter, damage factors can be normalized and correlated to NIEL curves, 

which can be calculated given the weighted combination of constituent elements in a 

semiconductor [43]. This allows the extrapolation of damage factors through a continuum 

of charged particle energies, such as the proton spectra in Figure 1.10a. With this 

information, spacecraft mission planners can estimate the change in a parameter of 

interest due to charged particle irradiation over the mission life of a satellite using [32]: 

 Carrier recombination rate, 𝜏−1 = 𝑡𝑚 ∙ ∫ 𝜅𝜏−1(𝐸𝑟𝑒𝑓)
𝑁𝐼𝐸𝐿(𝐸)

𝑁𝐼𝐸𝐿(𝐸𝑟𝑒𝑓)
∙

𝑑𝜑(𝐸)

𝑑𝐸
𝑑𝐸

∞

0
, (1.7) 

 

where 𝑡𝑚 is the mission duration, 𝜅𝜏−1 is the recombination rate damage factor 

characterized at a proton kinetic energy of 𝐸𝑟𝑒𝑓, NIEL values are from calculated curves 

at specified energies, and the final term is the differential proton energy spectrum similar 

to Figure 1.10.  

 Recent empirical work performed by Morath et al. quantified the performance 

degradation rates of III-V based nBn detector structures with various designs, materials, 

energy bandgaps, and operating temperatures vs. monoenergetic proton irradiation [44]. 
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Here, relationships were established between 63 MeV proton irradiation damage factors 

for dark current density, lateral optical collection length, and quantum efficiency. It was 

concluded that these degradations stemmed from the displacement-damage-induced 

reduction of an unmeasured, lower-level parameter: minority carrier recombination 

lifetime. Hubbs et al. reached the same conclusion after performing ground-truth proton 

irradiation tests on a complete III-V nBn MWIR focal plane array (FPA) [45].  

In this work, a measurement system was designed and constructed to directly 

measure the minority carrier recombination lifetimes of prototype IR detector structures 

at the wafer die level, to include both HgCdTe and the new 6.1 Å T2SL nBn technology 

being considered. It is unique for two reasons: 1) it is designed to be portable which 

allows in-situ lifetime characterization vs. stepwise proton irradiation by deploying it to 

radiation sources across the country, and 2) through cryogenic cooling, it maintains 

samples at mission operating temperatures throughout entire irradiation experiments 

which enables post-radiation annealing studies. The typical radiation test found in 

literature is a single, large dose performed on room temperature samples.  

 The main conclusions in this dissertation are derived from analyses on data 

acquired from this measurement system at a monoenergetic proton source. Radiation 

tolerances of the minority carrier lifetime and post-radiation annealing effects are 

compared between HgCdTe and 6.1 Å T2SL nBn detector structures, the effects of 

doping and other design parameters on the lifetime damage factors in III-V materials are 

investigated, and a damage factor vs. proton energy (NIEL) study was performed on III-

V structures which will allow spacecraft mission planners to extrapolate lifetime damage 

factors in these materials through any proton differential energy spectra of interest. 
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Chapter 2 

 

Charge Carrier Dynamics 

 

2.1 Introduction 

The goal of this chapter is to introduce terminology and provide an overview of 

fundamental semiconductor physics in effort to provide an understanding of the primary 

metric used in upcoming analyses. Multiple texts were used as general references 

[6,46,47,48]. It is assumed the reader is familiar with the concepts of conduction and 

valence energy bands derived from the application of quantum mechanics and 

Schrodinger’s wave equation to bound particles in a crystalline lattice. 

2.2 Semiconductors in Equilibrium 
 

Equilibrium implies that no external forces are acting on the semiconductor. These 

include voltages, electric fields, magnetic fields, and temperature gradients. The 

distribution of electrons (n) and holes (p, lack of an electron) in the conduction and 

valence bands, respectively, with respect to energy (E) are expressed as 

 𝑛(𝐸) = 𝑔𝑐(𝐸)𝑓𝐹(𝐸) (2.1) 

 

 𝑝(𝐸) = 𝑔𝑣(𝐸)[1 − 𝑓𝐹(𝐸)] (2.2) 

 

where 𝑔𝑐 and 𝑔𝑣 are the density of quantum states in the conduction and valence bands, 

respectively, and 𝑓𝐹 is the Fermi-Dirac probability function. The density of states 
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functions, derived from quantum mechanics, represent the number of allowed quantum 

states in which the respective charge carrier is allowed to reside and is defined as   

 𝑔𝑐(𝐸) =
4𝜋(2𝑚𝑛

∗ )3/2

ℎ3 ∙ √𝐸 − 𝐸𝑐 (2.3) 

 𝑔𝑣(𝐸) =
4𝜋(2𝑚𝑝

∗ )
3/2

ℎ3 ∙ √𝐸𝑣 − 𝐸 (2.4) 

where 𝑚𝑛
∗  and 𝑚𝑝

∗  are the density of states effective masses of electrons and holes, 

respectively, and 𝐸𝑐 and 𝐸𝑣 are the energy levels of the conduction and valence bands, 

and h is Planck’s constant. The Fermi-Dirac function represents the probability of an 

electron occupying a state at the specified energy, and is expressed as 

 𝑓𝐹 =
1

1+𝑒(𝐸−𝐸𝐹)/𝑘𝑇
 (2.5) 

where 𝐸𝐹 is the Fermi energy level, k is Boltzmann’s constant, and T is temperature. If 𝐸𝐹 

is several kT from both 𝐸𝑐 and 𝐸𝑣 then Eq. 2.5 can be reduced to the Boltzmann 

approximation by neglecting the 1 in the denominator. Eq. 2.5 can then be rewritten as 

 𝑓𝐹 = 𝑒−(𝐸−𝐸𝐹)/𝑘𝑇. (2.6) 

To find the total number of equilibrium electrons (𝑛0) in the conduction band, an integral 

can be performed on the distribution in Eq. 2.1 from 𝐸𝑐 to +∞: 

 𝑛0 = ∫
4𝜋(2𝑚𝑛

∗ )3/2

ℎ3 ∙ √𝐸 − 𝐸𝑐 ∙ 𝑒−(𝐸−𝐸𝐹)/𝑘𝑇𝑑𝐸
∞

𝐸𝑐
. (2.7) 

After making a change of variable using the gamma function [6], Eq. 2.7 can be reduced: 

 𝑛0 = 𝑁𝑐𝑒−(𝐸𝑐−𝐸𝐹)/𝑘𝑇 (2.8) 

Here,  𝑁𝑐 represents the effective density of states function for the conduction band: 

 𝑁𝑐 = 2 (
2𝜋𝑚𝑛

∗ 𝑘𝑇

ℎ2 )
3/2

 (2.9) 
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 Following similar treatment for the equilibrium concentration of holes in the valence 

band (𝑝0), but integrating Eq. 2.2 from −∞ to 𝐸𝑣, the analogs to Eq. 2.8-2.9 become 

 𝑝0 = 𝑁𝑣𝑒−(𝐸𝐹−𝐸𝑣)/𝑘𝑇 (2.10) 

 𝑁𝑣 = 2 (
2𝜋𝑚𝑝

∗ 𝑘𝑇

ℎ2 )
3/2

. (2.11) 

 

2.2.1 Intrinsic Carrier Concentration 

An intrinsic semiconductor has a perfect crystal lattice such that no impurities or dopants 

are present. In equilibrium the concentration of holes in the valence band equal the 

number of electrons in the conduction band: 𝑛0 = 𝑝0. The product of these carrier 

densities equal the square of the intrinsic carrier concentration, 𝑛𝑖 and this is known as 

the law of mass action: 

 𝑛𝑖
2 = 𝑛0𝑝0 = 𝑁𝑐𝑁𝑣𝑒−(𝐸𝑐−𝐸𝑣)/𝑘𝑇 = 𝑁𝑐𝑁𝑣𝑒−𝐸𝑔/𝑘𝑇 (2.12) 

 𝑛𝑖 = √𝑁𝑐𝑁𝑣𝑒−𝐸𝑔/𝑘𝑇 (2.13) 

where 𝐸𝑔is the bandgap energy of the semiconductor. Note that the intrinsic carrier 

concentration is constant for stable temperature and independent of the Fermi energy 

level. Under influence of external forces 𝑛𝑝 ≠ 𝑛𝑖
2 as will be explained in section 2.3. The 

power in using semiconductors to make practical devices, however, comes from adding 

impurities which alter electrical characteristics. 
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2.2.2 Extrinsic Carrier Concentration 

Extrinsic semiconductors contain impurities or defects that create an inequality between 

electron and hole concentrations. The intentional addition of impurities in a 

semiconductor is called “doping,” and this process is carefully controlled to tailor 

electrical characteristics of the material. Doping can be either n-type or p-type depending 

on how many valence electrons reside in the added impurity atoms. Consider a 

Phosphorous atom added as a substitutional impurity to Si, for example. Being from 

group V in the period table, it has five valence electrons while Si only has four. When it 

replaces a Si atom in the lattice, four of the valence electrons will be covalently bonded 

to the surrounding Si atoms, and the fifth electron will be free to travel through the 

material. This is referred to as a donor impurity atom because it donates an electron to the 

conduction band of the Si lattice without creating a new hole in the valence band, in this 

case making the Si lattice more n-type. The opposite is true for acceptor impurity atoms 

(i.e. elements from groups II and III) which have less valence electrons than Si and 

readily accept electrons from the valence band, thereby adding a hole to the valence band 

without adding an electron to the conduction band. The ability of these impurities to add 

carriers to their associated energy bands is a function of temperature; however, their 

energy levels are typically close enough (described as “shallow”) to the valence or 

conductions bands such that minimal thermal excitation is needed for complete 

ionization. 

 The law of mass action from Eq. 2.12 also applies to extrinsic semiconductors as 

𝑛𝑖
2 = 𝑛0𝑝0; however, in this case 𝑛0 ≠ 𝑝0. The equilibrium carrier concentations may be 
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calculated for an extrinsic semiconductor starting with charge neutrality condition, which 

states that the density of positive charges must equal that of the negative charges: 

  𝑛0 + 𝑁𝑎
− = 𝑝0 + 𝑁𝑑

+ (2.14) 

Here, 𝑁𝑎
− represents the acceptor impurity atom concentration which has become 

negatively charged ions after accepting electrons, and 𝑁𝑑
+ represents the donor impurity 

atom concentration which has become positively charged ions after donating their 

electrons to the conduction band. Using the law of mass action to substitute 𝑝0 with 

𝑛𝑖
2/𝑛0 (assuming semiconductor is more n-type doped and impurities are fully ionized), 

the quadratic formula may be used to find the equilibrium electron concentration: 

 n0 =
(𝑁𝐷−𝑁𝐴)

2
+ √(

𝑁𝐷−𝑁𝐴

2
)

2
+ 𝑛𝑖

2 (2.15) 

In n-type materials, since 𝑛0 > 𝑝0, electrons are considered the majority carrier while 

holes are considered the minority carrier. The minority carrier concentration in the 

example above can be calculated using the result of Eq. 2.15 and the law of mass action: 

 p0 =
𝑛𝑖

2

𝑛0
 (2.16) 

It is important to note that at high temperatures Eq. 2.15 approaches 𝑛0 ≅ 𝑛𝑖 due to the 

strong temperature dependence of 𝑛𝑖 shown in Eq. 2.13. In other words, extrinsic 

semiconductors approach intrinsic behavior at high temperatures.  

 The Fermi energy level, which may be thought of as a chemical potential, 

determines the statistical distribution of electrons and is a logarithmic function of 

impurity concentrations, where 

 Ef = 𝐸𝑐 − 𝑘𝑇 ln (
𝑁𝐶

𝑛0
) (2.17) 
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 Ef = 𝐸𝑣 + 𝑘𝑇 ln (
𝑁𝑉

𝑝0
) (2.18) 

In the above equations, if 𝑁𝑑
+ ≫ 𝑛𝑖 then 𝑛0 = 𝑁𝑑

+. Likewise, if 𝑁𝑎
− ≫ 𝑛𝑖 then 𝑝0 = 𝑁𝑎

−. 

For a compensated n-type semiconductor, 𝑛0 = 𝑁𝑑
+ − 𝑁𝑎

− and for a compensated p-type 

semiconductor 𝑝0 = 𝑁𝑎
− − 𝑁𝑑

+. The Fermi energy is an important parameter in device 

operation because it remains constant throughout a system (e.g. in a p-n junction).  

 

2.3 Semiconductors in Non-Equilibrium 

When a semiconductor is perturbed by an external force, such as photons from a laser 

pulse demonstrated in this work, additional electrons and holes are created which can 

exist in addition to 𝑛0 and 𝑝0, thus the total carrier concentrations become 

 n = 𝑛0 + 𝛿𝑛 (2.19) 

 p = 𝑝0 + 𝛿𝑝 (2.20) 

where 𝛿𝑛 and 𝛿𝑝 are the concentrations of “excess” electrons and holes, respectively. 

The law of mass action does not apply under these non-equilibrium circumstances, as 

 𝑛p = (𝑛0 + 𝛿𝑛)(𝑝0 + 𝛿𝑝) ≠ 𝑛𝑖
2, (2.21) 

however the work herein is concerned with the time it takes for the system to return back 

to equilibrium. This occurs naturally through carrier recombination over certain lifetimes, 

or recombination rates, via several different mechanisms discussed below. At the top 

level, there are two different types of carrier recombination: radiative and non-radiative. 

Radiative recombination occurs when an electron in the conduction band recombines 

with a hole in the valence band and the excess energy is emitted in the form of a photon. 

Non-radiative recombination can be described as the absence of a photon when an 

electron-hole pair is annihilated, where the excess energy is transferred to the lattice by 
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formation of a phonon (thermal lattice vibration). In general, the total recombination rate 

(carrier density loss per unit time) can be described as 

 𝑅𝑡𝑜𝑡𝑎𝑙 = 𝑅𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑣𝑒 + 𝑅𝑛𝑜𝑛−𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑣𝑒 (2.22) 

The two different non-radiative recombination mechanisms considered here are 

Shockley-Read-Hall (SRH) and Auger, the former a problem for new III-V detectors 

while the latter is intrinsically limiting the improvement of HgCdTe detectors. Each 

recombination mechanism contributes to the overall recombination lifetime of charge 

carriers in a material, and it will be shown that their relative dominance varies with 

temperature. The overall recombination rates and lifetimes, respectively, can be 

expressed as 

 𝑅𝑡𝑜𝑡𝑎𝑙 = 𝑅𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑣𝑒 + 𝑅𝑆𝑅𝐻 + 𝑅𝐴𝑢𝑔𝑒𝑟 (2.23) 

 
1

𝜏𝑡𝑜𝑡𝑎𝑙
=

1

𝜏𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑣𝑒
+

1

𝜏𝑆𝑅𝐻
+

1

𝜏𝐴𝑢𝑔𝑒𝑟
 (2.24) 

 

2.3.1 Shockley-Read-Hall Recombination 

 
The SRH theory presumes the existence of states in the forbidden energy gap (between 

𝐸𝑣 and 𝐸𝑐) at an energy 𝐸𝑇 due to either atomic impurities or structural imperfections. 

