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Preface

This volume includes the papers and proceedings of a conference
on the topic of “Targeting Employment Services,” which was held in
Kalamazoo, Michigan, from April 29 to May 1, 1999.  The conference
was jointly sponsored by the W.E. Upjohn Institute for Employment
Research and the U.S. Department of Labor.  The aim of the conference
was to review recent developments in targeting of employment services
and to consider the possible application of targeting to other areas of
employment policy.  The conference comprised the presentation and
discussion of research papers as well as panel discussions.  Presenters,
panelists, discussants, and attendees at the conference included a rich
mix of scholars, practitioners, and policymakers.  As editors of this
conference volume, we have tried to ensure that the material is present-
ed in a way that is accessible to a broad audience.

During the early 1990s in the United States, rising long-term un-
employment and tight budgets for employment services combined to
yield an interest in targeting employment policy expenditure to clients
for whom the added benefit would be greatest.  Field experiments spon-
sored by the U.S. Department of Labor suggested that early and inten-
sive provision of job search assistance could reduce the risk of long-
term joblessness, with the beneficial side effect of conserving
unemployment insurance (UI) reserves.  This led to a federal require-
ment in 1993 that states establish and operate Worker Profiling and
Reemployment Services (WPRS) systems.  WPRS requires UI benefi-
ciaries who are not expecting recall to their prior job, and who are iden-
tified as potentially long-term unemployed, to receive job search assis-
tance or risk losing their UI entitlement.

Worker “profiling” in WPRS was the first U.S. application of for-
mal statistical models for targeting resources to employment policy.  In
most cases, the chapters in this book use the term “targeting” rather
than the more familiar “profiling” for two main reasons.  First, target-
ing is a more generic term that suggests both formal and informal ap-

xi



proaches; that is, procedures that use either statistical or nonstatistical
methods.  Second, targeting is a more inclusive concept that covers
both the selection and resource allocation process.  Profiling, however,
is popularly understood as only being part of a selection process.

This volume presents a comprehensive view of current knowledge
on targeting employment services.  Such a task would have been im-
possible by ourselves.  We gratefully acknowledge the contributions of
our talented group of chapter authors.  A brief biographical statement
about each author is provided at the back of this book.  Following the
conference, the chapters of this book were revised based on the com-
ments of conference discussants.  The text of discussants’ comments
are included after the chapters.  We thank the discussants and other con-
ference attendees for their constructive guidance for the authors.  A
complete list of conference attendees can be found at the back of this
book.

The remarks of our panelists enlivened the conference and greatly
add to the relevance of this book for our intended broad audience.  As
state and national policymakers, they presented diverse perspectives
and helped to shape our understanding of the practicality of targeting
employment services.  We thank them for their contributions.

The conference was successful because of the generous contribu-
tions of many.  In particular, we thank our speakers John Beverly and
Jim Vollman, and our conference session chairs David Balducchi and
Eric Johnson.  We also thank the conference planning and event staff at
the W.E. Upjohn Institute for Employment Research: Claire Black,
Nancy Mack, and Phyllis Molhoek.  Finally, for help in producing this
book we thank Allison Hewitt Colosky, Kevin Hollenbeck, and David
Nadziejka of the W.E. Upjohn Institute for Employment Research pub-
lications staff.

Views expressed are opinions of the chapter authors and do not nec-
essarily reflect the positions or policy of the U.S. Department of La-
bor, the W.E. Upjohn Institute for Employment Research, or the trustees
of the W.E. Upjohn Unemployment Trustee Corporation.

xii Preface



1
Targeting Employment Services

under the Workforce 
Investment Act

Stephen A. Wandner
U.S. Department of Labor

The Workforce Investment Act (WIA) of 1998 changed the em-
ployment policy landscape in America.  It reduced eligibility require-
ments for program participants, changed administrative relations
among service delivery agencies, and refocused systems for perfor-
mance accountability.  Taken together, these features are expected to in-
crease the volume of customers at local employment centers, require
frontline service delivery staff to perform a multitude of new functions,
and induce management to place an even greater emphasis on opera-
tional efficiency and program effectiveness.  Since the resources of the
workforce development system are limited, service referral must be ju-
dicious to achieve the greatest social return.

Under WIA, a premium is placed on serving customers effectively
and efficiently.  Consequently, frontline staff could benefit greatly from
tools that help to quickly identify customers who would benefit the
most from particular services.  The administrative process by which in-
dividuals are selected to participate in programs may be referred to as
“targeting.”

Targeting can be thought of as a selection and allocation process in
which a limited number of participants are selected from a broader pool
of eligible customers.  This selection process takes place in an environ-
ment where receipt of services is not an entitlement, and where the
number of potential program participants greatly exceeds the resource
capacity.  Employment services targeting can be done in either a formal
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2 Wandner

or an informal way.  Targeting is either explicit or implicit.  Whenever
selection and allocation decisions are made, targeting is being done.

Traditionally, the process of selecting clients for program participa-
tion has been done informally; that is, without the aid of structured sta-
tistical models.  Informal targeting can take many forms.  Procedures
followed at the local level depend on budget and administrative condi-
tions, as well as on the information and assessment tools available to
frontline workers in the workforce development system.  The result
may be a first come, first served approach.  It may be done by purchas-
ing blocks of services, and then finding customers to fill the available
slots.  It may also be done by an active outreach process, such as the use
of rapid response teams that serve future dislocated workers before lay-
offs occur for large publicly known enterprises.  In most cases, infor-
mal targeting is not systematic and uses little or no objective data to
make program referral decisions.  Informal targeting is frequently time-
sensitive, seasonal, and driven by funding cycles.

Formal targeting involves having frontline staff in employment
centers use targeting tools that are based on previously analyzed pat-
terns of service receipt and reemployment success.  Such statistics-
based tools can provide frontline workers a guide to help make service
referral decisions lead to better labor market outcomes.  Targeting, us-
ing statistical profiling methods, has been recognized by the Organisa-
tion for Economic Co-operation and Development (OECD 1998) as an
approach with broad application to the workforce development pro-
grams of industrial nations.

Evidence on the effectiveness of active labor market policies . . .
suggests that they should be well targeted to the needs of individ-
ual job seekers and the labor market, and that treatment should
start as early as possible in the unemployment spell.  But offering
individual treatment along with early intervention would be very
costly.  There is thus a premium on accurately identifying job
seekers at risk.

The early identification of job seekers at risk of becoming
long-term unemployed is a longstanding and basic endeavor of the
public employment services (PES).  Indeed, good judgment in this
area forms part of the professional competence and work experi-
ence of PES staff.  However, a few countries have gone further by
introducing more formal methods of identifying at-risk job seek-
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ers and laying out procedures on what to do with them.  This is
usually referred to as profiling and is used in this paper to cover
the approach of i) the identification of individuals at risk of long-
term unemployment; ii) the referral to various active labor market
programs.

Such programs have been implemented on a nationwide basis in the
United States and Australia and have received considerable develop-
mental attention in Canada (Eberts and O’Leary 1997).

Under WIA, the need for targeting is greater than under its prede-
cessor, the Job Training Partnership Act (JTPA).  WIA service referral
principles are summarized relative to those of JTPA in Table 1.1; spe-
cific citations from the acts are provided.  WIA has established a hierar-
chy of services from core, to intensive, to training.  Targeting could be
useful to help determine which users of core services also may benefit
from intensive services.  A refined targeting tool could also help select
which among the intensive services could most help the client, or
whether training is appropriate.

Core services include eligibility determination, outreach, intake
and orientation, initial assessment, job search assistance and placement
assistance, and provision of information relating to labor market condi-
tions, program performance, supportive and follow-up services, as well
as the availability of unemployment insurance (UI) and welfare-to-
work (WTW) programs.  These services are available on a self-serve
basis but frequently require staff assistance.  Intensive reemployment
services universally require staff assistance and include individual and
group counseling, expanded job search workshops, service coordina-
tion assistance, and development of customer service plans.  Training
services may be either in occupational job skills, job search skills, re-
medial reading and mathematics, or on-the-job training.

When thinking about targeting under WIA, it is important to re-
member that current economic conditions do not remain stable forever.
Although the United States experienced an unprecedented period of
prosperity with low inflation in the 1990s, the business cycle has
proven not to be dead.  In periods of recession, statistical targeting
methods are particularly useful.  

While these methods are useful at all times for a selection process
of choosing the right services for the right people, the resource alloca-
tion issue becomes more severe during recessions.  As resources be-
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Table 1.1  WIA Service Principles Relative to JTPA

Increased Reemployment Services Emphasis: The emphasis under WIA is
promoting return to work.  Relative to its predecessor, JTPA, the focus is less
on training and more on searching for work first.  Under JTPA, at least 50
percent of program funds had to be spent on training (JTPA, section
108(b)(4)(B)); WIA has no such requirement.  The emphasis in WIA is using
core services to get a job and moving to intensive services or training only if
necessary to get a job.
Universal Access to Core Services: Section 134(d)(2) of WIA states that
core services “shall be available to adults or dislocated workers, through the
one-stop delivery system . . .”  While there is universal access under WIA, el-
igibility was restricted under JTPA to participation of adults and dislocated
workers found eligible under section 202(d)(1)(A) as economically disadvan-
taged adults or under section 301 as dislocated workers.
Targeting of Intensive Services: Receipt of intensive services under WIA
depends upon the flow of customers from core services, as well as decisions
by one-stop operators.  Intensive services are open to adults and dislocated
workers who are either “unemployed and are unable to obtain employment
through core services” and “determined . . . to be in need of more intensive
services . . . to obtain employment” or employed but are “determined by a
one-stop operator to be in need of such intensive services . . .”  (See WIA sec-
tion 134(d)(3)(i) and (ii).)
Targeting of Training: Training is more broadly available, subject to one-
stop operator decision making, under WIA for both adults and dislocated
workers (section 134(d)(4)) than under JTPA.  This broad availability of
training must be coupled with the priority issue raised in WIA section
134(d)(4)(E): “In the event that funds . . . for adult employment and training
activities . . . are limited, priority shall be given to recipients of public
assistance and other low-income individuals for intensive services and
training . . .”
Core Performance Measures: Although the core standards in JTPA section
106 and WIA section 136(b)(2)(A) appear fairly similar, WIA section 136 is
far more developed and sophisticated.  For example, there is a distinction un-
der section 136(d)(2) about additional information that a state must include,
such as retention and earnings received in unsubsidized employment 12
months after entry into employment (section 136(d)(2)(D)) and entry into un-
subsidized employment related to training received (section 136(d)(2)(A)).
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come relatively more limited in recessions and choices must be made
among a much larger pool of potential customers, these statistical tools
can be adjusted in their application over the business cycle.

The chapters of this book review U.S. experience with targeting
reemployment services and self-employment assistance to UI benefici-
aries most likely to exhaust benefits, suggest other employment pro-
grams that might benefit from targeting, examine Canadian efforts to-
ward targeting reemployment services, and consider prospects for a
new Frontline Decision Support System (FDSS) for one-stop centers.
The remainder of this introductory chapter considers each of these in a
bit more detail.

WORKER PROFILING AND REEMPLOYMENT SERVICES

In November 1993, the U.S. Congress enacted legislation that in-
cluded provisions requiring each state to implement its own permanent
Worker Profiling and Reemployment Services (WPRS) system.  These
systems identify likely dislocated UI claimants using statistical models
and provide them with job search assistance during the early weeks of
their unemployment.  By law, a WPRS system must identify which
claimants are likely to exhaust their regular UI entitlement and will
need job search assistance services to make a successful transition to
new employment.  WPRS was operational in all states by early 1995.
There is now more than five full years of experience with the operation
of a national program.

The WPRS initiative was based on a large body of experimental re-
search conducted by the states and the federal government (U.S. De-
partment of Labor 1995; Meyer 1995; Corson and Decker 1996).  That
research suggested WPRS systems could be an effective and efficient
way to speed dislocated workers back to productive employment.  The
U.S. Department of Labor (DOL) worked with a number of states to
conduct a nationwide evaluation of WPRS with the goal of suggesting
ways to improve the system (Dickinson, Kreutzer, and Decker 1997).

Implementation of WPRS systems in every state represented a
large effort by the U.S. workforce development community, especially
the UI, Wagner-Peyser, and Economic Dislocation and Worker Adjust-
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ment Assistance (EDWAA) programs.1 Implementation has required
the establishment of operational linkages between employment and
training programs at the state and local levels of government.  It also
has required cooperation between local, state, and federal government
entities.  The WPRS initiative is making referrals to reemployment ser-
vices at an annual rate of about 800,000 workers per year nationwide
(Messenger, Schwartz, and Wandner 1999).  This referral level repre-
sents about one-third of the more than two million workers who be-
come dislocated each year.2

WPRS profiling is a two-step process to identify permanently sep-
arated workers with reemployment difficulty.  First, permanently sepa-
rated workers are identified by screening out two groups of workers:
those subject to recall and/or those subject to union hiring hall agree-
ments.3 These workers must also be UI-eligible as demonstrated by the
requirement that they receive a UI first benefit payment.  Second, the
likelihood of UI benefit exhaustion is predicted using a statistical mod-
el (Wandner 1997, 1998).

For most states the profiling referral model was developed using
logit regression analysis applied to historical data from various state
administrative records.  The dependent variable in the model is usually
a binary variable (i.e., a zero or a 1, depicting whether or not the work-
er exhausted all entitlement to UI benefits).4 The profiling model esti-
mates a probability of UI benefit exhaustion for individuals based on
their individual characteristics and current labor market conditions.
The variables in this model include education, job tenure, change in
employment in previous industry, change in employment in previous
occupation, and local unemployment rate.

Because of federal civil rights legislation, the states were prohibit-
ed from using certain variables as part of their profiling mechanisms,
such as age, race/ethnic group, and gender.  An analysis comparing re-
sults when including and omitting these variables indicated that the ef-
fect of this omission on the predictive power of the profiling model is
generally very small.5

A few states profile based on characteristic screens alone.  The
process involves a small number of characteristics, each of which has a
preset cutoff value or criterion.  Individuals are selected if they meet
the criteria for each screen used.  A number of states that initially used
characteristic screening have decided to convert to statistical models
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because statistical models have proven to be a more flexible and accu-
rate targeting device for making referrals to reemployment services.

For each local workforce development office, UI claimants are
ranked by their exhaustion probabilities—from high to low—to form
the basis for referral to reemployment service providers.  Staff mem-
bers from the service providers work with referred customers to devel-
op an individual service plan.  There is a wide variation among states
regarding the extent of services and the degree of individualization of
each plan.

The WPRS evaluation (Dickinson, Kreutzer, and Decker 1997;
Hawkins et al. 1996) found that states were successful in implementing
their statistical profiling models, and the models successfully identified
those UI claimants most likely to exhaust their UI benefits.  States ap-
pear to be successfully determining service capacity for providing
reemployment services.

The Department of Labor (DOL) has recommended that the states
provide a comprehensive and intensive set of reemployment services,
although all participants do not need and probably should not receive
the same set of services.  Rather, the focus should be on the develop-
ment of an individual service plan for each referred worker—to meet
the needs of the individual customer and to avoid an approach that
would be “one size fits all” (U.S. Department of Labor 1994a, Field
Memorandum 35-94).

Reemployment services can be provided by a number of different
organizations, but the usual provider in most states is the Wagner-
Peyser agency, the employment service.  This choice is related to the
history of workforce development programs.  The employment service
and UI were created as two interdependent programs in the 1930s and
have been closely associated at state and local levels ever since.  Nine
out of 10 workforce development local offices around the country
house both Wagner-Peyser and UI units.

In early 1998, DOL established a WPRS policy workgroup consist-
ing of state and federal representatives.  Based on the first three years of
WPRS operation, the workgroup made seven recommendations in its
final report (Messenger, Schwartz, and Wandner 1999).

1) states should update their profiling models regularly,
2) states should profile all claimants who file an initial claim,
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3) states should accelerate their profiling and referral process to
ensure early intervention, 

4) states should improve reemployment services provided to pro-
filed and referred claimants,

5) program linkages should be improved between Wagner-Peyser
Act, JTPA Title III, and UI programs,

6) adequate funding should be devoted to providing more and bet-
ter reemployment services through state WPRS systems, and 

7) WPRS feedback and reporting systems should be improved.

An important consideration is that the state and federal govern-
ments need to devote more resources to reemployment services, be-
cause profiling, no matter how well implemented and targeted, cannot
be effective unless substantial and effective reemployment services are
provided to WPRS participants.  The federal government responded in
FY 1999 by providing $5.2 million in funding for innovative approach-
es to providing reemployment services to dislocated workers collecting
UI and served by the WPRS system.  More recently, Congress provided
$35 million in both the FY 2001 and FY 2002 budgets to provide reem-
ployment services to workers identified as in need by WPRS.

Part I of the book presents two chapters and a panel discussion that
examine the WPRS system in some detail.  Chapter 2, by Rob Olson,
Marisa Kelso, Paul Decker, and Daniel Klepinger, considers the statis-
tical modeling challenge of predicting who among UI recipients is most
likely to exhaust their benefits.  Chapter 3, by Katherine Dickinson,
Paul Decker, and Suzanne Kreutzer, summarizes an evaluation of
WPRS effects in a select group of states.  Chapter 4 reports the panel
discussion involving Pete Fleming, Al Jaloviar, Helen Parker, and Marc
Perrett on the experience of federal and state policymakers with WPRS.

APPLICATIONS OF TARGETING METHODS

Part II of the book examines employment policy applications of
targeting in the United States beyond the WPRS system.  These include
experience with targeting self-employment assistance, the possibility
of targeting reemployment bonuses, optimal training choices for dis-
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placed workers, targeting welfare to work services, and possibilities for
targeting job retention services for welfare recipients who have gained
employment.  Some background on these chapters follows.

Self-Employment

Outside of the WPRS system, targeting participants with a formal
statistical model is now being done for only one other U.S. employ-
ment program: self-employment assistance (SEA).  Indeed, states that
have implemented SEA use exactly the same logit-based targeting
model as is used for WPRS.

From 1990 to 1993, DOL ran SEA experiments in two states, Mas-
sachusetts and Washington.  The experiment conducted in Massachu-
setts used a form of profiling to target participation.  The profiling mod-
el for the experiment was different from the WPRS model, but it used
similar variables to predict likely exhaustion of UI benefits.  Profiling
was also intended to assuage employer concerns that workers who were
not permanently laid off by employers might otherwise be eligible for
SEA.

Based on preliminary impact analysis results from the two SEA ex-
periments available in mid 1993, a provision allowing states to estab-
lish SEA programs as part of their UI programs was enacted into feder-
al law as part of Title V (transitional adjustment assistance) of the
North American Free Trade Agreement (NAFTA) implementation act
(Public Law 103-182, U.S. Department of Labor 1994b).  Signed into
law December 8, 1993, this provision allowed states the option of of-
fering self-employment assistance to profiled UI claimants as an addi-
tional means of helping assist dislocated workers obtain new employ-
ment.  However, SEA authorization was temporary and set to expire in
December 1998 (Orr et al. 1994).  The legislation was enacted because
profiling was believed to target the program to appropriate participants,
and because it was expected to have a neutral impact on the federal
budget.  Cost neutrality resulted from targeting offers to individuals
who likely would have exhausted their UI benefit entitlements in the
absence of the program.

After the temporary authorization for SEA under NAFTA, the final
evaluation report on the SEA experiments in Massachusetts and Wash-
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ington was completed and published by DOL in June 1995.  Based on a
three-year follow-up, offers in the Massachusetts SEA experiment in-
creased participants’ total time employed by nearly 1.9 months and
increased net annual earnings by $5,940 over the three-year follow-
up period.  As a result, the final evaluation report recommended that 
“. . . SEA should be permanently incorporated into the U.S. employ-
ment security and economic development system” (Benus et al. 1995).

In accordance with the 1993 legislation, DOL conducted a review
of the SEA program through 1996.  All state programs used a WPRS
model to target participation offers.  Just as in the Massachusetts exper-
iment, SEA is administered through UI and amounts to a work search
waiver so that weekly UI payments continue while self-employment
activity begins.  Slightly more than 2,600 individuals participated in
SEA programs during 1996 in the five states that had operational pro-
grams at that time (New York, Maine, Oregon, Delaware, and New Jer-
sey).  In addition, based on annual program outcome data submitted by
New York, Oregon, Maine, and Delaware, over two-thirds of SEA pro-
gram participants started their own businesses, and between 18 percent
and 50 percent also worked in wage and salary employment (Vroman
1998).

The states with SEA programs wished to continue them beyond the
sunset date in December 1998.  New York, with the oldest and largest
program, led the effort together with Pennsylvania, which had the
newest program.  Congress authorized a permanent SEA program in
September 1998, and the bill was signed into law on October 28, 1998.

By 2001, eight states had developed and implemented SEA pro-
grams: New York, Maine, Oregon, Delaware, New Jersey, California,
Maryland, and Pennsylvania (in order of program implementation).
Most SEA programs remain small.  Less than 1 percent of all UI recip-
ients participate.  All states require demonstration of the interest and
ability to start and run a small business before granting SEA participa-
tion.  The SEA programs have removed a barrier to self-employment in
the UI law, and instead have actively supported eligible workers in
making the transition from unemployment to self-employment.

Under the new legislation, DOL issued amended federal guidelines
to inform the participating states that they may continue their existing
programs and encourage other states to consider implementing their
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own programs.  SEA remains the same program it was during the five-
year trial period, retaining the requirement that states select participants
using a profiling mechanism.  Profiling relating to potential exhaustion
of UI benefits continues to be a requirement under the new program,
but states are no longer required to submit SEA program plans to DOL
in advance of implementing their programs.6

Chapter 5, by Jon Messenger, Carolyn Peterson-Vaccaro, and
Wayne Vroman, reports on the experience with targeting self-employ-
ment assistance.  This is the only other currently operating statistical
targeting application in U.S. employment policy.  The remaining chap-
ters of Part II suggest further opportunities for formal targeting of em-
ployment services.

Reemployment Bonuses

Between 1984 and 1989, reemployment bonus experiments were
conducted in the states of Illinois, New Jersey, Pennsylvania, and Wash-
ington.  Each experiment involved random assignment of UI claimants
to treatment and control groups.  The experiments each offered different
levels of lump sum payments to workers who took new, full-time jobs
within 6 to 12 weeks and stayed employed for at least three to four
months.  These experiments were conducted to learn more about the be-
havioral response of UI recipients to UI program parameters.  In partic-
ular they were tested as a positive incentive for speedy return to work.
The idea of reemployment bonuses originated in Japan, where unem-
ployed workers can receive a cash bonus for accepting a new job.  In
Japan, unemployed workers can receive a bonus once every three years.

UI claimants would improve their economic situation if they went
back to work sooner at similar or better paying jobs than they would
have taken in the absence of bonus offer.  The government sector would
be better off if the cost of the bonus were offset by a decrease in UI
payments to unemployed workers and by an increase in tax receipts
during their longer period of employment.  The Reemployment Act of
1994 proposed to permit states to provide reemployment bonus pro-
grams, but the legislation was not enacted.

All four reemployment bonus experiments had similar eligibility
requirements for inclusion in treatment or control groups.  The re-
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quirements were set to assure that workers filed for or drew UI bene-
fits, to simplify administrative details, and to select workers who had
experienced some degree of work displacement.  Program designs set
the bonus amount, the time period during which workers could quali-
fy for the bonus, and the conditions under which they could receive the
bonus.

A number of lessons have been learned from the bonus experi-
ments.  As predicted by job search theory, cash bonuses have a signifi-
cant impact on job search behavior and lead to reduction in the average
duration of unemployment, resulting in a desirable expedition of reem-
ployment.  Larger bonuses also had the largest impact on unemploy-
ment durations.  As expected from the empirical literature on UI work
disincentives, the bonuses had no effect on wages, indicating no de-
cline in the quality of jobs taken in response to the offer of reemploy-
ment bonuses.  There is also no evidence that the bonuses had any ef-
fect on worker attachment to their previous employer, as they had no
effect on workers subject to recall (Woodbury and Spiegelman 1987;
Decker and O’Leary 1995).

On the other hand, because unemployment durations did not direct-
ly relate to the dollar level of the bonus offer, there was not a continu-
ously increasing response.  The initial findings left uncertainty about
the design of an optimum bonus offer.  None of the options tested were
found to be cost-effective for either the general UI claimant population,
or for claimants similar to dislocated workers.

O’Leary, Decker, and Wandner (1997) reexamined evidence from
the bonus experiments to determine whether a reemployment bonus
targeted to those UI claimants most likely to exhaust benefits would be
more cost-effective.  They found that profiling models similar to those
used by states as part of their WPRS system can be effectively used in
this targeting.  Using these models can increase the cost-effectiveness
of bonus offers by generating larger average reductions in UI benefit
payments than a nontargeted bonus offer.

The single treatment design that emerged as the best candidate for
a targeted reemployment bonus is a low bonus amount, with a long
qualification period, targeted to the half of claimants most likely to ex-
haust their UI benefit entitlement.  Such a targeted bonus offer emerged
as a realistic prospect for a cost-effective early intervention strategy to
promote reemployment.  It was estimated to yield appreciable net ben-
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efits to the UI trust fund if implemented as a permanent national pro-
gram.

Chapter 6, by Christopher O’Leary, Paul Decker, and Stephen
Wandner, summarizes the authors’ research on targeting reemployment
bonuses offered to UI beneficiaries in the states of Pennsylvania and
Washington using WPRS models.

Choice of Training

Improved targeting of training could be a powerful tool to guide
dislocated workers to the type of training proven to be most cost-effec-
tive.  Based on their labor market and personal characteristics, dislocat-
ed workers could be referred to different types of training such that
their employment and earnings outcomes could be improved over a
simple random assignment process.

Jacobson, LaLonde, and Sullivan (1999) studied the training deci-
sions of displaced workers in the state of Washington during the early
1990s, examining the community college courses taken by these work-
ers.  Data on dislocated workers enrolled in 25 Washington community
colleges included the types of courses they took, their grades, and the
period of time in which they were enrolled.  Dislocated worker status
and reemployment earnings history were identified using UI wage
records.

The study divided training into nine categories.  It found that, aver-
aging across all kinds of training, displaced workers who received
training through community colleges experienced small earnings gains.
However, these overall mean effects masked the fact that high earning
gains accrued to those taking quantitative or technical courses; specifi-
cally, courses in three categories: health services, technical skills, and
science and mathematics. The study also examined how the labor mar-
ket and personal characteristics of dislocated workers affected their en-
rollment and participation in community college.  Rates of enrollment,
training, and training completion were found to be related to education-
al level, industry, prior wages, urbanization, job tenure, age at separa-
tion, gender, and minority status.

The impact of participation by dislocated workers in community
college training on earnings was an increase in quarterly earnings of
about $6 for each credit earned.  The distribution of earnings gains var-
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ied by minority status, age, tenure at displacement, industry, region of
the state, and prior education.  The highest return to community college
schooling accrued to workers with high tenure, more prior schooling,
and those in the state’s largest labor market (Seattle).  The study con-
cluded that training for dislocated workers was most cost-effective
when provided in three (health services, technical skills, and math and
science) of nine types of training studied, and that the effectiveness of
providing this training can be increased by targeting to those workers
who can achieve the greatest earnings gains from this training.

Chapter 7, by Louis Jacobson, Robert Lalonde, and Daniel Sulli-
van, summarizes the authors’ research on returns to different types of
community college training in Washington for dislocated workers.

Welfare-to-Work

In August 1996, federal welfare reform legislation was enacted in
the form of the Personal Responsibility and Work Opportunities Rec-
onciliation Act.  The new program, called Temporary Assistance to
Needy Families (TANF), replaced Aid to Families with Dependent
Children (AFDC).  In August 1997, to support the employment em-
phasis of TANF, the DOL-administered welfare-to-work (WTW) pro-
gram was enacted.  It provided $3 billion to states and localities to as-
sist welfare recipients in obtaining and retaining employment.  Under
welfare reform, the WTW program provides employment assistance to
welfare recipients using a “work first” approach, such that recipients
receive assistance in finding jobs first before being referred, as needed,
for additional services, such as education and training.  They can re-
ceive training as well as other postemployment services, such as child
care and transportation assistance, but generally only after they be-
come employed.