These imperfections are commonly referred to as traps or recombination centers. There 

are four possible non-radiative actions for carriers interacting with SRH traps: 1) capture 

of a conduction band electron by an empty trap; 2) electron emission from an occupied 

trap to the conduction band; 3) electron emission from an occupied trap to the valence 

band, also known as hole capture; and 4) capture of a valence band electron by an 
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unoccupied trap, also known as hole emission. These scenarios are illustrated in Figure 

2.1 

 

Figure 2.1: The four SRH recombination processes: (a) electron capture, 

(b) electron emission, (c) hole capture, and (d) hole emission. 

 

In the models proposed by Shockley, Read and Hall circa 1950s, the recombination 

lifetime in a highly doped p-type semiconductor is determined by the minority carrier 

electron behavior [49,50]: 

 𝜏𝑛0 =
1

𝜎𝑛𝑣𝑛𝑁𝑡
 (2.25) 

Likewise, the recombination lifetime in a highly doped n-type semiconductor is 

determined by the minority carrier hole behavior: 

 𝜏𝑝0 =
1

𝜎𝑝𝑣𝑝𝑁𝑡
 (2.26) 

Here the subscripts indicate the carrier polarity, 𝜎 is the capture cross-section, and v is the 

thermal velocity of the subscripted carrier. The thermal velocities are also functions of 

mass according to  

 𝑣𝑛,𝑝 = (
3𝑘𝑇

𝑚𝑛,𝑝
)

1/2

 (2.27) 
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Each of the four SRH recombination sub-processes has its own associated recombination 

rate; however, the aforementioned authors formulated a net SRH recombination rate as 

 𝑅𝑆𝑅𝐻 =
𝑛𝑝−𝑛𝑖

2

𝜏𝑝0(𝑛+𝑛1)+𝜏𝑛0(𝑝+𝑝1)
 (2.28) 

where 𝑛1 and 𝑝1 are the free electron and hole concentrations, respectively, that would 

exist if the Fermi energy level were located at the trap energy level, 𝐸𝑇. These can be 

expressed as 

 𝑛1 = 𝑁𝑐𝑒(𝐸𝑇−𝐸𝑐)/𝑘𝑇             𝑝1 = 𝑁𝑣𝑒(𝐸𝑣−𝐸𝑇)/𝑘𝑇   (2.29) 

Using the expressions for carrier concentrations in non-equilibrium (Eq. 2.19-2.20) and 

assuming a low-level injection, where the excess carrier densities are much lower than the 

background doping concentrations [𝛿𝑛 = 𝛿𝑝 ≪ (𝑛0 + 𝑝0)], it can be shown that  

 𝜏𝑆𝑅𝐻 ≅
𝜏𝑝0(𝑛0+𝑛1)+𝜏𝑛0(𝑝0+𝑝1)

(𝑛0+𝑝0)
 (2.30) 

This is the SRH contribution to the minority carrier lifetime, and equals the minority 

carrier lifetime when SRH recombination is the dominant mechanism, as is the case with 

the 6.1 Å T2SL detector materials in this study. It is also important to note that the low-

level injection condition is highly applicable to the materials studied herein as the excess 

carrier densities generated by impingent light upon a space-based detector can be 

approximated to be on the order of 1 × 1012 cm-3 [51] whereas a typical detector structure 

in this work has a background doping concentration ≥ 1 × 1014 cm-3.  

 In the case of high-level injection, where [𝛿𝑛 = 𝛿𝑝 ≫ (𝑛0 + 𝑝0)], Eqs. 2.28 and 

2.30 can be approximated to 

 𝑅𝑆𝑅𝐻 ≅
𝛿𝑛

𝜏𝑝0+𝜏𝑛0
 (2.31) 
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 𝜏𝑆𝑅𝐻 ≅ 𝜏𝑝0 + 𝜏𝑛0 (2.32) 

The implications of high vs. low injection will be discussed in a subsequent chapter when 

the time dependence of 𝛿𝑛 is derived from the continuity equation. 

 As will be shown later with empirical studies, useful information about a 

semiconductor may be gained by characterizing carrier lifetimes vs. temperature. Each 

carrier recombination mechanism reacts differently to changes in temperature. The theory 

of these relationships will be discussed here in order to provide a basic understanding of 

upcoming analyses. 

 For trap concentrations with energy levels above mid-bandgap, there are three 

distinct temperature regions for the behavior of SRH recombination [52]: 

           Region I: 𝐸𝑇 < 𝐸𝑓 < 𝐸𝑐 𝜏𝑆𝑅𝐻 ≅ 𝜏𝑝0 (2.33) 

           Region II: 𝐸𝑖 < 𝐸𝑓 < 𝐸𝑇 𝜏𝑆𝑅𝐻 ≅
𝑁𝑐

𝜏𝑝0𝑛0
𝑒−𝐸𝑇/𝑘𝑇 (2.34) 

           Region III: 𝑛1 < 𝑛𝑖 < 𝑝1 𝜏𝑆𝑅𝐻 ∝ 𝑒𝐸𝑔/2𝑘𝑇−𝐸𝑇/𝑘𝑇 (2.35) 

In region I, the SRH lifetime scales with 𝑇−1/2 due to the temperature dependence of the 

thermal velocity (see Eq. 2.26 and 2.27). In region II, the lifetime increases exponentially 

with temperature, and in region III the lifetime decreases exponentially with temperature. 

These relationships were simulated and plotted in Figure 2.2. 
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Figure 2.2: SRH recombination lifetime vs. temperature for three distinct 

regions. 

The position of the defect energy level relative to the valence and conduction bands 

significantly affects the SRH lifetime. To illustrate this, 𝜏𝑆𝑅𝐻 was again simulated vs. 

temperature but for several different energy separations between 𝐸𝑐 and 𝐸𝑇. See Fig. 2.3. 

An interesting takeway from this is that the closer the trap energy is to the middle of the 

bandgap, the shorter the SRH lifetime becomes.  

 

Figure 2.3: SRH recombination lifetime vs. temperature for various trap 

energy levels. 
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2.3.2 Radiative Recombination 

 
Radiative recombination, also referred to as bimolecular recombination, occurs when an 

electron from the conduction band recombines with a hole in the valence band emitting 

the excess energy in the form of a photon. The radiative recombination rate can be 

specified for each carrier type and is proportional to the electron and hole concentrations 

 𝑅𝑛 = 𝑅𝑝 = 𝐵𝑛𝑝 (2.36) 

where B is known as the radiative recombination coefficient. Without external 

perturbation, the net radiative recombination rate is 

 𝑅𝑟𝑎𝑑 = 𝐵(𝑛𝑝 − 𝑛0𝑝0) (2.37) 

In non-equilibrium conditions the electron and hole concentrations become Eqs. 2.19 and 

2.20 where it is assumed 𝛿𝑛 = 𝛿𝑝. The radiative recombination rate for non-equilibrium 

becomes 

 𝑅𝑟𝑎𝑑 = 𝐵(𝑛0 + 𝑝0 + 𝛿𝑛)𝛿𝑛 (2.38) 

The general expression for the radiative recombination lifetime is 

 𝜏𝑟𝑎𝑑 =
1

𝐵(𝑛0+𝑝0+𝛿𝑛)
 (2.39) 

and in low-level injection conditions described previously, the radiative recombination 

lifetime can be approximated as 

 𝜏𝑟𝑎𝑑 ≅
1

𝐵(𝑛0+𝑝0)
 (2.40) 

For high-level injection, Eqs. 2.38 and 2.39 can be approximated, respectively, as  

 𝑅𝑟𝑎𝑑 ≅ 𝐵(𝛿𝑛) (2.41) 

 𝜏𝑟𝑎𝑑 ≅
1

𝐵𝛿𝑛
 (2.42) 
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Since the radiative recombination rate is shown to linearly increase with excess carrier 

concentration, it follows that higher injection yields more photons. This is the 

fundamental basis for light emitting diode (LED) and solid-state laser operation. 

However, if the injection of excess carriers becomes too high, an additional non-radiative 

recombination mechanism, Auger, will begin to dominate as it is a stronger function of 

excess carrier density.  

 The temperature dependence of radiative recombination stems from the 𝐸𝑔
2/𝑇3/2 

factor in the expression for B [53]: 

 𝐵 =
(2𝜋)3/2

3
∙

ℏ𝑞2

𝑚0
2𝑐2 ∙ 𝑛 (

𝑚0

𝑚𝑒+𝑚ℎ
)

3/2
∙ (1 +

𝑚0

𝑚𝑒
+

𝑚0

𝑚ℎ
) ∙

𝐸𝑔
2

(𝑘𝑇)3/2(𝑚0𝑐2)1/2 (2.43) 

As the temperature approaches absolute zero, so does the radiative recombination rate 

coefficient. Above zero 𝜏𝑟𝑎𝑑 will increase by the factor 𝑇3/2 until intrinsic effects begin 

to dominate. When this occurs 𝜏𝑟𝑎𝑑 will start decreasing exponentially. A simulation of 

this behavior is plotted in Figure 2.4. 

 

Figure 2.4: The dependency of radiative recombination on temperature. 
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2.3.3 Auger Recombination 

 
Auger recombination is an inherently non-radiative, three-body process which is a strong 

function of excess carrier density, and therefore temperature. It involves either one 

electron and two holes or one hole and two electrons. A simplified diagram of each case 

is depicted in Fig. 2.5. 

 

Figure 2.5: Energy level diagram of the Auger recombination process in 

which electron-hole recombination energy is imparted to 3rd party carriers, 

and subsequently into the lattice as phonons when they relax. Type (a) 

would be more prevalent in a heavily doped p-type material, while type 

(b) more prevalent in a heavily doped n-type material. 

When a carrier recombines across the bandgap, instead of creating a photon, its excess 

energy is transferred toward the excitation of a neighboring carrier of the same polarity 

which subsequently emits a phonon as it relaxes back to its original energy in its 

respective band. The net Auger recombination rate can be expressed as 

 𝑅𝐴𝑢𝑔𝑒𝑟 = 𝐶𝑛 (
𝑛𝑝−𝑛𝑖

2

𝑛𝑖
2 ) (

𝑛

𝑛𝑜
) + 𝐶𝑝 (

𝑛𝑝−𝑛𝑖
2

𝑛𝑖
2 ) (

𝑝

𝑝𝑜
) (2.44) 

where 𝐶𝑝 and 𝐶𝑛 are coefficients for the cases in Fig. 2.5a and 2.5b, respectively. 

Expressed in terms of lifetime, Eq. 2.44 can be rewritten as  
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 𝜏𝐴𝑢𝑔𝑒𝑟 =
𝑛𝑖

4

(𝑛𝑜+𝑝𝑜+𝛿)(𝑛𝑝𝑜𝐶𝑛+𝑝𝑛𝑜𝐶𝑝)
 (2.45) 

There are several different subtypes of Auger recombination depending on which energy 

bands are involved, for instance the valence band interactions can have contributions 

from the light-hole, heavy-hole, or split-off bands depicted in Fig. 2.6.  

 

Figure 2.6:Auger recombination mechanisms:(a) AM1, (b) AM3, (c) AM7 

For a nondegenerate n-type semiconductor, like the materials characterized in this 

dissertation, it can be assumed the AM1 process is the primary sub-process for Auger 

recombination. According to [54], 𝐶𝑛 may be expressed as 

 𝐶𝑛 =
8(2𝜋)5/2𝑞4𝑚𝑜

ℎ3 ∙
(𝑚𝑛𝑚𝑜)|𝐹1𝐹2|2𝑛𝑜(𝑘𝑇/𝐸𝑔)

3/2

∞
2 (1+𝜇)1/2(1+2𝜇)

∙ 𝑒
[−(

1+2𝜇

1+𝜇
)(

𝐸𝑔

𝑘𝑇
)]

 (2.46) 

where 휀∞ is the dielectric constant at high frequency, 𝜇 = 𝑚𝑛/𝑚ℎ, and |𝐹1𝐹2| is the 

overlap of the Bloch function between involved states. For an intrinsic semiconductor 

with low-level injection, Eq. 2.45 may be approximated as 

 𝜏𝐴𝑢𝑔𝑒𝑟
𝑖 ≅

𝑛𝑖

2𝐶𝑛
 (2.47) 

If the semiconductor is n-type extrinsic under low-level injection, the Auger lifetime may 

be approximated in terms of the intrinsic lifetime as  
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 𝜏𝐴𝑢𝑔𝑒𝑟 ≅
2𝑛𝑖

2

(𝑛𝑜+𝑝𝑜)𝑛𝑜
∙ 𝜏𝐴𝑢𝑔𝑒𝑟

𝑖  (2.48) 

A simulation of the Auger lifetime in these example conditions is plotted in Fig. 2.7. 

Multiple concentrations of background carriers are included to emphasize their strong 

effect on recombination lifetime. 

 

Figure 2.7: The dependence of Auger recombination on temperature. 

 

2.4 Application to Optoelectronic Devices 

 
As described in section 1.2, photo-detection is based on the photo-electric effect during 

which an electron-hole-pair (ehp) is generated through the transfer of photon energy to an 

atom. These photo-generated electrons and holes are then able to move around the 

crystalline lattice (carrying charge, the movement of which is the definition of electrical 

current) of a semiconductor until they are annihilated through one of the recombination 

mechanisms outlined above. Each carrier type has the same electric charge magnitude, 

𝑞 = 1.60 × 10−19 C, but opposite polarity where the electron is negative and hole is 
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positive. If electrical contacts are applied to a semiconductor, and the charge carriers 

persist long enough to reach them, these photo-generated electrons and holes may be 

sensed (known as collected) by circuitry, thereby creating photon-to-electron transduction 

enabling the construction of light-sensing devices.  

It is important to understand that there are two different carrier transport 

mechanisms that can contribute to photo-generated current: drift and diffusion. These are 

processes by which electrons and holes move within a semiconductor. Drift is the 

movement of charge due to electric fields, such as an applied bias voltage, and diffusion 

is the flow of charge due to carrier density gradients. Since transport of electrons and 

holes each contribute to total current, there are four subcomponents: electron drift, hole 

drift, electron diffusion, and hole diffusion. These are shown, in respective order, in the 

three-dimensional equation for total current density [A/cm2] below: 

 𝐽𝑡𝑜𝑡𝑎𝑙 = 𝐽𝑑𝑟𝑖𝑓𝑡 + 𝐽𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 = 𝑞𝑛𝜇𝑛𝐸 + 𝑞𝑝𝜇𝑝𝐸 + 𝑞𝐷𝑛∇𝑛 − 𝑞𝐷𝑝∇𝑝 (2.49) 

The drift and diffusion subcomponents are generalized, respectively, as  

 𝐽𝑑𝑟𝑖𝑓𝑡 = 𝑞𝐸(𝑛𝜇𝑛 + 𝑝𝜇𝑝) (2.50) 

 𝐽𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 = 𝑞(𝐷𝑛∇𝑛 − 𝐷𝑝∇𝑝) (2.51) 

where E is an electric field [V/cm], n and p are electron and hole concentrations [cm-3], 

Dn,p is the diffusion coefficient (also known as diffusivity) for the subscripted carrier type 

[cm2/s], and µn,p is the mobility coefficient of the subscripted carrier type [cm2/V-s]. The 

diffusivity and mobility parameters are not independent of each other and can be 

expressed using the Einstein relation below: 

 
𝐷𝑛

𝜇𝑛
=

𝐷𝑝

𝜇𝑝
=

𝑘𝑇

𝑞
 (2.52) 
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The diffusivity indicates how well a carrier is transported in a semiconductor given a 

carrier concentration gradient, and the mobility indicates how well a carrier is transported 

in a semiconductor given the force of an electric field.  