States have both TANF and WTW federal funding to assist wel-
fare recipients in their employment efforts.  TANF provides for block
grant funding to states, with funding fixed at the 1994 level.  Welfare
rolls have fallen sharply, however, leaving a substantial budget for as-
sisting TANF recipients in achieving initial employment, as well as
helping former welfare recipients retain their jobs and advance their
careers.
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WTW and similar programs initiated by the states are particularly
amenable to targeting.  Welfare recipients vary a great deal in their pri-
or labor force attachments, which makes their abilities to become em-
ployed very different.  Welfare recipients with strong work histories
need relatively less assistance, while those with no work experience
have very great needs.  Further, while many welfare recipients can get a
job, other barriers to steady employment and career growth exist, in-
cluding having reliable child care and transportation.

Similar to dislocated workers who provide data used for statistical
targeting when they file for UI benefits, welfare applicants provide wel-
fare and work-first agencies similar data that could be used to benefit
their career development choices.

Welfare targeting can be used by the WTW agency whether it is the
local workforce development agency or the local welfare agency.  Re-
gardless of the location, service to clients can be improved by making
use of client data to more effectively target employment services.  The
existence of targeting mechanisms may also make it easier to encour-
age cooperation between the workforce development and welfare agen-
cies when the functions are separated.

The Department of Labor is interested in helping local WTW agen-
cies make more informed choices about the provision of employment
services to welfare recipients.  To that end, DOL decided to test whether
a statistical targeting mechanism could be developed to determine
which welfare recipients should receive particular types of WTW ser-
vices.  DOL funded the W.E. Upjohn Institute for Employment Research
to develop and test the use of WTW profiling to help welfare recipients
find their initial jobs.  The model was developed during 1997.  During
1998 and 1999, the Upjohn Institute tested this model in Michigan in the
Kalamazoo-St. Joseph county service delivery area.  The WTW service
targeting model reversed the concept of WPRS profiling to instead esti-
mate the probability of becoming employed.  The variables used to ex-
plain the propensity for employment reflect labor market experience and
characteristics of the welfare population (Eberts 1997).  They are

1) age at time of enrollment, 
2) parental status, 
3) educational attainment, 
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4) AFDC/TANF history,
5) target group (long-term welfare recipient, older children, little

or no work experience or education), 
6) prior employment, and 
7) compliance history in previous WTW enrollment.  

Chapter 8, by Randall Eberts, reports on a field experiment for target-
ing WTW services, which was done in Kalamazoo and St. Joseph coun-
ties in Michigan.  WTW profiling models were also developed by
Broward County, Florida, with a number of other states interested in
trying the approach.

Job Retention and Advancement by Former Welfare Recipients

As more welfare recipients become employed, it has become clear
that finding a job is just the first step toward becoming a stable working
member of the labor force.  In recognition of this reality, states have
been spending increasing portions of their TANF and WTW funds on
job retention and advancement.  As part of this effort, the U.S. Depart-
ment of Health and Human Services (HHS) has sponsored a number of
research projects dealing with job retention.  Included in these projects
is an analysis of what postemployment services are needed and how to
target these services to those most in need of them.  HHS was interest-
ed to see if such analysis would allow the design of programs that en-
courage job retention and advancement or, in the case of job loss, rapid
reemployment.

Rangarajan, Schochet, and Chu (1998) examined the feasibility of
targeting welfare recipients who initially find jobs for job retention ser-
vices based on their personal and labor market characteristics.  As with
dislocated worker profiling, the goal of the study was to try to improve
the efficiency of resource use, targeting postemployment services to
clients most in need, as measured by those welfare recipients who are
most likely to have long periods without employment.

Using the National Longitudinal Survey of Youth data, the study
constructed a nationally representative sample of welfare recipients
who found jobs during the panel period and analyzed their employment
experiences over the five-year period after they entered the labor force.
Similar to other profiling methods, Rangarajan, Schochet, and Chu de-
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veloped regression models for predicting which sample members might
have negative employment outcomes, using individual and labor mar-
ket characteristics available in welfare administrative data.  They were
able to determine the weighted effect of each factor on employment.
Their models were sufficient to target job retention services by identi-
fying individuals who initially find jobs but have the greatest risk of
subsequent periods without employment.

The variables used to predict long periods without employment are

1) age younger than 20 years when first applied for welfare, 
2) employed less than half the time in year prior to job start, 
3) no high school diploma/GED, 
4) presence of preschool child, 
5) wage less than $8.00 per hour, 
6) no fringe benefits, 
7) no valid driver’s license, and
8) has health limitations.

The study found that the characteristics most strongly related to spells
without employment were working without fringe benefits and having
a health limitation.  The result of this analysis again shows that a series
of personal and labor market characteristics can be used to identify 
who could benefit most by referral to services—in this case, postem-
ployment services.

Chapter 9, by Anu Rangarajan, Peter Schochet, and Dexter Chu, re-
views possibilities for targeting job retention services for welfare recip-
ients who have gained employment.

CANADIAN APPROACHES FOR TARGETING
EMPLOYMENT SERVICES

Part III of the book presents two chapters that report on the Canadi-
an perspective for targeting employment services.  Chapter 10, by Ter-
ry Colpitts, discusses the Service and Outcome Measurement System
(SOMS) developed by Human Resources Development Canada to be a
tool for promoting employment.  SOMS was intended to help frontline
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staff in local public employment service offices counsel job seekers
about the best strategies for gaining employment and to assist analysts
and managers in determining the best employment and/or training
strategies for specific client groups.  A microcomputer-based prototype
of SOMS was built in 1994.

SOMS has not been adopted in Canada; however, many useful les-
sons were learned in the course of its development and pilot testing.
Chapter 10 describes the most important lessons and tells the story of
SOMS.  The policy context, technical structure, and intended use of
SOMS by frontline staff and management are all discussed.  The chap-
ter concludes by reviewing some recent events in SOMS development
and reflecting on SOMS prospects for the future.

To date, Canada has not developed a policy for targeting services to
the long-term unemployed.  It has not been a pressing concern, because
until recently the incidence of long-term unemployment in Canada has
been low.  Public concern about long-term unemployment surfaced in
the 1990s as the ratio of unemployment compensation beneficiaries to
all unemployed (B/U) fell dramatically from 0.83 in 1989 to 0.42 in
1997.  Research revealed that about half of this drop was due to tight-
ening of the unemployment compensation system, but the other half
was due to changes in the nature of the labor market.  In particular, B/U
dropped because the share of unemployed Canadians who have not
worked for the last 12 months has nearly doubled, from 20.8 percent in
1989 to 38.4 percent in 1997.7

Chapter 11, by Ging Wong, Harold Henson, and Arun Roy, docu-
ments the rise in Canadian long-term unemployment and the related
trends in exhaustion of unemployment compensation entitlement.  The
chapter then reports on an empirical exercise using Canadian data,
which attempts early identification of individuals who are at risk of re-
maining jobless for 52 weeks or more.  Such a model, however, is use-
ful only if linked to effective employment measures.  Consequently,
the chapter then reports which services are most likely to promote
reemployment for those at risk of long-term joblessness.  For Cana-
dian unemployment compensation recipients, estimates are provid-
ed on how net benefits of interventions vary depending upon the tim-
ing of the intervention.  Summary and concluding remarks are also
provided.
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NEW DIRECTIONS FOR TARGETING 
EMPLOYMENT SERVICES

The Department of Labor is working with the Upjohn Institute to
pilot test a frontline decision support system (FDSS) for workforce de-
velopment staff in one-stop centers.  The goal of FDSS is to assist staff
in quickly assessing and properly targeting services to customers.
FDSS tools are being tested in new WIA operating systems in Georgia
and Washington.

Chapter 12, by Randall Eberts, and Christopher O’Leary, and Kelly
DeRango, reports on efforts to develop an FDSS for targeting reem-
ployment services in a one-stop environment.  FDSS is comprised of
two main modules: systematic job search and service referral.

The systematic job search module is a means for structured search-
ing of vacancy listings.  The module informs job seekers about their
prospects for returning to a job like their prior one, provides a realistic
assessment of likely reemployment earnings, and identifies occupations
related to the prior one.  The first component is called the industry tran-
sition component.  It provides an estimate of the likelihood that a cus-
tomer can find a job in his or her prior industry.  The second component
provides a realistic assessment of likely reemployment compensation
levels.  This feature relies on an earnings algorithm which is a statisti-
cal model based on personal characteristics, work history, prior earn-
ings, and educational attainment to predict earnings upon reemploy-
ment.  The third component is the related-occupations algorithm.  The
algorithm offers individuals who have exhausted job prospects within
their prior occupation a list of other occupations that are similar to their
prior occupation.

The second module of FDSS is the service referral component.
The primary purpose is to identify the sequence of activities that most
often lead to successful employment.  The service referral module uses
information about the characteristics and outcomes of individuals who
have recently participated in and completed core, intensive, and train-
ing services.  This information is used to estimate the statistical rela-
tionships between personal attributes and outcomes.  This algorithm
has two basic components.  The first is an estimate of a person’s em-
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ployability, or likelihood of finding a job.  The second component is a
delineation of the paths, or sequential combinations of services, that
lead to successful outcomes.  By conditioning these paths on the em-
ployability of a specific customer, the algorithm can offer estimates of
the effectiveness of various programs for individuals with specific mea-
surable characteristics.

An FDSS pilot is in process in Georgia.  The data requirements and
system design of FDSS have been completed, and it is expected to be
implemented in the Athens and Cobb-Cherokee career centers in mid
2002.  A decision will then be made whether to implement the system
statewide.  Based on input from Georgia users, a second, revised sys-
tem will then be completed.  Pilot implementation efforts in Washing-
ton are expected to start after the Washington one-stop computer sys-
tem is operational.  Operational system documentation and a technical
assistance guide will be developed for use in other states.  Training will
then be provided for implementation in other states.

Chapter 13 concludes the book, with a panel discussion involving
Rich Hobbie, Jim Finch, Chuck Middlebrooks, and Jack Weidenbach
on the experience with and future plans of the states for targeting em-
ployment services.

ADDITIONAL OPTIONS FOR TARGETING

Statistical targeting methods can be applied to a wide number of
workforce development programs.  The only requirement is that they
have an appropriate set of historical administrative data that can be ap-
plied to developing accurate statistical targeting methods.  Below are
some examples of possible additional applications that are not dis-
cussed elsewhere in this book but could be developed.

Training Targeting for Welfare Recipients 
and Low-Wage Workers

An extension of the training targeting approach for dislocated
workers (as in Jacobson, LaLonde, and Sullivan 1999) might be an ap-
plication to other adult workers, particularly low-wage workers and
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current and former welfare recipients.  Such models would be valuable
in determining whom to train among a large number of low-wage
workers who may be coming to one-stop centers. developing such
models for former welfare recipients would need to take into consider-
ation the work-first environment of welfare reform.

Underemployed Workers (Skills Mismatch)

Under WIA, many more employed workers are likely to visit/ac-
cess the one-stop centers in search of career advancement, labor market
information, and education and training opportunities.  One group of
employed workers for whom mediated services may be particularly ef-
fective is underemployed workers, especially those with skills that
greatly exceed the skill set needed for their current jobs.  A particularly
cost-effective approach may be to target, identify, and assist these
workers in finding jobs that better match their skills.  The result should
be a substantial increase in earnings for workers and productivity for
society.

Targeting UI Non-Filers among Dislocated Workers

About two-thirds of all dislocated workers apply for UI, and a
much larger portion of those dislocated workers who remain unem-
ployed for five or more weeks claim UI.  However, a significant mi-
nority of dislocated workers never apply for UI.  The one-stop centers
can provide information about UI benefits that may result in increased
application rates for the program.  These workers will be able to apply
for UI benefits in the center, either in person or by telephone.  In ad-
dition, the availability of wage data as part of FDSS could be used to
calculate the monetary eligibility for UI benefits.  Supplying such in-
formation also could increase filing for UI benefits, and the net effect
of the one-stop center may be to increase recipiency rates for UI ben-
efits.

For those dislocated workers who choose not to apply for UI, how-
ever, profiling would be useful—using the state WPRS model—to
make a determination of the need for reemployment services similar to
that done under the WPRS system.  It should be noted, however, that
profiling within the one-stop center and the resulting identification of
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workers in need of services and their referral to services would not re-
sult in mandatory participation in those services.

Job Corps Selection and Retention

Another possible application of targeting to a national DOL pro-
gram would be as a guide for selection of Job Corps participants.  Us-
ing data on past participants, individuals could be profiled to assist in
the selection of participants based on whether they have characteristics
similar to successful Job Corps graduates.

For newly enrolled Job Corps participants, profiling could also be
used to determine which individuals are most likely to drop out of the
Job Corps prior to graduation.  This information could be used to target
the provision of remedial assistance that could increase the Job Corps
retention rate.

The effect of targeting efforts, combined with improved selection
processes and provision of remedial assistance, could increase the cost-
effectiveness of the Job Corps by reducing the program’s drop-out rate.
Dynarski and Gleason (forthcoming) conducted an analysis for predict-
ing which students are most likely to drop out of school, indicating that
the development of such methods could yield positive results.

Notes

1. The EDWAA program was the principal JTPA dislocated worker program in the
United States.  It traditionally recruited participants through either 1) early outreach
(“rapid response”) to workers experiencing mass layoffs or plant shutdowns, or 2)
walk-ins to their local intake centers.  The employment service serves all employed
and unemployed workers, including dislocated workers.  Both programs have sup-
plemented recruitment of program participants with WPRS referral and been active
participants in the overall WPRS system.  For the EDWAA program, most but not
necessarily all WPRS-referred workers are eligible for EDWAA services.

2. The term dislocated worker refers to workers who are permanently laid off from
long-tenured jobs.  These workers tend to suffer extended periods of joblessness
and earn lower incomes when they become reemployed.  For the EDWAA pro-
gram, section 301(a) of Title III of JTPA in part, defined eligible dislocated work-
ers as “individuals who: 1) have been terminated or laid off or who have received
a notice of termination or layoff from employment, are eligible for or have ex-
hausted their entitlement to unemployment compensation, and are unlikely to re-
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turn to their previous industry or occupation, and 2) have been terminated or have
received a notice of termination of employment, as a result of any permanent or
any substantial layoff at a plant, facility or enterprise . . .”  The Bureau of Labor
Statistics (BLS), on the other hand, collects data about displaced workers in its bi-
ennial survey.  It defines displaced workers as workers who permanently lost their
jobs because their plant or company closed or moved, there was insufficient work
for them to do, or their positions or shifts were abolished.  BLS distinguishes be-
tween long-tenured workers who lost jobs they had held for three years or more,
and displaced workers regardless of tenure.  This chapter does not distinguish be-
tween the terms “dislocated” and “displaced” workers; it uses the former term in
all cases.

3. The WPRS system is designed to provide reemployment services to permanently
separated workers who are likely to be unemployed for long periods in their search
for new jobs. Workers who find their jobs exclusively through union hiring halls,
e.g., longshoremen, are considered to be job attached and not searching for new
jobs; they are waiting to return to their old jobs. They are not eligible to participate
in WPRS reemployment services.

4. Benefit exhaustion takes place when claimants draw their potential duration of reg-
ular benefits.  Potential duration usually depends on prior earnings.  The maximum
potential duration is 26 weeks in all states except Massachusetts and Washington,
where it is 30 weeks.

5. Prohibited variables and the effect of their omission are discussed in U.S. Depart-
ment of Labor (1994a), pp. 63 and 151–152. 

6. UI Program Letter 11-98, Permanent Authorization of the Self-Employment Assis-
tance Program, issued on December 17, 1998.

7. See OECD (1998, pp. 41 and 43).  Note that the number used in the analysis is not
the long-term unemployed, but those not employed for a year, which includes both
unemployed and out of the labor force.
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It has been seven years since the Unemployment Compensation
Amendments of 1993 (Public Law 103-152) spawned the Worker Pro-
filing and Reemployment Services (WPRS) system.  In that time, the
U.S. Department of Labor (DOL) and the states have designed and im-
plemented the WPRS system, which uses the unemployment insurance
(UI) system to target reemployment services to permanently displaced
workers early in their unemployment spells.  The method of targeting
used in most states is a two-step process called the worker profiling
model.  The model is intended to identify permanently separated work-
ers who are likely to exhaust their UI benefits.  The likelihood of bene-
fit exhaustion is determined based on a statistical model of the relation-
ship between worker characteristics, which are referred to as the
explanatory variables in the model, and benefit exhaustion, which is the
dependent variable in the model.  As new claimants enter the UI sys-
tem, they are assigned a probability of exhaustion based on their char-
acteristics.  Those claimants with the highest probabilities of exhaus-
tion are referred to mandatory services under WPRS.

29
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In this chapter, we examine the profiling models that states have
constructed under WPRS, and we consider the efficacy of these models
in targeting services to UI claimants who are most in need of services.  In
the first section of this chapter, we describe the details of the profiling
models used in a sample of states.  We focus particularly on the ways in
which states have extended their profiling models beyond the prototype
model that was developed by DOL.  In the second section, we assess the
predictive ability of the type of statistical model of benefit exhaustion
that many states use.  Our assessment is based on comparing the benefit
exhaustion rates between claimants who are targeted for WPRS services
and claimants who are not.  In the third section, we consider whether
states can update their statistical models without losing the capacity to
identify claimants with high exhaustion probabilities.

WORKER PROFILING MODELS IN THE WPRS SYSTEM

WPRS attempts to identify UI claimants with a high potential for
exhausting their benefits and provide them with reemployment ser-
vices.  Prior to WPRS, no objective or equitable mechanism existed for
allocating reemployment services to those who needed them most.
WPRS is a tool that facilitates both the identification of needy
claimants and the allocation of services, such that those claimants most
likely to exhaust their benefits receive highest priority in receiving
available reemployment services.

In identifying likely exhaustees, states may use either characteristic
screens or statistical models.  Each method identifies characteristics
common to recent exhaustees and targets current claimants who share
these characteristics.  Although neither method can target exhaustees
with complete accuracy, both screens and models have been found to be
more accurate than less systematic processes, such as random selection.
Most states have chosen to implement statistical models since they offer
greater accuracy and procedural flexibility than characteristic screens,
and DOL has recommended that states adopt a statistical approach.  A
few states without sufficient historical data to develop a statistical mod-
el have chosen to implement screening methodologies and have taken
steps to collect data necessary to develop models in the future.
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With either method, the target population specified in the WPRS
legislation is claimants who are “likely to exhaust.”  While the specific
make-up of this population differs among states, the ultimate goal is to
identify claimants whose job search skills are no longer sufficient to
obtain suitable employment in their most recent line of work.  Identify-
ing these potential exhaustees is complicated for a number of reasons.
First, the availability and integrity of historical data is poor in many
states.  Data from separate intake systems must often be merged, and
these merges face logistical obstacles.  Second, some readily available
data on personal characteristics (such as ethnicity) have been deter-
mined to be discriminatory under federal equal opportunity legislation
and thus cannot be used in profiling.  Third, and perhaps most impor-
tantly, some key influences on benefit exhaustion, such as motivation
and networking skills, are not quantifiable.  These influences affect
whether or not a claimant exhausts his/her benefits but cannot be mea-
sured and factored into a profiling model.  Given these problems, it is
difficult to develop a profiling model that accurately predicts exhaus-
tion.

Although predicting exhaustion is an inexact science, states have
been able to develop models that considerably reduce prediction errors
relative to less rigorous methods.  Most have either directly adopted the
model initially developed by DOL in 1993 or have used it as a bench-
mark in developing state-specific models for identifying likely exhaus-
tees.  The DOL model consists of two initial screens, recall status and
union hiring hall; a set of variables capturing the claimant’s education,
job tenure, industry, occupation, and the local unemployment rate.
Originally developed from national data, the DOL model was first ap-
plied to state-level data in the test state of Maryland.

The national analysis demonstrated that education, job tenure, in-
dustry, occupation, and the local unemployment are all statistically re-
lated to UI benefit exhaustion.  The Maryland test state project showed
further that an operational state system could be readily developed
from the national model.  A number of states followed Maryland’s lead
in developing their own profiling models using very similar sets of
variables.  Such models, when applied to out-of-sample historical data
(i.e., data not used to develop the model), are able to identify a higher
percentage of exhaustees than the alternatives of random selection and
characteristic screening.  We further examine the predictive power of
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the profiling model in the section “Accuracy in Identifying Likely
Exhaustees.”

Since considerable diversity exists among states, it is not surprising
that several states have found that alternative specifications are needed
to effectively model their populations.  Because state data systems of-
ten retain a great deal more information than just these five variables
from the national model, several states have expanded upon that model
by testing additional variables in an effort to increase predictive ability.
These states retained the variables from the national model and added
those additional variables found helpful in identifying exhaustees.

The Dependent Variable in Worker Profiling Models

Since the inception of WPRS, benefit exhaustion has been the focal
point in targeting those who are eligible.  Public Law 103-152 requires
states to “identify which claimants will be likely to exhaust regular
compensation.”  Therefore, the law focuses on a binary outcome: a
claimant either exhausts regular unemployment insurance compensa-
tion or (s)he does not.  The dependent variable in the national model
was coded as “1” for exhaustees and as “0” for non-exhaustees.  The
output of the model is the predicted probability that each claimant will
exhaust benefits.  Both the national and Maryland versions of the DOL
model use logistic regression to model benefit exhaustion.  A few states
have correctly noted that this approach discards information; a claimant
who almost exhausted is not distinguished from a claimant who came
nowhere near exhausting, although the near-exhaustee may experience
a greater need for reemployment assistance.  Also, since benefits in
most states are subject to variable potential duration, referrals of likely
exhaustees may include some claimants with very low potential dura-
tion among those referred to reemployment services.

As a result, some states have experimented with alternatives to a
binary dependent variable representing exhaustion of unemployment
compensation.  Some states have tested different dependent variables,
such as UI duration and the ratio of benefits drawn to benefit entitle-
ment, and estimated these profiling models via ordinary least squares
(OLS).  While these states typically found that these models targeted
exhaustees no more accurately than the logistic model predicting the
binary exhaustion variable, the OLS estimation used to test these mod-
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els ignores the fact that the alternative dependent variables are “cen-
sored.”  UI duration cannot exceed some maximum (usually 26 weeks),
and the benefit ratio must be between zero and 1.  Maximum likelihood
techniques exist to accommodate censored dependent variables, and
evidence suggests that combining these techniques with dependent
variables that use differences between short-term claimants and near-
exhaustees can improve the targeting of profiling models (Berger et al.
1997).

Modeling the binary exhaustion variable still allows several op-
tions for defining what constitutes “exhaustion.”  In the DOL model,
claimants are coded as exhaustees if they draw 100 percent of their en-
titlement and are otherwise coded as non-exhaustees.  Some states have
expanded the scope of the exhaustion variable by using a more general
definition.  For example, some states code claimants who depleted at
least 90 percent of benefits as exhaustees.  A related variation is to code
claimants who exhaust a high percentage of benefits within a given
time frame as exhaustees (e.g., 80 percent within six months of their
benefit year begin [BYB] date).  This variation would also expand the
definition to include both exhaustees and near-exhaustees, and it would
also shorten the lag time for discerning exhaustion outcomes.  Finally,
exhaustion has also been redefined to automatically include claimants
collecting extended unemployment compensation, since they had, by
definition, exhausted regular benefits.

Other states have narrowed the scope of the exhaustion variable.
For example, some states have determined that claimants who take a
full calendar year to exhaust 26 weeks of benefits are not truly in need
of reemployment services; they may simply be collecting UI benefits
between intervening spells of employment.  To compensate, a time lim-
it has been set (for example, eight months from BYB date) after which
historic claimants would not be coded as exhaustees.  Weeks of poten-
tial duration have also been used as a criterion for narrowing the scope
of the dependent variable.  Variable duration complicates the use of ex-
haustion as the dependent variable because, ceteris paribus, claimants
with shorter potential durations have higher likelihoods of exhaustion
but may not need reemployment assistance.  To compensate, some
states have set a minimum potential duration below which historical
claimants cannot be coded as exhaustees.  Narrowing the definition of
exhaustion using potential duration has been most useful for states that
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find that many short-duration—and perhaps seasonal—exhaustees pass
all of the initial screens (e.g., recall, union hiring hall) yet are not truly
in need of reemployment services.

Explanatory Variables in Worker Profiling Models

While a few alternative definitions of the dependent variable have
been tested, most experimentation has involved the explanatory vari-
ables.  The national model includes the following five variables: educa-
tion, occupation, industry, tenure, and unemployment rate.  Some
states, such as Maryland, adopted only these five variables into their
own models and estimated state-specific parameters.  Others included
additional variables in their models.  Most states collect education, oc-
cupation, and tenure through their job service registration.  Industry in-
formation (as well as other, noncore variables) typically come through
information gathered during the qualification process for unemploy-
ment benefits.  The unemployment rate and information on declining
industries and occupations often come from a labor market information
unit.

Education

Education is often measured as the number of years completed and
is then categorized into intervals for inclusion in the model.  When ed-
ucation data are accurate and variation exists within the population,
profiling models often identify a strong inverse relationship between
education and exhaustion.  However, in areas where skill levels and ed-
ucational backgrounds are fairly homogenous, education is not a very
effective predictor of exhaustion.

Job tenure

Like education, job tenure is measured in years and categorized
into intervals, which are included in the profiling model.  There are rea-
sons to believe that job tenure and exhaustion should be positively re-
lated.  Claimants with long pre-unemployment job tenure are likely to
have outdated skills or be unfamiliar with current job search strategies.
The evidence suggests that exhaustion is positively associated with
years of job tenure.
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Occupation

The occupation of a claimant’s pre-unemployment job may contain
valuable information about the likelihood that the claimant will exhaust
UI benefits.  Unfortunately, occupational coding is a significant obsta-
cle to including occupations in profiling models.  In general, most prob-
lems with occupational coding involve either incomplete data or multi-
ple coding schemes.  Few states have been able to incorporate
meaningful occupational effects into their WPRS systems.  Because oc-
cupational information would likely be valuable in predicting long-
term unemployment, the development of reliable methods for coding
claimants’ occupations could be very helpful to state WPRS systems.

Industry

Because states are legally required to use either industry or occupa-
tion in their WPRS systems, and because creating reliable occupation
variables is difficult, most states have included industry variables in
their profiling models.  Data on industries tend to be fairly reliable be-
cause they are typically captured from UI wage records.  Industry in-
formation is included in some profiling models as a categorical variable
indicating employment in a particular industry, and in other models as a
measure of the employment change in the industry.  Regardless of how
industry information is captured, almost all states have partially col-
lapsed the Standard Industrial Classification codes from the four-digit
levels in which they are typically recorded because four-digit industries
are typically too small to reflect the labor markets faced by claimants.

Unemployment rate

In their profiling models, most states account for regional differ-
ences that may affect UI exhaustion.  Even the smallest states exhibit a
great deal of regional diversity.  Therefore, it should not be surprising
that regional indicators are usually strong predictors of exhaustion.  Be-
cause exhaustion is likely higher in areas with high unemployment,
most states include unemployment rates from the Local Area Unem-
ployment Statistics program in their models.  In states where unem-
ployment and exhaustion are not closely correlated, regional indicator
variables are used to control for regional differences in exhaustion.  Al-
though these regional variables do not vary across claimants within



36 Olsen, Kelso, Decker, and Klepinger

particular regions, the inclusion of regional information may produce a
more accurate profiling model.

Other variables

While some states have used only the five variables from the na-
tional model, others have used them as a benchmark for building a
model with a more extensive list of explanatory variables.  Develop-
ment and testing of additional variables is encouraged by DOL, provid-
ed either industry or occupation is included and all discriminatory vari-
ables are excluded.  Several states have done a considerable amount of
research, yielding the additional variables described in the remainder of
this section.

The variable “pre-unemployment earnings” contains information
about the claimant’s job skills and reservation wage, i.e., the lowest
wage offer that the claimant would accept.  Job skills are difficult to
measure directly, but to the extent that workers are paid according to
their productivity, higher wages are associated with higher skills.  Fur-
thermore, because claimants will not work for wages below their reser-
vation wages, pre-unemployment earnings provides information about
the minimum earnings that would be required for them to leave unem-
ployment for work.  Therefore, some states include pre-unemployment
earnings in their profiling models.  Other states use it to compute the UI
replacement rate and then include the replacement rate in their models.

A claimant’s weekly benefit amount (WBA) may contain informa-
tion about his or her likelihood of exhausting benefits.  WBA can be
used to compute UI’s “wage replacement rate,” which equals WBA di-
vided by pre-unemployment weekly earnings.  Because this rate is in-
versely related to the financial hardship from remaining unemployed,
we would expect a positive relationship between the wage replacement
rate and exhaustion.  This expectation is confirmed by the estimates
from state profiling models.  However, at least one state found that the
replacement rate primarily identifies exhaustees with low potential du-
ration because they worked less during the base period.

Some states have included the potential duration of UI benefits as
an explanatory variable in their profiling models.  Claimants with a
short potential duration are much more likely to exhaust their benefits
but are unlikely to be “dislocated workers,” i.e., the target population
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for WPRS services.  Therefore, we may want to think of two different
groups of variables that help to explain exhaustion: those that explain
exhaustion because they indicate “dislocation” (such as job tenure) ver-
sus those that explain exhaustion for programmatic and other reasons
(such as potential duration).  To target WPRS services toward dislocat-
ed workers, it may be reasonable to use all of these variables in esti-
mating the profiling model, but to use only those that signal worker dis-
location to assign claimants to mandatory WPRS services.

A measure of the delay in filing for unemployment compensation
has also been included by some states as a predictor of exhaustion.1

This delay is captured by either a single variable measuring number of
days, or by several variables indicating different ranges for the number
of days.  Claimants who do not expect to have reemployment difficulty
may not immediately file for UI benefits.  Four states (of the 13 sam-
pled) were impressed enough with the ability of delay variables to pre-
dict exhaustion that they included them in their profiling models.  The
delay variable appears to be more effective at predicting exhaustion in
urban areas than in rural areas.  Among rural workers, difficulty in ac-
cessing a UI (field) local office may be the primary reason for delays in
filing for benefits.

The ratio of highest quarterly earnings to the earnings in the base
year is also used as an explanatory variable in their profiling models.
Large values of this ratio may identify intermittent workers, workers
with difficulties in holding a steady job, or perhaps workers in seasonal
industries.  While states have found a strong positive relationship be-
tween this ratio and exhaustion, the type of workers identified by high
ratios are probably not the dislocated workers targeted by WPRS.
Therefore, it may be sensible to include this variable in the profiling
model but to exclude it in selecting workers for mandatory WPRS ser-
vices.

A claimant with many employers in the base year may have either
worked multiple jobs at the same time, suggesting a strong preference
for or need to work, or switched employers, suggesting recent experi-
ence with the process of searching for a job.  Either scenario suggests a
low exhaustion probability.  Estimates of state profiling models support
this prediction: controlling for the other explanatory variables, exhaus-
tion is negatively correlated with the number of employers in the base
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year.  However, because it is unclear whether this variable helps to
identify displaced workers, the use of this variable in worker profiling
deserves further consideration.2

Whether or not states include certain explanatory variables in the
statistical model may depend on their philosophy with respect to
WPRS targeting as well as the predictive power of the variable.
Claimants may be likely to exhaust their benefits either because they
face barriers to reemployment or because they are reluctant to return to
work quickly.  Variables that help predict exhaustion may be related to
either of these factors.  Most of the variables in the DOL prototype pro-
filing model were intended to identify claimants who were likely to ex-
haust their benefits because they faced barriers to reemployment.  Some
variables that states have considered adding to the model are more
closely related to the incentives claimants face to return to work quick-
ly.  For example, higher WBAs are probably positively related to ex-
haustion because the financial incentive to return to work quickly is
lower for claimants with higher WBAs, other things being equal.  In de-
ciding whether to include WBA in the profiling model, states need to
decide whether they want to target reemployment services to such
claimants.  Although these claimants do not necessarily face barriers to
reemployment, the mandatory nature of WPRS may still bring about a
significant reduction in their UI spells.

ACCURACY IN IDENTIFYING LIKELY EXHAUSTEES

The two-step profiling model is designed to identify UI claimants
likely to exhaust their benefits and refer them to services.  If the ap-
proach is at least partially successful, we would expect that in the ab-
sence of services, the claimants targeted for services would collect
more benefits and exhaust their benefits at a higher rate than claimants
not targeted.  To investigate the success of the profiling model, we com-
pare claimants targeted for services to other claimants on the basis 
of exhaustion and benefits collected.  However, simply comparing
claimants referred to services with claimants not referred will not pro-
vide a valid comparison if services have an impact on outcomes.  If, for
example, services substantially reduce UI receipt, the claimants re-
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ferred to services may exhaust benefits at a lower rate than nonreferred
claimants, even though services were targeted to claimants with high
expected probabilities of exhaustion.

Ideally, to conduct a test of the profiling model, we would like data
on a group of nonreferred claimants and a group of referred claimants
who were not actually offered services.  Fortunately, data from two re-
cent UI experiments sponsored by the U.S. Department of Labor pro-
vide just such a group.  In the Job Search Assistance Demonstration,
which was conducted in Washington, D.C., and Florida from 1995 to
1996 (prior to implementation of WPRS), claimants were profiled us-
ing the two-step profiling model, and those claimants identified as like-
ly to exhaust their benefits were randomly assigned to one of three
treatment groups or a control group.  Claimants assigned to a treatment
group were offered special, mandatory reemployment services, while
those assigned to the control group were offered only the existing ser-
vices offered to all UI claimants (pre-WPRS) and were not offered the
mandatory services.3 The control group therefore provided a represen-
tative group of claimants targeted for extra services based on the profil-
ing model who were not actually offered extra services—therefore,
they were on a “level playing field” with nonreferred claimants in terms
of available services.  Hence, Decker, Freeman, and Klepinger (1999)
were able to make comparisons between the control group and the non-
referred claimants that are attributable to profiling and not to the ser-
vices linked to profiling.

Another recent UI experiment, the New Jersey UI Reemployment
Demonstration Project, also offered an opportunity to test the profiling
model.  In their long-run follow-up study of the data from the New Jer-
sey project, Corson and Haimson (1996) used the control group and the
ineligible claimants to construct and estimate a two-step profiling mod-
el.  They then applied the model to the same group, simulating the se-
lection of a group to be referred to services and a group not referred to
services.  Since none of the claimants used in the exercise were offered
services, the differences in outcomes for the simulated groups can be
attributed to the profiling model.4

In this section we present findings from the Job Search Assistance
(JSA) and New Jersey demonstrations on the effectiveness of the pro-
filing model in targeting claimants who are likely to experience long
spells of UI receipt and exhaust their benefits.  Our analysis is based on
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three conceptual groups of profiled claimants, which are shown in Fig-
ure 2.1. The first group (group A) consists of claimants who did not
pass the initial eligibility screens.  The claimants who passed the
screens are divided into two groups.  One group (group B) consists of
claimants who passed the initial screening criteria but whose predicted
probabilities of benefit exhaustion were below the threshold used to
identify claimants to be referred to services.  The other group (group C)
consists of control group members who passed the screens and whose
predicted exhaustion probabilities were above the threshold.  This
group is representative of all claimants who were referred to demon-
stration services based on having high exhaustion probabilities.

We examine the effects of both steps in the profiling model by com-
paring mean outcomes among the three groups defined above.  Our
comparisons are conducted in two stages in order to examine separate-
ly the effect of each step in the profiling model.  In the first stage, we
compare outcomes for claimants who were excluded by the initial
screens (group A) with outcomes for claimants who passed the screens
(groups B and C combined).  Outcomes for these claimants are shown
in Table 2.1. In the second stage, we focus just on claimants who

Figure 2.1  Profiled UI Claimants: Three Conceptual Outcomes 



Predicting the E
xhaustion of U

nem
ploym

ent C
om

pensation
41

Table 2.1  Mean UI and Employment Outcomes by Initial Screening Status

Washington, D.C. Florida New Jerseya

Outcome

Did not 
pass 

initial 
screens

Passed
initial

screens

Did not 
pass 

initial 
screens

Exhausted UI benefits (%) 43.9 54.6b 37.7 43.3b 29.7 44.1
Weeks of UI benefits 18.5 19.6 13.6 15.2 NDc ND
Earnings in first quarterd ($) 1,819 1,543b 2,370 1,933b ND ND
Earnings in fourth quarterd ($) 1,837 1,785 2,658 2,953b ND ND
Employed with same employer (%) 61.2 50.6b 44.4 29.1b ND ND

a Significance tests were not run on the New Jersey outcomes.
b Mean outcome for group that passed initial screens is significantly different than the mean outcome for group that did

not pass at the 95% confidence level.

d The first and fourth calendar quarters after the benefit year begin date.

Passed
initial

screens

Did not 
pass 

initial 
screens

Passed
initial

screens

c ND = no data available.
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passed the initial screens.  For this group, we compare outcomes of
claimants above the probability threshold (group C) with those below
the threshold (group B).  Outcomes for these claimants are shown in
Table 2.2.

The primary outcome of interest is the rate of benefit exhaustion,
because the second stage of the profiling model assigns a predicted
probability of exhaustion to each claimant.  We expected the targeted
group—the group above the threshold—to have a higher rate of benefit
exhaustion than the group below the threshold or the group not passing
the initial screens.5 We also expected claimants above the threshold to
have longer UI spells, higher earnings, and to return to their previous
employers at a lower rate, since the initial screens are related to em-
ployer attachment.

Our findings confirm that the profiling model identified claimants
who were likely to spend a long time on UI, and each step of the model
appears to contribute to this identification.  Although the initial screens
used in the first step of the profiling model were not designed specifi-
cally to exclude claimants with short spells, they appear to have done
so.  Claimants who passed the initial screens had higher exhaustion
rates and longer UI spells than those who did not pass, as shown in
Table 2.3. In Washington, D.C., the claimants who passed the screens
had a benefit exhaustion rate of 54.6 percent, compared with 43.9 per-
cent for those who did not pass the screens.  Similar differences were
found for Florida and New Jersey, although the differences between the
groups are somewhat smaller in Florida than in either of the other two
states.

Comparisons of the average UI spells yield similar findings.  In
Washington, D.C., the claimants who passed the screens had average
UI spells that were about a week longer than the average for claimants
excluded by the screens: 19.6 for those passing compared with 18.5 for
those not passing.  In Florida, the difference between the groups is a bit
greater than one week: 15.2 for those passing compared with 13.6 for
those not passing.

Not surprisingly, given the findings on UI benefits, the use of the
initial screens also tended to target claimants with low earnings early in
their benefit year.  In both Washington, D.C. and Florida, claimants
passing the screens had substantially lower earnings in the first quarter
after their BYB date than those not passing.  However, this difference
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Table 2.2  Mean UI and Employment Outcomes by Probability Threshold Status

Washington, D.C. Florida New Jerseya

Outcome
Below

threshold
Above

threshold
Below

threshold
Above

threshold
Below

threshold
Above

threshold

Exhausted UI benefits (%) 47.9 58.8b 40.0 45.0b 40.5 52.5
Weeks of UI benefits 18.6 20.1b 14.1 15.8b NDc ND
Earnings in first quarterd ($) 1,739 1,422b 2,232 1,772b ND ND
Earnings in fourth quarterd ($) 2,118 1,580b 3,462 2,679b ND ND
Employed with same employer (%) 49.1 51.4 27.6 29.9 ND ND

a Significance tests were not run on the New Jersey outcomes.
b Mean outcome for group that passed initial screens is significantly different than the mean outcome for group that did

not pass at the 95% confidence level.

d The first and fourth calendar quarters after the benefit year begin date.

c ND = no data available.
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Table 2.3  Contamination in Worker Profiling

Uncontaminated profiling modela

Contaminated profiling modelb Below threshold Above threshold

25% Threshold for eligibility
Below threshold 66.2 8.8
Above threshold 8.8 16.2

50% Threshold for eligibility
Below threshold 36.5 13.5
Above threshold 13.5 36.6

a The workers used to estimate the uncontaminated profiling model include ineligibles
and workers who were assigned to the control group.  Explicitly excluded are work-
ers assigned to Structured Job Search Assistance, IJSA, or IJSA+.

b The workers used to estimate the contaminated profiling model include ineligibles
and workers who were assigned either to Individualized Job Search Assistance
(IJSA) or to Individualized Job Search Assistance Plus Training (IJSA+).

disappeared or reversed late in the benefit year.  In the fourth quarter af-
ter the BYB date, earnings were similar for the two groups in Washing-
ton, D.C., and in Florida the claimants who passed the screens had
higher earnings than those not passing.  The findings suggest that the
initial screens tended to exclude claimants who quickly returned to
work but who also did not have high earnings once back on the job.

As expected, the initial screens excluded claimants who were more
likely to return to their previous employer.  Of the claimants in Wash-
ington, D.C., who were excluded by the screens and reemployed in the
first quarter, 61.2 percent returned to their previous employer.  This ex-
ceeds the 50.6 percent of Washington, D.C., claimants who passed the
screens and returned to their previous employer.  The difference be-
tween these groups is probably attributable to the screen that excluded
claimants who reported that they expected to be recalled by their previ-
ous employer on a particular date.

The second step in the profiling model—the application of the ex-
haustion probability threshold—further directed services to a group of
claimants with high exhaustion probabilities and long UI spells.  Table
2.1 shows that in Washington, D.C., 58.8 percent of claimants above
the threshold ultimately exhausted their benefits compared with 47.9
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percent of those below the threshold.  The difference between the
groups was somewhat smaller in Florida, where there was a 45.0 per-
cent exhaustion rate for those above the threshold compared with 40.0
percent for those below.  The pattern of these differences also holds for
New Jersey, where claimants above the threshold had an exhaustion
rate of 52.5 percent compared with 40.5 percent for those below.

The findings for the other outcomes are consistent with those for
exhaustion.  Claimants above the threshold in Washington, D.C., and
Florida had longer UI spells and lower earnings throughout the benefit
year.  It is interesting to note that claimants above and below the thresh-
old did not differ greatly in their likelihood of being recalled to their
previous employer.  In each state, the recall rate is slightly higher for
the group above the threshold, but the difference is not statistically sig-
nificant.  Since the probability threshold (unlike the initial screens) is
not directly tied to the date of recall, these findings are not surprising.

Overall, our findings demonstrate that the profiling model achieves
the objective of targeting claimants who are likely to have long UI
spells and exhaust their benefits, and both steps of the model contribute
to this achievement.  However, the targeting effect of the profiling
model is limited.  The models do not separate claimants into one group
in which nearly everybody exhausts and another group in which practi-
cally nobody exhausts.  Our estimates for Florida demonstrate this
clearly.  The claimants who were targeted for services because they
were above the probability threshold had a benefit exhaustion rate that
was a relatively modest 5 percentage points higher than those below the
threshold (45 percent compared with 40 percent).  The differences were
somewhat larger in the other two states, but never greater than 12 per-
centage points.  This is a reflection of the difficulty in predicting UI out-
comes, especially a binary outcome like whether benefits are exhaust-
ed, based on the characteristics and work experience of individual
claimants at the time they filed their initial claim.  Even after account-
ing for the characteristics included in the statistical model, a substantial
part of the variation in exhaustion and UI spells remains unexplained
by the models.

The analysis in this section has provided only a first step in evalu-
ating the efficacy of the profiling model.  Our findings suggest that the
model targets services to workers who appear to be most in need of ser-
vices.  But we may also be interested in whether the profiling model
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targets services to claimants who will benefit most from the services.
To answer this question, we would need to be able to estimate and com-
pare the impacts of services for referred and nonreferred claimants.  Al-
though we do not have the data necessary to address this question di-
rectly, we can at least use the data from our evaluation of the JSA
demonstration to evaluate how service impacts vary as the probability
threshold is increased.  Findings on this point have been presented in
the final report on the JSA demonstration.

CONTAMINATION IN ESTIMATING THE WPRS MODEL

The worker profiling model used to determine eligibility among UI
claimants in Florida was estimated from data collected in the JSA
demonstration in 1995–1996.  However, as the economic environment
changes, the effectiveness of this profiling model in identifying UI
claimants likely to exhaust their benefits is likely to decline.  Therefore,
Florida and other states should consider updating their profiling models
as economic conditions change.

Given the implementation of the WPRS system, new estimates of
these profiling models will be “contaminated” because eligible UI
claimants are required to participate in WPRS.  Worker profiling is de-
signed to identify UI claimants who would likely exhaust their benefits
if they were not required to participate in WPRS.  However, those iden-
tified as likely exhaustees are required to participate in WPRS, and
whether they subsequently exhaust their benefits is influenced by
WPRS participation if the program is effective.  Therefore, profiling
models estimated from UI data that are collected after the implementa-
tion of WPRS and used in WPRS models will provide biased estimates
of the exhaustion probabilities if targeted workers were not required to
participate in WPRS.

Fortunately, data from the JSA demonstration in Florida can be
used to measure the size of this contamination.  This demonstration in-
cluded a control group of UI claimants who passed the state screens
(and were thereby deemed eligible by the state), who exceeded the
threshold probability of exhaustion, but who were not assigned to a
mandatory treatment group with requirements similar to those in
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WPRS.  We can combine the control group with the claimants deter-
mined to be ineligible for the demonstration to construct a claimant
sample that is representative of the claimant population.  Since none of
these claimants were required to participate in demonstration services,
this sample can be used to estimate and test an “uncontaminated” pro-
filing model.6

Because the current WPRS system is very similar to two of the
three treatments in the JSA demonstration—Individualized Job Search
Assistance (IJSA) and Individualized Job Search Assistance with
Training (IJSA+)—we can use claimants assigned to these two treat-
ments, along with demonstration-ineligible claimants, to represent the
UI population under WPRS.  Only those claimants deemed likely to ex-
haust their benefits were required to participate in either IJSA or IJSA+.
From this sample of participants and ineligible nonparticipants, we es-
timate and test a “contaminated” profiling model.7

In this section, profiling results from the contaminated model are
compared to profiling results from the uncontaminated model in Flori-
da.  Each model is used to predict exhaustion and to select claimants to
be referred to services on the basis of two different eligibility criteria
(described later).  To measure the impact of contamination, we address
the following three questions:

1) Does the contaminated profiling model target services to a dif-
ferent group of claimants than the uncontaminated model?
(And to what extent?)

2) Does the contaminated profiling model target services to
claimants who are less likely to exhaust their benefits than the
uncontaminated model?  (i.e., does contamination lead to less
effective targeting of services to claimants likely to exhaust
their UI benefits?  And to what extent?)

3) Does the contaminated profiling model target services to
claimants whose characteristics are different from the charac-
teristics of claimants targeted by the uncontaminated model?
(And to what extent?)

To address the first question, we measure the degree of overlap be-
tween the claimants targeted for services by the uncontaminated pro-
filing model and the claimants targeted for services by the contaminat-
ed model under two possible targeting rules.  Under the first targeting
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rule, claimants in the top 25 percent of all profiling scores are referred
to services; the 75th percentile in the profiling score distribution de-
fines the profiling score threshold above which claimants are assigned
to services.  Under the second targeting rule, claimants in the top 50
percent of all profiling scores are referred to services.  Because the
contaminated and uncontaminated models produce different profiling
scores, the group of claimants referred to services under any targeting
rule might depend on which model was used to compute profiling
scores.  For the two targeting rules, Table 2.3 presents the percent of
claimants who would be referred to services based on 1) both the un-
contaminated model and the contaminated model; 2) the uncontami-
nated model only; 3) the contaminated model only; and 4) neither
model.  If both models targeted the same group of claimants for ser-
vices, we would expect those percents to be 25 percent, 0 percent, 0
percent, and 75 percent, respectively, for the first targeting rule, and 50
percent, 0 percent, 0 percent, and 50 percent, respectively, for the sec-
ond targeting rule.

Table 2.3 shows that there is a high degree of consistency between
the claimants who would be referred to services based on the two pro-
filing models.  For the 25 percent threshold, 16.2 percent of claimants
are targeted by both models, versus the 25 percent that we would ex-
pect if the two models were perfectly consistent.  For the 50 percent
threshold, 36.6 percent of claimants are targeted for services by both
models, versus the 50 percent that we would expect if the two models
were perfectly consistent.  The two models are highly if not perfectly
consistent because they predict high exhaustion probabilities for many
of the same UI claimants.

However, contamination may still be a serious issue if the
claimants targeted by the contaminated model have much lower ex-
haustion rates (in the absence of IJSA and IJSA+) than the claimants
deemed eligible by the uncontaminated model (question 2).  To answer
this question, we compare the two models with respect to exhaustion
rates.  The sample for this comparison excludes those used in estimat-
ing the two models and excludes those assigned to one of the demon-
stration treatments, which may influence exhaustion.  Table 2.4 pro-
vides exhaustion rates separately for those targeted for services
according to each of the two models.
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Table 2.4  UI Exhaustion Rate by Profiling Status (%)

Threshold/model
Below 

threshold
Above 

threshold

25% Threshold for eligibility
Uncontaminated profiling modela 41.3 48.9
Contaminated profiling modelb 41.7 47.7

50% Threshold for eligibility
Uncontaminated profiling modela 40.2 46.2
Contaminated profiling modelb 39.8 46.6

a The workers used to estimate the uncontaminated profiling model include
PTS ineligibles and workers who were assigned to the control group.  Ex-
plicitly excluded are workers assigned to Structured Job Search Assistance,
IJSA, or IJSA+.

b The workers used to estimate the contaminated profiling model include
PTS ineligibles and workers who were assigned either to Individualized
Job Search Assistance (IJSA) or to Individualized Job Search Assistance
Plus Training (IJSA+).

Before addressing the implications of Table 2.4 for contamination,
consider the targeting effectiveness of the uncontaminated model.  A
perfect model deems only those claimants who would subsequently ex-
haust their benefits in the absence of mandatory services as eligible.
Those predicted by a perfect model to be above the threshold should
exhaust at a rate of 100 percent, versus 0 percent for those below the
threshold.  While the model falls far short of this ideal, it performs bet-
ter than a process that selects eligibles randomly.  Random selection
would lead to exhaustion rates that are nearly identical for those above
and those below the threshold.  However, Table 2.4 indicates that those
above the 25 percent threshold exhaust at a rate of 48.9 percent, versus
41.3 percent for those below the 25 percent threshold.  Therefore, the
uncontaminated model helps to target mandatory services to those
more likely to exhaust their benefits.

Does the contaminated model target those with high exhaustion
probabilities as effectively as the uncontaminated model?  The answer
appears to be yes.  For both eligibility thresholds, the difference be-
tween the exhaustion rates of those above and those below the thresh-
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old—a measure of targeting effectiveness—is nearly the same for the
contaminated model as for the uncontaminated model.  Therefore, con-
tamination from IJSA and IJSA+ does not appear to reduce the target-
ing effectiveness of Florida’s profiling model.

Lastly, we may want to know whether the characteristics of eligi-
bles selected by the contaminated model differ from the characteristics
of eligibles selected by the uncontaminated model (question 3).  Table
2.5 contains the mean characteristics for the following four groups
from the sample:

1) All of those above the 25 percent threshold (i.e., deemed eligi-
ble) according to the uncontaminated model.

2) All of those above the 25 percent threshold according to the
contaminated model. 

3) All of those above the 25 percent threshold according to the
uncontaminated model, but below the threshold according to
the contaminated model.

4) All of those above the 25 percent threshold according to the
contaminated model, but below the threshold according to the
uncontaminated model.

The difference in the mean characteristics between those deemed eligi-
ble by the uncontaminated and contaminated models (group 1 vs. 2) is
driven by two factors.  First, as shown in Table 2.2, the two models do
not select exactly the same set of eligibles.  Second, those selected only
by the uncontaminated model may differ from those selected only by
the contaminated model (3 vs. 4).  Therefore, the differences between
groups 3 and 4 will be larger than and partially responsible for the dif-
ferences between groups 1 and 2.  Table 2.5 provides the means needed
to make these comparisons for a subset of the variables used in profil-
ing: the unemployment rate, job tenure, and education.

Table 2.5 reveals that the mean characteristics differ considerably
between those deemed eligible by the contaminated model and those
deemed eligible by the uncontaminated model.  These differences re-
sult from differences in the estimated logit coefficients between the
contaminated and uncontaminated models.  However, because both
profiling models are imprecisely estimated (perhaps because of small
sample sizes), the differences in the estimated coefficients and there-
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Table 2.5  Mean Characteristics of Workers above the 25% Threshold by the Profiling Model
(Uncontaminated or Contaminated)

Variable
All 

uncontaminated
All 

contaminated
Only 

uncontaminated
Only 

contaminated

Predicted exhaustion (PTS) 0.520 0.512 0.528 0.505
Unemployment rate 7.962 7.501 7.733 6.419
Job tenure (yr.)

0–3 0.556 0.615 0.533 0.702
3–6 0.162 0.075 0.272 0.025
6–10 0.142 0.105 0.150 0.043
10+ 0.140 0.205 0.044 0.230

Education
High school dropout 0.446 0.477 0.261 0.350
High school graduate 0.364 0.429 0.374 0.561
Associate’s degree 0.104 0.038 0.206 0.017
Bachelor’s degree 0.073 0.043 0.135 0.048
Master’s/doctoral degree 0.013 0.013 0.024 0.023

N (unweighted) 2,658 2,629 950 921
N (weighted) 22,734 22,724 7,979 7,969
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fore in the characteristics of the eligibles selected may largely be attrib-
utable to sampling error.  We believe that additional studies are re-
quired to determine whether the differences revealed in this table are
robust.  Furthermore, despite the differences in mean characteristics,
the difference in the mean exhaustion probabilities used to determine
eligibility in the JSA demonstration is very small.  This suggests that
the mean differences in characteristics used to predict exhaustion are
off-setting.  Both the actual exhaustion rates (Table 2.4) and those pre-
dicted by the JSA demonstration (Table 2.5) are comparable between
those deemed eligible by the contaminated model and those deemed el-
igible by the uncontaminated model.

Tables 2.3, 2.4, and 2.5 suggest that the degree of contamination in
estimating exhaustion probabilities from data that include workers re-
quired to participate in Florida’s JSA demonstration is very small.  If
these results are proven robust across states and years, states planning
to reestimate their worker profiling models should not be concerned
about contamination from mandatory service provision through WPRS.
This conclusion is consistent with previous research that measures fair-
ly modest effects of WPRS on UI receipt, because the contaminating
effect of WPRS on exhaustion should only be large if WPRS generates
large reductions in UI receipt.

However, results not shown here suggest that states with more in-
tensive programs may face greater contamination from the effect of
WPRS on exhaustion rates.  Florida’s JSA demonstration included a
program, Structured Job Search Assistance (SJSA), that provided more
intensive services than the existing WPRS program in Florida.  There-
fore, workers randomly assigned to SJSA can be used to estimate the
amount of contamination that might occur in states with more intensive
WPRS programs than Florida’s.  Results from an analysis of this group
suggest that the contamination of Florida’s profiling model by manda-
tory SJSA services reduces our measure of targeting efficiency—the
difference between the exhaustion rates of those above and those below
the threshold—by 35 percent (if half of the claimants are eligible).
Therefore, more intensive services with a greater impact on exhaustion
rates may diminish the effectiveness of updated profiling models in
predicting which UI claimants would exhaust their benefits without
these services.
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CONCLUDING REMARKS

The goal of the WPRS system is to provide reemployment services
to displaced workers, and different states take different approaches to
selecting claimants for these services.  However, most states use some
form of statistical model to predict whether or not claimants will ex-
haust their benefits in the absence of mandatory WPRS services.  Fur-
thermore, most states using statistical models use those variables se-
lected for the national model—education, occupation, industry, job
tenure, and the unemployment rate—and perhaps include some addi-
tional variables described in the first section of this chapter.

The evidence suggests that the states’ efforts in developing profil-
ing models that target likely exhaustees have not been in vain.  The pro-
filing models appear to perform better at such targeting than random se-
lection.  Both the benefit exhaustion rate and the duration of UI benefits
were higher for targeted claimants (who were not assigned to mandato-
ry treatment services) than for other claimants.