Creative engineering is required to maximize the collection probability of photo-

generated carriers, specifically by separating them by polarity to avoid early 

recombination. Two different charge collection schemes will be discussed below: that of 

p-n photodiodes most commonly used in everyday devices which has both drift and 

diffusion components, and that of the relatively new nBn structures being developed for 

high performance IR imaging (characterized in this work) which rely almost solely on 

diffusion. It is hypothesized that the choice of collection scheme is consequential to the 

radiation tolerance performance of a detector. 

 

2.4.1 p-n Junction Photodiodes 

 
A p-n junction is constructed by conjoining (sequentially through growth) extrinsic p-

type and n-type semiconductors. The majority carriers from each side diffuse into the 

other; however the atoms near the junction losing their charge carriers to diffusion 

become ionized, and this creates an electric field opposing further diffusion, therefore 

maintaining equilibrium. This is demonstrated in Fig. 2.8.  



36 
 

 

Figure 2.8: Schematic of a p-n junction 

 

This “built-in” electric field creates a depletion region, also known as a space charge 

region, in which there exist no charge carriers. With electrical contacts, a photodiode can 

be created through application of a reverse bias (positive and negative voltages on n-type 

and p-type sides, respectively) which serves to widen the depletion region via stronger 

electric field. When impingent photons create electron-hole pairs in the depletion region, 

the electric field quickly prevents immediate recombination by separating the electrons 

from the holes, each carrier type drifting toward opposite neutral regions, subsequently 

reaching electrical contacts for collection. In addition to this drift current, carriers that are 

photo-generated in either neutral region within one diffusion length of the space charge 

region have a chance at diffusing into the space charge region then drifting toward 

contacts via the electric field. The diffusion length is highly dependent on the minority 

carrier lifetime and is defined for electrons and holes below, respectively, as  
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 𝐿𝐷
𝑛 = √𝐷𝑛𝜏𝑛 (2.53) 

 𝐿𝐷
𝑝

= √𝐷𝑝𝜏𝑝 (2.54) 

and may be described as the average distance each charge carrier travels before 

annihilation through recombination. 

 

2.4.2 nBn Structure 

 
The most popular unipolar barrier detector design is that of the nBn structure, where the 

term nBn refers to the device composition: n-type contact | Barrier | n-type absorber. This 

is demonstrated in Figure 2.9.  

 

Figure 2.9: nBn detector structure with slight E-field due to graded 

absorber  

The function of a unipolar barrier is to block the flow of one carrier type without 

impeding the flow of the other. In the nBn structure, electrons (majority carriers) are 

blocked while holes (minority carriers) are allowed to diffuse to the contact as photo-
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current (signal) with the help of band-bending from a reverse bias voltage. The 

significance of impeding majority carrier flow is the removal of dark current sources such 

as surface recombination and G-R due to SRH recombination. To visualize this, an 

Arrhenius plot (dark current vs inverse temperature) is shown in Figure 2.10 comparing 

the different dark current behaviors between nBn and conventional p-n devices. Dark 

diffusion current varies as 𝑇3𝑒−𝐸𝑔/𝑘𝑇 whereas dark G-R current varies as 𝑇3/2𝑒−𝐸𝑔/2𝑘𝑇 

[55]. Since there is no depletion region in nBn devices in which G-R may occur, dark 

current due to G-R is totally suppressed causing the Arrhenius curves of the different 

devices to separate. This gives nBn devices two significant advantages in temperature 

regions where the curves are separated: 1) they can operate at warmer temperatures with 

the same dark current as a conventional p-n device, and 2) they can provide higher 

sensitivity, or signal-to-noise-ratio (SNR), than a conventional p-n device while operating 

at the same temperature. This is highly attractive to the IR sensing community due to the 

great cost and complexity of on-board cooling systems required for mitigating this noise. 

 

Figure 2.10: Arrhenius plot of dark current comparing nBn vs 

conventional p-n devices. 
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Although nBn devices may be fabricated in bulk semiconductor materials, as was done in 

the original demonstration by Maimon and Wicks [21], it has been found advantageous to 

use T2SL absorbers for several reasons [56]. First, it is important to understand that 

careful engineering must be exhibited in growing these barriers. Besides its location 

within the structure, which determines what current sources will be blocked [57], an ideal 

nBn barrier will have zero valence band offset (VBO), a large conduction band offset, 

and will be lattice-matched to its surrounding n-type materials (contact and absorber). 

One benefit of using a T2SL absorber is being able to tune (by carefully designed 

superlattice and growth) the conduction and valence band energies separately, making it 

easier to achieve zero VBO while still obtaining a desired absorber energy bandgap 

(detection cutoff wavelength). Another benefit is their inherently low Auger 

recombination rates due to electrons and holes residing in different layers, increasing 

minority carrier lifetime. The 6.1 Å group of III-V materials are an attractive option for 

creating T2SL nBn devices due to their very similar lattice constants and the several other 

reasons already discussed. This is the current focus of many research and development 

efforts, and more detail about barrier infrared detectors and related experiments can be 

found in the literature [58] [59] [60] [61] [62] [63] [64].  

 

2.4.3 Performance Metrics 

Regardless of charge carrier collection technique, each detector will have associated 

metrics for sensitivity and noise. Although there are many figures of merit, here the focus 

will be on quantum efficiency and dark current for sensitivity and noise, respectively, as 

the degradation of which are typically reported vs. charged particle fluence in ground-
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truth radiation experiments. Quantum efficiency (denoted QE or η) is the ratio of how 

many photo-generated charge carriers are collected to how many photons are impingent 

upon the detector. For the conventional p-n junction photodetector, the quantum 

efficiency is expressed as 

 𝜂𝑝−𝑛 = (1 − 𝑅) [1 −
𝑒−𝛼𝑊𝐷

1+𝛼𝐿𝐷
] (2.55) 

where R is the reflection coefficient, α is the absorption coefficient, 𝑊𝐷is the width of the 

depletion region, and 𝐿𝐷 is the diffusion length of the minority charge carrier. For the 

nBn detector, which has no depletion region, the quantum efficiency is expressed as [45] 

 𝜂𝑛𝐵𝑛 = (
𝛼𝐿𝐷

𝛼2𝐿𝐷
2 −1

) × [
𝛼𝐿𝐷−𝑒−𝛼𝐿𝐴 sinh(𝐿𝐴/𝐿𝐷)

cosh(𝐿𝐴/𝐿𝐷)
− 𝛼𝐿𝐷𝑒−𝛼𝐿𝐷] (2.56) 

where 𝐿𝐴 is the length of the absorber material. Since the nBn detector relies solely on 

diffusion for photo-collection, it is important that the diffusion length of the minority 

carriers be longer than the length of the absorber region, otherwise the photo-generated 

electron-hole pairs will likely annihilate each other through recombination before 

collection. Figure 2.11 provides a simulated comparison of quantum efficiency as a 

function of minority carrier lifetime between these device types. Recall from Equations 

2.53-54 that 𝐿𝐷 is proportional to √𝜏. This is important due to the assumption that 

reductions in minority carrier lifetimes are directly related to increases in proton fluence.  
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Figure 2.11: Quantum efficiency vs. minority carrier lifetime for a 

conventional p-n junction and nBn detector 

It is obvious from this simulation that the sensitivity of nBn detectors has a stronger 

dependence upon minority carrier lifetime.  

 The temperature dependencies of the dark currents for each of these devices were 

compared in the previous section; however, they are also functions of diffusion length, 

and therefore minority carrier lifetime. For the p-n junction, the dark current is 

proportional the reverse saturation current of a diode 

 𝐽𝐷,𝑝−𝑛 ∝ 𝐽0 = 𝑞 (
𝑛𝑝𝐷𝑛

𝐿𝑛
+

𝑝𝑛𝐷𝑝

𝐿𝑝
) (2.57) 

Therefore the p-n junction dark current scales with minority carrier lifetime as 𝜏−1/2. The 

nBn detector has two different dark current regimes dependent on the width of the 

diffusion length relative to that of the absorber region. For 𝐿𝐷 ≫ 𝐿𝐴, which is the 

desirable case, the dark current for an nBn detector may be expressed as [65] 



42 
 

  𝐽𝐷,𝑛𝐵𝑛 =
𝑞𝑛𝑖

2𝐿𝐴

𝑁𝐷𝜏
 (2.58) 

In the other regime, where 𝐿𝐷 ≪ 𝐿𝐴 the dark current for an nBn detector transitions to 

 𝐽𝐷,𝑛𝐵𝑛 =
𝑞𝑛𝑖

2

𝑁𝐷
√

𝐷

𝜏
 (2.59) 

The transition to the 2nd, less desirable, regime is expected to occur only at high proton 

fluence levels which are expected to reduce the diffusion length via decreased minority 

carrier lifetimes.  

2.5 Summary 
 

The semiconductor physics relevant to two different infrared photodetector types, as well 

as the characterization method to be introduced in the next chapter, were discussed in 

detail. The competing detector architectures and their different charge collection schemes 

were compared as were some basic performance metrics as functions of both temperature 

and minority carrier lifetime, the latter of which is expected to decrease with increasing 

charged-particle fluence. The nBn detector certainly has multiple advantages (lower cost, 

higher operating temperatures, etc.), however its overall performance having stronger 

dependence on minority carrier lifetime, relative to the conventional p-n junction 

architecture, may ultimately prevent it from usurping the proverbial throne in radiation 

environments in which HgCdTe is seated.   

After decades of being the dominant performer, HgCdTe may finally have a 

worthy competitor in the form of 6.1 Å T2SL nBn devices. In fact, it has already been 

deployed in terrestrial applications by the military [66]; however, space-based detectors 

have more stringent requirements and it is yet to be determined if HgCdTe will soon be 
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ousted from this arena. The work discussed in the following chapters was performed in 

effort to aid such determinations for the infrared space-based detector community by 

comparing the radiation tolerances, through direct measurement, of the minority carrier 

lifetimes between conventional p-n junction HgCdTe (II-VI) and T2SL nBn (III-V) 

devices, specifically InAs/InAsSb. 

Now that the relevant terminology, fundamental physics, and device structures of 

interest have been introduced, the minority carrier lifetime characterization technique 

employed in this work will be discussed in detail.  
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Chapter 3 

 

Experimental 

 

3.1 Introduction 
 

As mentioned in section 1.4, previous ground-truth radiation experiments deduced that 

the main culprit for IR detector performance degradation (i.e. quantum efficiency, dark 

current) was decreasing minority carrier lifetime with increasing proton fluence, 

specifically displacement damage. In this work, a characterization system was designed 

and implemented to directly measure minority carrier recombination lifetime as a 

function of accumulated proton fluence. Lifetime characterization itself is nothing new, 

and there are several different techniques used quite commonly across multiple 

industries; however, this system is unique in that it was designed to be portable in order 

to be deployed to radiation sources across the country while maintaining samples at 

cryogenic temperatures throughout the entire duration of these experiments. This 

cryogenic temperature control also enables post-radiation annealing studies, which have 

yielded interesting information on differences between II-VI and III-V detector materials. 

The typical ground-truth experiment found in the literature is performed with one large 

proton fluence dose at room temperature, whereas the experiments performed in this 

work were performed with multiple, smaller doses (with lifetime characterizations 

between) with samples maintained at temperatures representative of operating conditions 
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a space-based detector would likely see on orbit. The following sections will detail 

different aspects of the characterization system and experiments able to be performed 

with it, to include: samples, optics, excess carrier injection, portability, temperature 

control, automation, radiation test protocol, data acquisition and data analysis. In 

addition, there will be a discussion about the radiation source used in this work.  

 

3.2 Time-Resolved-Photoluminescence 

The lifetime characterization technique chosen for this work was time-resolved-

photoluminescence (TRPL). Pros and cons of this method vs. others will be discussed at 

the end of this dissertation. Here, concentrations of excess, photo-generated carriers are 

generated, commonly described as ‘injected’, into semiconductor samples via laser pulses 

to induce non-equilibrium. Between laser pulses, these excess carriers recombine via the 

various mechanisms described in Chapter 2. The amplitude of the photoluminescence 

(PL) emitted from the sample via radiative recombination is recorded as a function of 

time and can be described as a PL transient. The minority carrier lifetime, given optimal 

conditions (namely low-level injection), is extracted as the time constant of a single 

exponential curve fitted to the PL transient based on the following general solution by 

Ahrenkiel and Lundstrom [67], starting with the continuity equation which describes the 

temporal rate of change of the excess carrier concentration: 

 
𝑑Δ𝑝

𝑑𝑡
= −𝑟(𝑁𝐷Δ𝑝 + Δ𝑝2), (3.1) 

where Δ𝑝 is the minority carrier hole concentration (assuming an n-type material), 𝑁𝐷 

represents the majority carrier electron concentration, and r is the recombination rate 

expressed as 
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 𝑟 =
𝑁𝑡𝜎𝑝𝑣𝑡ℎ

𝑁𝐷
, (3.2) 

 

where 𝑁𝑡 is the defect, or trap, density, 𝜎𝑝 is the minority carrier hole capture cross 

section, and 𝑣𝑡ℎ is the thermal velocity of the minority carrier holes. In the low-level 

injection condition, the squared term in Eq. 3.1 may be omitted which simplifies its 

solution to  

 Δ𝑝(𝑡) = Δ𝑝0𝑒−𝑟𝑁𝐷𝑡 = Δ𝑝0𝑒−𝑡/𝜏, (3.3) 

where 𝑝0 represents the initial concentration of excess minority carrier holes at time = 0. 

This is the curve-fitting equation used in this work, and low-level injection is always 

attempted; however, it should be noted that to accurately extract an absolute minority 

carrier lifetime, one must account for the effects of photon recycling and surface 

recombination. Here, for simplicity and for the sake of comparing results of widely 

varying samples, 𝜏 will be considered an effective lifetime, a close but underestimated 

approximation of the true minority carrier lifetime. Outside the low-level injection 

condition the solution to Eq. 3.1 becomes non-exponential, and under high-level injection 

the effective lifetime approaches the sum of the majority and minority carrier lifetimes 

[68]. Simulated transients for low-level injection are shown in Figure 3.1 for various 

minority carrier lifetime values and are representative of typical data acquired by this 

measurement system.  

 The laser used to inject excess carriers must be of an appropriate wavelength such 

that the photons have enough energy to create electron-hole pairs across the bandgap of 

the material being probed, but not so energetic that all the photons get absorbed by the 

surface rather than the intended absorbing region. In this work, a laser with λ = 1535 nm 
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was used with a pulse energy and FWHM width of 8.9 µJ and 3.34 ns, respectively. The 

 

Figure 3.1: Simulated PL transients resulting from low-level injection 

 

repetition rate of the pulses was 2.88 kHz, or ~350 µs period, which was plenty of time 

for the recombination phenomena to take place and carriers to relax back to equilibrium 

before the next pulse. Additionally, it is important that the pulse width be much shorter 

than the carrier lifetimes of samples being probed such that it may be approximated as an 

impulse function, which is valid in this work. Finally, care was taken in placement of the 

laser relative to the samples such that its natural Gaussian beam divergence resulted in a 

spot size diameter approximately equal to that of the sample under test (~1 cm2). This 

ensured uniform illumination, or excess carrier injection, across samples.  

 Although the typical sample is a 5 x 5 mm  to 1 x 1 cm square, PL from an area 

comprising only a 2 mm diameter in the center of each sample was imaged onto a 

detector, as shown in Figure 3.2, to record PL transients. This is due to the use of single 
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pixel, 1 mm2 detector coupled with f/2 optics. A 2” diameter, off-axis (90º) gold, f/2, 

parabolic mirror was positioned a focal length away from the samples (4”) to capture 

emitted PL, collimate it, and reflect it to a secondary mirror. The secondary mirror was of 

the same design, but was f/1 with half the focal length, which served to focus the 

collimated PL onto the 1 mm2 detector pixel.  

 

Figure 3.2: Example of PL imaging with laser spot size relative to sample 

 

 Two PL detectors were available, for use one at a time, each with a different 

cutoff wavelength and pre-amplifier bandwidth, depending on the cutoff wavelength of 

samples under test. For MWIR samples, a 𝜆𝑐 = 6 µm HgCdTe detector with a 300 MHz 

bandwidth was used, and for LWIR samples, a 𝜆𝑐 = 10.6 µm HgCdTe detector with a 700 
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MHz bandwidth was used. Both were thermoelectrically cooled in four stages down to 

195 K.  

 To eliminate laser reflections and other undesirable light from reaching the PL 

detector, a long-pass-filter (LPF) was installed directly in front of the detector which 

transmitted all wavelengths above 1.6 µm (PL from samples) while completely blocking 

all wavelengths below  1.6 µm. Recall that the injection laser wavelength was 1.535 µm.  

 In order to achieve the low-level injection conditions for reasons discussed above, 

the intensity of the laser pulses had to be significantly attenuated. This was accomplished 

by putting both neutral density (ND) filters a half-wave plate/polarizing beam splitter 

combination in the laser path for bulk and fine-tuning attenuation, respectively. ND filters 

transmit light according to 

 T𝑁𝐷 = 𝑃0 × 10−𝑁𝐷, (3.4) 

where T is % transmission, 𝑃0 is the optical power incident on the filter, and ND is the 

neutral density value specified on the filter, typically but not necessarily in integers. For 

example, an ND filter with value 2.0 will transmit 10-2 = 1% of incident light intensity. 

The transmission of the half-wave plate and polarizer combination may be expressed as 

 T𝑤𝑝 = 𝑃0 sin(2𝜃), (3.5) 

where 𝜃 is the angle of the half-wave plate’s orientation with respect to the position in 

which the subsequent polarizing beam-splitter reflects nearly 100% of incident electric 

fields. The laser pulse fluence, F, can be calculated according to 

  𝐹 =
𝑃

𝜋𝜔𝑒
2𝑅𝑅

, (3.6) 

where P is the pulse power, 𝜔𝑒 is the 1/e radius of the beam spot, and 𝑅𝑅 is the repetition 

rate of the pulses. This will be scaled down with the attenuators according to Equations 
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3.4-3.5; therefore; with knowledge of the cryostat window transmission at the laser 

wavelength (𝑇𝑊), Fresnel reflection coefficient (𝑅𝑓), length of absorber region (L) and 

absorption coefficient of the sample (α), an estimate of the excess carrier density (ΔN) 

injected into a sample with each laser pulse can be expressed by 

 Δ𝑁 = 𝑇𝑊(1 − 𝑅𝑓) (
𝑃

𝜋𝜔𝑒
2𝑅𝑅

) (
𝜆

ℎ𝑐𝐿
) (1 − 𝑒−𝛼𝐿) sin(2𝜃𝑊𝑃) (10−𝑁𝐷). (3.7) 

A simulation of injected excess carrier density vs. half-wave plate angle, using Equation 

3.7,  is shown in Figure 3.3 for various ND filter values.  

 

Figure 3.3: Injected excess carrier density vs. laser attenuation 

 

Although this can provide useful information, exact doping concentrations (which would 

provide a target threshold for Δ𝑁) and absorptions coefficients are rarely known due to 

the proprietary nature of samples received and/or the inability of either party to measure 

these parameters. This is not problematic, however, as the best practice is to attenuate the 

laser as much as possible while still retaining a measurable PL signal. In other words, 
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absolute knowledge of the excess carrier density being injected is not a prerequisite for 

extracting minority carrier lifetime from PL transients.  

A 12-bit oscilloscope was employed to digitize the signal output from the PL 

detector vs. time. To reduce noise, an enhanced resolution (ERES) function was applied 

[69], which is similar to smoothing the signal with a simple moving average filter, at the 

cost of reduced bandwidth which was never reduced further than that of the detector 

preamplifier being used. The horizontal time base was chosen for each sample such that 

the end of the transient ‘tail’ would be captured, that is, when the output from the PL 

detector returned back to the pre-injection baseline.  

Low-level injection requires relatively faint laser pulses. This results in a 

relatively faint PL emission (signal) from samples which is often very difficult to detect; 

therefore, summed averaging is utilized over 10’s of 1000’s of PL transients for a single 

lifetime measurement. This is performed ‘on-board’ the oscilloscope after which a single, 

summed average PL transient is recorded for subsequent analysis. A glass slide in the 

beam path reflects minimal energy toward a single pixel InGaAs detector which is used 

to optically trigger the oscilloscope on the laser pulses. A optical schematic of the TRPL 

system is shown in Figure 3.4.  
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Figure 3.4: Schematic of the TRPL test system 
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3.3 Lifetime Samples 

When evaluating a new prototype detector material system, ‘lifetime samples’ are often 

grown for characterization, which are unprocessed semiconductor wafer dies. In such 

samples, of which many are characterized in this work, a ‘cap’ is included to mitigate 

surface recombination. This is a wide bandgap heterojunction which helps retain injected 

excess carriers in the absorber region to promote higher radiative recombination 

probability and, therefore, stronger PL emission. For example, the epitaxial structure of a 

III-V T2SL lifetime sample is provided in Table 3.1. 

 

Table 3.3: Epitaxial structure of a lifetime sample 

 

Lifetime samples were received in a large variety of sizes and shapes; therefore, it was 

often necessary to manually cleave these wafer dies. It was decided that the optimum size 

was 5x5 mm in order to fit five samples per cryostat window without risk of having the 

laser beam overlap onto more than one sample at a time. Cleaving was accomplished by 

gently scribing a line on a sample against a straight-edge, placing sample over a rounded 

Q-tip handle centered on the scribe line, and applying pressure on sample edges until it 

cleaved along the scribed line. This is illustrated in Figure 3.5. 
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Figure 3.5: scribing (a) and cleaving (b) along first axis, scribing (c) and 

cleaving (d) along second axis 

 

3.4 Cryostat and Temperature Control 

All samples were mounted in an optical cryostat cooled with a continuous flow of liquid 

nitrogen (LN2) supplied by gravity from a permanently affixed five liter holding tank. To 

prevent unnecessarily high flow rates, the gas flow from the exhaust port was throttled 

down to approximately 5 standard cubic feet per hour (SCFH) with a regulator. This 

enabled hold times ranging from 12-15 hours with samples maintained at 120K. 

 A custom sample holder assembly, consisting of a 4-way elbow and mounting 

discs, was designed and fabricated which both mated to the cryostat’s cold finger and 

allowed samples to be placed as close to the four optical windows as possible, without 

touching, in order to maximize PL emission toward the collection optics. In addition, a 

threaded hole was tapped in the bottom of this assembly in which a radiation tolerant 

temperature sensor (Cernox®) was placed. Samples were affixed to the circular discs 

using rubber cement or silicone vacuum grease and were designed to be easily removable 

from the 4-way elbow. The assembly and mounted samples are shown in Figure 3.6. 
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Figure 3.6: (a) 4-way cold finger elbow, and (b) 5x5 mm samples mounted on disc 

This entire assembly, including the screws, was fabricated out of aluminum so they 

wouldn’t become radioactive with proton irradiation as would other metals, such as 

copper. The propagation depth of 63 MeV protons through aluminum was taken into 

consideration (using SRIM analysis software [70], which stands for Stopping Range of 

Ions in Matter) when determining the thicknesses of the sample holding discs. They are 

thick enough such that protons with kinetic energies  63 MeV will not reach samples 

that may be mounted on the other side of the cryostat facing the opposite window. 

Assuming all samples are 5x5 mm, as shown in Figure 3.6b, up to 20 samples could be 

characterized at one time if all four windows are utilized. 

 To maintain samples at a constant temperature, a variable electrical current was 

supplied through a resistive heating element on the cold finger, controlled using readings 

from the temperature sensor near the samples and a proportional-integral-derivative (PID) 

controller programmed with the calibrated response curve of the Cernox® sensor. Once 
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PID values were optimized, this enabled sample temperature change and stabilization on 

the order of time indicated in Figure 3.7. Temperature histories were always logged with 

a temporal resolution of  5 seconds such that they could be plotted as shown below. 

 

Figure 3.7: Example of sample temperature history 

Barium fluoride (BaF2) windows were installed, each 2 mm thick, to achieve very high 

optical transmission at both the injection laser and sample cutoff wavelengths while being 

able to maintain high vacuum within the cryostat. The transmittance for this material is 

shown in Figure 3.8 [71]. Care had to be taken to prevent water contacting these 

windows, e.g. condensation forming due to relatively poor internal vacuum pressure in 

combination with cryogenic temperatures, as this would lead to permanent damage in the 

form of cloudiness and presumably loss of transmission. If this occurred the window 

would be discarded immediately.  
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Figure 3.8: Transmission spectrum of the BaF2 sample windows 

During the first proton irradiation experiment with this system, it was noticed via Geiger 

counter that these BaF2 windows became slightly radioactive, proportional to dose 

fluence. Therefore, after the larger doses in the schedule, i.e. adding TID 50 krad to bring 

the cumulative dose from TID 50 to TID 100 krad, the cryostat assembly was set aside 

(away from the human populated characterization area) with lead bricks in front of the 

windows and checked with a Geiger counter approximately every hour until the readings 

became negligible. 

 Since these windows were reused for multiple radiation experiments, the 

transmission spectrum of one of these windows was measured via Fourier-transform 

infrared spectroscopy (FTIR) before and after being subjected to a cumulative proton 

fluence of 2.25 ×  1012  p/cm2. This value corresponds to three complete dose schedules 

outlined in section 3.7. It was found that there was no significant change in transmission 

(less than 2%). Even if transmission had largely decreased, it would have resulted in a 

lower PL amplitude and SNR, not necessarily affecting extracted lifetime values.  
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3.5 Automation 

 
Several functions of the TRPL test system were automated to mitigate human error, 

increase time efficiency, and enable long duration, overnight, unsupervised tests. To 

move from one sample to another, the entire cryostat assembly was physically moved by 

a four-motor system which included custom-designed metal fabrications. Three motors 

served to move the cryostat (samples) horizontally, vertically, and parallel (focus) with 

respect to the incident laser beam. The 4th motor rotated the cryostat around its vertical 

axis in order to move a different, orthogonal, window into the beam path. This allowed 

the sensitive optics to remain unmoved throughout the duration of an experiment. Figure 

3.9 contains physical images of the cryostat and the motor system on which it is mounted.  

 

Figure 3.9: (a) Cryostat/LN2 feeder assembly; (b) cryostat on motor 

assembly; (c) cryostat removed, showing how its base plate is rotating on 

the 4th motor. 
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The cryostat/LN2 feeder assembly simply lifts off the motor assembly, so that it can be 

taken into a radiation chamber for dosing, and is returned to the exact same position due 

to hemispherical recesses under the plate which mate to the ball bearings visible in Figure 

3.8c.  

The laser attenuation system was also automated. ND filters of values ranging 

from 0 to 4 were placed in a motorized, 12-position wheel for bulk attenuation. The half-

wave plate was also mounted in a motor which rotated circularly about the propagation 

axis of the laser beam for fine attenuation.   

 All automation was controlled by a custom graphical user interface (GUI) 

developed by the author using the LabVIEW programming environment. This includes 

all motor movement (sample and attenuation changes), oscilloscope setting changes, 

temperature control, temperature logging, and data acquisition. See Figure 3.10. 

 

Figure 3.10: Custom GUI for TRPL control and data acquisition. 
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Several preparations are needed before running an automated data collection routine: 

optimizations for sample positions, oscilloscope settings, and laser attenuation. Optimal 

motor positions must be recorded and provided to the software so it knows precisely how 

to move the cryostat to get the laser beam centered on each sample. This is accomplished 

roughly at first by tracking the laser beam with an IR viewer card by hand and using 

manual motor jog command to get the beam onto the sample of interest. For fine tuning 

and final position optimization, the motors are manually jogged left/right/up/down for 

several iterations until the PL amplitude on the oscilloscope is maximized. All motor 

positions are recorded and fed to the software. This is repeated for each sample. Once 

accomplished, the user may move any sample into the laser beam by selecting it by name 

from a drop-down menu and clicking a single move button. 

 Once sample positions are known and recorded, attenuation optimization is 

performed. Here, the vertical resolution of the oscilloscope is maximized (1 mV per 

division in this case) and the laser pulse intensity is attenuated as much as possible until 

the PL signal becomes barely measurable. Then, typically, five injection pulse intensities 

(sometimes referenced by the fine tuning attenuator position in angle of the half-wave 

plate, 𝜃𝑊𝑃) above this value are selected for use in characterization. Each sample is 

assigned its own, different, injection-level settings, i.e. sample #1 may require ND = 2 

paired with  𝜃𝑊𝑃 = 2, 4, 6, 8, 10 degrees, while sample #2 may require ND = 1.3 and 𝜃𝑊𝑃 

= 1, 2, 3, 4, 5 degrees. This effort is undertaken due to the aforementioned importance of 

achieving the low-level injection condition. 

 Finally, the oscilloscope (PL signal digitizer) settings must be optimized. The 

vertical resolution is maximized such that the peak of the PL transient is not clipped 
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while being injected with its highest assigned injection-level. This must be performed at 

the coldest planned temperature of the characterization due to the fact that the peak 

amplitude of PL emission is directly proportional to injection-level and inversely 

proportional to temperature. The horizontal resolution must be configured such that the 

tail of the PL transient is captured, as this is the most important region for extracting 

minority carrier lifetime through curve fitting. Next, the ERES function is increased to 

reduce noise until the reduction in bandwidth is no lower than that of the preamplifier of 

the detector being used (300 MHz for MWIR, 700 MHz for LWIR). Finally, it is ensured 

that summed averaging mode is enabled so that a single, final transient may be 

downloaded after thousands of PL transients have been averaged. Again, this is 

performed for each sample and the configuration for each is saved on-board the 

oscilloscope for recall as needed by the TRPL automation GUI. 