However, the targeting power of the profiling models is modest.
While the gain in targeting may well produce benefits that exceed the
costs of the program (an issue not addressed in this chapter), profiling
models fall far short of perfect targeting.  In Washington, D.C., for ex-
ample, even those not targeted for reemployment services had an ex-
haustion rate of 47.9 percent (versus 58.8 percent for targeted
claimants).  Exhaustion seems to be very difficult to predict accurately
with available demographic and labor market data.

Perhaps more interesting than how well profiling models targeted
exhaustees in the past is how well they will target exhaustees in the fu-
ture.  Changes in the economy suggest the need for states to update
their profiling models.  However, given the legal requirements of
WPRS, it is no longer possible to observe whether claimants would
have exhausted their benefits in the absence of WPRS because the most
likely exhaustees are required to participate in the system.  Further-
more, if the program is effective in decreasing unemployment duration,
the effect of the program contaminates the exhaustion data and the pro-
filing models estimated from these data.

However, our results suggest that contamination from assignment
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to WPRS is very small, at least in Florida.  This result is consistent
with the evidence suggesting modest effects of mandatory reemploy-
ment services.  WPRS systems that are modestly effective in reduc-
ing exhaustion rates can probably update their profiling models with
minimal concern about the contamination issue addressed in this chap-
ter.

Notes

1. This variable is calculated as the difference between the “separation” and “claim
filed” dates.

2. It is worth noting that one contribution of this variable is to lower the predicted ex-
haustion probability of claimants without demonstrated capacity to maintain long-
term jobs.

3. Three different packages of services were tested.  These packages look broadly
similar to services currently provided by states through the WPRS systems.

4. The findings from Washington, D.C., and Florida are generated by a process that is
much closer to the way that WPRS actually operates than the findings from New
Jersey.  However, the findings among all states are similar enough to lead us to the
same conclusions.

5. The initial screens used in the first step of the profiling model, specifically perma-
nent layoff and union hiring hall attachment, were not designed to target claimants
with long UI spells.  Rather, these were intended to exclude claimants for whom
WPRS services are inappropriate because they may still be employer attached.  Re-
gardless, some of these screens may contribute to the identification of claimants
likely to exhaust their benefits.

6. Half of the sample is used in estimating the model.  The other half is reserved for
comparing it to the “contaminated” model described in the next paragraph.

7. Half of the sample is used in estimating the model.  The other half is reserved for
comparing it to the “uncontaminated” model.
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Comments on Chapter 2

Mark C. Berger
University of Kentucky

The chapter “Predicting the Exhaustion of Unemployment Com-
pensation” has two distinct purposes: to provide an overview of profil-
ing models among states and to report reestimation results using dem-
onstration projects from Washington, D.C., Florida, and New Jersey.
The summary among states is important, both to provide information
on what other states have done and what might be successful in other
programs.  The reestimation work is also important, especially if the re-
sults on contamination bias are similar in other settings.  Overall, this
chapter may become an important reference for policymakers and tech-
nical specialists as states update their profiling models and as profiling
is extended into other policy areas.

OVERVIEW OF PROFILING MODELS

In reviewing models used in other states, the authors discuss the
dependent variables used, the estimation methods, and the set of ex-
planatory variables included in the model.  The authors point out that
both the national and Maryland versions of the Department of Labor
model use a binary dependent variable indicating exhaustion and a lo-
gistic estimation technique.  They state that alternative dependent vari-
ables such as number of weeks or fraction of benefits exhausted have
been tested in some states.  

At the Center for Business and Economic Research at the Universi-
ty of Kentucky, we do the modeling, estimation, and operation for the
Kentucky Profiling Model.1 We use the fraction of benefits exhausted
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as our dependent variable.  There is a fair amount of variation in the
distribution of completed spells that cannot be exploited using a simple
binary exhaustion variable, but that can be picked up by a variable such
as the fraction of benefits exhausted.

We have considered a series of estimation techniques and depen-
dent variables.  We tested the predictive power of each (probit, logit, or-
dinary least squares, Cox model, and double limit tobit) along with ran-
dom assignment of claimants for profiling services using 10 percent of
our sample that was held out from the original estimation.  The double
limit tobit model consistently came out on top in these exercises.  

In discussing explanatory variables, the authors make the point that
some states use only the five variables included in the original national
model: education, occupation, industry, tenure, and the unemployment
rate.  In Kentucky, we found that there were many more accessible vari-
ables that significantly affected exhaustion and were included in the
profiling model.  While these variables add to the data collection exer-
cise, they also enhance the model and help insure that the “right” indi-
viduals are selected for services.  The collection of these additional
variables has not been overly burdensome. The key is setting up a sys-
tem for collection and sticking with it.

The authors also discuss substate indicators, either local unemploy-
ment rates or local categorical variables.  Regional variables can be
used to separate regions and to allow for different effects of personal
characteristics across regions.  In Kentucky, we defined eight regions
across the state based on similar economic circumstances.  Thus, region
indicators are in essence interacted with other characteristics to pro-
duce unique effects of the various characteristics by region.

REESTIMATION RESULTS USING 
DEMONSTRATION PROJECTS

The authors have embarked on an extensive reestimation exercise
in order to assess the effects of “contamination” of the program itself
on the estimation process.  The idea is that we should not necessarily
use the experiences of those receiving services to predict the exhaus-
tion of new claimants in the absence of extra services.  They use
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demonstration project data from Florida to estimate “contaminated”
and “uncontaminated” models.

The “uncontaminated” model uses the control group and those who
passed the threshold but did not receive extra services in a Job Search
Assistance 1995–1996 demonstration.  The “contaminated” model uses
those assigned to treatment and program ineligibles from the same
demonstration.  One-half of each sample was held out for comparisons
using the two sets of estimates.  The authors find that there is significant
overlap in those chosen for services in the two models.  Thus, contami-
nation bias may not be a big problem.  They also find that the two mod-
els are similarly effective at targeting exhaustees.  This again points to
the possibility that contamination is not a large issue.  The result of
small contamination effects is consistent with what we have been find-
ing in our reestimation efforts in Kentucky.

This reestimation work is important, although much more work
should be done on the robustness of the contamination findings and ap-
propriate estimation techniques.  More work needs to be done on how
the contaminated observations should be appropriately incorporated
into the estimation process.  Should we just ignore the treatment or
somehow model it?  The latter seems preferable. 

In the end, perhaps we should not be surprised that contamination
bias is not a big problem.  The treatments that claimants receive are not
extensive, and the effects of profiling on labor market outcomes appear
modest.2 The net effect may be that estimates of profiling models and,
more importantly, the predicted rank ordering of claimants by profiling
scores are not influenced to any great extent by the use of contaminated
data.  If this reasoning is correct and if the Florida results are robust, it
would be good news to states confronted with the task of reestimating
their profiling models.

Notes

1. For a description of the Kentucky model, see Berger et al. (1997).
2. For experimental evidence on the effects of profiling on labor market outcomes in

Kentucky, see Black et al. (2002).
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Evaluation of WPRS Systems

Katherine P. Dickinson
Social Policy Research Associates

Paul T. Decker
Mathematica Policy Research

Suzanne D. Kreutzer
Social Policy Research Associates

In 1993, Congress enacted Public Law 103-152, which amended
the Social Security Act by requiring states to establish a system of pro-
filing new unemployment insurance (UI) claimants that

• identifies which claimants are likely to exhaust UI benefits and,
therefore, need job search assistance to successfully transition to
new employment,

• refers such claimants to reemployment services in a timely man-
ner, and

• collects follow-up information relating to reemployment ser-
vices received by such claimants and the employment outcomes
subsequent to receiving such services.

The law also requires claimants referred to reemployment services to
participate in those or similar services as a condition of eligibility for
UI unless the claimant has already completed services or has “justifi-
able cause” for not participating.

The U.S. Department of Labor (DOL) funded Social Policy Re-
search Associates and Mathematica Policy Research to evaluate the im-
plementation and impact of this Worker Profiling and Reemployment
Services (WPRS) Systems initiative.  The goals of the evaluation were
to
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1) Describe the ways that states are operating WPRS systems.
Aspects of WPRS implementation include
• developing coordination among partnering agencies,
• identifying and selecting claimants at risk of benefit exhaus-

tion,
• providing reemployment services,
• obtaining feedback about the extent that profiled and re-

ferred claimants meet their participation requirements, and
• identifying different strategies for implementing and operat-

ing WPRS systems that may influence the effectiveness of
WPRS systems.

2) Determine the effectiveness of WPRS systems.  Specifically,
we evaluated the effectiveness of WPRS in 
• increasing receipt of reemployment services among those

likely to exhaust their UI benefits,
• reducing receipt of UI and the extent that UI benefits are ex-

hausted, and
• increasing subsequent employment and earnings of UI

claimants.
3) Provide recommendations to enhance the ability of WPRS sys-

tems to meet the goals of the WPRS legislation. 

This chapter highlights the results of this four-year evaluation.1

The results presented in this chapter are based on data from two
primary sources.  First, in both 1996 and 1997, we surveyed adminis-
trators in all states about the implementation and operations of their
WPRS systems.  Because WPRS requires coordination among several
agencies, we surveyed four respondents in each state: administrators of
the UI, the employment service (ES), and Economic Dislocation and
Worker Adjustment Assistance Act (EDWAA) programs, and the ad-
ministrator responsible for coordinating WPRS operations.

Second, we obtained claimant-level data from a sample of eight
states, which were chosen to represent variation in the intensity of
reemployment services provided under WPRS.  We obtained UI and la-
bor market outcome data for all claimants who filed an initial claim in
the last two quarters of 1995 or any time in 1996 and who were subject
to referral to mandatory reemployment services through WPRS (that is,
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not screened out because of a definite recall date, union hall member-
ship, or other characteristics).  Those who were referred to WPRS ser-
vices constitute the “treatment group” and those who were not referred
constitute the “comparison group.”

IMPLEMENTATION AND OPERATION OF WPRS SYSTEM

Developing effective WPRS systems involves many complex
tasks.  States need to develop methods to identify claimants who are at
risk of exhausting their benefits, refer such claimants to local offices for
services, provide services appropriate to those claimants, track
claimants’ progress in services, establish policies about determinations
and denials for those who do not participate satisfactorily, and track the
subsequent outcomes of WPRS claimants.  To accomplish these tasks,
states need to develop effective coordination and communication link-
ages among the participating agencies—usually UI, ES, and ED-
WAA—that may not have worked closely together in the past.

The results of both the 1996 and 1997 state administrator surveys
indicate that, by and large, states have carried out these complex tasks,
meeting the legislated requirements as well as following DOL guidance
for implementing WPRS systems.  Below we describe the implementa-
tion of each of the WPRS requirements.

Identification and Selection of UI Claimants

All states have implemented a two-step profiling process to identi-
fy claimants at risk of exhausting their benefits.  First, all states
screened out claimants on recall status and those attached to union hir-
ing halls, as required in DOL guidance.  States also frequently screened
out claimants working in seasonal industries, who may also be expect-
ed to be recalled, and interstate claimants.

Second, all states then used a further profiling method to identify
claimants who had high probabilities of exhausting their benefits.
DOL encouraged states to use a statistical model to identify such
claimants.  To facilitate this, DOL developed a national model as an
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example and provided technical assistance to states in developing their
own models.

By 1997, about 85 percent of the states were using a statistical
model to identify claimants at risk of exhausting their benefits.  Among
those states using a model, 85 percent developed state-specific models
to predict which claimants were likely to exhaust UI benefits in their
specific state.  Most of these used a single model statewide, although a
few states, such as Kentucky and Washington, developed multiple
models that were fine-tuned to the specific circumstances of separate
regions within their states.

In contrast, 15 percent of the states that used a statistical model
simply adopted the entire national model, including its coefficients.  Al-
though the national model identified key variables that affected UI ex-
haustion nationally, we found that state-specific models varied widely
both in the characteristics that affected UI exhaustion and in the direc-
tion of the impacts of those characteristics.  For example, some states
found that lower-wage workers were more likely to exhaust benefits,
while other states found that higher-wage workers were more likely to
do so.  States that use the coefficients from the national model, there-
fore, probably are not targeting WPRS services as accurately as states
that developed their own model.

The 15 percent of states that did not use a statistical model relied
instead on a characteristics screen.  Under this approach, the state iden-
tifies a few characteristics associated with exhaustion, creates a pool of
claimants with those characteristics, and then randomly selects
claimants among the pool to refer to WPRS services.  This approach is
also less accurate than a state model because it accounts for relatively
few characteristics and makes no distinction among individuals within
the pool.

States used a variety of characteristics in their profiling model or
characteristics screens in 1997.  Virtually all states included a measure
of the claimant’s previous industry or occupation.  Over 90 percent of
the states included some claimant characteristics in their statistical
model or characteristics screen, most commonly education and job
tenure.  Three-quarters of states included some indicator of the local
economy in the area where a claimant lived.  Less frequently, states in-
cluded a claimant’s previous wage in their profiling methodology (30
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percent) or measures of potential UI benefits, such as weekly benefit
amount or total entitlement (45 percent).

Although all states intended to refer claimants with the highest
probability of UI exhaustion to services, this did not always occur be-
cause of errors in implementing profiling and selection at both the state
and local levels.  In our impact analyses in this phase and an earlier
phase of the project, we collected claimant-level data from 12 states.
Two of these 12 states made errors in implementing their profiling pro-
cedures.  One inadvertently matched the wrong profiling score to indi-
vidual claimants’ records; the other incorrectly identified which
claimants had the highest scores.  Further, in three additional states, we
found that a substantial number of local offices did not systematically
refer claimants with the highest scores to services.  None of these states
were aware of their implementation problems.

Given the problems that we uncovered, we strongly recommend that
states or DOL establish quality control measures to ensure that states are
carrying out profiling as intended and that local offices are selecting
claimants as intended.  We recommend that states review on an ongoing
basis the information used for profiling and selecting claimants for
WPRS services, the resulting calculated scores, and the relationship be-
tween those scores and referral to services in each local office.

The percentage of profiled claimants (i.e., those not initially

Table 3.1  Percentage of States Referring Profiled
Claimants to Services

Percentage of profiled
claimants referred 

to services FY 96–97 FY 97–98

<5 24 31
5–9 33 29
10–19 25 22
20–29 6 7
30 or more 12 11

SOURCE:  Employment and Training Administration Form
9048.
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screened out) who were referred to services varied widely across states,
from a low of 1 percent to a high of 100 percent, with an average of 13
percent.  Further, the percentage of states that referred fewer than 5 per-
cent of their claimants to WPRS services increased from 24 percent in
FY 96–97 to 31 percent in FY 97–98, as shown in Table 3.1.

One reason for this trend may be that states increasingly deferred to
local offices in determining the number of claimants referred in each
office.  Although this policy helped states and local areas match the ca-
pacity for service to the number of claimants who are referred (as re-
quired by DOL guidance), it resulted in states having less control over
the number of claimants receiving reemployment services.

We found that the WPRS goal of referring selected claimants early
in their unemployment spell was being met.  Most states profiled
claimants within two weeks of their initial claim, notified claimants
promptly, and required them to report to services soon after notifica-
tion.  As states have gained experience in conducting these tasks, the
timeliness of WPRS referrals has increased.

Reemployment Services

The legislation authorizing WPRS allows a wide range of reem-
ployment services within WPRS.  An increasing number of states es-
tablished specific requirements for a core set of mandatory services to
be provided to all WPRS claimants, although the content of those ser-
vices was most often left to local discretion.  Virtually all states re-
quired an orientation—typically an hour or less—to explain WPRS ser-
vices and claimants’ responsibilities.

More than half of the states then required claimants to attend a
group workshop.  Typically these workshops provided labor market in-
formation, training in job search methods, guidance in preparing re-
sumes, and help in exploring career alternatives.  In two-thirds of these
states, required workshops also provided claimants with referrals to job
openings.  About half of these workshops culminated in the develop-
ment of individual service plans.  Most of these required workshops
were brief, the majority lasting four hours or less.  About three-quarters
of the states required all profiled and referred claimants to meet one-on-
one with an employment counselor, usually for one hour, to assess
claimants’ interests and abilities and develop a service plan.
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Although one of DOL’s “basic operational concepts” for WPRS
calls for customized services that are based on each claimant’s needs,
the extent that states conformed to this principle varied.  In about one-
third of the states, almost no claimants were required to participate in
any services beyond the mandatory core services required of all WPRS
claimants.  In contrast, in 30 percent of the states, more than half of
WPRS claimants were required to participate in varying types of addi-
tional services, as specified in their individual service plans.

As shown in Table 3.2, the length and number of services required
of WPRS claimants varied widely among states.2 Several states re-
quired substantial WPRS participation, whether measured as the num-
ber of required services or the length of required participation in ser-
vices.  About 26 percent of states required a large number of services
(i.e., seven or more), while 27 percent required relatively long partici-
pation (i.e., more than 10 hours).  At the other end of the spectrum, 23
percent of states required no more than three services, and 16 percent of
states required no more than four hours of participation.

In states that provide less extensive services, customers are likely
to be less satisfied with WPRS services.  In an earlier phase of this

Table 3.2  Length and Number of Required Services

Services
Percentage of
states in 1997

1–4 16
5–9 29
10–19 18
20 or more 9

Claimants required to participate 
until UI benefits stop 22

Number
3 or fewer 23
4–6 51
7–9 17
10 or more 9

SOURCE:  Employment and Training Administration Form 9048.

Length (hr.)
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study, we conducted a customer satisfaction survey of 2,000 claimants
who were referred to services in six states that implemented WPRS ear-
ly.  We found that customers were far more satisfied with WPRS ser-
vices when they received more services and services of longer duration.
For example, among WPRS claimants who received two or fewer ser-
vices, only 15 percent rated the services as very or extremely helpful.
In contrast, among those who received seven or more services, nearly
55 percent rated WPRS services highly.  Similarly, among claimants
who participated in services lasting five or fewer hours, only 25 percent
rated services extremely or very helpful compared to 60 percent of
those who participated in services lasting 20 hours or more.

In selecting providers of WPRS services, states generally followed
two strategies.  About two-thirds of the states referred most of their
WPRS claimants to ES for reemployment services and generally re-
ferred claimants to EDWAA only for education or training services.  In
these states, ES provided services to 75 percent or more of the WPRS
claimants.

The remaining states referred the most job-ready to ES for job re-
ferral services and referred to EDWAA those who needed more ser-
vices, including more extensive reemployment services as well as oc-
cupational or educational skills training.

Tracking WPRS Claimants’ Progress in Services

The WPRS legislation requires referred claimants to participate 
in services as a condition of UI receipt.  To ensure that profiled and
referred claimants report to services and participate satisfactorily,
WPRS service providers must provide UI with accurate and timely
feedback.

Virtually all states developed an automated data system to track
WPRS claimants’ progress in services.  The information contained in
the automated systems, however, varied widely.  Only half of the states
automated WPRS claimants’ service plans so that the progress of the
claimants could be automatically tracked.  In the remainder of the
states, staff needed to manually check that claimants were participating
satisfactorily in the services called for in their service plans.

About one-half of the states developed new data systems specifi-
cally for WPRS, although the sophistication of the resulting data sys-
tems varied.  In many cases, the WPRS systems were not linked elec-
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tronically to the UI or service provider systems.  As a result, data often
had to be entered twice, and paper reports were needed to communicate
about WPRS participants.

Most of the remaining states modified their existing systems—pre-
dominately their ES systems—to track WPRS claimants’ progress.
Again, many of these systems lacked linkages with UI data systems so
that data needed to be entered twice.

UI administrators reported that developing a system to track the
progress of claimants was one of the most difficult WPRS-related tasks.
It is clear that further automation of claimant tracking processes, espe-
cially automated service plans, could make these processes more effi-
cient.

Determinations and Denials

Because participation in WPRS services is a condition of continued
UI eligibility, states needed to develop policies about how and when
WPRS claimants would be denied benefits for failure to cooperate with
the WPRS requirements.3 The process of denying UI benefits because
of failure to comply with WPRS requirements varied among states.
About 25 percent of the states initiated the benefit-denial process when
a claimant missed a scheduled meeting, while the other 75 percent of
the states gave claimants a warning and a chance to reschedule.  When
claimants were denied benefits, about half the states continued to deny
benefits until the problem had been corrected, while the other states de-
nied benefits for only one week.

The most common reason that WPRS claimants were denied bene-
fits was failure to report to orientation.  Denials for claimants failing to
make satisfactory progress in the required services were far less com-
mon.  Increasingly, states assumed that claimants were participating
satisfactorily unless notified to the contrary by providers.  This is not
surprising given the difficulty in automatically tracking claimants’
progress in most states’ management information systems.

Tracking Outcomes

Legislation requires that states track the outcomes achieved by
WPRS claimants, and DOL has established a required outcome re-
port.  In 1997, only 58 percent of the states collected information on
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outcomes for WPRS claimants.  It is likely, however, that the number
of states tracking outcomes has increased since the DOL reporting
requirements took effect last year.  Among states collecting infor-
mation on outcomes, states commonly tracked initial placements 
and/or entered employments, earnings for specific periods after initial
claims, and reemployment industry.  Over 40 percent of UI adminis-
trators reported that identifying appropriate outcomes or developing a
system to track outcomes for WPRS was a very or extremely difficult
task.

Coordination among Agencies

In many states, the UI, ES, and EDWAA programs coordinated ex-
tensively in WPRS-related activities.  To summarize the extent of coop-
eration, we grouped WPRS activities into three major tasks: tasks relat-
ed to developing services, tasks related to developing data systems, and
tasks related to developing a profiling method.4 We found the follow-
ing three modes of cooperation between UI and ES, the agencies most
involved in WPRS activities:

• Dominant agency:  In about 25 percent of the states, a single
agency was either very or extremely involved in developing
WPRS policies in all areas, while the other agency was at most
somewhat involved.  In a large majority of the cases it was ES
that was the dominant agency.

• Division of labor:  In another 20 percent of the states, ES and UI
divided responsibility for WPRS tasks.  Most commonly, ES led
the tasks related to services and the data system, while UI led the
development of the profiling model.

• Shared leadership:  In the remaining 55 percent of the states, UI
and ES shared the leadership of at least one of the three major
tasks.  Most commonly, these two agencies shared the tasks re-
lated to data systems and the development of the profiling mod-
el, while ES led the service-related tasks.

In about half of the states, EDWAA was not substantially involved in
any of the three groups of tasks.  When EDWAA was involved, it was
almost always in cooperation with ES.  Not surprisingly, EDWAA was
most involved in service-related tasks, although in about one-quarter of
the states EDWAA was also involved in developing data systems.
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Even though WPRS requires extensive coordination among agen-
cies, the administrators reported that getting the state agencies to work
together was not difficult.  States also reported that it was not difficult
to get the local offices to work together on WPRS tasks.

FUNDING OF WPRS

UI funds accounted for 40 percent of total funding earmarked for
WPRS.  Most UI funding came from grants that DOL awarded to help
states cover the costs of implementing WPRS systems—such as devel-
oping profiling models and tracking systems.

EDWAA funding of WPRS activities equaled UI funding in 1997.
Most of the EDWAA funds came from Governor’s Reserve funds, al-
though supplemental EDWAA grants for WPRS implementation ac-
counted for about 10 percent of WPRS funding.  Because UI imple-
mentation grants were one-time grants, funds for dislocated workers
will likely be a primary source of WPRS funding in the future.

ES funding specifically earmarked for WPRS accounted for less
than 15 percent of total WPRS funding, despite the fact that ES was the
major provider of WPRS services and many local offices have dedicat-
ed specific staff to WPRS activities.  Over one-third of ES administra-
tors reported that arranging for adequate funding for WPRS was a very
or extremely difficult task.

OPINIONS ABOUT WPRS SYSTEMS

Overall, state administrators were very supportive of the WPRS ap-
proach.  About two-thirds of all administrators felt that WPRS met its
goal of reducing the length of UI receipt among profiled and referred
claimants.  Most felt that the mandatory nature of services was justi-
fied.

Administrators indicated that WPRS had other benefits as well, in-
cluding improving overall coordination among their agencies.  Most
also felt that WPRS improved services for all job seekers, not just
WPRS claimants.
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OUTCOMES OF WPRS

The second component of this study is an analysis of the impacts of
WPRS on UI and labor market outcomes of referred claimants.  To de-
termine the effectiveness of the WPRS systems on claimants’ out-
comes, we needed a method to determine what the outcomes for the re-
ferred claimants would have been in the absence of WPRS.  To do this,
we selected a “comparison group” of similar claimants who were not
referred to WPRS.  The ideal way to develop such a comparison group
would be to conduct a classical experiment by randomly assigning
claimants to two groups: one group that is referred to WPRS and anoth-
er that is not.  Because WPRS was implemented as an ongoing
statewide program, however, we were unable to conduct such an exper-
iment to evaluate it.

We therefore chose an alternative comparison group—claimants
who passed the initial WPRS screens but were not referred to services.
Although nonreferred claimants, by design, differ from referred
claimants in that they have lower predicted probabilities of UI exhaus-
tion, two factors enhance the validity of this design.

First, because claimants were referred to WPRS on the basis of
known criteria, we can control for these criteria using regression meth-
ods.  This situation is unlike that in other quasi-experimental evalua-
tions where individuals choose to participate in a program.  In those
cases, the participation in services is determined partly by unmeasur-
able factors, such as individual motivation, which cannot be included
in a regression model.  Our ability to know and control for the fac-
tors that determine referral to WPRS should enhance the validity of
our comparison group methodology and, therefore, the results of our
analysis.

Second, the validity of our design is enhanced because the predict-
ed probabilities of UI exhaustion for referred and nonreferred claimants
overlap considerably.  This overlap usually came about because of local
capacity constraints.  In the eight states in our study, each local office
was responsible for selecting the number of claimants to refer to ser-
vices, based on its capacity to serve new claimants each week.  Because
these capacity constraints varied by office and by week, the predicted
probabilities of claimants referred to services statewide overlapped
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considerably with the probabilities of those not referred to services.  As
a result, we can compare outcomes for claimants referred to services
with those for claimants with similar scores but who were not referred
to services.

Impacts on Services

Comparison of referred and nonreferred claimants in our sample of
states indicates that WPRS is meeting the goals of providing reemploy-
ment services at a greater rate and earlier in claimants’ unemployment
experience.  Referred claimants were up to 50 percentage points more
likely to receive at least one service (beyond WPRS orientation), and
they received significantly more types of services than nonreferred
claimants.  WPRS had the largest impacts on receipt of job search
workshops and job clubs.  Referred claimants were also more likely to
be enrolled in EDWAA, although usually for basic readjustment ser-
vices rather than training.  Finally, in most states, referred claimants re-
ceived services earlier in their unemployment spells than did nonre-
ferred claimants.

Impacts on UI Benefits, Employment, and Earnings

WPRS services were expected to reduce UI benefit receipt among
claimants targeted for services by assisting them in finding a new job
quickly.  Previous studies found that the general service approach used
in WPRS can reduce UI receipt.  For example, a mandatory job search
assistance package offered to UI claimants in the New Jersey UI Reem-
ployment Demonstration in 1986–1987 reduced average UI receipt by
about half a week (Corson et al. 1989).  More recently, similar manda-
tory job search assistance services provided to claimants in Florida and
in Washington, D.C., in 1995–1996 reduced UI receipt by about half a
week in Florida and about one week in Washington, D.C. (Decker et al.
2000).  Experiments in job search assistance in other states have gener-
ated similarly moderate reductions in UI receipt (Meyer 1995).

To determine the impact of WPRS on claimants’ UI receipt, we
used two measures as dependent variables in our regressions: weeks of
UI benefits paid and dollars of UI benefits paid.  The estimated impacts
of WPRS are shown in Table 3.3.
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Table 3.3  Estimated Impacts of WPRS on UI Outcomes

Benefit
receipt Connecticut Illinois Kentucky Maine

New 
Jersey

South 
Carolina

Weeks –0.25** 
(0.12)

–0.41*** 
(0.07)

–0.21* 
(0.12)

–0.98*** 
(0.32)

–0.29*** 
(0.05)

0.02 
(0.12)

Dollars –55.53* 
(28.42)

–64.28*** 
(14.11)

–20.92 
(22.53)

–135.03***
(41.18)

NOTE: Standard errors are in parentheses.  *** = Statistically significant at the 99 percent confidence level in a two-
tailed test; ** = statistically significant at the 95 percent confidence level in a two-tailed test; * = statistically signif-
icant at the 90 percent confidence level in a two-tailed test.

–139.99*** 
(13.22)

2.50 
(21.27)
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WPRS generally reduced UI benefits received by the claimants in
the states we examined.  In five of the six states for which we were able
to generate estimates—Connecticut, Illinois, Kentucky, Maine, and
New Jersey—WPRS significantly reduced average weeks of UI bene-
fits per claimant.5 As shown in Table 3.3, the estimated UI reductions
ranged from 0.21 weeks in Kentucky to nearly a full week in Maine.6

In all five states except Kentucky, WPRS also significantly reduced
dollars of benefits received, with reductions of up to about $140 per
claimant in New Jersey.  In the sixth state, South Carolina, WPRS ap-
pears to have had no impact on UI receipt—claimants referred to
WPRS services had approximately the same UI outcomes as did similar
claimants not referred to services.

WPRS was also expected to help claimants return to work sooner,
thereby increasing employment and earnings in the short run.  Further-
more, to the extent that WPRS claimants learned about better paying,
more stable jobs through WPRS than they would have found on their
own, it was possible that WPRS would increase employment and earn-
ings in the long run as well.

Earlier studies of the WPRS approach have generated inconsistent
findings about the impact on employment and earnings.  In the New
Jersey UI Reemployment Demonstration, mandatory job search assis-
tance was found to have significant impacts on employment in the first
two quarters after the initial benefit claim and significant impacts on
earnings in the first quarter (Corson et al. 1989).  More recently, the Job
Search Assistance Demonstration was found to have uneven impacts on
employment and earnings of claimants, improving earnings in one
demonstration state (Washington, D.C.) but not in the other (Florida).

Our estimates provide little evidence that WPRS increased the em-
ployment or earnings of referred claimants.  Most of the estimated im-
pacts on employment and earnings, which are presented in Table 3.4,
are not statistically different than zero, and the statistically significant
estimated impacts are as likely to be negative as they are to be positive.
The only significantly positive impacts on earnings occurred in Maine
(in the first, third, and fourth quarters) and New Jersey (in the third
quarter), both states where WPRS significantly reduced UI receipt.
However, our estimates also suggest that WPRS reduced the rate of em-
ployment in New Jersey.
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Table 3.4  Estimated Effects of WRPS on Employment and Earnings

Effect Connecticut Illinois Kentucky Maine
New 

Jersey
South 

Carolina

Probability of employment (%)
Quarter 1 0.61 

(0.62)
–0.69* 
(0.41)

0.02 
(0.67)

1.39 
(1.41)

–1.61*** 
(0.31)

–1.05 
(0.69)

Quarter 2 –0.54 
(0.60)

–1.10** 
(0.44)

–0.49 
(0.68)

–0.16 
(1.35)

–0.75** 
(0.31)

–0.67 
(0.66)

Quarter 3 –0.59 
(0.62)

–0.03 
(0.47)

–1.34* 
(0.77)

0.54 
(1.53)

–1.84*** 
(0.32)

–0.88 
(0.68)

Quarter 4 0.42 
(0.69)

0.70 
(0.53)

0.45 
(1.00)

1.52 
(1.86)

–1.90*** 
(0.35)

–2.31*** 
(0.75)

Earnings ($)
Quarter 1 37.25 

(43.33)
–29.72 
(29.82)

30.52 
(38.43)

128.87** 
(57.57)

19.71 
(24.64)

41.78 
(44.64)

Quarter 2 –5.42 
(44.92)

–64.40 
(34.38)

40.85 
(39.90)

98.23 
(69.23)

126.91*** 
(24.24)

13.10 
(40.50)

Quarter 3 –67.27 
(50.00)

67.33* 
(38.04)

–94.35* 
(48.36)

158.81* 
(83.23)

41.55 
(26.28)

–69.05 
(43.68)

Quarter 4 8.83 
(57.46)

–48.93 
(44.94)

3.01 
(64.08)

176.51* 
(101.28)

37.61 
(28.71)

–116.35** 
(48.85)

NOTE: Quarters 1, 2, 3, and 4 are the first, second, third, and fourth full calendar quarters following the first payment.  Standard er-
rors are in parentheses.  *** = Statistically significant at the 99 percent confidence level in a two-tailed test; ** = statistically sig-
nificant at the 95 percent confidence level in a two-tailed test; * = statistically significant at the 90 percent confidence level in a two-
tailed test.
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CONCLUSIONS AND RECOMMENDATIONS

On the basis of the results of this study, we make the following rec-
ommendations to improve the implementation and impact of WPRS
services.

Improving Profiling and Referral to Services

• States should provide greater ongoing monitoring of state and
local profiling and referral practices to ensure that they are being
carried out as intended.

Profiling, selection, and referral processes are complex and involve
many levels of staff: statistical analysts who develop the profiling pro-
cedures, programming and data processing staff who implement profil-
ing procedures and calculate probability scores for claimants each
week, and state and/or local program staff who select and refer specific
claimants based on those probability scores.  We found several states
where staff were not carrying out these processes as intended, either be-
cause of errors or lack of understanding of the intent of WPRS.  We
strongly recommend, therefore, that states routinely monitor the ways
that both state and local staff are implementing WPRS procedures.

• States should periodically update their models to reflect changes
in the factors that affect UI exhaustion.

Many states have not modified their profiling models since they
first implemented WPRS.  In our discussions with state and local staff,
several respondents indicated that they felt their models had become
out of date, especially because industries and occupations in decline in
their states have changed over time.  We recommend, therefore, that
states reestimate their models with current data.

Improving WPRS Services

• States and local areas should provide more extensive, in-depth
services that are customized to the needs of individual claimants.

We found that a substantial number of states are neither requiring
nor making available extensive services for claimants.  Our customer



78 Dickinson, Decker, and Kreutzer

satisfaction survey found that customers highly valued more extensive
services, and those who received such services found WPRS much
more helpful than did other claimants.  Further, our impact results sug-
gest that the states in which WPRS reduced UI receipt were also states
with large impacts on claimants’ receipt of services.  Improving WPRS
services, therefore, is likely to both increase customer satisfaction and
result in greater UI savings.

The administration recently announced a Universal Reemployment
initiative, which has a five-year goal of ensuring that every dislocated
worker can receive the training and reemployment services that they
want and need.  To support this initiative, DOL has requested funding
for Reemployment Services Grants to the ES, which are to be used for
providing increased reemployment services to UI claimants.  These
grants, therefore, are a potentially important funding source for more
extensive WPRS services.

• To facilitate improving services, DOL should provide guidance
to states and local areas about Workforce Investment Act ser-
vices appropriate for WPRS claimants.

The recently enacted Workforce Investment Act (WIA) revamps
the workforce delivery system, replacing the existing EDWAA pro-
gram with new dislocated worker services that must be delivered, along
with ES services, through one-stop centers.  The legislation calls for
universal access to one-stop core services but limits access to WIA in-
tensive services to individuals who have been determined in need of
such services to obtain employment.  Many WPRS claimants will like-
ly need more than the core services, which are often self-access ser-
vices that provide labor market information and information about job
openings.  To encourage states to provide WPRS claimants with inten-
sive services when needed, we recommend that DOL provide guidance
that claimants referred to WPRS services automatically qualify for
WIA intensive services.

Increasing the Number of Claimants Referred to WPRS

• States that currently refer few claimants through WPRS should
increase the number of UI claimants who receive reemployment
services.
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In 30 percent of the states, fewer than 5 percent of claimants are re-
ferred to WPRS services.  These states should increase the percentage
of claimants referred.  Further, trends within the UI system imply that
other states should consider increasing the referral rates as well.  As
more states shift to taking initial claims by telephone and eliminate the
requirement for mandatory ES registration, WPRS is increasingly the
only means through which claimants are systematically linked to reem-
ployment services.  The proposed Reemployment Services grants could
also be used to provide services to more WPRS claimants.

Enforcing Participation Requirements

• States should enforce the requirement that referred claimants
participate in the services required in their service plans.

Most states appear to enforce the requirement that WPRS claimants
report for an orientation but are more lax in enforcing requirements for
satisfactory progress in required services.  Our outcome evaluation
suggests that strict enforcement is important to WPRS achieving its
goal of reducing UI receipt.  We recommend, therefore, that states more
strictly enforce participation requirements.

Improving Data Systems to Track Progress 
in Services and Outcomes

• States should improve their WPRS tracking process to make it
more efficient and more accurate.

One reason that states do not more vigorously enforce participation
requirements may be that their data systems are not fully automated
and do not link the UI and the service providers’ information about
claimants.  Although DOL provided implementation grants to help fund
more coordinated data systems, it appears more assistance is needed.
As part of WIA implementation, states may be developing new data
systems to better coordinate the management information systems of
partners in their one-stop systems.  If so, we strongly recommend that
states explicitly design those systems to support WPRS.

• States should develop outcome reporting systems so that states
can comply with the reporting requirements.
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Although the WPRS legislation requires that states collect follow-
up information about claimants’ employment outcomes subsequent to
receiving WPRS services, over 40 percent of the states have not devel-
oped a follow-up reporting system.  Many UI administrators indicated
that developing such a system was a very difficult task.  We recom-
mend, therefore, that DOL provide more assistance to states in devel-
oping such reporting systems.  The implementation of WIA, which also
requires states to track subsequent employment and earnings of cus-
tomers, provides an opportunity to incorporate WPRS tracking require-
ments into states’ one-stop reporting systems.

Notes

1. Reports available from this study include U.S. Department of Labor (1996, 1997,
1999).

2. WPRS administrators were asked directly about the length of required services.
We calculated the number of required services by summing the services provided
in any required workshops, one-on-one services, and supervised job search.

3. When claimants are denied benefits in UI, they do not receive benefits for a specif-
ic period but their total entitlement is not changed.  Thus, for claimants who re-
ceive their full entitlement, the effect of denial is to postpone their benefits, not to
reduce them.

4. We grouped the tasks using factor analysis of the extent of involvement of the three
agencies in individual WPRS activities.

5. We collected data from two other states, Mississippi and Texas, but we chose not to
present estimates based on these two states because of problems with the reliabili-
ty of these data for evaluation purposes.

6. A recent paper (Black et al. 1998) examined the impact of WPRS in Kentucky over
approximately the same period used in our study.  The authors of that paper found
considerably larger impacts in Kentucky than we found.  According to their esti-
mates, WPRS reduced UI receipt by more than two weeks among their sample
members, compared with the 0.21-week reduction for our sample.  Black et al.
used a random assignment design that focuses on claimants whose benefit exhaus-
tion probabilities were near the probability threshold used to identify claimants to
be referred to WPRS services.  Since this approach focused on a relatively small
subgroup of claimants, the findings it yielded apply only to that subgroup.
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Comments on Chapter 3

John Heinberg
U.S. Department of Labor

My biggest challenge in trying to comment on Worker Profiling
and Remployment Services (WPRS) systems is what to call it.  It’s re-
ally a mouthful, so in my comments I am mainly going to use the word
“system.”  Although they reflect my own views, my comments come
from the perspective of my office, the Unemployment Insurance Ser-
vice (UIS) in the U.S. Department of Labor.  It has been the primary re-
sponsibility of UIS to oversee development of the state WPRS systems
from the federal perspective.  I think it’s fortunate that we have a panel
of state policymakers immediately following my comments, because I
can’t possibly summarize state views on these systems. 

My comments are directed to what I believe the chapter, and the
larger evaluation on which the chapter is based, tells our office and the
Labor Department more generally about the implementation and im-
pact of this system for targeting services.  The chapter really demon-
strates the wisdom of beginning an evaluation at the time an initiative is
launched.  Most often that is not done, so we have a great deal of infor-
mation on the system at what is still a very early point in its operation.
This system has been a very complex undertaking for the states.  The
authors have done an excellent job of pointing out the many challenges
and problems with system implementation.  These include the profiling
selection and referral practices, provision of reemployment services,
enforcing participation requirements, and tracking progress, services,
and outcomes.  

My strongest impression from the chapter, however, is that the state
systems have had a variable but limited impact on the intended out-
comes such as reducing UI payments, benefit duration, and the rate of
benefit exhaustion.  Even though the impact estimates are preliminary,
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it seems to me unlikely that the final version will turn out very differ-
ently.  So I think the key question, which we cannot yet answer, is
whether the lack of impact, particularly in some states, stems from
faulty logic or from incomplete implementation of an inherently sound
idea.  

If we try to look for reasons for the lack of impact, I think they have
to be teased out indirectly.  The authors provide some clues, but one
strong limitation of the evaluation is that it had a relatively minor field
component.  A point that was not brought up in the chapter itself con-
cerns what is actually happening in the system as it was implemented at
state and local levels.  Nevertheless, here are what appear to be some of
the factors.  It is important in the context of this meeting, and as the
chapter states early on, that developing effective systems involves
many complex tasks.  

The system that we are talking about here goes much beyond sim-
ply targeting services.  It involves the whole range of how referrals are
done, services are provided, outcomes are observed, and then what peo-
ple do with that information.  So, as designed, the system requires very
sophisticated methods for identifying and prioritizing clients and refer-
ring them, developing individual service plans, providing the intensity
and range of reemployment services, then tracking progress, establish-
ing and enforcing policies about denial of benefits, and measuring and
reporting the outcomes.  I think the chapter does not get into this as
much as I might emphasize.  The system, I believe, requires strong
management oversight of the total process so that all of the elements fit
together.  

The chapter implies that there are various points in the process
where the logic can and does break down in full scale real world imple-
mentation.  It points most clearly to two areas: 1) providing an adequate
range of reemployment services to referred claimants, and 2) proce-
dures on denial of benefits for failure to comply with requirements.
One comment I want to make about Dickinson’s presentation this
morning concerns a point that was not made in the chapter.  She hy-
pothesized that states aren’t requiring services in which clients are un-
likely to participate, since states would then be forced to deny benefits.
However, the evidence is that states don’t deny benefits to people for
failing to participate in services.  I also want to note that because of the
limited field component, the chapter does not provide a lot of informa-
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tion on effective practice for reemployment services provision—not
enough to provide a basis for system improvement.  

Here are some other factors that go beyond the two that the chapter
emphasized.  Dickinson did emphasize these quite a bit in her presenta-
tion.  The state-specific profiling models have not been fully imple-
mented or consistently updated.  As the chapter says, the states did not
consistently refer to services claimants with highest probability of ex-
haustion.  In her presentation, Dickinson reviewed the evidence on this.  

Even though the authorizing legislation requires that states track
outcomes, the chapter indicates that only about three-fifths of states
were doing so in 1997.  I looked at some of the more recent federal re-
porting data that have come in to us, and those numbers have edged up
only slightly.  Maybe two-thirds of the states recently reported that in-
formation.  Reporting has been hampered to a large extent, I under-
stand, by Y2K concerns.  Furthermore, WPRS system reporting has not
been fully automated.  The WPRS report is not in the regular group of
periodic reports which we receive from the states.  Unless the outcome
information is consistently tracked, validated, and reported, the vital
feedback information is not available for oversight and corrective ac-
tion.  Finally, it’s not clear exactly who is in charge of the system at ei-
ther the federal or state level.  

To summarize, the chapter shows us where in this complex process
the train can run off the track, and it gives strong evidence of the num-
ber of places where it in fact has.  I want to stress the following point:
at this relatively early stage in the implementation of this complex ini-
tiative, in trying to do something with all of the elements that we have
here, it is really soon to deduce much about what’s going on.  Further-
more, the evaluation is still incomplete, but I think the limited findings
call for increased attention from both federal and state overseers to en-
sure adherence to principles of WPRS implementation.  

I want to talk now about some of the next steps at the federal level
that we are either doing, or in some cases should be doing more inten-
sively.  But before I do that, I again want to mention two points that
Dickinson talked about somewhat in her presentation and in the chap-
ter, they are: the issue of referral to employment service registration for
people who are not in profiling, and the effect of telephone claims.  

My understanding is that telephone claims don’t change the
process.  They may change practices, but there is no relaxation of re-



quirements for referring profiled claimants to outside services simply
because the claim is taken by telephone.  I also think it goes too far to
say that profiling is the only way UI claimants can get referred to ser-
vices.  

We are currently making funds available to states for significant
improvement grants that are intended to increase the effectiveness of
reemployment services. We are really hoping for creative proposals
from states to address one or more of the implementation concerns
mentioned above.  One of the conclusions we’ve come to is that the
most important thing to do right now is to go directly to continuous im-
provements and not overprescribe.  Instead, we plan to make money
available to the states to work on whatever they think will help make
this complicated system work better.  We need to ensure that there are
complete and valid data reported to the federal government for use by
the states on services provided and outcomes.  The Labor Department
should analyze that data and use the findings for oversight of the WPRS
system.  

Finally, and this reiterates some of the points that Dickinson made
in her remarks, we should give more attention to providing oversight
and management of profiling and reemployment services.  This should
be considered a key part of ETA’s (Employment and Training Adminis-
tration, U.S. Department of Labor) implementation of the Workforce
Investment Act.  Only when we can say that this initiative is fully in
place will we really be in a position to validly assess the system’s im-
pacts on outcomes, and conclude whether it is cost-effective.  
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Walter Nicholson
Amherst College

This chapter provides a summary of the ongoing research on the
Worker Profiling and Reemployment Services (WPRS) Systems initia-
tive.  That initiative and the research on it are interesting from a variety
of perspectives.  On a conceptual level, WPRS represents one of the
first attempts to use statistical modeling to target social services to
clients.  There is an obvious interest in determining how well this
works and the circumstances under which it can be more or less suc-
cessful.  Evaluating the success of the process also raises some unique
statistical issues that deserve detailed analysis.  On a more practical
level, the WPRS initiative raises questions about interagency coordina-
tion, the construction of appropriate information systems, and the actu-
al selection of reemployment services.  In these comments I focus
primarily on Dickinson, Decker, and Kreutzer’s treatment of the con-
ceptual issues, concluding with only a few words about their analysis of
the WPRS process.

PROFILING

The unique aspect of the WPRS initiative is, of course, the use of
statistical models to predict unemployment insurance (UI) claimants’
probabilities of exhaustion of benefits and the use of those probabilities
to target reemployment services.  Dickinson, Decker, and Kreutzer re-
port the interesting fact that most states have developed their own pro-
filing models and that some states even disaggregate these models by
substate region.  As someone who has run many, many regressions on
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unemployment insurance (UI) benefit exhaustions, I would have liked
somewhat more detail about differences among the state models and
why those differences arise.  Are state models importantly constrained
by the availability of certain variables on their administrative data files?
How well do these models seem to fit the data, and do some states man-
age to achieve much higher explanatory powers than others?  Are the
models employed in a “pure” way to calculate an index of service
needs?  Or is there some tinkering with the model results to achieve
what service deliverers believe to be “more reasonable” results?  I be-
lieve more detailed answers to these questions would be interesting to
researchers who wish to learn something about labor markets from the
states’ experiences in seeking to model exhaustion.  It would also be
quite interesting to state UI staff charged with trying to develop as good
a model as possible with existing data.  Finally, the development of a
more detailed typology of profiling models might be of help to the au-
thors in their ultimate goals of evaluating whether profiling actually im-
proves the delivery of reemployment services, the focus of my next set
of comments.

EVALUATING PROFILING

Although research on the effectiveness of the WPRS system is only
in its initial stages, the Dickinson, Decker, and Kreutzer chapter gives a
roadmap of how they intend to proceed. Because implementation of a
random assignment experiment was infeasible in the current context,
the authors have instead opted for methodology that uses as a compari-
son group claimants who passed the initial WPRS screens but who
were not referred to services.  In general, of course, those not referred
to services will have lower profiling “scores” than will those referred,
so a simple comparison between these two groups would undoubtedly
yield biased results.  Assuming that the profiling model can, at least
with large errors, identify claimants who will experience substantial
problems in finding new jobs, this bias would tend to understate the im-
pact of reemployment services, possibly even to the extent of yielding
the result that these services apparently harm claimants’ prospects.
Dickinson, Decker, and Kreutzer assure us that their procedure is more
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promising than most other comparison group analyses because they
“control for these criteria (i.e., the profiling scores) in regression mod-
els.”  They also point out, optimistically, that the variation in capacity
constraints over both time and region will help to break up what would
otherwise be an exact relationship between scores and service referral,
thereby improving the independent explanatory power of the profiling
score.  This procedure and the arguments that the authors make in sup-
port of it remind me of the “design dispute” that took place nearly 30
years ago in connection with the New Jersey Income Maintenance Ex-
periment.  In that case also, the researchers argued that a nonrandom as-
signment could in principle be accommodated in a regression frame-
work if the variables used to assign experimental cells were used as
additional independent variables in the analysis of experimental results.
The need to use such variables together with the inherent uncertainty
about the correct regression specification raised many concerns about
the validity of the New Jersey results, especially among practitioners
outside the community of research economists.  I fear the same result
may occur here.  At the very least, I hope Dickinson, Decker, and
Kreutzer will investigate the assumptions that must be made both to as-
sure that unbiased estimates can be obtained by including profiling
scores and to assess the importance of varying capacity constraint ef-
fects across their samples.

THE PROFILING PROCESS

The attention that Dickinson, Decker, and Kreutzer give to describ-
ing the profiling process and the data collection efforts that accompany
it is, in my mind, one of the real strengths of the research. Two aspects
of their discussion seem to me to be especially interesting: their at-
tempts to measure the extent of reemployment services received, and
their discussion of state tracking systems.  With regard to the former, I
would have liked to see even more on the actual content of reemploy-
ment services offered to claimants.  Research on the effectiveness of
such services continues to suffer from a “black box” approach that of-
fers little insight about what clients actually get.  Without such detail I
fear we will never be in a position to determine what works.  Dickin-



son, Decker, and Kreutzer have made a good start on trying to look into
the box—I hope they will push that part of the project further.

I hope that the authors’ discussion of the limitations of some state
data systems will provide a spur for improvements, perhaps directed
from the national level. In their research they have managed to learn
quite a bit about how these data systems work in practice.  One very
valuable outcome of the project could be the development of a general
blueprint for “best practices” that might be adopted more widely.

In all, this is an interesting progress report on one of the most im-
portant current initiatives in reemployment policy.  The authors have
done a good job of touching on both the practical and the analytical as-
pects of their project, and I look forward to seeing their final results.  
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Panel Chair:  Pete Fleming
U.S. Labor Department, Atlanta Region
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Wisconsin Unemployment Insurance Division

Helen Parker
Georgia Department of Labor

Marc Perrett
Oregon Employment Department

Pete Fleming

I am not a state practitioner, although I have worked for states in
the past.  The purpose of our panel today is to bring you the perspective
of the state practitioners on profiling.  My role in the U.S. Department
of Labor regional office, in fact, is one of overseeing state programs.
That means focusing attention and priorities on details, and that’s not
easy to do, especially in this constantly evolving and changing world
we live in.  

I am reminded of the invasion of Normandy, one of the greatest
planned events in human history, which, when soldiers got on the
beach, erupted into utter chaos.  That’s kind of what happens in local
offices sometimes.  One thing we must always remember is that this
system really has not been recession-tested.  We should keep that as a
backdrop.  However, in one sense Worker Profiling and Reemployment
Services (WPRS) gives us a way to do intensive planning in advance.  

WPRS is only as effective as we maintain it and keep it up to date.
That’s where we usually fall down, and I confess we have done that in
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the Atlanta regional office by not maintaining the intensive oversight
and priority setting that we need to do.  We need to do a better job of
that.  

In the Southeast, statistical profiling models are now used in all
eight states.  In 1998, we profiled a million claimants of whom one-
third were put in a selection pool and 45 percent of those received some
service.  What I don’t know from the statistics is what happened to that
45 percent?  I do know from other data that among all claimants in the
United States who were placed in a job, the Southeast placed 32 per-
cent, or about 200,000 people.  

I believe that three essential factors make profiling work: augment-
ing all Wagner-Peyser funds with either Title III or other state funds,
maintaining and updating the model, and close coordination between
the employment service and unemployment insurance (UI) operations
at both the state and local levels.  

Our panelists today are Al Jaloviar, who is Director of Benefit Op-
erations for the UI Division in Wisconsin.  He will speak first.  He has
38 years of service in this business—37 or 38, we couldn’t decide ex-
actly last night.  Second is Dr. Helen Parker, who is the Employment
Service Director in the Georgia Department of Labor.  She has 25 years
of experience beginning as an employment counselor or interviewer in
North Carolina.  She has worked in almost all phases of ES and JTPA
operations.  Finally, Marc Perrett is a 22-year veteran of the Oregon
Employment Department and is now the Field Services Supervisor.
Without further ado we will get to the panel. 

Al Jaloviar

I am going to talk about how we profile in Wisconsin, what ser-
vices we provide, what fund sources we use for those services, and ob-
servations and experiences about profiling. 

How we profile

We use a mathematical model with the standard ingredients: a four-
digit industry code, occupation, education, and total unemployment
rate for the county of residence of the claimant.  Our profiling system is
a mainframe program, and we gather the data regarding the individual
claimant in a variety of ways.  We take all of our initial UI claims via
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telephone through an IVR (interactive voice response) system whereby
claimants provide data using their telephone Touch-Tone key pad.
Therefore, claimants enter our UI data system via the IVR.  Later in the
telephone call, a claims specialist will access data in our mainframe
database using graphical user interface screens that don’t allow special-
ists to complete the claim unless certain required fields have been com-
pleted.  Among required data are any needed for profiling.  

Once each week, a mainframe program is run to assign a profiling
score to each individual claimant.  The system then delivers these re-
sults to 36 different sites in Wisconsin that provide services for profiled
claimants.  The data are sent electronically to each site, listing residents
in that geographic area in order of their profiling score.  The local ser-
vice provider simply addresses the screen when they have slots avail-
able to provide service, and the system tells them who will be sched-
uled in the available slots.  

Local staff enter the number of available slots, and the system tells
the staff person which people are scheduled for services.  The comput-
er, which is centrally located in Madison, automatically mails out invi-
tations to come in for services.  The letters make the claimant aware
that failure to attend will result in a disqualification from UI benefits.
The local service provider then enters information on a mainframe
screen after the end of the session to indicate who has or has not at-
tended, and the system automatically notifies UI of any individual who
failed to attend.  We put a suspension on their claim and schedule them
for an interview to determine whether or not there is going to be a dis-
qualification of benefits.  

What we do

We provide pretty much the basic ingredients: an orientation to our
system, guidance on how to use the system, general labor market infor-
mation, and an individualized reemployment plan, which is entered
into our system and tracked electronically.  We have in-depth assess-
ment for those whom the initial reemployment plan indicates need fur-
ther assessment and help.  We offer job search workshops, guidance in
resume writing, labor market counseling, job placement, and training
programs.  The fund sources that we use are Wagner-Peyser and JTPA-
EDWAA (Job Training Partnership Act–Economic Dislocation and
Worker Adjustment Assistance).  We use $500,000 a year from our UI



penalty and interest fund, and in fact I just attended the first meeting for
negotiating to use $250,000 from the UI program to finance some
workshops for ES services to UI claimants for fiscal year 2000, which
starts July 1 in Wisconsin. 

Our observations

Profiling has served to be a mechanism that has resulted in a cohe-
sive service delivery system between UI and our EDWAA, JTPA, and
Wagner-Peyser partners.  In particular, this has shown itself in the field
offices, where the services are provided.  In the past there has been dis-
tance and competition among programs as opposed to cooperation and
coordination, but with profiling, we all act as a team in getting these
services delivered.  

Another thing we hadn’t anticipated is that profiling is providing
added services to our many smaller communities in Wisconsin.  The
WARN (Worker Adjustment and Retraining Notification) system,
which in Wisconsin is a 60-day notice of a plant closing or a substantial
layoff, has some limits in terms of the size of the company that is cov-
ered.  Through the plant closing notice or the substantial layoff notice,
we find that profiling characteristics help us identify many clients who
would not have come to our attention before.  We are now finding those
people through profiling and are able to provide services to them.  