 Once these preparations are complete, the user can simply select a mode of 

operation, press a single button, and return many hours later with data ready for 

processing. The available modes of operation are: manual, injection sweep, and 

temperature sweep. In manual mode, a summed average PL transient is instantly 

downloaded from the oscilloscope after the user has positioned the sample of interest in 

the laser beam. With an injection sweep, summed-average PL transients will be 

downloaded for every sample at every assigned injection-level at the current temperature, 

with all attenuator and cryostat motor movements automatically handled. With a 

temperature sweep, injection sweeps are repeated after samples reach each of the user-

provided temperature values. The TRPL software will wait to collect data after 
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temperature changes until certain time delay and temperature check conditions have been 

met.  

 

3.6 Portability 

One of the unique attributes of this TRPL system is that it was designed for the purpose 

of traveling cross-country to radiation sources. Two optical breadboards were used, each 

with carrying handles. The optics required alignment only once during re-assembly after 

travel due to them remaining fixed during characterization. To aid this process, collars 

were affixed to optical posts before travel when alignment was optimized, eliminating the 

need to re-adjust heights upon re-assembly. Optical post holders were never removed for 

travel; therefore, the only optical alignment needed was azimuth adjustment. The packing 

configurations are shown in Figure 3.11.  

 

Figure 3.11: (a) cryostat assembly, and (b) optical breadboard packed for travel. 
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As mentioned previously, the cryostat assembly is portable relative to the rest of the 

TRPL system. This was made possible to allow the cryostat loaded with samples to be 

transported into the radiation chamber for dosing while the rest of the sensitive 

equipment remained in an area safe for humans, where post-radiation characterizations 

took place. A long (~100 ft.) cable was used to continuously maintain stable sample 

temperatures with the PID controller reading from the temperature sensor and supplying 

current to the resistive heating element, even while the cryostat assembly was sealed off 

in the radiation chamber. 

3.7 Radiation Experiments 

During these deployments, up to twelve unique detector structures, or lifetime samples, in 

the form of wafer dies (pre-processing) were held at 120 K while minority carrier 

lifetimes were optically probed before and after step-wise proton irradiation, typically at 

a kinetic energy of 63 MeV reaching total ionizing doses (TID) of 0, 5, 10, 20, 50, 100 

krad [Si]. Hereon, unless otherwise noted, 1 TID is equivalent to a proton fluence (Φ𝑝) of 

7.5 × 109 (p/cm2). In addition to characterizing minority carrier lifetime as a function of 

proton fluence, it is also characterized as a function of temperature before and after 

proton irradiation, including subsequent thermal anneals. Information that can be 

extracted from these tests include minority carrier lifetime damage factors, recombination 

mechanism dominance vs. temperature, trap energy level changes, and lifetime recovery 

phenomena via post-radiation thermal annealing. The typical radiation test protocol for 

characterizing the change in minority carrier lifetime as a function of proton fluence is 

shown in Figure 3.12.  
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Figure 3.12: Typical radiation test protocol for minority carrier lifetime vs. proton fluence 

 

These were multi-day experiments as each of the four temperature sweeps could take up 

to twelve hours to complete, and depending on various circumstances, there could be 

long wait times between proton dosing opportunities.  

 A custom designed ‘alignment plate’ was fabricated which mated to both a 

sample window on the cryostat and the aperture head at the end of the proton beam line. 

This served two purposes: (1) it forced perfect alignment of the samples within the proton 
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beam, and (2) its thickness prevented protons from traveling through undesired regions of 

the cryostat. This was critical for both accuracy and safety, as the cryostat’s cold finger, 

just above the sample windows, was made out of copper and could have become 

radioactive if exposed. The alignment plate is shown in Figure 3.13. 

 

Figure 3.13: Alignment plate used to mate cryostat to proton beam. 

Another unique attribute of this TRPL system is that it maintains samples at 120K for the 

duration of all radiation testing. This is to prevent the ‘healing’ of radiation-induced 

damage, which is a function of temperature, between radiation exposure and lifetime 

characterization. Vacancies and interstitials, created through displacement damage, have 

a certain mobility dependent on temperature; therefore, it is possible for at least some of 

these pairs to recombine, or ‘anneal out’ at higher temperatures. Data will be presented 

on this phenomenon in a later chapter. Figure 3.14 shows a complete temperature log for 

an actual radiation experiment. In this example, the 220K anneal shown in the test 

protocol in Figure 3.12 was skipped.  
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Figure 3.14: Complete temperature log from an actual radiation experiment. 

The most important takeaway from these experiments was the rate of minority carrier 

lifetime (low-level parameter of ultimate device performance) degradation as a function 

of proton fluence. Under proton irradiation, the defect concentration 𝑁𝑇 is, typically, 

linearly proportional to the time-integrated proton flux or proton fluence 𝛷𝑃 incident on 

the material, as given by 

 𝑁𝑇(𝛷𝑃) = 𝑁𝑇(0) + (
𝑑𝑁𝑇

𝑑𝛷𝑃
) 𝛷𝑃,. (3.8) 

where irradiation is being assumed to generate a single type of defect with pre-rad 

concentration 𝑁𝑇(0) and an introduction rate (dN𝑇 𝑑𝛷𝑃⁄ ) due to proton irradiation, which 

is a function of the proton energy and assumed to be constant. As 𝑁𝑇 increases, 𝜏 will 

eventually become limited by Shockley-Read-Hall (SRH)-recombination, if not so 

already, and related to 𝑁𝑇(𝛷𝑃) according to  

  
1

𝜏(𝛷𝑃)
= 𝜎𝜈𝑡ℎ𝑁𝑇(𝛷𝑃), (3.9) 

where 𝜎 is the minority carrier capture cross-section for this defect, 𝜈𝑡ℎ = √3𝑘𝐵𝑇 𝑚ℎ⁄  is 

the thermal velocity, 𝑘𝐵 is Boltzmann’s constant, 𝑇 is the temperature and 𝑚ℎ is the hole 
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mass, assuming the irradiated material is n-type. Replacing 𝑁𝑇(𝛷𝑃) in Eq. 3.8 with Eq. 

3.9 leads to  

 
1

𝜏(𝛷𝑃)
=

1

𝜏(0)
+ 𝐾𝜏−1𝛷𝑃,. (3.10) 

where 𝐾𝜏−1 = 𝜎𝜈𝑡ℎ(dN𝑇 𝑑Φ𝑃⁄ )  is the lifetime damage factor and 𝜏(0) is the initial SRH 

lifetime. Equation 3.10 indicates that a plot of the recombination rate 𝜏(𝛷𝑃)−1 should be 

linear with increasing 𝛷𝑃 which makes for an easily recognizable behavior in the 

measurement datasets with which to validate this theory and determine values for 𝜏(0) 

and 𝐾𝜏−1 using a simple linear fitting routine.   

 To avoid confusion, it is worth noting that what is referred to herein as the 

‘lifetime damage factor’ is actually the inverse lifetime (recombination rate) damage 

factor as denoted by the subscripts in 𝐾𝜏−1 due to this parameter being a linear function of 

proton fluence. This will be shown to be true with experimental data. Also, since damage 

factors are dependent upon the kinetic energy of the impinging protons, all damage factors 

herein are reported for 63 MeV protons unless otherwise noted.  

 

3.8 Radiation Source 

All radiation experiments performed in this work took place at the Crocker Nuclear 

Laboratory located at the University of California in Davis. The proton source is a 76 

inch isochronous cyclotron capable of providing stable, uniform beams with a tunable 

kinetic energy range from 4 to 68 MeV [72]. Sensors were in place for real-time beam 

monitoring and statistics tracking. These data were used to plot minority carrier lifetimes 

vs. measured proton fluence as opposed to target proton fluence.  
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3.9 Summary 
 

Minority carrier lifetime is extracted by curve fitting the photoluminescence decay 

transients that are generated by injecting excess carriers into the samples via laser pulses. 

This technique is called time-resolved photoluminescence (TRPL) and is well documented 

in literature [73], [74]. A schematic of the experimental setup used in this study was 

provided in Figure 3.4. Briefly, a ~ 3.34 ns laser pulse from a 1.535 µm passively Q-

switched laser is directed towards the sample held in a liquid nitrogen continuous-flow 

cryostat set to 120 K. The laser pulse is attenuated significantly to lower the pulse power 

level to achieve the low-level injection condition. The resulting excitation of an excess 

electron-hole carrier density Δ𝑛 in the samples leads to photoluminescence as the excess 

carrier density returns to its quiescent state Δ𝑛 = 0. A pair of off-axis parabolic (OAP) 

mirrors is used to collect the light and direct it toward a single-pixel HgCdTe detector with 

a 6.0 μm or 10.6 μm cutoff wavelength connected to an oscilloscope to digitize the 

resulting optical PL transient.  

Solving the continuity equation for Δ𝑛 following a laser injection pulse that 

initially generates Δ𝑛 = Δ𝑛0 by applying the low injection condition (i.e. p-type: Δ𝑛 ≪

𝑁𝐴) leads to Δ𝑛(𝑡) = Δ𝑛0𝑒−𝑡/𝜏. In practice this means once the 𝑃𝐿(𝑡) falls below a 

certain threshold value it should decay as a single exponential. An example of actual PL 

transients from a MWIR nBn detector structure which reflect this single-exponential 

behavior are shown in Fig. 3.15. After an initial rapid decay, attributable to surface 

recombination, only a single exponential-dependence remains, forming the long-tail 

region which appears linear on a semi-logarithmic plot. The tails of these transients are 
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fitted to obtain 𝜏 at each new TID level, and then 𝜏−1 is plotted vs 𝑝. The slope of this 

relationship is the rate of change of the minority carrier recombination rate as a function of 

proton fluence and is called the lifetime damage factor, 𝐾𝜏−1, which is the radiation 

hardness metric used herein to compare performance between samples. 

 

Figure 3.15: Example of normalized TRPL transients from an III-V nBn 

sample changing as a function of step-wise irradiation with 63 MeV 

protons up to the listed TID levels. Exponential fitting on the semi-log plot 

is applied in the long-tail linear region to determine τ. 
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Chapter 4 

 

Minority Carrier Lifetime Studies 

 

4.1 Introduction 

In this chapter, each experiment that yielded information beneficial to the IR detector 

community will be discussed with empirical evidence. It will be shown that there exist 

significant differences in lifetime damage factors and thermal annealing phenomena 

between III-V and II-VI detector technologies, which is arguably the most important 

result from this work. A time dependence on III-V annealing is also validated through a 

multi-week study. A NIEL study was performed on four differently doped, InAs/InAsSb 

T2SL nBn samples in which lifetime damage factors were extracted for protons of 

different kinetic energies. This enables the extrapolation of these damage factors for a 

continuous range of proton kinetic energies which will help spacecraft mission planners 

estimate higher level detector parameters such as dark current and quantum efficiency 

based on orbit and mission duration. The effect of doping concentration on lifetime 

damage factors was also studied.  

  Not all studies performed in this work were performed as a function of proton 

irradiation. This characterization system was also employed to perform a variety of 

parameter studies in which lifetime vs. temperature was characterized as a function of a 

parameter of interest. For example, optimal MBE growth conditions were determined for 

an IR detector research group by characterizing minority carrier lifetime vs. temperature 
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for multiple identical samples that were grown at different temperatures. Lifetime 

characterizations were also performed for III-V p-type prototype designs as well as III-V 

designs incorporating Bismuth surfactants, the latter of which has become a new R&D 

effort due to its ability to introduce large bandgap energy changes with relatively small 

doping concentrations. III-V nBn structures with doping gradients in the absorber were 

also characterized, in which the gradient creates a built-in electric field intended to aid 

photo-generated, minority carrier holes reach the contact for collection via drift transport. 

Finally, lifetime was characterized for different III-V absorber types as well as pre- and 

post-hydrogenation, the latter of which had an intent of filling natural III-V structure 

SRH traps with hydrogen ions.  

 It should be understood that none of the samples characterized in this work were 

grown by the author, but rather sourced from many different research groups, including 

large corporations, small businesses, and universities. Due to the proprietary nature of 

competitive business, as is present in every industry, exact sample designs were not 

always provided, i.e. doping concentration, superlattice design, thicknesses, etc. 

Regardless, the data resulting from these characterizations provides an eye-opening 

snapshot of the relative performance between these two competing IR detector material 

technologies.  

 Sample sets #1-5 should be considered part of the same experiment, which was an 

effort to characterize a large variety of samples sourced from different research groups. 

Experiment results, data analyses, and trends will be presented here; however, 

fundamental physics-based explanations will be sought in the following chapter. 

 



72 
 

4.2 Lifetime vs. Proton Irradiation 

Various proton irradiation experiments will be shown in this section, for both II-VI and 

III-V detector samples.  Data will be introduced incrementally, as different sample sets 

were characterized under slightly different test conditions, e.g. different long-pass filters 

or detector cutoff wavelengths. For each set, the test conditions will be specified along 

with tabulated sample information.  

 Lifetime damage factors and annealing phenomena between the competing 

material systems will be presented first, followed by several lifetime vs. temperature 

studies in which the effect of various design or growth parameters were examined. 

Aggregate conclusions will be discussed in the following chapters. All information 

known about each sample is provided; therefore, if certain parameters (e.g. absorber 

thickness, elemental mole ratios, doping concentration, superlattice architecture, etc.) are 

excluded, it should be assumed that this information is proprietary and unable to be 

shared here.  

4.2.1 Lifetime Damage Factors: III-V vs. II-VI 

These characterizations took place over multiple radiation experiments spanning a multi-

year time period in effort to aggregate data on samples from multiple sources and varying 

parameters such as doping level, cutoff wavelength, MBE growth conditions, and 

architecture. All III-V samples in this section are composed of the ‘Ga-free’ 6.1 Å group, 

namely InAs/InAsSb, and held at 120 K. The details of sample set #1 and additional test 

parameters are outlined in Tables 4.1 and 4.2, respectively.  
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Table 4.1: Details of sample set #1 

 

Table 4.2: Test configuration #1 

 

Samples A and B are from the same vendor with a differently doped variant of the same 

design for each of the two cutoff wavelengths, while the C samples were sourced from a 

different vendor. An example of raw data, which is representative of those from all 

samples, collected from the TRPL system is shown in Figure 4.1 for sample A2.  

 

Figure 4.1: Example of TRPL transients vs. cumulative proton fluence 

from sample A2. Both PL magnitude and transient times exhibit obvious 

decreases with increasing proton fluence.  

Sample λc (μm) Composition Cumulative Dose Schedule (TID)*

A1 4.2 III-V T2SL nBn | Doping = NID 0 | 2 | 5 | 10 | 20 | 35 | 50 | 100 

A2 4.2 III-V T2SL nBn | Doping = 1 x 10
16

cm
-3 0 | 2 | 5 | 10 | 20 | 35 | 50 | 100 

B1 5.2 III-V T2SL nBn | Doping = 4 x 10
15

cm
-3 0 | 2 | 5 | 10 | 20 | 35 | 50 | 100 

B2 5.2 III-V T2SL nBn | Doping = 8 x 10
15

cm
-3 0 | 2 | 5 | 10 | 20 | 35 | 50 | 100 

C1 4.8 III-V T2SL nBn | 3um Absorber 0 | 2 | 5 | 10 | 20 | 35 | 50 | 100 

C2 4.8 III-V T2SL nBn | 3um Absorber 0 | 2 | 5 | 10 | 20 | 35 | 50 | 100 

*1 TID = 7.5 x 10
9
 p/cm

2

Detector λc (μm) Pre-amp BW (MHz) Window Proton Energy (MeV) LPF (μm)

10.6 700 BaF2 (2 mm) 63 3.6
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What is shown here is a superposition of all summed average PL transients collected after 

each proton irradiation dose in the schedule following the test protocol outlined in the 

previous chapter. It is obvious from this plot that the duration of these PL transients is 

significantly decreasing with increasing proton irradiation, as expected, attributed to an  

increase in the SRH trap concentration (NT) via displacement damage. These transients 

were fitted to a single exponential function, as discussed previously, to extract the 

minority carrier lifetime at each cumulative dose level, 𝜏(Φ𝑝).  Then, the lifetime 

damage factor is found through a linear fit of 𝜏−1 vs. Φ𝑝 as shown in Figure 4.2.  