We keep track of our profiling results by service delivery site as op-
posed to statewide, but we ultimately compile statewide figures.  Some
locations were showing wage replacement rates in excess of 100 per-
cent, so we examined the reasons they were doing so well.  It turned out
that such areas usually had a large plant closing that was either non-
skilled or nonunion, and that low wage rates were being paid.  The la-
bor market in general was paying a higher wage.  

On the other side of that, we’ve seen a location with excellent per-
formance show a high exhaustion rate of profiled claimants and a
placement rate lower than the state average.  The reason appears to be
the result of a plant closing or layoff of a highly unionized business
with high pay rates and workers whose skills cannot command similar
rates in the market, or because there are no other jobs requiring those
particular skills.  Such individuals often participate in training because
they’re covered by Trade Adjustment Assistance.  So we find that high-
ly unionized and highly skilled jobs often result in a lower than average
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replacement rate and a greater than average participation in skills train-
ing.  

Our statewide wage replacement rate is 85 percent for individuals
who go through profiling.  Three-quarters of all people profiled return
to work within four quarters of their entering profiling.  Sixty percent of
those are employed in a new industry, and the average duration of un-
employment claims for the individuals profiled is 14 weeks.  That com-
pares with a statewide average of 11 weeks, and a statewide average of
21 weeks for individuals who exhaust benefits.  So these profiled indi-
viduals are identified as most likely to exhaust, yet the average claim is
only 14 weeks long.  Our statewide average for all claimants, which in-
cludes those who are screened out because of job or industry attach-
ment, is eight weeks.  

Helen Parker

Georgia had a little bit of a leg up when WPRS came into being,
because we were already using state dollars to operate a claimant assis-
tance program (CAP), which was an intensive 14-week service strategy
for claimants with Georgia wages only.  WPRS gave us an opportunity
to expand that and use it as a core for WPRS.  Not creating from scratch
turned out to be a huge advantage for us.  I want to walk through some
of the characteristics of our process.  It is very different from Wiscon-
sin, and I was taking notes because we are going where they’re going in
terms of telephone claims, and I haven’t yet figured out how that’s go-
ing to work.  

As a response to WPRS, we established reemployment units in all
of our offices, which include the staffing that had been our claimant as-
sistance staff (our state-funded staff), our Wagner-Peyser staff, and
80–90 equivalent positions from Title III dislocated worker state fund-
ing.  When we first set up the reemployment units, each individual par-
ticipating in the unit carried his or her funding sources.  So when we
lobbied for cross-training and cross-functioning, the theory did not
translate easily to practice.  In reality, any time a dislocated worker
walked into the room, everyone pointed to the Title III staff person.
Some people were still operating in their silos even though they were
now in a unit.  In order to fix that, we split-funded all of the positions so
there are no more Title III–funded positions that can be pointed to.



There are no more claimant assistance positions, and in that unit there
are no distinct Wagner-Peyser positions.  Everybody is funded by all
three, and it’s amazing what removing that label has done to get people
to really work together and to see services as a whole and not as silos.  

Another benefit of CAP is that it had an automated tracking system
that we could enhance and use for WPRS.  This system provides track-
ing through the 17th week of the structured staff intervention program,
and it also links to unemployment insurance.  So there is a running
record of the services that are delivered, and automatic reporting to the
UI system if someone fails to report for a service or fails to follow
through on a job referral.  Naturally, we don’t have too many of those
negatives.  

One of the most unique features of our program is that we profile at
intake.  When someone comes in to file a claim and register for the em-
ployment service, which is done in a single act with a single employ-
ment specialist, the profiling model is run at that point while the
claimant is there.  If the profiling score is such that the individual does
need to be referred to reemployment services, or if the individual seems
otherwise in need of reemployment services, then the individual is lit-
erally physically walked to the reemployment unit.  That was some-
thing our local offices insisted on because it was the “bread and butter”
key that we learned through the CAP; they didn’t want folks getting out
the door before they got a shot at them.  We have followed through on
that with WPRS and with the reemployment services strategy.  

We now have an operation where the same service strategy and the
same scheduling is used for our CAP customers, for our Title III cus-
tomers, and for our WPRS-referred customers, and it is transparent to
the customers.  They don’t know which program they are actually in,
and they don’t need to know.  We insist, both at the local level and in
our state monitoring, on same-day services; being able to profile at in-
take allows us to do that.  Each individual who is referred to the reem-
ployment unit on the day they file their claim gets the assessment and
an orientation.  There is a customized service plan developed, and in
most (but not all) cases there is a fairly thorough effort at job referral
and job development for that individual.   

During that initial visit, customers are also introduced to our self-
help resources.  Each of our local offices has a resource area to which
each client is introduced during the first visit to the office.  That has
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proved to be extremely successful, but it is a very labor-intensive
process.  It requires a good deal of staff intervention to provide these
services.  I am very interested in some of the electronic tools that are in
production to be able to assist with that.  

Just to give a few numbers to put things into perspective, last year
more than 60,000 people were referred to the reemployment units
across the state, and about two-thirds of those were a result of profiling.
There were nearly 6,000 workshops conducted across the state for indi-
viduals going through the system and nearly 119,000 counseling ses-
sions with individuals who went through the reemployment units.  So it
is labor-intensive, and it is much more of a high-touch strategy than a
high-tech strategy, although we are getting better at the high-tech.  Our
employment rate has remained pretty consistent over the last two or
three years at around 60 percent, and that’s more or less the same for all
claimant groups.   

One of the commitments we made to the legislature when we initi-
ated CAP is that we would try to track and report back on UI trust-fund
savings resulting from placing claimants in jobs more quickly.  Our
guarantee was that we would return at least as much as was given to us
for CAP.  The first year they gave us 10 million and we gave them back
14 million.  Last year we gave them back just over 31 million in trust-
fund savings.  So the legislature’s happy, and when the legislature is
happy, so are we.  

This year we are still on track.  The entered employment rate for
the first part of program year 1998 is running about 60 percent, and
trust-fund savings are a little over $20 million.  We feel good about
what we are doing, and it’s got to get better.  The Workforce Investment
Act does change the scenario, so we’ll soon have to step back again and
assess what else needs changing.

Marc Perrett

I am going to talk from a bit more general perspective; that is, from
reemployment services for the claimant, rather than how profiling gets
done.  Oregon was one of the first five or six states to start worker pro-
filing back in 1994.  From the start we had a fair degree of success.  The
unemployment insurance (UI) and employment service (ES) units,
which work for the employment security agency in Oregon, and the



JTPA partners, which are independent, cooperated to set up a system to
identify and refer claimants to reemployment services and obtain good
outcomes based upon individual needs.  

The intervening years have witnessed several changes, one of
which was, quite honestly, a drop in interest from our JTPA partners.  It
ended up that all the systems in Oregon for worker profiling were done
by ES, and that was at a time when ES had limited resources and the ca-
pacity to serve clients was being stretched in directions other than UI
claimants most likely to exhaust benefits.  About the same time, the
Wagner-Peyser funding was pretty flat.  Fortunately, the state of Ore-
gon decided that we needed to do more for both our employer and
claimant customers, so we, like my panel colleagues from other states,
received more state funding for our activities.  

Oregon established a “Supplemental Employment Department Ad-
ministrative Fund,” and in 1996 we started using some of that money in
close relationship with worker profiling.  We are still using the list of
profiling scores, as we always have, to identify those most likely to ex-
haust UI and bring them in for reemployment services.  

We also work the WPRS model results from a slightly different an-
gle.  We identify those less likely to exhaust UI as prime candidates for
job matching and refer them to existing job orders.  This seems to work
relatively well, however, this strategy proved to be very staff intensive,
as Helen has alluded to.  In the past year or two, we have backed off
from aggressively serving both ends of the profiling list.  Instead of
each client looking at the job orders, we found ourselves individually
matching one claimant at a time to the job orders, and it just took too
much time.  

Worker profiling in Oregon has expanded slowly over the last four
to five years.  As state managers we can encourage or mandate how
much emphasis is put on it, but its degree of fit in the package of all ES
services has fluctuated.  Currently, profiling has again moved further up
the list of priorities, and as state managers we are encouraging, and ex-
pecting, offices to do more and more.  

We welcome the Wagner-Peyser recognition that claimant reem-
ployment is an important aspect of what we have to offer.  We talked
about the supplementary state money.  In Oregon it makes up 60 per-
cent of our ES budget, but it is also a potential curse.  It means that we
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can do a lot of things that other states can’t.  Many of our achievements
are probably largely a result of this extra money, but it does make us
very responsive to the state governor and state legislature.  We have a
legislative session once every two years, and we’re very, very reactive
to their needs.  At any point in time, or at least every two years, we see
the potential of this money being diverted.  So state funding is not near-
ly as stable as Wagner-Peyser funding. 

In July of 1997, Oregon had 37,000 claimants who entered em-
ployment, which is not bad for a state the size of Oregon.  This was as
many entered employments as Illinois, Indiana, and Iowa combined.
That’s pretty fantastic, and I think our entered employment rate is not
what Georgia’s is, but it is well above the national average.  We still ad-
mire the success of states such as Georgia, North Carolina, and Alaba-
ma.  We can’t imagine what’s causing their success.  Is it something in
the drinking water down there?  Also Missouri, Wisconsin, and Texas
are other states that are doing outstanding work on claimant reemploy-
ment efforts.  All of these numbers come from the annual report of the
U.S. Employment Service, which is a great resource from an overview
perspective.  I thank David Balducchi for providing such concrete evi-
dence of program success. 

One of the things we do in Oregon is establish annual goals for
each office.  The expectations are formalized in specific numbers that
we set as targets for each office on two outcomes: claimants placed and
claimants who have entered employment.  Currently we have an out-
put-based system, and we count the actual number of claimants placed
and entering employment.  We have not adopted relative measures of
outcomes such as entered employment rate or claimant placement rate.
Our hesitation to do that comes from the concern that such measures
would push us toward those clients who are easiest to serve, rather than
serving as many as we can serve.  However, we do want to study reem-
ployment success by local office over time and against other offices.
Such comparisons are increasingly important as we move closer to
Workforce Investment Act (WIA) implementation.  

Again, let me mention that our supplementary state funding is one
of the major reasons we have been able to accomplish what we have.
Another reason is the labor exchange.  We still feel that our primary
function is to be an employment office.  Whether it is in the form of a



job and career center, a one-stop system, or an Internet service, our key
function is matching job seekers with jobs.  About 30 percent of our re-
ferrals and 50 percent of our placements come from job matching.  

In addition to our staff working with employers and job seekers, we
also have a self-referral system.  We have a Web site with job vacancy
listings and job seeker listings, and both types of listings may be either
self-entered or staff-entered to the Web-based data system.  For refer-
rals to job interviews, we have not moved as far as some states have to-
ward a reliance upon self-service.  It doesn’t get the outcomes that we
want for our customers.  We have also somewhat rejected the concept
of case management.  It takes too much time for what we get out of it.
We sometimes do case management for some special contracted
groups, especially vocational rehabilitation clients and disabled veter-
ans, but we do not use that approach for our UI claimant and ES client
populations.  

Two other things that contribute to our output are our job and ca-
reer centers.  Our resource rooms have been a big hit in Oregon, espe-
cially with many of the folks that never thought they’d be coming into
an employment office or accessing our services, especially those
searching for jobs in an occupation with a nationwide job market and
those in high-tech industries.  The most popular services are labor mar-
ket information, job finding classes, PC resume preparation, access to
America’s Job Bank, and, of course, regular job listings.  When we
have a little bit of tracking and friendly, effective staff assistance, we
get both customer satisfaction and a high level of measured program
outcome performance.  

We believe in accountability within the state, and we are disap-
pointed with some of the proposed WIA performance indicators.  In
particular, the plan to not count many of the services that are provided
by the system is perplexing to us.  We feel a need to focus on customers
but also to be accountable for what we do through reporting to both the
federal and state levels. There is some concern that the proposed per-
formance measures within WIA could actually jeopardize the success
of the system rather than contribute to success.  To some extent, that
also ties in with profiling.  

When I was a local office manager, I welcomed profiling.   It en-
abled me to take a triage approach to serving a broad population with a
limited number of resources.  But as we move toward performance ac-
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countability, I think it is going to boil down to more of an outcome-
based or result-based system, which looks at the results rather than the
process.  I welcome this approach wholeheartedly.  However, I see a
danger that some offices, especially one-stops, may be looking to get
the biggest bang for the buck, and profiling may not be one of those
things.  I say this while realizing that duration is a performance indica-
tor that gets discussed at the national and state levels but seldom gets
adopted in a formal manner.  I believe worker profiling is valuable.  It
has been a successful tool in our claimant reemployment efforts in Ore-
gon. 





Comments on Part I
The Changing Role of the 

Public Employment Service

David E. Balducchi
U.S. Department of Labor

During the 1990s, state employment service (ES) agencies, author-
ized by the Wagner-Peyser Act, delivered reemployment services to an
increased share of unemployment insurance (UI) claimants.  To expand
this growth, the U.S. Department of Labor’s (DOL) FY 2000 congres-
sional appropriation contained new, special grants to state ES agencies
totaling $35 million to deliver reemployment services to an estimated
156,000 additional UI claimants.

The term reemployment is not new to the ES system.  In the sum-
mer of 1933, DOL advanced the reemployment services concept by es-
tablishing a temporary placement division within the U.S. Employment
Service called the National Reemployment Service (NRS).  By No-
vember 1933, NRS had established 2,000 federal reemployment offices
to match millions of Great Depression-era unemployed workers with
agencies hiring workers for a multitude of public works projects (U.S.
Department of Labor 1933, p. 1).  Once a state established a public ES
system, federal reemployment offices were turned over to the state ES
agency.  The NRS proved to be a successful incubator for the
federal/state ES system.  By 1939, a national ES system operating un-
der the Wagner-Peyser Act was in place, and the NRS was abolished
(Haber and Kruger 1964, p. 28).  Through the ensuing decades, as the
nation’s economic circumstances changed, so did the application of ES
policy.

In the mid 20th century, labor exchange services became inter-
twined with manpower policy, and a larger share of workforce develop-
ment funds was directed to skills training (Haber and Murray 1966, 

103



p. 431).  In the late 1970s, economic restructuring and resultant unem-
ployment enkindled a dialogue about the effectiveness of public em-
ployment and training programs that led to a series of reemployment
demonstration studies conducted by DOL in the 1980s.  Evidence
emerged that early identification and referral to reemployment services
of claimants likely to exhaust UI benefits was a cost-effective public in-
tervention.  

In November 1993, new federal legislation required states wishing
to maintain eligibility for receipt of UI administrative grants to estab-
lish Worker Profiling and Reemployment Services (WPRS) systems.
The law required UI claimants who were identified by state WPRS sys-
tems to be at risk of UI benefits exhaustion to participate in reemploy-
ment services or risk losing UI benefits (Balducchi, Johnson, and Gritz
1997, p. 473).  

In January 1994, the Clinton Administration pressed for an expan-
sion of the reemployment concept.  In the President’s State of the
Union address, Clinton pledged to “transform America’s outdated un-
employment system into a reemployment system” (Clinton 1995).  The
administration introduced an employment and training reform bill in
March 1994 called the Reemployment Act.1 While the bill was never
enacted, the reemployment concept became wedded to the emerging
one-stop concept being designed to consolidate the delivery of federal
and state employment and training services.   These concepts were em-
bodied in the Workforce Investment Act (WIA) of 1998.  

TRENDS IN LABOR EXCHANGE SERVICES

States collect data on UI claimants who have registered for work
during the program year (PY) (i.e., July 1 to June 30), and send quar-
terly statistical reports to DOL summarizing labor exchange services
activity.2 Noteworthy labor exchange services trends can be seen
through data reported in Table 1 on three activities: 1) received some
reportable service, 2) job search activities, and 3) entered employment.

• Received some reportable service is defined as having received
interviewing, counseling, testing, referral to jobs or training, job
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search activities, or other similar services.  It is the closest proxy
to “reemployment services” tracked in state ES agency activity
reports (U.S. Department of Labor 1993, p. III-11).

• Job search activities is a subset of received some reportable ser-
vice. It includes “resume preparation assistance, job search
workshops, job finding clubs, provision of specific labor market
information, and development of a job search plan” (U.S. De-
partment of Labor 1993, p. III-11).

• Entered employment is defined as the number of UI claimants
who enter employment after having received a reportable ser-
vice (U.S. Department of Labor 1993, p. II-12).

In PY 1997, 6.6 million UI claimants registered for work, and 3.6
million received a reportable reemployment service.  Between PY 1993
(the year preceding WPRS implementation) and PY 1996, the percent
of UI claimants who received reemployment services increased by 8.7
percentage points despite steadily improving economic conditions.
The biggest uptick in activity occurred in PY 1994.  Since that year, the
share of UI claimants receiving reemployment services has stabilized at
approximately 54 percent.

The period PYs 1993–1997 witnessed a significant increase in the
use of job search activities by UI claimants.  In PY 1993, only 37.2 per-
cent of UI claimants who received a reemployment service received it

Table 1  Labor Exchange Activities of Eligible UI Claimants Registered
for Work

Program 
year

1993 1994 1995 1996 1997

Received some
reportable service

4,270,711
46.2%

4,012,523
52.4%

4,004,707
54.0%

3,985,194
54.9%

3,599,511
54.0%

Participated in a job
search activity

1,588,223
37.2%

1,740,209
43.4%

2,149,171
53.7%

2,306,738
57.9%

2,262,883
62.9%

Number who entered
employment

890,504
20.9%

885,721
22.1%

879,562
22.0%

924,322
23.2%

918,294
25.5%

Total UI claimants 9,235,977 7,662,050 7,413,036 7,254,009 6,663,475

SOURCE: U.S. Department of Labor (1996, 1999).

Activity



in the category of job search activities.  In PY 1997 this percentage was
62.9, an increase of 25.7 percentage points.  

The entered employment rate for UI claimants who received a re-
portable service increased from 20.9 percent in PY 1993 to 25.5 percent
in PY 1997.3 So despite decreases in the volume of claimants and the
number of services delivered, the effectiveness of services steadily im-
proved over the period.  

REASONS FOR GROWTH IN RECEIPT OF SERVICES

The growth in the share of UI claimants who received reemploy-
ment services may be due to four interrelated events.

• Federal/state implementation of WPRS.  During 1993–1996,
state and local implementation of WPRS systems necessitated
establishing new services (e.g., job search workshops).  In a
WPRS report to Congress, the U.S. Department of Labor
(1997a) observed that state ES agencies were the dominant
providers of reemployment services to UI claimants.

• Employment and Training Administration policy leadership.
Since 1993, the Employment and Training Administration of
DOL has issued numerous WPRS policy and technical guides,
hosted national conferences to promote effective practices, and
required states to establish individual reemployment services
plans that “increase the number of UI claimants that enter em-
ployment, reduce UI benefit duration, and speed the referral of
those UI claimants who need additional help to training
providers or other support services” (U.S. Department of Labor
1997b, p. 4).  In response, most state ES agencies delivered ser-
vices to an increased share of UI claimants.

• One-stop grants.  Between PYs 1994 and 2000, the Employment
and Training Administration distributed to the states $826.5 mil-
lion in one-stop grants, under Wagner-Peyser Act authority, to
replace their fragmented employment and training program
structures with one-stop delivery systems.  States used these
grants to make infrastructure improvements and to introduce
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electronic labor exchange services.  Many states selected their
state ES system as the platform for erecting their one-stop deliv-
ery system.  Under WIA, the nation’s nearly 2,400 local ES of-
fices were either designated as one-stop centers or affiliated
sites.

• Sustained economic growth.  According to the Bureau of Labor
Statistics, during PYs 1993–1997, the nation’s total unemploy-
ment rate averaged 5.5 percent.  During the same period, the
number of UI claimants who registered for work fell by
2,572,502, a 27.8 percent decrease.  A bustling U.S. economy
with a strong demand for workers has reduced UI claimant
workloads, and may have enabled states to deliver additional
reemployment services to UI claimants who face greater job-
finding challenges.4

CONCLUSION

The delivery of reemployment services is a long tradition of state
ES agencies.  Despite a bustling U.S. economy, the gait of technologi-
cal change has influenced the rate and duration of unemployment (Bau-
mol and Wolff 1998, p. 1).  According to findings by International Sur-
vey Research, there remains a persistent anxiety among workers about
job security.  No wonder “[d]own sizing has become a permanent fea-
ture of the corporate American landscape” (Belton 1999, p. 2).  As a re-
sult, workers may likely experience periodic job changes requiring
transitional reemployment services and retraining to obtain new jobs.
To better administer new workforce development services, the Em-
ployment and Training Administration, state ES agencies and other
workforce development agencies should consider systematic screening
of job seekers to effectively identify their needs and to efficiently ration
public funds.  



Notes

1. H.R. 4040, 103rd U.S. Congress. 
2. Labor exchange services data are reported on DOL’s Employment and Training

Administration Form 9002.  This form reports on the activity of UI eligible
claimants who have registered for work with the state ES agency and who, during
the PY, are or have been determined to be monetarily eligible for UI benefits under
federal or state UI laws.  Wagner-Peyser Act reporting requirements are contained
in ET Handbook No. 406. 

3. This entered employment rate is different from the measure described in Depart-
ment of Labor (1996, 1999).  The rate reported in Table 1 is conditional upon re-
ceipt of a reportable service, and therefore may be a more meaningful measure of
service effectiveness.  In 2001, DOL used this methodology to calculate the PY
1999 entered employment rate for each state.

4. In PY 1997, the civilian labor force averaged 137 million workers and the total un-
employment rate was 4.6 percent.  
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Wayne Vroman
Urban Institute

The nature of unemployment has changed dramatically in the last
two decades.  As global competition and rapidly evolving technologies
have resulted in the dislocation of millions of workers from their
jobs—even as new jobs are being created—layoffs have become per-
manent in nature, rather than simply a temporary experience during
fluctuations in the business cycle.  These “dislocated workers” who
have been permanently laid off from a long-term job face substantial
earnings losses and often have difficulty finding a new job (U.S. De-
partment of Labor 1995, p. 47).  In 1984, the Bureau of Labor Statistics
(BLS) initiated a biennial series of special dislocated worker surveys.
These surveys have revealed that, on average, over two million individ-
uals are dislocated in the United States each year.1 The new reality is
that a large portion of those who lose their jobs never get them back;
thus, affected workers often have to make a transition to a new job.

The U.S. Department of Labor (DOL) conducted a series of nation-
al demonstration projects over a 10-year period (1986–1996) that ex-
plored innovative alternative ways of using unemployment insurance
(UI)—the first stop for most of these dislocated workers—to assist
these workers in making the transition to new jobs.  Beginning in 1987,
DOL sponsored two UI Self-Employment Demonstration Projects, in
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the states of Washington and Massachusetts, that rigorously tested the
viability and cost-effectiveness of self-employment as a reemployment
option for permanently laid-off, or dislocated, workers.  Both of these
demonstrations were run as field experiments which granted individu-
als monetary self-employment assistance in lieu of unemployment in-
surance and provided participants with entrepreneurial training, busi-
ness planning, counseling advice, and technical assistance.  The final
evaluation found that self-employment assistance (SEA)—using the
Massachusetts demonstration program model, which is the basis for
current federal law—is highly cost-effective to program participants,
the federal government, and society as a whole (U.S. Department of
Labor 1995).  The report recommended that the SEA program be made
a permanent option for the unemployed.

The establishment of the SEA program was one of the infrequent
instances when rigorous policy research led to legislative action.  At the
time when the UI SEA experiments were undertaken, the field of mi-
croenterprise development was just forming, and there was a great deal
of skepticism about the utility of self-employment assistance as an em-
ployment strategy.  The positive results from experimental self-em-
ployment demonstration projects conducted by DOL, in collaboration
with state employment security agencies, was instrumental in spurring
Congress to pass federal legislation in 1993 that authorized self-em-
ployment assistance as an alternative use of unemployment insurance.

This 1993 SEA legislation authorized the states to provide unem-
ployed individuals periodic self-employment payments instead of regu-
lar unemployment insurance payments.  The legislation allows states to
use unemployment insurance funds to provide income support to those
unemployed individuals who want work full time on starting their own
businesses.  The program was initially authorized for five years and
was made permanent by Public Law 105-306 in October 1998.

The early identification tool commonly known as “profiling”
played a key role in one of the two self-employment demonstrations,
the Massachusetts project, which became the model for the SEA na-
tional legislation.  Profiling is based on a set of criteria—a “profile”—
that can be used to identify and select those UI claimants who are like-
ly to be dislocated workers out of the broad population of UI claimants.
By providing a mechanism for targeting the SEA provided by the
demonstration on claimants who are dislocated workers, profiling en-
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abled the project to be both cost-effective to the government and politi-
cally viable to several key constituency groups, particularly employers.
Thus, profiling made a large contribution to the establishment of the
SEA program.

This section has provided a brief introduction to the topic of profil-
ing in SEA programs.  The next section reviews the background and
policy context for the SEA program in the United States and the role
that profiling mechanisms were designed to play in this program.  The
third section summarizes key findings from an evaluation report on the
SEA program mandated by Congress as part of the 1993 legislation.
The use of profiling in state SEA programs and its implications is the
focus of the fourth section, which includes descriptive information
from conversations with states that have implemented SEA programs, a
review of operational issues arising from the use of profiling in those
programs and how states have responded to these issues, and a discus-
sion of how profiling-type techniques might be applied to other aspects
of the program.  The final section of the chapter draws some conclu-
sions from the analyses presented in the preceding sections and also
discusses their implications for the future directions for the now-per-
manent SEA program and the role(s) that profiling can continue to play
in the program.

BACKGROUND AND POLICY CONTEXT
FOR THE SEA PROGRAM

Self-Employment as a Reemployment Option

One alternative for promoting the reemployment of UI recipients
who are dislocated workers is self-employment.  The growing recogni-
tion of the contribution of very small businesses to the creation of em-
ployment opportunities, as well as the relatively modest financial and
managerial requirements of self-employment for participation by work-
ers, have generated interest in using self-employment as a tool for as-
sisting unemployed workers in returning to work.  Unlike other ser-
vices to assist the unemployed in obtaining jobs, SEA is designed to
promote direct job creation for unemployed workers—to empower the
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unemployed to create their own jobs by starting small business ven-
tures.  These very small start-up firms, which are called “microenter-
prises,” are typically sole proprietorships with one or, at most, a few
employees, including the owner/operator of the business.

During the 1990s, increasing numbers of dislocated workers in the
United States have been coming from professional, technical, and man-
agerial occupations—occupations which provide skills and experience
that may make these workers particularly well-suited for entering self-
employment.2 While the primary goal of SEA/microenterprise pro-
grams is direct job creation for unemployed workers (or other specific
target groups), the microenterprises started by these individuals may
also generate additional jobs that could be filled by other workers.  Thus,
the SEA program provides an opportunity to integrate labor market pol-
icy and economic development policy in a dynamic relationship, help-
ing participants to enter employment while simultaneously providing a
modest boost to job creation and economic growth in their communities.

Self-employment assistance programs for unemployed workers
were first implemented in several western European nations during the
early 1980s.  These programs were designed to help unemployed work-
ers to “create their own jobs” by starting small businesses, which usual-
ly meant microenterprises.  The two best known self-employment pro-
grams at the time were those in Great Britain and France.  The French
self-employment program, Chômeurs Créateurs, provided eligible indi-
viduals with a single, lump-sum payment for business start-up capital;
the British program, the “Enterprise Allowance Scheme,” provided eli-
gible individuals with biweekly payments to supplement their earnings
during the first year of business operations.  In designing the UI Self-
Employment Demonstration in 1988, DOL and state representatives vis-
ited France, Great Britain, and Sweden to observe firsthand the SEApro-
grams in those countries.  The British and French programs provided
models of how unemployed workers could become self-employed;
these models appeared to be transferable to the United States and were
subsequently adapted for testing in two demonstration projects.