 
Figure 4.2: Example of lifetime damage factor extraction from 𝜏−1 vs. Φ𝑝 

 

Another phenomenon that is obvious from Figure 4.1 is that the peak amplitude of the PL 

significantly decreases along with the transient duration. This is one of the reasons that 
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performing these characterizations at multiple different injection levels is important. As 

PL amplitude directly correlates with injection level, a highly attenuated laser pulse 

which produces a nice low-level injection transient before irradiation may produce an 

unmeasurably weak PL emission at high cumulative proton fluences. The data presented 

in Figure 4.1 is from one of the multiple injection levels at which characterizations were 

performed. For final analyses, the data from the lowest injection level which produced a 

reasonable curve fit after the final dose was selected.  

 Some additional observations can be made with the post-annealing transients. 

After the final proton dose characterization, the samples were characterized again at 

specific temperatures while being warmed up to 220 K (post-rad temperature sweep), 

then re-characterized at 120 K. Then this was repeated again but up to 300 K. The anneal 

transients in Figure 4.1 are from the 120 K characterizations after reaching the specified 

anneal temperature. In this example, it is noticeable that the lifetime slightly decreased 

after the 220 K anneal, however significantly increased (as did the peak amplitude) after 

the 300 K anneal. This ‘reverse annealing’ phenomenon has been observed by others as 

well [75]. Annealing effects on lifetime degradation will be discussed more thoroughly in 

the next section. 

 The example analyses shown in Figures 4.1 and 4.2 were repeated for all samples 

and the results are superimposed for each subset in Figures 4.3-4.5 for easy visual 

comparison. The larger the slope, the greater the lifetime damage factor is. Also, since it 

is 𝜏−1 that is plotted on the vertical axis, greater vertical magnitudes equate to lower 

minority carrier lifetimes. These plots can be used to compare quality between samples 
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by comparing the absolute minority carrier lifetimes as well as its degradation rate as a 

function of proton fluence. 

 

Figure 4.3: Lifetime damage factor extraction for samples A1-A2 
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Figure 4.4: Lifetime damage factor extraction for samples B1-B2 

 

 

 

Figure 4.5: Lifetime damage factor extraction for samples C1-C2 
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Some interesting takeaways from these results are that samples with the lower doping 

concentrations have consistently smaller (better) lifetime damage factors, and the damage 

factors are very similar over cutoff wavelengths ranging from 4.2 to 5.2 μm, even though 

the C samples were grown from a different R&D group than the A and B samples.  

 Sample set #2 included both HgCdTe and InAs/InAsSb T2SL nBn structures, 

representing both the III-V and II-VI elemental groups. Details are outlined in Table 4.3. 

Table 4.3: Details of sample set #2 

 

These characterizations were performed with the same test configuration detailed in 

Table 4.2; however, the proton irradiation dose scheduled was extended to an unusually 

high 200 krad [Si]. The same analyses shown above were performed, and the 

superimposed results are shown in Figures 4.6-4.7. 

Sample λc (μm) Composition Cumulative Dose Schedule (TID)*

D1 5.0 II-VI HgCdTe 0 | 2 | 5 | 10 | 20 | 50 | 100 | 200 

D2 5.0 II-VI HgCdTe 0 | 2 | 5 | 10 | 20 | 50 | 100 | 200 

D3 5.0 II-VI HgCdTe 0 | 2 | 5 | 10 | 20 | 50 | 100 | 200 

E1 5.4 III-V T2SL nBn 0 | 2 | 5 | 10 | 20 | 50 | 100 | 200 

E2 5.4 III-V T2SL nBn 0 | 2 | 5 | 10 | 20 | 50 | 100 | 200 

E3 5.4 III-V T2SL nBn 0 | 2 | 5 | 10 | 20 | 50 | 100 | 200 

*1 TID = 7.5 x 10
9
 p/cm

2
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Figure 4.6: Lifetime damage factor extraction for sample set #2. 

 

 
Figure 4.7: Lifetime damage factor extraction for samples E1-E3. 
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On the same scale as the III-V results, the II-VI curve appears nearly flat. This indicates a 

much lower recombination rate change in HgCdTe with proton fluence resulting in a 

lower (superior) minority carrier lifetime damage factor. An interesting observation can 

be made when the HgCdTe results are plotted separately, as is shown in Figure 4.8.  

 

Figure 4.8: Lifetime damage factor and SRH dominance threshold for 

HgCdTe. 

Here, there exists an obvious minority carrier lifetime degradation with proton fluence 

not easily visible in Figure 4.6; however, the lifetime degradation doesn’t begin until a 

dose level of approximately TID 50 krad [Si]. This is hypothesized to be the minority 

carrier lifetime in HgCdTe remaining limited by Auger recombination until the proton-
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induced displacement damage generates a trap density (𝑁𝑇) large enough such that SRH 

recombination becomes the limiting mechanism. After noticing this, the dose schedule 

was increased to 200 krad [Si] in order to perform a linear fit with more than two data 

points.  

 This experiment yielded some critical findings. First, the increase in minority 

carrier lifetime recombination rates vs. proton fluence was shown to be linear for both 

material systems and is consistent with results from the previous experiment where 

samples were sourced from different research groups. Second, the lifetime damage 

factors in HgCdTe were shown to be significantly (> 10x) smaller than those in the III-V 

T2SL nBn structures. Third, it was shown that all the way up to 200 krad [Si], no samples 

from either of the competing technologies exhibited a saturation in recombination rate 

and the recombination rate relationship with proton fluence remained linear. Fourth, an 

SRH dominance threshold was found in HgCdTe, indicating that the popular single dose 

‘bag tests’ found in literature should only be used to extract lifetime damage factors if the 

sample’s minority carrier lifetime is SRH-limited to begin with. For example, if the 

damage factor analysis was performed on the HgCdTe sample shown in Figure 4.5 from 

TID 0 – 100 krad [Si], as is done for ‘bag tests’, it would yield an underestimated damage 

factor as that slope would be less than that taken here from TID 50 – 200 krad [Si].  

 The experimental setup was changed for the next and remaining radiation 

experiments, as outlined in Table 4.4. A 6.0 μm cutoff wavelength detector was 

employed with a pre-amplifier bandwidth of 300 MHz for its higher sensitivity in the 

MWIR. Additionally, the long-pass filter was reduced from 3.6 um to 1.6 um widening 
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the detectable range of PL emissions yet still blocking any reflections that may have been 

present from the laser.  

Table 4.4: Test configuration #2 

 

Experiment #3 was a radiation study on variations of a III-V T2SL nBn detector 

grown with a doping gradient in the absorber (example shown in Figure 2.10) which 

creates a built-in electric field meant to aid, via drift, the photo-generated minority carrier 

holes to the contact for collection. Details for this sample set and dose schedule are 

shown in Table 4.5. 

Table 4.5: Details of sample set #3 

 

Again, the relationship between minority carrier recombination rate was shown to be 

linear with proton fluence, and the results are superimposed in Figure 4.9. 

Detector λc (μm) Pre-amp BW (MHz) Window Proton Energy (MeV) LPF (μm)

6.0 300 BaF2 (2 mm) 63 1.6

Sample λc (μm) Composition Cumulative Dose Schedule (TID)*

F1 MWIR III-V T2SL nBn | Graded Absorber 0 | 2 | 5 | 10 | 20 | 50 | 100

F2 MWIR III-V T2SL nBn | Graded Absorber 0 | 2 | 5 | 10 | 20 | 50 | 100

F3 MWIR III-V T2SL nBn | Graded Absorber 0 | 2 | 5 | 10 | 20 | 50 | 100

F4 MWIR III-V T2SL nBn | Graded Absorber 0 | 2 | 5 | 10 | 20 | 50 | 100

*1 TID = 7.5 x 10
9
 p/cm

2
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Figure 4.9: Lifetime damage factor extraction for samples F1-F4. 

Although information on the absorber doping gradients is proprietary, it is obvious that 

changes in gradient design have an effect on the radiation hardness of the minority carrier 

lifetime, even when all the samples start with approximately the same lifetime value. 

 Radiation experiment #4 was similar to #2 in that it included samples from both 

traditional II-VI HgCdTe and III-V T2SL nBn structures. These HgCdTe samples were 

sourced from two different R&D groups, of which neither were the suppliers of the 

samples previously discussed (D1-3). Details for this sample set are shown in Table 4.6. 
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Table 4.6: Details of sample set #4 

 

Notice that from this point forward the cumulative dose schedule evolves to omit the 

smallest doses. Due to the fact that every sample characterized up to this point, regardless 

of vendor or design, exhibits the same trend in minority carrier lifetime degradation, it 

was decided that no damage factor information would be lost when omitting the small 2 

and 5 krad doses. Again, the maximum dose in the schedule was increased for most II-VI 

samples. Superimposed damage factor results are provided for the III-V and II-VI 

samples in Figures 4.10 and 4.11, respectively. 

Sample λc (μm) Composition Cumulative Dose Schedule (TID)*

G1 MWIR III-V T2SL nBn 0 | 5 | 20 | 50 | 100

G2 MWIR III-V T2SL nBn 0 | 5 | 20 | 50 | 100

G3 MWIR III-V T2SL nBn 0 | 5 | 20 | 50 | 100

H 5.7 III-V T2SL nBn | Nd = low x 10
15

 cm
-3 0 | 5 | 20 | 50 | 100

I 5.4 LPE HgCdTe | Nd = 2.5 x 10
15

 cm
-3 0 | 5 | 20 | 50 | 100

J1 3.9 HgCdZnTe | MBE Prep #1         0 | 5 | 20 | 50 | 100 | 200

J2 3.9 HgCdTe | MBE Prep #1         0 | 5 | 20 | 50 | 100 | 200

K1 3.9 HgCdZnTe | MBE Prep #2         0 | 5 | 20 | 50 | 100 | 200

K2 3.9 HgCdTe | MBE Prep #2         0 | 5 | 20 | 50 | 100 | 200

*1 TID = 7.5 x 10
9
 p/cm

2



85 
 

 

Figure 4.10: Lifetime damage factor extraction for samples G1-3, and H. 

 

 

 
 

Figure 4.11: Lifetime damage factor extraction for samples J1-2 and K1-2. 
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The G series and H samples were sourced from different vendors (therefore having 

presumably different designs); however, it can be seen in Figure 4.10 that the degradation 

in minority carrier lifetime with proton fluence for these is nearly identical. Since all of 

these samples are InAs/InAsSb-based, it is reasonable to conclude that their radiation 

hardness is more dependent on constituent materials than architecture.  

 The final sample set discussed in this section was a study of the effect of lifetime 

radiation hardness vs. doping in MWIR III-V nBn structures. All eight samples were 

sourced from the same vendor with a high and low doping concentration for each of three 

different dopants plus a pair that were non-intentionally-doped (NID). Details of this 

sample set are outlined in Table 4.7. 

 

Table 4.7: Details of sample set #5 

 

The results for each pair (dopant type) are plotted individually in Figures 4.12-4.15 to 

show the relative effect of doping level, and they are all superimposed in Figure 4.16 to 

show the relative effect of doping type. Units of doping concentration are cm−3. 

Sample λc (μm) Composition Cumulative Dose Schedule (TID)*

L1 MWIR III-V T2SL nBn | ND = NID 2.4 x 10
14 

cm
-3 0 | 10 | 20 | 50 | 75 | 100

L2 MWIR III-V T2SL nBn | ND = NID 1.1 x 10
15 

cm
-3 0 | 10 | 20 | 50 | 75 | 100

M3 MWIR III-V T2SL nBn | ND = Si 1.1 x 10
15 

cm
-3 0 | 10 | 20 | 50 | 75 | 100

M4 MWIR III-V T2SL nBn | ND = Si 8.0 x 10
15 

cm
-3 0 | 10 | 20 | 50 | 75 | 100

N1 MWIR III-V T2SL nBn | ND = Te 3.0 x 10
15 

cm
-3 0 | 10 | 20 | 50 | 75 | 100

N2 MWIR III-V T2SL nBn | ND = Te 9.0 x 10
15 

cm
-3 0 | 10 | 20 | 50 | 75 | 100

O3 MWIR III-V T2SL nBn | ND = Be < 1 x 10
15 

cm
-3 0 | 10 | 20 | 50 | 75 | 100

O4 MWIR III-V T2SL nBn | ND = Be < 5 x 10
15 

cm
-3 0 | 10 | 20 | 50 | 75 | 100

*1 TID = 7.5 x 10
9
 p/cm

2
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Figure 4.12: Lifetime damage factor extraction for samples L1-2. 

 

Figure 4.13: Lifetime damage factor extraction for samples M1-2. 
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Figure 4.14: Lifetime damage factor extraction for samples N1-2. 

 

Figure 4.15: Lifetime damage factor extraction for samples O1-2. 
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It should be noticed from these results that, without exception, the sample with the lower 

doping concentration results in both a smaller (superior) lifetime damage factor and 

longer initial minority carrier lifetime. 

 

Figure 4.16: Lifetime damage factor extraction for sample set #5. 

 

The takeaway from Figure 4.16 is that using Beryllium as a dopant results in better 

radiation hardness as far as minority carrier lifetimes are concerned, while results for 

NID, Silicon, and Tellurium dopants all remain in the same family.  

 The samples received to date are an indication of the state-of-the-art in space 

detectors, and Figure 4.17 provides a dramatic snapshot of relative inherent radiation 

hardness performance between the competing III-V and II-VI technologies, as far as 

minority carrier lifetime is concerned. HgCdTe remains the dominant performer using the 

lifetime damage factor metric by over an order of magnitude, regardless of sample 

vendor.    
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Figure 4.17: Aggregate lifetime damage factor results between competing 

III-V and II-VI infrared detector technologies. 

 

4.2.2 Post-radiation Annealing: III-V vs. II-VI 
 

Recall from the radiation test protocol outlined in Chapter 3 that minority carrier lifetime 

was characterized as a function of temperature both before and after radiation and 

subsequent anneals. These data will be reviewed in this section, and there exist 

significant differences in annealing phenomena between III-V and II-VI samples, 

including annealing temperature thresholds, annealing time dependence, and post-

annealing lifetime changes.  



91 
 

 Although lifetime damage factors appear largely agnostic to sample structure, 

absolute lifetime is not; therefore, the lifetime vs. temperature curves vary from sample to 

sample as researchers try new designs. There is, however, a noticeable dependence in 

post-irradiation lifetime recovery on constituent materials. This work revealed that the 

post-anneal behavior in HgCdTe samples is nearly identical, regardless of which R&D 

group it was sourced from, and the case is similar for the III-V samples, though there is a 

large disparity here between the two material systems.  

 A superposition of four temperature sweeps for a HgCdTe sample is shown in 

Figure 4.18, showing the lifetime vs. temperature behavior before radiation, after the 

entire proton irradiation dose schedule, and after two subsequent thermal anneals. 

 

Figure 4.18: Lifetime vs. temperature sweep example (HgCdTe). 

The duration of these anneals was determined by how long it took to complete a full 

characterization of all samples at least once, typically 1-2 hours, as it was believed that 
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post-anneal lifetime recovery was a function of temperature alone, not time. From Figure 

4.18, it is obvious that the minority carrier lifetime was significantly improved after each 

level of annealing, indicating that the mobility of the defects created in the crystal lattice 

is a strong function of temperature, allowing defect pairs (i.e. vacancies and interstitials) 

to recombine thus removing their electronic effects from the structure. A satellite mission 

planner would be most interested in the lifetime recovery at the operating temperature 

(120 K for all radiation testing in this work); therefore, a convenient visual representation 

of these data points can be included relative to those in the irradiation study as shown in 

Figure 4.19.  

 

Figure 4.19: Post-anneal lifetime recovery example (HgCdTe). 

The same analyses were performed for the III-V samples as well. Figure 4.20 contains the 

superposition of temperature sweeps for samples G2-3 (MWIR III-V T2SL nBn). 
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Figure 4.20: Lifetime vs. temperature sweep examples (InAs/InAsSb). 

The 220 K anneal temperature sweeps were soon abandoned for the III-V samples after 

repeatedly observing no recovery in the minority carrier lifetime, indicating that the 

mobility of the defects created in these structures has a higher temperature threshold than 

that of HgCdTe. The best case scenario witnessed for lifetime recovery in III-V samples 

is shown in Figure 4.21, where the post-anneal lifetimes recovered to their values at 

approximately TID 50 krad [Si].  
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Figure 4.21: Post-anneal lifetime recovery example (InAs/InAsSb). 

Clearly, the differences in annealing phenomena between the II-VI and III-V samples is 

significant, both in magnitude of lifetime recovery and in the dependence of defect 

mobility on temperature.  

 Finally, a study was performed on the annealing time dependence on some III-V 

samples from set #5. II-VI samples were excluded here due to their previously observed, 

near complete recovery after short durations at 300 K, also referred to herein as room 

temperature (RT). Here, the minority carrier lifetimes were characterized per the normal 

test protocol, and then temperature sweeps were performed after RT anneals with 

durations of one day, two weeks, and 4 weeks. Example data from sample L1 are shown 

in figure 4.22.  
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Figure 4.22: Time dependence of post-anneal lifetime recovery for L1. 

This experiment conclusively indicates that there does exist a time dependence on 

lifetime recovery through annealing; however, the magnitude of the lifetime recoveries 

remained very small.  

 

4.2.3 III-V T2SL nBn NIEL Study: 63 vs. 8.2 MeV 
 

Here, data and analyses are presented on the degradation of minority carrier lifetime in 

several InAs/InAsSb superlattice detector structures resulting from 8.2 and 63 MeV 

stepwise proton irradiation to correlate damage factors with NIEL. Preceding research 

efforts on the effects of charged particle radiation on semiconductor parameters has been 

performed on several different electronic devices and materials [29,31,32], all of which 

conclude that damage factors, regardless of parameter, exhibit a linear relationship with 

calculated non-ionizing-energy-loss (NIEL) of the weighted combination of constituent 

elements [76,77,33]. This work reveals that InAs/InAsSb T2SLs follow the same 

behavior; however the damage factors more closely follow the Coulombic rather than 

nuclear subcomponent of total NIEL. This knowledge allows mission planners and 
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designers to extrapolate parameter damage factors to different proton energies as 

differential proton energy spectra are highly dependent on orbit altitude and trajectory 

[35]. In addition to relating InAs/InAsSb T2SL lifetime damage factors to NIEL, these 

results show that lower initial n-type doping levels result in higher radiation tolerance 

(lower τ degradation rate).  

 In order to quantify the difference between 8.2 MeV and 63 MeV lifetime damage 

factors, different copies of each sample must be tested at each proton energy. Sample set 

#6, used for this low energy proton study and detailed in Table 4.8, was comprised of 

pristine (non-irradiated) versions of samples A1, A2, B1, and B2 previously characterized 

at 63 MeV.  

 

Table 4.8: Details of sample set #6 

 

Again, TID values are represented in krad [Si]; however, where 1 krad for the previously 

used 63 MeV protons is equivalent to a particle fluence of 7.5 ×  109 p/cm2, 1 krad for 

8.2 MeV protons in this experiment is equivalent to ~1.4 ×  109 p/cm2, thus requiring 

less fluence to reach an equivalent total ionizing dose. 

 The test configuration had to be changed to accommodate the lower energy 

protons due to the fact that they would not have penetrated the 2 mm thick BaF2 windows 

according to SRIM analysis. A window made out of a 3 mil (0.003 inch) sheet of Dura-

Lar® was crafted which allowed transmission of the injection laser pulses, MWIR PL 

Sample λc (μm) Composition Cumulative Dose Schedule (TID)*

A1 4.2 III-V T2SL nBn | Doping = NID 0 | 2 | 5 | 10 | 20 | 35 | 50 | 100 

A2 4.2 III-V T2SL nBn | Doping = 1 x 10
16

cm
-3 0 | 2 | 5 | 10 | 20 | 35 | 50 | 100 

B1 5.2 III-V T2SL nBn | Doping = 4 x 10
15

cm
-3 0 | 2 | 5 | 10 | 20 | 35 | 50 | 100 

B2 5.2 III-V T2SL nBn | Doping = 8 x 10
15

cm
-3 0 | 2 | 5 | 10 | 20 | 35 | 50 | 100 

*1 TID = 1.372 x 10
9
 p/cm

2
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emission from samples, and the 8.2 MeV protons. Using a thin film as a window 

generated a new set of challenges. First, when high vacuum is created within the cryostat, 

as is necessary for cryogenic cooling, the film becomes concave. To prevent the film 

from contacting the samples, a thinner Aluminum sample holder disc was fabricated (5 

mm vs. the previously used 10 mm). Second, with the cryostat undergoing cryogenic 

cooling, water had a tendency to condense on the film window. This was solved by 

creating a constant flow of dry nitrogen (N2) across the film window with a fan spreading 

nozzle [78]. Finally, vacuum hold times within the cryostat suffered with the thin film 

window requiring more frequent vacuum pumping. The resulting test configuration is 

outlined in Table 4.9. 

Table 4.9: Test configuration #3 

 
 

Data resulting from this experiment followed the same trends as those taken with the 

same samples with 63 MeV protons (linear increase in recombination rate with proton 

fluence), the major difference being that the low energy protons degraded the minority 

carrier lifetime at a much higher rate. For visual comparison, the results from both high 

and low energy protons from sample B1 are superimposed in Figure 4.23. This is 

representative of the results from all four samples.  

Detector λc (μm) Pre-amp BW (MHz) Window Proton Energy (MeV) LPF (μm)

6.0 300 Duralar® (3 mil) 8.2 1.6
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Figure 4.23: plot of reciprocal lifetime (τ-1) vs. proton fluence (p) for 

two different energies (8.2 and 63 MeV). Damage factors (𝐾𝜏−1) are 

slopes of linear fits. 

 

The low energy proton damage factors are ~4-6 times higher (worse) than their high 

energy proton counterparts. A numerical summary of these results is provided in Table 

4.10. These results were as expected due to the higher probability of lower kinetic energy 

particles of becoming embedded in the semiconductor lattice during which a large 

amount of energy is imparted to the material according to NIEL (shown below).  Results 

were also in-line with previously reported results on Si and GaAs [27]. 

 



99 
 

Table 4.10: Low vs. high energy proton lifetime damage factors 

 

 

In order to use these results to predict damage factors for a continuum of proton 

kinetic energies, they must be related to the NIEL values of the detector material, which 

were generated with the SR-NIEL calculator [43] for InAs0.5Sb0.5 with displacement 

threshold energies (Ed) of 21 eV each for In, As, and Sb, respectively.  

Both the NIEL curve and the damage factors were normalized at a proton energy 

of 8.2 MeV. The 63 MeV damage factors were plotted on a relative scale using the right 

vertical axis. See Figure 4.24. 

 

Figure 4.24: Non-ionizing-energy-loss (NIEL) and reciprocal lifetime 

damage factors vs. incident proton energies for InAsSb. 

Sample λc (μm) Doping [cm
-3

] K63 [t
-1/ p] K8.2 [t

-1/ p] K Ratio

A1 4.2 NID 9.50 x 10-6 4.92 x 10-5
5.18

A2 4.2 1 x 1016 1.62 x 10-5 6.85 x 10-5
4.24

B1 5.2 4 x 1015 9.81 x 10-6 5.58 x 10-5
4.57

B2 5.2 8 x 1015 1.33 x 10-5 6.06 x 10-5
5.69
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This reveals that the damage factor dependence on proton energy does indeed follow the 

NIEL calculations for InAsSb; however, the damage factors follow the Coulombic 

interaction subcomponent of total NIEL more closely, at least out to 63 MeV. It appears 

that at energies higher than 63 MeV, where the nuclear interaction subcomponent 

becomes stronger, the damage factors will increasingly stray from the Coulombic curve 

toward the nuclear and total NIEL curves. 

These results suggest that using total NIEL can result in overestimation of the 

lifetime damage factors of InAs/InAsSb SLS nBn detectors at higher kinetic energies, and 

this is consistent with similar studies on GaAs structures and InGaAs/GaAs LED lifetime 

degradation [76,79]. Since the damage factors exhibit a linear relationship to NIEL it 

appears that no special treatment is needed to account for complex nBn/T2SL structures. 

 Now that damage factors may be predicted over a wide range a proton kinetic 

energies, degradation over an entire mission for an InAsSb-based sensor may be 

predicted using Equation 1.7 (repeated below as 4.1) given the differential proton energy 

spectra and mission duration (tm ) for a selected shield/orbit combination [38]. 

Carrier recombination rate, 𝜏−1 = 𝑡𝑚 ∙ ∫ 𝜅𝜏−1(𝐸𝑟𝑒𝑓)
𝑁𝐼𝐸𝐿(𝐸)

𝑁𝐼𝐸𝐿(𝐸𝑟𝑒𝑓)
∙

𝑑𝜑(𝐸)

𝑑𝐸
𝑑𝐸

∞

0
, (4.1) 

 

For each cutoff wavelength (T2SL design), the samples with the lower doping 

concentrations exhibited less rapid minority carrier lifetime degradations, or smaller 

damage factors. Another observation that can be made from Fig 4.23 is the differences in 

recombination lifetime recovery after room temperature (295 K) annealing. Post-

irradiation, the recombination lifetimes were measured through a series of temperature 

sweeps from liquid nitrogen (LN2) to room temperatures, then re-characterized at 120 K. 
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As has been observed in many other III-V materials dosed at 63 MeV to date, lifetimes 

approximately recovered to their TID 50 (krad [Si]) levels; however, little to no 

recombination lifetime recovery was seen in these samples that were dosed at 8.2 MeV, 

as shown in Fig 4.25.  

 

Figure 4.25: Minority carrier lifetime (τ) for sample A1 vs. temperature for 

before and after 8.2 MeV proton irradiation and anneals. 

 

4.3 Summary 
 

Presented in this chapter was a study of how minority carrier recombination lifetimes of 

various MWIR III-V nBn and II-VI HgCdTe space detector materials degrade with 

stepwise, 63 MeV proton irradiation up to fluences of 7.5 x 1011 p/cm2 and higher. 

Lifetimes were measured using the TRPL technique while samples were held at 120 K to 
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limit thermal annealing while simulating mission operating conditions. As expected, the 

recombination rate of each sample was found to increase with proton fluence at a 

constant rate, implying a linear increase in the material defect concentration with 

increased proton fluence. The rates of change in the carrier recombination rate of each 

sample (minority carrier lifetime damage factors), were then plotted together as a 

function of initial recombination rates (see Chapter 5). Juxtaposing the III-V and II-VI 

results showed a distinct disparity with the lifetime of the incumbent detector material, 

HgCdTe, being roughly an order of magnitude more radiation-tolerant to displacement 

damage from proton irradiation than any of the III-V-based nBn materials. Results from 

the latter also suggest some degree of interrelation between the damage factors and their 

initial lifetimes. Finally, the annealing behavior of each material’s lifetimes revealed that 

HgCdTe tends to anneal to near 100% recovery at 295 K whereas III-V materials 

recovered to only about 0-50% under the same conditions. 

The samples discussed herein were sourced from several independent research 

entities or foundries and encompass a variety of cutoff wavelengths and structural 

designs. Given that the effects of proton irradiation on inverse lifetime follow the same 

trends regardless of these design differences, it shows that this characterization capability 

can be a used as a quality feedback mechanism for relative performance between 

prototype detector structures before major investments are made in flight quality focal 

plane array (FPA) development. Although improvements have been observed with III-V 

prototypes, in characterizations performed to date, HgCdTe remains the dominant 

performer over the InAs/InAsSb T2SL nBn technology in terms of lifetime magnitude, 

lifetime radiation hardness, and post-anneal lifetime recovery (both magnitude and 
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required time under conditions tested). To quantify this, the radiation hardness of 

minority carrier lifetimes in some III-V materials have been empirically observed to fall 

~16x of that in II-VI materials that were characterized for reference. This is nearly a 5x 

improvement from the majority of III-V samples tested previously. 
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Chapter 5 

 

Physics-based Insights 

 

5.1 Introduction 

The effects of charged particle radiation on semiconductor compounds can be quite 

complex at the microscopic level. Atomic-level phenomena are determined by many 

parameters. Factors from the incoming particle include: kinetic energy, mass, charge, 

charge polarity, and orientation with respect to target’s crystal structure. For the target 

material, this includes: temperature, atomic masses of constituent elements, atomic bond 

type, purity, lattice spacing, free carrier concentration, and impurity energy level and 

polarity. Time is another important factor. Even if a defect is created, e.g. a vacancy-

interstitial (V-I) pair via displacement damage, it could immediately recombine therefore 

removing itself, remain a single point defect, or transfer energy to other atoms creating a 

defect complex via cascades of collisions. This is termed defect stability and is a function 

of temperature. These stable defects are what influence the electrical properties of a 

material through the generation of one or more energy levels within the forbidden energy 

bandgap [80]. Textbooks dedicated to this subject [81] admit that the link between 

original displacement damage and final stable defect structures that form is not 

straightforward and therefore not easy to model.  

 Displacement damage in a single, pure material (e.g. Silicon), simply creates a V-

I pair, the vacancy and interstitial having their own, separate mobilities dependent on 
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temperature. When impurities are present, e.g. oxygen or phosphorous, the interactions of 

each counterpart of a V-I pair can manifest differently to alter the electrical properties of 

the material. For example, some well-known radiation defects in silicon include the A 

center (vacancy-oxygen pair) and the E center (phosphorous-vacancy pair). This becomes 

more complex for semiconductor compounds, such as the InAsSb-based samples 

characterized in this work, where anti-site defects can also interact with vacancies and 

interstitials.  