The Self-Employment Demonstration Projects

Ultimately, DOL conducted two experimental demonstration proj-
ects, in the states of Washington and Massachusetts, that tested the via-
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bility and cost-effectiveness of self-employment as an alternative reem-
ployment option for unemployed workers.  These projects were de-
signed to assist UI recipients interested in self-employment to “create
their own jobs” by starting a business venture.  The Washington
demonstration project was initiated by DOL in early 1987, and all costs
were funded by DOL research resources.  The Massachusetts demon-
stration project was authorized by the Omnibus Budget Reconciliation
Act of 1987.

These demonstration projects provided a basic model of a self-em-
ployment assistance program for unemployed workers.  The program
model includes two key components: financial assistance and business
development services, modeled loosely on the British and French self-
employment programs.  The Massachusetts project was based on the
United Kingdom’s Enterprise Allowance Scheme and paid out biweek-
ly cash self-employment allowances that provided microentrepreneurs
with a source of income while they started their business.  The Wash-
ington State demonstration generally followed the French Chômeurs
Créateurs model and gave a lump-sum payment to unemployed work-
ers interested in developing a microenterprise.  In both programs, the fi-
nancial assistance provided to participants equaled the total amount of
unemployment insurance benefits to which workers would be normally
entitled.  In addition, both projects delivered business development ser-
vices including entrepreneurial training, one-on-one business counsel-
ing, technical assistance, and peer support groups.

The results from the final evaluation of these demonstration proj-
ects clearly indicated that self-employment is a viable reemployment
option for some unemployed workers.  The evaluation found that while
only about 2–3 percent of UI benefit recipients are interested in SEA,
over half of this subset actually start a business.  A final report on the UI
Self-Employment Demonstration projects in Massachusetts and Wash-
ington was completed and published by DOL (Benus et al. 1995).  The
report includes a benefit–cost analysis from three different perspec-
tives: project participants, the government, and society as a whole.  The
key findings from the evaluation of the UI Self-Employment Demon-
stration are as follows.

• SEA significantly increased the probability that unemployed
workers would start a microenterprise.  Compared with the con-
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trol group, Massachusetts participants were 11 percent more
likely to start a business; Washington participants were 22 per-
cent more likely to start a microenterprise than their control
counterparts.

• 61 percent of Washington participants and 74 percent of Massa-
chusetts participants that had started a business sometime during
the demonstration were still in business nearly three years later.
These rates were similar to control group participants that had
started businesses.

• Over the three-year follow-up survey period, SEA participants
were employed longer than those in the control group by 1.9
months in Massachusetts and by 1.1 months in Washington.

• When both self-employment and wage and salary earnings are
considered, the Massachusetts project dramatically increased the
total annual earnings of participants: on average, project partici-
pants earned $5,940 more than those in the control group.

This evaluation also makes a determination as to the cost-effective-
ness of the SEA program models tested from the perspectives of project
participants, the government, and society as a whole.  The benefit–cost
analysis conducted as part of the final report showed that while both
program models proved cost-effective interventions for participants
and society as a whole, only the Massachusetts model proved to be
cost-effective to the government.  As a result, the evaluators concluded
that for the Massachusetts model,

These results indicate that SEA is a cost-effective approach to
promote the rapid reemployment of unemployed workers and
should be permanently incorporated into the U.S. employment se-
curity and economic development system (Benus et al. 1995, pp.
x–xi).

National SEA Legislation and Key Features of the SEA Program

Based on the preliminary impact results from the UI Self-Employ-
ment Demonstration available in mid 1993, a provision allowing states
to establish SEA programs as part of their UI programs was enacted
into federal law as part of the North American Free Trade Agreement
(NAFTA) Implementation Act (Public Law 103-182).3 This provision
allows states the option to offer SEA as an additional tool to help speed
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the transition of dislocated workers into new employment.  States need
to enact legislation that conforms to the federal legislation to establish
SEA programs (Orr et al. 1994).

State SEA programs provide participants with periodic (weekly or
biweekly) self-employment allowances while they are getting their
businesses off the ground.  These income support payments will be the
same weekly amount as the worker’s regular UI benefits, but partici-
pants can work full time on starting their businesses instead of search-
ing for wage and salary jobs, and they can also retain any earnings from
self-employment.  In effect, this provision removes a barrier in the
law—one that forced unemployed workers interested in self-employ-
ment to choose between receiving UI benefits and starting a business.

Under this legislation, in states that operate SEA programs, only
those UI recipients identified through profiling as likely to exhaust their
UI benefits are eligible for SEA.  Self-employment program partici-
pants are also required to work full time on starting a business, as well
as participate in SEA services—such as entrepreneurial training, busi-
ness counseling, and other activities—to ensure that they have the
skills necessary to operate a business.

DOL issued federal guidelines regarding self-employment pro-
grams in an Unemployment Insurance Program Letter in early 1994.
States have the flexibility to establish their own programs within these
guidelines.  To do so, states first need to enact conforming state legisla-
tion to establish their self-employment programs, develop a state plan
describing how their SEA program will operate, and then submit the
state plan to DOL for review and approval.

The 1993 legislation allowed the SEA program to run for five
years, and the initial five-year authorization period for the SEA pro-
gram was due to expire in December 1998.  Ultimately, the program
was made permanent by Public Law 105-306 (The Noncitizen Benefit
Clarification and Other Technical Amendments Act of 1998), which
was signed into law on October 28, 1998.

The Role of Profiling in the Demonstration Projects 
and in the SEA Program

Self-employment and microenterprise development programs have
proliferated since the time that DOL began its demonstration projects
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testing self-employment as a reemployment option for the unemployed.
Most of these microenterprise programs, however, focus their efforts
on self-employment for welfare recipients and other disadvantaged in-
dividuals; that is, on using self-employment as an antipoverty strategy.
The SEA program has been and still is one of the few self-employment
programs targeted specifically to unemployed workers who have sig-
nificant labor market experience yet are unlikely to return to jobs simi-
lar to those they had prior to layoff.  Furthermore, SEA is the only such
program that provides such individuals with a period of guaranteed in-
come support while they are starting and operating their own business-
es.  Profiling, the mechanism used to identify dislocated workers eligi-
ble for the SEA program out of the broad UI claimant population,
helped the SEA program to be both cost-effective to the government
and politically viable for several key constituency groups, particularly
employers.  Profiling helps ease the concern of employers who want
their former employees to be available for recall and are not being sub-
sidized to establish microenterprises that might compete with them
(U.S. Department of Labor 1994).

The use of profiling to identify eligible individuals for the SEA pro-
gram is designed to target the program on the subset of UI claimants
who have been permanently laid off from their previous jobs and who
are most likely to experience extended spells of unemployment and
thus likely to exhaust their UI benefits.  Profiling uses a set of criteria,
called a “profile,” to identify those UI claimants who are likely to be
dislocated workers out of the broad population of all UI claimants.
Typically, profiling models include both individual characteristics (e.g.,
an individual’s level of educational attainment) and economic variables
(e.g., whether or not employment in a particular occupation is growing
or declining).  The rationale for this targeting is that claimants identi-
fied as likely to exhaust UI through profiling are those most in need of
reemployment services to be able to return to work; thus, the self-em-
ployment assistance provided by the SEA program is merely one alter-
native in an array of tools designed to assist dislocated workers in their
efforts to become reemployed.

As in the WPRS initiative, profiling in the SEA program targets
dislocated workers for self-employment assistance because they are
considered to be most in need of services.  In addition, however, target-
ing on dislocated workers may be particularly appropriate for the SEA
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program because an increasing proportion of all dislocated workers are
now coming from professional, technical, and managerial occupa-
tions—occupations that require knowledge and skills that may be par-
ticularly applicable for self-employment.  The experiences of the UI
Self-Employment Demonstration provide evidence supporting this ap-
proach.  In Washington State, 37 percent of all participants came from
professional, technical, and managerial occupations, and in Massachu-
setts, more than half of all participants (57 percent) came from these
occupations.

SUMMARY ASSESSMENT OF STATE SEA PROGRAMS

Descriptive Information on State SEA Programs

There are currently SEA programs in eight states: listed in chrono-
logical order of program implementation, they are New York, Oregon,
Maine, Delaware, New Jersey, California, Maryland, and Pennsylva-
nia.  These programs are broadly similar but with several identifiable
differences.  Table 5.1 provides information on detailed aspects of the
programs.

Six of the eight states operate statewide programs, meaning UI
claimants at any local office may participate if eligible.  Entrepreneur-
ial training and other support services are not necessarily available lo-
cally, but participants control the decision regarding whether or not to
travel to the sites where services are offered.  California and Pennsyl-
vania are exceptions regarding geographic coverage.

All programs are required to use profiling to select eligible SEA
participants.  The individual profiling threshold probabilities (i.e., the
minimum likelihood of benefit exhaustion for SEA program eligibility)
range from no minimum threshold probability in the eight Pennsylva-
nia service-delivery areas (SDAs) that offer SEA to a high of 70 percent
in New York.4

States follow differing practices in contacting potential SEA partic-
ipants.  As indicated in Table 5.1, five states send letters informing
claimants of the SEA program and inviting them to attend an initial in-
formational meeting.  The other three provide information during an
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Table 5.1  SEA Intake Procedures, Provisions, and Financing of Support Services and Anticipated Enrollment

Characteristic California
New 
York

New 
Jersey Oregon Maine Delaware Maryland Pennsylvania

Geographic extent of SEA program 6 of 52 SDAs Statewide Statewide Statewide Statewide Statewide Statewide 8 of 28 SDAs

Profiling cutoff
Probability of exhaustion (%)

1995 NA 75 NA 60 40 68 NA NA
1997 64 70 42 55 40 68 NA NA
1999 64 70 42a 33 40a 68 40 Noneb

Primary method of contacting
eligibles

Letter Letter Benefit
rights 

interview

Profiling
session

Letter Profiling
session

Letter Letter

Location of initial information
meeting

Local SDA
office

Local 
UI-ES 
office

Regional 
ES 

office

Regional 
ES 

office

One-stop
center

One-stop
center

Statewide
service 
vendor

One-stop 
center or 
vendor

Types of services
Entrepreneurial training Yes Yes Yes Yes Yes Yes Yes Yes
Counseling Yes Yes Yes Yes Yes Yes Yes Yes
Technical assistance Yes Yes Yes Yes Yes Yes Yes Yes
Peer support No Yes No No No Yes Yes No
Financial support No No No No No No No No

Funding of services
JTPA-Title III-state grant Yes Yes Yes Yes
JTPA-Governor’s reserve monies Yes Yes Yes
Small Bus. Dev. Centers (SBDC) Yes Yes Yes Yes
State-financed training budget Yes
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General revenues Yes
UI special admin. expense fund Yes
In-kind services Yes Yes Yes

Anticipated enrollment 500–1,000 1,000 750–1,000 200 250–300 75 100 1,000
1996 SEA enrollment 2 2,195 156 111 134 17 NA NA
1997 SEA enrollment INA 2,266 776 38 101 INA INA 560c

NOTE: NA = not applicable, no SEA program that year.  INA = information not available.
a State is considering lowering the cutoff threshold.
b All persons who are profiled receive an information letter on SEA.
c 1998 enrollment data.
SOURCE: State Annual Self-Employment Assistance Reports, correspondence with DOL, and conversations with state officials as of 1998.
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initial face-to-face meeting (benefits rights interview or profiling ses-
sion).  While the latter approach may take more time per client, it seems
more efficient in making early identifications of those with definite in-
terests in self-employment.  Oregon, in fact, changed its procedures so
that screening now occurs at the profiling session and avoids situations
where individuals go to small business development centers (SBDCs)
with little background and/or little serious interest in self-employment.

In five of eight states, the initial informational meeting where SEA
is fully described occurs in offices of the employment service or in one-
stop centers.  Exceptions are California, where the informational meet-
ing occurs in local SDA offices, and Maryland and Pennsylvania,
where the offices of the service provider are used.5

All SEA programs provide a similar set of basic services to support
those interested in pursuing self-employment.  Entrepreneurial train-
ing, counseling, and technical support are offered universally.  Initial
assessment often occurs at an SBDC.  Specialized services may be rec-
ommended, and counseling may also be available.  The SBDCs further
provide assistance in developing and reviewing business plans pre-
pared by participants.  Three states also indicated that peer support ses-
sions are provided to participants (at least in some local geographic ar-
eas).  However, given the low levels of SEA enrollment (to be
discussed presently), the number of such meetings and total participa-
tion is extremely limited.

Financial support other than weekly SEA allowances may be need-
ed to start up new enterprises.  Potential sources available to individu-
als include personal savings, other family sources, or loans from finan-
cial institutions.  Often SBDCs advise on loan availability and loan
application procedures, but loans are currently being made by SBDCs
or other SEA service providers.  State SEA reports for 1996 typically
showed that a very small number of loans had been received.6

Table 5.1 also identifies how each state pays for support services
provided to clients.  Most commonly, client services were financed
with Job Training Partnership Act (JTPA) Title III monies, a source
used in six states.  This financing included JTPA discretionary monies
controlled by the governors in three states.  New Jersey finances most
training activities with monies from its Workforce Development Part-
nership, a state payroll tax–financed reemployment program.  Pennsyl-
vania uses monies from its general revenue-supported Projects for
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Community Building, a state economic and community development
program with eight separate components.

Support services are also commonly provided by SBDCs.  In
Maine, SBDC support is provided through a contract with the Maine
Department of Labor.  The Labor Department monies are derived from
the penalty and interest account (or special administrative expense
fund) of the unemployment insurance agency.  Table 5.1 identifies this
source of financing in Maine.  SBDC activities in four other states are
supported by their SBDC’s own resources.

Less common funding sources include in-kind services.  Services
provided by the Service Corps of Retired Executives (SCORE) in three
states have included help in preparing contracts, counseling program
participants, and assistance in preparing business plans.  In New York,
the Internal Revenue Service also conducts seminars informing partici-
pants on tax obligations of small businesses.

Thus, for six of eight SEA programs, financial support for SEA ser-
vices to clients is derived from more than a single source.  Monies are
most often derived from JTPA (now WIA) and SBDC.  The two excep-
tions are New Jersey and Maine, where financing is predominantly pro-
vided by the Workforce Development Partnership program and the UI
penalty and interest account, respectively.

The final feature of the SEA programs covered by Table 5.1 is their
size in terms of their anticipated and actual numbers of enrollments.
The NAFTA Implementation Act specified that enrollment in SEA
could not exceed 5 percent of those receiving regular UI benefits.  Each
program in its planning stages was to indicate the anticipated number
of clients.  These numbers are shown at the bottom of the table, along
with actual 1996 and 1997 enrollments (1998 enrollments in Pennsyl-
vania).  With the exceptions of New York and New Jersey, the SEA
states have had many fewer enrollees than originally anticipated.  Thus,
it is clear that SEA is a small program, both relative to the regular UI
program and in the absolute numbers of participants.

Personal and Economic Characteristics 
of SEA Program Participants

Table 5.2 shows the 1996 and 1997 personal and economic charac-
teristics of SEA participants in the first five states to implement SEA



Table 5.2  Personal and Economic Characteristics of SEA Participants, 1996 and 1997

New York New Jersey Oregon Maine Delaware

Characteristic
SEA

participants

Insured 
unemployed
(thousands)

SEA
participants

Insured 
unemployed
(thousands)

SEA
participants

Insured 
unemployed
(thousands)

SEA
participants

Insured 
unemployed
(thousands)

SEA
partici-
pants

Insured
unemployed
(thousands)

Year 1997 1996 1996 1997 1996 1996 1997 1996 1996 1997 1996 1996 1996 1996
Total 2,266 2,195 208.1 832 156 108.2 38 111 44.2 101 134 14.6 17 8.1
Age

Under 22 10 45.0 1.0 1 4.6 0.0 0 3.3 0 0.5 0 0.2
22–24 35 10.0 2.0 2 6.8 0.0 1 3.3 2 0.9 0 0.4
25–34 605 460 49.5 155.0 30 31.3 6.0 18 12.9 31 4.0 2 2.4
35–44 777 788 45.2 287.0 56 28.9 13.0 42 12.8 52 4.0 9 2.6
45–54 587 654 32.5 241.0 44 20.9 9.0 40 8.0 39 2.8 4 1.5
55–59 137 11.4 86.0 15 7.2 8.0 7 2.2 10 0.9 2 0.5
60–64 297a 63 7.9 44.0 5 5.0 1.0 2 1.0 0 0.6 0 0.3
65+ 30 6.4 17.0 3 3.6 1.0 1 0.6 0 0.3 0 0.2
Unknown 18 0.4 0.6

Average age 43.0 42.2 36.6 44.0 43.0 39.9 45.3 43.1 37.5 INA 41.4 39.6 42.7 39.7
Gender

Women 1,135 957 89.7 319 63 47.4 19 50 17.6 47 72 6.0 5 3.8
Men 1,131 1,231 117.9 513 93 60.7 19 61 26.6 54 62 8.0 12 4.3
Unknown 7 0.5 0.6



Women (%) 50.1 43.7 43.2 38.3 40.4 43.8 50.0 45.0 39.8 46.5 53.7 42.9 29.4 46.9
Ethnicity

White 1,269 1,503 112.8 680 134 66.4 34 106 37.3 99 130 13.8 14 5.2
Black 543 292 27.0 105.0 13 20.7 0 3 1.0 0 2 0 3 2.6
Hispanic 159 68 22.3 22 4 18.4 2 0 3.5 0 0 0 0 0.2
Other 68 28 46.1 25 5 2.6 2 2 2.4 2 2 0.8 0 0.1
Unknown 227 304 0.1

Black (%) 26.6 15.4 13.0 12.6 8.3 19.1 0.0 2.7 2.2 0.0 1.5 0.3 17.6 32.0
Hispanic (%) 7.8 3.6 10.7 2.6 2.6 17.0 5.3 0.0 8.0 0.0 0.0 0.2 0.0 2.4
Occupation

Prof/tech/mgr. 1,029 36.8 141 21 47.9 22 71 9.5 27 50 1.9 10 1.8
Clerical 707 43.3 49 17 17.2 8 15 8.4 19 39 2.6 1 2.3
Sales Note b Note b 11 9 Note b 4 7 Note b 15 10 Note b 1 Note b
Service 151 23.9 24 12 9.2 0 3 5.3 6 12 1.9 0 0.9
Ag/forest/fish 0 0.4 1 22 2.7 1 1 2.9 2 1 0.4 0 0.1
Industrial 308 102.2 564 75 30.1 3 14 18.0 31 22 6.1 5 2.9
Unknown 1.2 42 1.0 1 1.7 0.1

Prof/tech/mgr  (%) 46.9 17.8 17.8 13.5 44.7 57.9 64.0 21.5 27.0 37.3 14.7 58.8 22.5
Industrial (%) 14.0 49.5 71.4 48.1 28.1 7.9 12.6 40.8 31.0 16.4 47.3 29.4 36.3
Education

Less than high
school 122 INA 29 8 INA 1 5 INA 7 6 INA 2 INA

High school 638 INA 229 32 INA 16 38 INA 74 57 INA 6 INA
More than high

school
1314

0.2



Table 5.2  (Continued)

New York New Jersey Oregon Maine Delaware

Characteristic
SEA

participants

Insured 
unemployed
(thousands)

SEA
participants

Insured 
unemployed
(thousands)

SEA
participants

Insured 
unemployed
(thousands)

SEA
participants

Insured 
unemployed
(thousands)

SEA
partici-
pants

Insured 
unemployed
(thousands)

Some college INA INA 256 50 INA 9 29 INA 6 46 INA 5 INA
4-yr. college INA INA 279 55 INA 7 29 INA 14 23 INA 4 INA
Adv. degree INA INA 39 11 INA 5 19 INA 0 2 INA 0 INA
Unknown 21

More than high
school (%)

63.4 69.0 4.4 55.3 64.2 19.8 53.0 52.9

UI WBAc ($) 246 249 206 326 INA 258.5d 274 241 191 165 179 171 271 224
SEA WBA differ-

ential (%)
20.8 26.2 26.5 4.9 21.1

NOTE: INA = information not available.
a Aged 55 and over.
b Sales combined with clerical.
c Weekly benefit amount; statewide WBA from UI Financial Handbook.
d WBA in 1997.
SOURCE: SEA data from state reports, counts of participants.  Insured unemployment data from required reports, in thousands.

Education (cont.)
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programs.  For comparative purposes, the table also shows information
on the characteristics of the insured unemployed (regular UI claimants)
in these states in 1996.7 SEA participants differ from regular UI
claimants in several respects.  Table 5.2 provides comparative informa-
tion on age, gender, ethnicity, occupation, education, and UI weekly
benefits for the two groups.

SEA participants in every state are, on average, older than the in-
sured unemployed.  The differences in average age range from a low of
1.8 years in Maine in 1996 to a high of 7–8 years in New York and Ore-
gon.  These systematic age differences mirror the age differences typi-
cally observed between the self-employed and wage and salary work-
ers.8 The likelihood of self-employment increases among workers as
they attain older ages.  SEA participants share this characteristic with
the wider self-employed population.

Among the five states there are no dramatic patterns of gender dif-
ferences between SEA participants and the insured unemployed.  The
1996 percentages of women in the two groups were nearly identical in
New York.  SEA participants had a noticeably higher representation of
women in Maine and Oregon but had a lower representation in
Delaware.

Ethnic differences between SEA participants and the insured unem-
ployed also are apparent in Table 5.2.  In both New Jersey and
Delaware, the percentages of blacks in SEA are lower than among the
insured unemployed.  New York, the other state with a sizeable black
population, had somewhat higher participation in SEA than among reg-
ular UI claimants.  For Hispanics, on the other hand, SEA participation
has been consistently low.

The occupational distributions in Table 5.2 reveal a consistent pat-
tern for four of the five states.  In New York, Oregon, Maine, and
Delaware, a very high percentage of SEA participants were from the
professional, technical, and managerial occupations, while low per-
centages were drawn from industrial occupations.  In New York, for ex-
ample, 46.9 percent of SEA participants in 1996 were professional,
technical, and managerial, compared to just 17.8 percent among the in-
sured unemployed.  The industrial occupations in New York supplied
just 14.0 percent of SEA participants in 1996 but 49.5 percent of the in-
sured unemployed.

New Jersey appears to be an outlier in its SEA occupational distri-
bution.  Compared with the insured unemployed, SEA participants
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were less likely to be professional, technical, and managerial, but more
likely to be from industrial occupations.  Conversations with New Jer-
sey officials did not identify an explanation for this situation.  Note that
this pattern was observed in both 1996 and 1997.

In all five states, SEA participants showed a relatively high level of
educational attainment.  For the eight education distributions appearing
in Table 5.2, the percentage whose schooling exceeded 12 years (high
school) exceeded 50 percent in seven (Maine in 1997 was the excep-
tion).  In four instances, the percentage exceeded 60 percent.  While the
regular UI programs’ reporting systems do not record educational at-
tainment for the insured unemployed, their average attainment is un-
doubtedly lower than for SEA participants.

Data from New York’s 1996 SEA report are instructive regarding
the link between educational attainment and SEA participation and
SEA completion (Vroman 1998, Appendix B). The average participa-
tion rate among those profiled and identified as likely UI exhaustees
was 0.93 percent (2,195 participants out of 235,126).  By education
level, however, the participation rates were 0.28 percent for those with
less than high school education, 0.64 percent for those with high school
education, and 1.59 percent for those with more than a high school
diploma.

SEA completion rates in New York were also linked to educational
attainment.  The overall completion rate was 0.80 (i.e., 1,751 of 2,195)
as shown in Table 5.2.  Completion rates by education levels were 0.66
for those with less than high school, 0.76 for those with a high school
education, and 0.82 for those with more than high school. From the
New York data, it is clear that the probability of entering and the prob-
ability of completing SEA both increase with the level of educational
attainment.

For all five states in Table 5.2, it can be inferred that SEA partici-
pants had much higher pre-unemployment wages than the wages of the
insured unemployed.  Weekly benefits in UI programs are based on
high quarterly earnings or average weekly wages during the base peri-
od.9 The weekly benefit amount (WBA) of SEA participants in 1996
ranged from 4.9 to 26.5 percent higher than the average WBA for the
insured unemployed, and four percentage differentials exceeded 20
percent.  The smaller proportional differential in Maine could reflect
the high percentage of women (and associated lower earnings) among
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its SEA participants.  While the SEA reports do not indicate the pre-un-
employment levels of earnings among participants, their percentage
differentials vis-à-vis the insured unemployed undoubtedly exceed the
percentage differentials in weekly benefits shown in Table 5.2.10 Thus,
for four of the five states, SEA enrolled relatively high-wage workers,
i.e., workers with much higher wages than the wages of the insured un-
employed.

To summarize, there were clear differences in 1996 and 1997 be-
tween the characteristics of SEA participants and the insured unem-
ployed.  On average, SEA participants were older, substantially less
likely to be Hispanic, and more likely to be drawn from the profession-
al, technical, and managerial occupations and from the higher ranks of
the educational attainment distribution.11 SEA participants also earned
considerably more on average than the insured unemployed prior to the
onset of unemployment.

Clearly, SEA participants are not a random group drawn from the
pool of eligibles identified as likely exhaustees through state profiling
models; rather, SEA participants are a self-selected subgroup of likely
UI exhaustees.  Participation rates are systematically higher for whites,
those with higher educational attainment, and those from the profes-
sional, technical, and managerial occupations.

Early SEA Program Outcomes and Costs

SEA programs are required to report on the economic outcomes of
program participants for each year that SEA operated for more than six
months.  This requirement applied to four SEA states in 1996 (New
York, Oregon, Maine, and Delaware) and to one state in 1997 (New
Jersey).  Due to the small scale of Delaware’s program, it will not be
included in the present discussion.

Data on economic outcomes for program participants were ob-
tained from questionnaires, sent by mail.  Interview data are particular-
ly important for the self-employed because such persons are not cov-
ered by the UI system and self-employment earnings are not subject to
UI reporting.  However, self-employment income is frequently episod-
ic, especially at the early stages of new business ventures.  Data on self-
employment earnings are subject to the twin problems of faulty recall
and misreporting (underreporting).  Survey-based estimates of self-em-
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ployment earnings provide systematically downward-biased estimates
of actual earnings.

Table 5.3 displays selected data on economic outcomes for partici-
pants in four states in 1996 and 1997.  The table shows estimates of la-
bor force status, self-employment business activity, and post-SEA wage
and salary earnings of participants.  Wages and salaries are also shown
for the fourth quarter of 1996 and 1997.12 In New York, the data dis-
tinguish SEA program completers from dropouts.

The respondents to follow-up interviews in New York represented
just less than half of all SEA program participants.  Lacking informa-
tion from other sources, however, the analysis will use these data.  Note
also the generally small sample sizes, especially in Oregon.

The data in Table 5.3 are seriously incomplete.  Even if these 
data were complete and based on much larger samples, there is still the
issue of the short elapsed interval between program completion and the
time when these state surveys were undertaken.  From the demonstra-
tion project results, it would be expected that important adjustments
would still be occurring two or three years following SEA participa-
tion.

The data from New York and Maine both recorded the employment
situation of SEA participants using three employment categories: self-
employed only, wage and salary employment only, and both types of
employment at the same time.  New York further noted those unem-
ployed and retired.  At the time of the interviews, the vast majority of
SEA participants were employed, with employment proportions of 89
percent and 86 percent for participants in Maine and 89 percent for
SEA completers in New York.  Of the New York dropouts, 66 percent
were employed.  The latter group also had high unemployment, 28 per-
cent of all dropouts.  Among New York SEA completers not employed,
about half were retired and the proportion unemployed was only 2 per-
cent.

In both Maine and New York, about three-quarters of those em-
ployed were working exclusively as self-employed or working both as
self-employed and as wage and salary workers.  Only the New York
dropouts were working mainly as wage and salary workers.  At the time
of the interviews, about half of the dropouts were working exclusively
as wage and salary workers, while less than one-tenth were exclusively
self-employed.
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Among all states, a consistently high proportion of SEA partici-
pants started businesses.  The proportions in Table 5.3 range from 65 to
77 percent in New Jersey, Oregon, Maine, and New York (among SEA
program completers).  For New York dropouts, the business start-up
proportion was only 21 percent.