 It is obvious from the previous chapter that the minority carrier recombination 

lifetime changes significantly with displacement damage, but what is the underlying 

physical mechanism? Results from other researchers [82,83,84] monitoring resistivity vs. 

radiation in similar materials have concluded that radiation-induced deep energy level 

defects change the free-carrier charge balance in a semiconductor by shifting the Fermi 

level. This shift occurs when the deep levels trap or compensate shallow dopants, thereby 

preventing ionization to the relevant energy band by trapping their charge carriers.  

 In this work, it was consistently shown that the minority carrier lifetimes were 

longer for samples with lower doping concentrations. It follows that reductions in the 

minority carrier lifetime stem from a Fermi level shift toward the conduction band, 

increasing the net majority free-carrier concentration via defects residing at levels closer 

to the conduction than valence band. This is consistent with other results concluding that, 

in general, the response of III-V compounds (and CdTe) to radiation is increasing n-type 

carrier concentrations [85,86,87,88,89]. See Table 5.1. 
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Table 5.1: Radiation effects on selected semiconductor compounds 

 

Now that it is understood why the minority carrier lifetime decreases in the tested 

material systems vs. displacement damage, an attempt will be made at understanding the 

fundamental material properties causing the disparities in both damage factors and post-

radiation annealing behavior. 

5.2 Damage Factor Disparities: III-V vs. II-VI 

A simplified summary of the lifetime damage factor disparities between these competing 

material systems is shown in Figure 5.1, labeled with some fundamental differences 

between the elemental compounds. 

 

Figure 5.1: Simplified summary of damage factor disparity 

Material Radiation Effect

n-type InSb n0 approaches 4 x 10
16

 [cm
-3

]

p-type InSb type conversion to n-type

n-type AlSb n0 approaches a limiting concentration

p-type AlSb type conversion to n-type

n-type InAs n0 increases indefinitely

p-type InAs type conversion to n-type

p-type CdTe type conversion to n-type



107 
 

Some hypotheses can be derived from this work on the reasons for the 

fundamental differences in radiation tolerance between these materials, focusing on 

differing atomic numbers and bond strengths. The bond strengths in HgCdTe are 

relatively low due to a higher prevalence of ionic cohesion [90,91] with relatively larger 

atomic numbers of the constituent atoms. The III-V materials have stronger chemical 

bonds (covalent) and smaller atomic numbers of constituent atoms. It is intuitive to think 

that weaker bonds in HgCdTe could result in easier displacement damage; therefore, an 

initial hypothesis was that the larger atoms were not displaced as far away from their 

origins relative to the displacement of smaller atoms in the III-V materials. The 

significance of this would be that the vacancy-interstitial defect pairs in heavier atoms 

more readily recombine almost instantly since they weren’t displaced as far, and this 

could be aided by the higher defect mobility presumably due to weaker bonds.   

Consider the energy a relativistic charged particle imparts to the primary knock-

on (or recoil) atom in a material. The maximum energy transferred in an elastic collision 

where momentum is conserved is [92] 

 𝐸𝑝(𝑀𝑎𝑥) =
4𝐸𝑀𝑚

(𝑀+𝑚)2, (5.1) 

 

where E and M are the energy and mass of the incident particle and m is the mass of the 

target atom. Simplified to the atomic weight scale this reduces to 

 Ep(Max) =
4E

A
, (5.2) 

 

where A is the atomic weight of the target atom.  

 Using this equation to compare the energies imparted to target particles of 

averaged atomic weights of InAs0.5Sb0.5 (~107) and Hg0.5Cd0.5Te (~142) one can see that, 
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indeed, less energy is transferred to the larger II-VI atoms; however, the resulting ratio of 

~1.33 does not alone account for the observed >10x disparity in lifetime damage factors. 

 A discussion of radiation effects is held for covalent and ionic materials in 

Radiation Damage in Solids by Billington and Crawford [92]. For covalently bound 

materials, the atoms are more rigidly fixed in position due to the overlapping wave 

functions of shared electrons having low energy in only certain directions. It is for this 

reason that the mobility of both vacancies and interstitials in covalently bonded materials 

is lower than that found in ionic materials. Additionally, dangling covalent bonds readily 

trap impurities, thereby locking them in place and creating stable defects. Due to the rigid 

nature of covalent bonds, atomic rearrangement to relieve local stresses cause by point 

defects is less likely than in ionic crystals.  

 In a study by Goldschmidt [93], it was concluded that the greater the ionicity 

(electrostatic cohesion) of atomic binding, the more resistive a material is to structural 

changes. In this case, there are no (or fewer) rigid directional bonds needed to be broken 

to accommodate atomic rearrangement to alleviate local stresses caused by point defects. 

Not only are vacancies and interstitials more easily able to recombine, energy imparted to 

these materials from impacting charged particles is mitigated by the vibration and 

relaxation of neighboring atoms or ions.  

 A conclusion that can be made with this information and results of this work is 

that radiation hardness of a material is more sensitive to differences in bond type 

(strength) than atomic mass, although atomic mass influences the ionic character in 

covalent bond structures and vice versa.  
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5.3 Post-radiation Annealing Disparities: III-V vs. II-VI 

The disparity between III-V and II-VI detector structures in post-radiation annealing 

phenomena must be due to the same chemical bonding differences mentioned above. 

Although displacement damage is thermodynamically reversible, it was shown in this 

work that the activation energies (temperature) required to mobilize vacancy-interstitial 

pairs is higher in the III-V compounds which have a higher degree of covalent bonding. 

Recall Figure 4.19; here, the lifetime recoveries after the 220 K anneal were 0% and 

~85% for the III-V and II-VI materials, respectively. After the room temperature anneal, 

the lifetime recoveries were approximately 50% and 100% for the III-V and II-VI 

materials, respectively. The conclusion here is that the temperature threshold for defect 

mobility in the III-V material system is much higher, which may be problematic for on-

orbit annealing. The mobility of lattice defects is reported [92] to be 

 𝜇𝐷 ∝ 𝑒1/𝑇, (5.3) 

which should be used in future analyses in designing post-radiation annealing 

experiments. 

 

5.4 Summary 
 

The minority carrier lifetime degradations observed vs. proton fluence in this work are 

attributed to, through displacement damage, the creation of defect concentrations with 

localized energy levels within the forbidden band gap of the semiconductor material 

under test. From observations of the relationship between minority carrier lifetime 

measurements and sample doping concentrations, it is concluded that the net result of 

these created defects is a shift of the Fermi level toward the conduction band, ultimately 
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altering the free carrier charge concentrations to be more n-type. This conclusion was 

consistent with results from other researchers on similar materials, which are summarized 

in Table 5.1 

Initially counterintuitive, it is materials with higher prevalence of ionic bonding 

are both more tolerant to radiation and whose damage is more readily reversible. This is 

due to ionic bonds, which rely on a non-directional electrostatic attraction (Coulombic), 

that allow the vacancies and interstitials to more freely diffuse throughout a solid and 

annihilate each other more readily (higher % V-I recombination immediately after 

displacement with respect to covalently bonded III-V material) and at lower 

temperatures. 

Microscopic analyses can be quite complex and difficult to model. Fortunately, it 

is the net macroscopic effect that these atomic rearrangements induce on electrical 

properties, such as reduction in minority carrier lifetime, that are of ultimate importance 

in determining the quality of a detector material. Extrapolating empirically determined 

damage factors using NIEL curves has been become standard for this reason.   
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Chapter 6 

 

Final Discussions 

 

6.1 The Challenge of Improving Space-based Detectors 

Irradiation by high energy particles ubiquitous in space (e.g. electrons, protons, gamma 

and x-rays) can lead to ionizing and/or non-ionizing damage of semiconductor-based 

photodetectors depending on the material, design and passivation scheme as well as the 

nature of the incoming particle [94]. Ionization damage or total ionizing dose effects 

result when the incoming particle loses its energy by creating additional excited charge, 

which then becomes trapped at surfaces or in passivating dielectric layers. In the case of 

HgCdTe photodiodes or III-V Sb-based nBn detectors, excess electron-hole pair creation 

occurs which can charge surfaces and lead to increased surface leakage. For irradiation 

with massive particles such as protons, non-ionizing or displacement damage results 

when the incoming particle loses its energy via collisions with atoms, displacing them 

from their lattice sites and generating Frenkel pairs (i.e. vacancy-interstitial). These can 

diffuse and recombine or form stable defects or defect complexes. Depending on their 

nature, as depicted in Figure 6.1, these additional defects can act as recombination centers 

and decrease the minority carrier recombination lifetime τ, which can manifest as 

degradation of the detector performance (i.e. decrease in quantum efficiency  η  and 

increase in dark-current density JD). The rate of the performance degradation is thus 

intimately dependent on the rate of τ degradation shown in this work. This connection 
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makes the lifetime degradation rate a key parameter in the overall radiation tolerance of a 

detector. 

 

Figure 6.1: Electronic manifestation of displacement-damage-induced 

defects within a semiconductor. 

  

 

6.2 Conclusions 
 

The experiments performed in this work verified the hypothesis that, with charged 

particle radiation, the minority carrier lifetime is the culprit for degradations in higher 

level detector performance metrics such as dark current and quantum efficiency. Using 

this TRPL system to directly measure the radiation tolerance of the minority carrier 

lifetime on pre-processed samples can provide more rapid, inexpensive quality feedback 

to researchers by characterizing up to 20 samples (designs) at a time before investments 

are made in processing complete detectors. This can also enable the simulation of 

degradations in the higher level detector performance metrics rather than performing 
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expensive empirical studies on devices further along in the manufacturing process, 

examples of which are shown in Figures 6.2-6.3.  

 

Figure 6.2: Examples of 𝜂−1(Φ𝑝) for a typical MWIR HgCdTe 

photodiode and an III-V Sb-based nBn detector. 

 

 

Figure 6.3: Examples of JD increasing with Φ𝑝 in a typical MWIR 

HgCdTe photodiode and an III-V Sb-based nBn detector. 
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These examples validated the device specific equations in Chapter 2 and were the source 

of interest in directly characterizing the minority carrier lifetime.  

 In Figure 6.4 all the lifetime damage factors 𝐾𝜏−1 of the III-V Sb-based nBn and 

II-VI HgCdTe detector structures are plotted as a function of inverse initial SRH-lifetime 

𝜏−1(0) on a log-log scale.  

 

Figure 6.4: Lifetime damage factors 𝐾𝜏−1 of III-V Sb-based nBn and II-VI 

HgCdTe detector structures plotted on a log-log scale as a function of the 

inverse of their initial lifetimes, 𝜏−1(0). Empirical fitting shows a power-

law relationship between  𝐾𝜏−1 and 𝜏−1(0). 

 

This plot, again, clearly illustrates that generally the lifetime of II-VI HgCdTe materials 

are nearly an order of magnitude more tolerant to proton irradiation induced displacement 

damage compared to III-V Sb-based nBn materials. It also appears to indicate that a 

power law relationship appears to exist between 𝐾𝜏−1 and  𝜏−1(0) for the nBn structures. 

While no similar relationship appears to exist for the HgCdTe samples, this may be the 

result of too few experiments to which can be referred. The appearance of a power-law 
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dependence is likely the result of 𝐾𝜏−1 and 𝜏−1(0) simply sharing a similar dependence 

on the 𝜎𝜈𝑡ℎ product, not necessarily an indication that 𝐾𝜏−1 is really a function of 𝜏−1. If 

that were the case, then 𝐾𝜏−1 would change with 𝑁𝑇(Φ𝑝), which an inspection of all the 

results from the nBn samples in Figure 4.17 clearly shows does not happen; rather, 𝐾𝜏−1 

appears to be constant for each sample over the range of interest for Φ𝑝 here, which 

governs how τ can vary.  

 In addition to providing the inherent radiation tolerances between these two 

competing technologies, the extrapolation of the minority carrier lifetime damage factor 

over a continuous range of proton kinetic energies was enabled for InAs/InAsSb-based 

devices with the NIEL study. Confidence in these results was validated as data proved to 

be in family with what has been seen by other researchers in a variety of other III-V 

devices. This also indicated that the damage factors are much stronger functions of the 

elemental makeup (% ionic character) than on device structure (e.g. complex type-II 

superlattices).  

 The pre- and post-radiation temperature studies yielded that there are significant 

differences in annealing phenomena between the II-VI and III-V detector technologies. 

Not only did the HgCdTe samples almost completely heal after annealing, they did so 

very quickly and it was shown that their crystal lattice defects are mobile at much lower 

temperatures than those within the III-V samples.   

 

6.3 The Fate of III-V Detectors in Space 

Although high performance MWIR III-V T2SL nBn detectors have already been proven 

worthy for terrestrial applications, their future role on space vehicles is uncertain. They 
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can provide many advantages, as discussed in previous chapters; however, as shown in 

this work, they remain plagued with relatively short initial minority carrier lifetimes and 

poor radiation tolerance. Additionally, if strategic annealing is an option for an on-orbit 

radiation tolerance regimen, HgCdTe is the clear choice here as well. 

 All hope is not lost, however, as practically realized minority carrier lifetimes in 

these III-V-based detectors have yet to even approach their theoretical potential. This is 

the current focus of many R&D laboratories around the world, as both material quality 

and device architectures are being improved. Although this work has shown that lifetime 

damage factors for III-V devices are similar, regardless of design/architecture, Figure 5.4 

indicates that the damage factors are smaller for samples having the highest initial 

lifetimes. In other words, the higher the purity of the initial device, the lower its lifetime 

damage factor will be. If the initial lifetimes can be improved significantly, the relatively 

poor radiation tolerance may become less of an issue.  

6.4 Recommended Efforts 

Several efforts are recommended as continuations of this work, and some are already 

under way. First, the lifetime characterization technique shall change from TRPL to W-

band (94 GHz) microwave-photoconductive-decay (µPCD), also known as transient 

microwave reflectivity (TMR) which is described by Kadlec [95]. TRPL is superior for 

short lifetimes and simplicity for travel; however, TMR is more sensitive and superior for 

samples with longer lifetimes (~1 µs). Since PL will become irrelevant, the ambiguity of 

achieving the low-injection condition will be removed as the injection laser can be 

attenuated to the point that no detectable PL will be emitted. Also, TMR will enable the 
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radiation hardness studies of indirect bandgap samples, such as Si-based solar cells, 

opening up a new potential avenue of research.  

 It is recommended that the NIEL study on the III-V T2SL nBn samples be 

continued. Two more batches of sample set #6 are available from the sample growth 

which can be characterized at different proton energies to more completely fill out the 

NIEL curve in Figure 4.24 with empirical results.  

 Further analyses can be performed on the existing pre- and post-radiation lifetime 

vs. temperature studies. By performing curve fits on these data, such as those shown in 

Figure 4.18, additional information can be extracted as a function of proton fluence, such 

as changes in the average energy level of the defect/trap concentration and charge carrier 

densities as attempted by Höglund [34]. This should improve the understanding of the 

fundamental differences in lifetime radiation tolerances between II-VI and III-V material 

systems.  
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