Business start-ups were heavily concentrated in two broad industry
groupings, services and trade (wholesale plus retail).  For the three
states that reported the industry of the start-up businesses, the percent-
ages in these two industries combined were as follows: New York, 83.4
percent; New Jersey, 66.7 percent; and Oregon, 72.0 percent.  In New
York, where information was also given on previous industry of SEA
participants, there were large employment increases in services (in-
creasing from 33.0 percent to 68.3 percent) and decreases in employ-
ment in finance, manufacturing, transportation and utilities, and “indus-
try not available.”  The combined percentage for these latter four
industries decreased from 47.1 percent to 12.9 percent.  Clearly, many
of the business start-ups involved large changes in the types of work ac-
tivities now being undertaken by SEA participants compared with their
previous jobs (Vroman 1998).

The gross income data from three states indicate that annual busi-
ness sales were low in all three: $26,429 in New Jersey, $37,049 in
Oregon, and less than $10,000 in Maine.  Note that net business income
was less than $7,000 in both New Jersey and Oregon.  Thus, for these
three states there is a consistent picture of relatively low levels of busi-
ness sales and net business income.  This is similar to findings from the
self-employment demonstration projects.

Each state reported on the number of jobs added by the new busi-
nesses, besides those for the entrepreneurs.  Table 5.3 indicates that
there were significant indirect employment effects in all four states.
The average number of added (or indirect) jobs ranged from 0.8 per
business start-up in Maine and New Jersey to more than 1.4 per busi-
ness start-up in New York.  These added employment effects were larg-
er than those reported in the Washington State demonstration.

In addition to the self-employment outcomes, substantial numbers
of participants worked as wage and salary workers following enroll-
ment in SEA.  The proportions in the interview data at the top of Table
5.3 were 30 percent in 1996 and 54 percent in 1997 in Maine, 30 per-
cent for New York completers (255 of 853), and 58 percent for New
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Table 5.3  Labor Market and Business Outcomes for 1996 and 1997 SEA Participants

New York

(1996) (1996) (1997) (1996) (1997) (1996) (1997) (1996)

Completed questionnaires 853 173 136 40 15 53 72 8
Labor force status

Self-employed only 506 15 INA INA INA 31 23 INA
Self-employed and wage and salary emp. 154 22 INA INA INA 9 22 INA
Wage and salary emp. 101 78 INA INA INA 7 17 INA
Unemployed 15 48 INA INA INA INA 9 INA
Retired 45 3 INA INA INA INA 0 INA
Other 17 5 INA INA INA INA 1 INA
Not known 15 2 INA INA INA

Number employed 761 115 INA INA INA 47 62 INA
Proportion employed (%) 89 66 INA INA INA 89 86 INA

Business activity
Business start-ups 660 37 98 26 10 40 44 8
Proportion with start-ups (%) 77 21 72 65 67 75 63 100
Business start-up loans 276a Note a 10 3 3 3 INA 1
Business closings INA 3 1 INA INA 2
Gross sales ($, 000) INA 2,590.1 963.3 INA 291.9 INA 75.0

Average gross sales ($) INA 26,429 37,049 INA 7,298 INA 9,370
Self-employment income ($, 000) INA 650.5 160.7 INA INA INA INA

Average self-employment income ($) INA 6,637 6,180 INA INA INA INA
Added jobs Note a 82 24 14 32 INA 5

Completers Dropouts New Jersey 
Oregon Maine

Delaware 
Outcome
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Wages of SEA participants
Number, fourth quarter 154b 10 7 3 48b 56 4c

Proportion with wages 0.23 0.35 0.07 0.18 0.20 0.48 0.55 050
Total quarterly wages ($, 000) 2,648.1 1,004.9 47.4 24.8 2.3 150.2 200.1 19.8
Average participant wages ($) 6,443 6,525 4,743 3,538 773 3,130 3,573 4,956
Avg. wages of all UI covered workersc ($) 9,405 9,405 9,314 6,637 7,005 5,775 6,059 7,726
Ratio of participant wages to covered wages 0.69 0.69 0.51 0.53 0.11 0.54 0.59 0.64

a Combined data for completers and drop-outs.  New York’s report stated that more than 1,000 additional jobs were created by SEA
firms.

b Numbers based on all 1996 SEA participants in New York and participants from the first three quarters of 1996 in Maine.  New York
data from six tax files.  Maine data from UI wage records.

c Calculated as 13 times the average weekly wage.
SOURCE: Data from 1996 and 1997 SEA state reports.

NOTE: INA = information not available.
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York dropouts (100 of 173).  A second perspective on this phenomenon
is provided by the data in the bottom rows of the table.  These show
counts of those who worked as wage and salary workers during the
fourth quarter of 1996 and 1997 based on administrative data.  Five of
the six proportions range from 18 percent to 55 percent, with only New
Jersey’s proportion being lower.  Thus, both survey data and adminis-
trative data show sizeable proportions working in wage and salary em-
ployment.

For all four states, the amounts of wages and salaries earned by
SEA participants during the fourth quarter were reported.  These
amounts and the per-person averages appear in the bottom panel of
Table 5.3.  Five of the six averages range from $3,130 in Maine to
$6,525 for New York dropouts.13 Since wage levels differ widely
among states, it seemed more appropriate to compare these averages
with average wages in the same states.  Estimates of average quarterly
wages in UI-covered employment are shown for each state.  Finally, the
bottom line shows the ratio of the SEA average to the all-worker aver-
age.  These ratios range from 0.53 in Oregon (1996) to 0.69 in New
York.

For SEA participants with wages and salaries in the fourth quarter
of 1996 and 1997, the averages represent substantial amounts of earn-
ings.  Recall from Table 5.2, however, that SEA participants in all four
states earned more than the average for all UI claimants prior to the on-
set of unemployment (as indicated by above-average weekly UI bene-
fits).  Thus, the quarterly averages in Table 5.3 represent much lower
average earnings for participants than they earned before unemploy-
ment.  This finding is consistent with previous work on dislocated
workers, such as findings based on the CPS dislocated worker surveys.

The data examined in Table 5.3 suggest the following four conclu-
sions:

1) the vast majority of SEA participants were employed at the
time of their interviews;

2) in New York, where SEA completers and dropouts could be
compared, the dropouts had lower rates of employment, higher
rates of unemployment, higher rates of wage and salary em-
ployment, and lower rates of self-employment;

3) in all four states, SEA program participation was followed by a
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high rate of business start-ups.  The start-up proportions were
65 percent or higher; and

4) in each state, a sizeable proportion of SEA participants (rang-
ing from 18 to 50 percent) had wage and salary earnings during
the fourth quarter of 1996.  

The average wage and salary earnings for these persons generally
ranged from 0.51 to 0.69 of statewide average wages for the quarter.

Some caveats in the SEA outcomes data also should be empha-
sized.  First, most data on labor market outcomes came from surveys
with low response rates.  The nonrespondents may have had inferior
outcomes vis-à-vis the outcomes reported by the respondents.  Second,
a longer time interval following SEA participation would be more ap-
propriate for measuring labor market outcomes.  Measurement over a
longer time period would probably reveal larger numbers of business
start-ups, business failures, and moves to wage and salary employment.
Finally, unlike the self-employment demonstrations, there is no control
group against which the labor market outcomes for participants can be
compared.14 Thus, no easy way exists to assess the impacts of SEA.
Instead, the outcomes that are summarized in Table 5.4 should be char-
acterized as gross outcomes, not as net impacts.

The 1996 and 1997 SEA program annual reports from the states
provided information on the costs of SEA.  No quantitative estimates of
costs were supplied by California, New York, and Delaware.  Limited
data were supplied by Oregon and Maine.  Only New Jersey provided a
reasonably complete accounting of costs.  Reporting instructions di-
rected the states to provide information on two main kinds of costs: the
added costs of UI program administration and the costs of providing
entrepreneurial training and other services to SEA participants.  The
states were instructed not to report on allowances paid to SEA partici-
pants.

A summation that includes the variable costs of SEA training and
other support services plus UI administrative costs can be done only in
New Jersey.  The average cost per enrollee was $1,127 in 1997.  Given
the limitations of the cost data supplied by the states, we hesitate to
make strong conclusions about program costs.

From the data supplied in the 1996 and 1997 annual SEA reports,
two tentative conclusions may be drawn.  First, New Jersey’s average
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variable costs of $1,127 in 1997 did not differ widely from the costs of
self-employment demonstrations, where inflated estimates from Mas-
sachusetts and Washington were $1,213 and $474, respectively.15 Sec-
ond, there would probably be a wide range of estimates of average
costs related to the scale of the SEA program.  The estimates of UI
agency costs in Oregon in 1996 and 1997 illustrate this point, i.e., $801
in 1997, compared with $384 in 1996.

It should also be noted that, from the 1996 and 1997 data reported
by the states, there is no way to undertake a benefit–cost analysis of
state SEA programs such as the one completed as part of the evaluation
of the UI Self-Employment Demonstration projects.

THE USE OF PROFILING IN SEA PROGRAMS 
AND ITS IMPLICATIONS

How Profiling Is Being Used in SEA Programs

Since profiling is used to select persons eligible for SEA, some de-
scription of the use of profiling in SEA programs is warranted.  Table
5.4 provides details of profiling in six states with SEA programs.16 The
table highlights four aspects of SEA profiling: 1) the screening criteria
used in the first stage of the profiling process to exclude UI claimants
from the second stage of profiling (the statistical model); 2) the vari-
ables used in the statistical model; 3) information on updating the sta-
tistical model; and 4) the profiling probability of exhaustion threshold
used to determine if persons are eligible to participate in SEA pro-
grams.

Profiling has two main operational functions in UI programs: to
provide rankings of claimants to local UI offices (used to select persons
to receive enhanced reemployment services), and to identify persons
eligible to participate in SEA.  The state criteria used to screen out peo-
ple in the first stage of the profiling process are identified in the top
rows of Table 5.4.  Claimants with definite dates of recall and those
hired through a union hiring hall are excluded from profiling in all
states.  These exclusions are based in authorizing statutory language.
Persons involved in labor–management disputes and persons with part-
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time employment are also often screened out during the first stage of
the profiling process, as they are job-attached.  Most states also exclude
persons with interstate claims.17 Table 5.4 shows these latter three ex-
clusions are not universally applied in the six states.  Less common are
exclusions based on potential duration of benefits and nonpayment of
benefits within 35 days of claim filing.  Each of the latter variables is
used in just one of the six states.

The profiling statistical model in SEA states typically includes
variables reflecting the person’s industry and occupation and educa-
tional attainment.  Of the six states, Oregon does not include industry
while Pennsylvania does not include occupation.

States also use a wide variety of variables in their statistical models
reflecting aspects of base period earnings and benefit entitlements.
Among the six states, only New York does not utilize at least one such
variable.  Note that two states utilize information on the length of the
delay in filing a claim for UI benefits to predict probability of exhaus-
tion.

Job tenure (the length of time the individual spent working in their
previous job) and reason for separation are utilized in three and two
states, respectively.  Besides these personal characteristics, the unem-
ployment situation in the local labor market enters four of the six
states’ profiling statistical models.  In short, the profiling models in
these six states rely on a variety of explanatory variables to predict the
probability of benefit exhaustion.

The labor market of the late 1990s has much lower unemployment
rates than the mid 1990s, when most profiling algorithms were first es-
timated.  Between 1993 and 1998, the nationwide exhaustion rate for
regular UI programs declined from 39 percent to 31 percent. Table 5.4
shows two aspects of change in the profiling models being used in
1999.  All states have updated time-dependent variables such as the lo-
cal unemployment indicator, industry employment growth, and vari-
ables related to benefit entitlements.  It would be interesting to know
how closely the time path of the average of the state profiling scores
(the predicted probabilities of exhaustion) matched the actual decreases
during the period.

However, the specifications of the underlying profiling models
have been unchanged in three states and changed only once in two
states.  In New Jersey the statistical model was reestimated in early
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Table 5.4  Details of Profiling in Six SEA Programs

Maine Maryland New Jersey New York Oregon Pennsylvania

Criteria to screen out claimants
Definite recall date X X X X X X
Exclusive hiring hall X X X X X X
Labor-mgt. dispute X
Part time employmenta X X X X
Interstate claim X X X
Potential duration
No first pay within 35 days

Variables in profiling functionb

Industry, industry growth XX XX X X
Industry exhaustion rate X
Occupation, occ. growth XX X X X X
Education X X XX XX
Wage replacement rate XX
Weekly benefit amount
Base period earnings (BPE)
Potential duration
BP wages for 26 weeks
High quarter earnings/BPE
Filing delay
Job tenure X
Mass layoff status

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X
X
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Indefinite recall
Reason for separation
Local unemployment rate X X X X

Updating of profiling function
Specification changes

Number of times 0d 0 0 1 2c 1
Date(s) 1997–98 1995
Updating variables X X X X X X

SEA profiling threshold (%) 40 40 42 70 33 None
a Equivalent to a partial first payment.
b Number of X’s indicates the number of variables.
c Reestimation planned in 2000.
d Reestimation planned in 1999.
SOURCE: Conversations with professional staff in the six states, as of 1998.

X
X

X

1996, 1998
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1997, but the revised function was first used in January 1998.  Two
states had plans to reestimate their model in either 1999 or 2000.  The
changes in specification in Oregon have been more substantial, in part
because of changes in the state’s base period eligibility criteria.  Oregon
used to rely on weeks of employment but now uses earnings (with base
period hours worked used in a second eligibility calculation) in its
monetary determinations.  The relative infrequency of these changes is
somewhat surprising since the unemployment rates in the states have
changed so much since the mid 1990s.

The final aspect of Table 5.4 is the variation in the probability of
exhaustion threshold used by the states.  New York is at the high end of
the distribution, using a probability threshold of 70 percent.  In con-
trast, Pennsylvania uses no probability threshold for persons who pass
the initial set of screens in the first stage of the profiling process.  Ore-
gon has the next lowest threshold, at 33 percent.  It should also be not-
ed that the proportion of UI claimants who are identified through profil-
ing as likely exhaustees varies widely among states.  For example,
under its 70 percent probability threshold for SEA, New York identified
235,126 likely exhaustees in 1996, while Maine only identified 2,475
using its 40 percent threshold.  These numbers represented about 42
percent and 5 percent, respectively, of UI first payments in the two
states.

Operational Issues Arising from Profiling in SEA Programs and
State Responses: The New York State Experience

SEA programs were implemented in eight states between 1995 and
1998, beginning with a prototype SEA program in the state of New
York.  At the same time, all states were required to implement worker
profiling to identify UI customers who were likely to exhaust benefits
as part of the federal requirement to establish Worker Profiling and
Reemployment Services (WPRS) systems.  The states that simultane-
ously implemented both WPRS and SEA had an interesting challenge
before them.  Not only did staff have to acclimate to a profiling model
with WPRS services, they also had the added challenge of having their
SEA programs tied into profiling.  This section provides a look at the
operational experiences of the first and largest of the state SEA pro-
grams—New York—including some comparisons with other SEA
states where comparable information is available.
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Under normal circumstances, when the profiling model is applied,
UI claimants are not cognizant of the mechanics behind profiling.  They
are told to report to the UI office for a WPRS orientation (called a “pro-
filing” orientation in New York).  Although state staff explain to pro-
filed claimants identified as likely exhaustees that they have been “se-
lected” because they have been determined as likely to exhaust
benefits, the assumption they often make is that the computer has ran-
domly selected participants for a WPRS orientation.  Very few
claimants question why they have been selected for reemployment ser-
vices, and they generally are quite appreciative of the information
gleaned from the profiling orientation.

Customarily, during profiling orientations in SEA states, several
options are given to the claimants who have been identified as likely
exhaustees via profiling and referred to services.  The first choice is
reemployment services.  These services can range from job search
workshops to resumé preparation assistance to career testing and coun-
seling.  The vast majority of profiled and referred UI customers choose
to take advantage of reemployment services.  Statistically, most of
these WPRS participants are interested in seeking a wage or salary po-
sition, but they have not been in the job market for a number of years
and just need assistance with their job search.

The second choice offered to UI claimants in a WPRS orientation
is retraining.  This option allows profiled and referred UI customers to
be excused from the full-time work search requirement in order to take
advantage of a full-time training course.  The training could be in a
Workforce Investment Act (WIA) class (e.g., in a community college),
a college course, or training in a private vocational school.  This is also
a popular option with profiled and referred claimants because in a num-
ber of states, getting into a training class extends unemployment bene-
fits for an additional one to six months.  It is important to note that even
individuals interested in starting a business may choose the training op-
tion as more colleges establish degrees and certificates in entrepre-
neurism.

The third available option (at least in the eight SEA states) is ex-
ploring the SEA program.  Generally, less than 3 percent of profiled
claimants identified as likely exhaustees are interested in going to an
SEA orientation session.  In many of the SEA states, supplemental let-
ters are sent to all UI customers identified as likely exhaustees to in-
form them about the SEA program.  Even with this, there is still a very
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small percentage of profiled customers taking advantage of SEA—less
than 1 percent of all UI claimants.  Thus, SEA is an option for a small
number of people with the motivation and skills necessary to start their
own business.

The primary problem with profiling and SEA does not occur with
an individual who has been profiled and identified as likely to exhaust
UI benefits, it occurs when an individual does not meet the probability
threshold for SEA eligibility but still wants to participate in SEA.  Not
all applicants are eligible to participate in the SEA program, and this
has proved to be a point of contention in some states, leading to dis-
putes of both nonmonetary determinations and appeals decisions deny-
ing SEA eligibility.  One source of operational problems has derived
from the use of a minimum probability of exhausting UI benefits as a
condition of eligibility for the SEA program.  Some claimants have not
understood (or do not agree) that likelihood of exhaustion is a neces-
sary element in determining eligibility.  There have also been more
general disputes over applicants’ profiling scores and whether these
scores reflect their true likelihood of being unemployed for 26 weeks or
more.  Generally, however, the volume of disputes has declined in more
recent periods.

In New York state, the probability threshold (or “cutoff”) for SEA
program eligibility is 70 percent (which has been lowered from 75 per-
cent when the program first started).  UI customers with a profiling
probability score below the 70th percentile are told in the local UI of-
fice that they have been found ineligible for the SEA program.  When
they inquire why they are ineligible, the topic of profiling inevitably
comes into discussion.  From the claimant’s perspective, suddenly a
statistical, computerized model stands between them and their ability to
be able to start their own business and still collect benefit payments.
Although the situation has improved since the beginning of the SEA
program, most local office staff still have difficulty understanding pro-
filing models, whether it is one using characteristics screens or a statis-
tical model (or, most typically, a two-stage process similar to the DOL
profiling model, which uses both screens and a statistical model).

In an attempt to explain why the profiling “score” is not high
enough to participate in SEA, the situation becomes even more compli-
cated and potentially confusing to the claimant.  This is due to the fact
that, to the lay person on the street, when they hear the word “score”
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they make the assumption that there has been a test given and they did
not pass.  States vary as to what statistical percentage they use as the
threshold (or cutoff) probability for SEA eligibility.  Inevitably though,
whenever there is an eligibility cutoff, there will be individuals on the
other side of the cutoff who do not qualify for the program and who are
frustrated and unhappy.

Note that officials in several SEA states have indicated that the pro-
filing cutoffs used in their SEA programs may be too high.  As the labor
market has strengthened in the late 1990s and state-level unemploy-
ment rates declined, the number of initial claims for UI benefits also de-
clined.  This decrease in the intake volume for the regular UI program
affected the numbers identified as SEA eligibles via profiling.  Two
states currently operate with lower threshold probabilities than contem-
plated when their SEA programs were being formulated: New York, at
70 percent rather than 75 percent, and Oregon, at 33 percent rather than
60 percent.  Two others, New Jersey and Maine, have considered re-
ducing their thresholds.  Finally, as noted earlier in this chapter, Penn-
sylvania has no probability threshold for SEA eligibility; all of those
claimants who pass the screens in the first stage of Pennsylvania’s pro-
filing process are informed about the SEA program.18 Further reduc-
tions in the cutoff percentages can be anticipated if labor markets be-
come as robust as they were in the late 1990s.

Administratively, UI claimants with a low statistical probability of
exhaustion present a real challenge to the SEA states.  The easy way out
would be to lower the profiling threshold to a point where nearly any-
one could participate in the SEA program.  This approach, however,
presents the following problems.  First, to lower the score to such a
point compromises the integrity of the profiling system in terms of its
ability to identify claimants who are likely to exhaust UI benefits.  Not
all UI claimants are likely to exhaust their benefits.  As a matter of fact,
New York has estimated that, in times of full employment, only 15 to
30 percent of all claimants will be highly likely to exhaust benefits.  In
the late 1990s in New York State, because the UI recipiency rate was so
low (averaging approximately 5 percent), the proportion of claimants
who were likely to exhaust benefits dropped even lower to only 11 per-
cent of the total UI claimant population in the state.19

A second issue regarding reducing the profiling threshold arises in
those states where employers’ benefit rating is charged back to a specif-
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ic firm, thus affecting the employer’s experience-rated UI tax liability.
In this situation, the use of profiling helps to ensure that only those who
will truly have a difficult time becoming reemployed will be eligible
for the SEA program and thus receive self-employment allowance pay-
ments.  This helps in assuring employers that they will not be paying
for benefits that claimants would not otherwise have received, and that
there will be fewer instances of direct competition against the former
employer; in fact, for workers laid off through a mass layoff or plant
closing, quite often there is no existing former employer.20

CONCLUSIONS AND FUTURE DIRECTIONS

Conclusions Regarding Targeting in the SEA Program

As we have seen, the use of profiling in state SEA programs has
had both positive and negative effects on these programs.  On the posi-
tive side, the use of statistical profiling models in the SEA program has
targeted the program on a subgroup of UI claimants who have the char-
acteristics typically associated with dislocated workers.  Moreover, in
those states where outcomes data are available, those dislocated UI
claimants (selected through the profiling process) who participated in
the SEA program have generally shown positive outcomes, in terms of
both high rates of business start-ups (65 percent or higher) and also
entry into wage and salary employment (with employment rates of be-
tween 18 and 50 percent).  It was difficult, however, to estimate self-
employment earnings, and wage and salary earnings of SEA partici-
pants were generally lower (0.51 to 0.69 percent) than statewide
average wages.

The ability of the profiling models to meet their objective of target-
ing the SEA program solely on individuals who are permanently sepa-
rated from their previous job is less ambiguous.  As Table 5.4 clearly
shows, all states have included a variable in their worker profiling
process that screens out those UI recipients who are on recall status, al-
though a WPRS evaluation report to Congress shows that states varied
in how they defined “recall status” (Dickinson, Kreutzer, and Decker
1997, p. II-2).  Of course, these recall status screens will not be 100 per-
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cent accurate.  For example, over 45 percent of the states screened out
not only those individuals who did not have a definite date of recall to
their former employer, but also claimants who indicated that they ex-
pected to be recalled but did not have a definite date (Dickinson,
Kreutzer, and Decker 1997, p. II-2).  Moreover, it is clear from the re-
sults of state follow-up surveys of SEA participants described earlier
that many of the business start-ups involved large changes in the types
of work activities being undertaken by SEA participants compared with
their previous wage and salary jobs.  Thus, it appears that the pres-
ence of these permanent layoff/recall status screens have served to min-
imize any potential the SEA program might have for disrupting an
employer/employee relationship.  Also, because SEA program partici-
pants are likely to draw no more in SEA allowances than they would
have drawn anyway in regular UI benefits, it appears unlikely that SEA
will have a significant impact on employers’ experience-rated UI tax
liability.

The requirement that profiling be used in SEA programs, however,
has not been without its downsides.  There are at least two major prob-
lems that states have experienced in using some type of profiling
method in their SEA programs.  First, profiling has restricted the access
of some UI claimants to the SEA program who might otherwise be
good candidates for self-employment.  This is not surprising, since in-
dividuals identified by profiling as likely to exhaust their UI benefits
are likely to be individuals who have more barriers to reemployment
than UI claimants in general.  Thus, although there are obviously ex-
ceptions, profiling will identify a group of the unemployed who, on av-
erage, are less likely to have the knowledge and skills necessary for
self-employment.

For this reason, state economic development agencies and mi-
croenterprise practitioners interested primarily in promoting microen-
terprise and small business development have often viewed profiling
as the wrong approach to targeting individuals who would be success-
ful in business.  However, their concern about the conflict between tar-
geting SEA on likely UI exhaustees and service providers’ desire to fo-
cus on those most likely to succeed in business has failed to
materialize because of the self-selection factor in SEA.  That is, even
if a particular claimant is judged to be likely to exhaust UI benefits,
they must still be interested in pursuing self-employment, and if so, be
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motivated enough complete the sequence of self-screening activities
(e.g., the orientation and “reality check” about the pros and cons of
self-employment).

The characteristics of SEA participants presented above clearly
show that SEA participants are not a random group drawn from the
pool of eligibles identified as likely exhaustees through state profiling
models.  Rather, SEA program participants are a self-selected subgroup
of dislocated UI claimants.  SEA participation rates are higher for
whites, individuals with higher educational attainment, and those from
the professional, technical, and managerial occupations.  This evi-
dence, in combination with the very small proportions of likely UI ex-
haustees (i.e., as eligible for SEA) who actually apply for SEA, demon-
strates that this strong self-selection process is at work in current state
SEA programs, just as in both of the UI Self-Employment Demonstra-
tion projects.  The end result of this process is that, while the use of pro-
filing in SEA targets the program on dislocated UI claimants, the self-
selection process used for SEA appears to be further targeting SEA
participation on a subset of dislocated claimants who have the knowl-
edge and skills necessary for self-employment.

For program operators, the restriction on access to the SEA pro-
gram resulting from the use of profiling has also created a second prob-
lem—dealing with those individuals who are interested in self-employ-
ment but are not eligible for the SEA program due to their (relatively
low) profiling scores.  By restricting the access of individuals with (rel-
atively) low profiling scores to the SEA program, profiling can generate
administrative headaches for SEA program operators as they attempt to
explain to these individuals why they are ineligible for the SEA pro-
gram, what the profiling model is and does, and how profiling relates to
self-employment in the first place (which, as noted earlier, is far from
an obvious relationship).  The experience of the first and largest SEA
program, the New York program, provides an illustration of how the
use of profiling as a targeting mechanism for SEA can result in unhap-
py and frustrated claimants, as well as additional work for the few SEA
program staff.  It is certainly possible that the reductions in the proba-
bility of exhaustion thresholds for SEA eligibility that occurred in state
SEA programs in the late 1990s was due in part to a desire to minimize
the administrative burden on state staff by reducing the proportion of
claimants interested in SEA who do not qualify for the program.  On
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the other hand, it is just as likely that this occurrence was simply a tem-
porary response by states to attempt to maintain SEA program enroll-
ments in a time of declining UI caseloads.

Future Directions

Some future directions that the permanently reauthorized SEA pro-
gram may take are as follows:

• The use of profiling will remain an important feature of SEA
programs as a dislocated worker program.  The use of profiling
is essential for targeting SEA on a subpopulation of UI claimants
who are dislocated workers, and it remains a requirement for
SEA programs under federal law.  The continuing concern about
employer attachment issues means that this situation is not like-
ly to change anytime soon.  However, the specific variables used
in profiling models for SEA are likely to change over time and
eventually may be more customized to SEA needs.

• There will be interest in looking at which SEA participants suc-
ceed in their business ventures over the long term.  Even with
the very small numbers of SEA participants, the program has al-
ready provided a pool of well over 6,000 individuals who can be
studied to see if there are common characteristics of “typical”
entrepreneurs that can be developed.  New York plans to look at
this issue over the next several years to see if any conclusions
can be drawn on the elements of the “typical” entrepreneur for
future use in developing customized profiling models for the
SEA program that take into account these “entrepreneurial”
characteristics, in addition to those factors associated with the
likelihood of benefit exhaustion.

• Now that SEA has become a permanent program, DOL’s direct
oversight role in the SEA program will likely diminish.
Changes to the SEA program in a UI Program Letter (UIPL
11-99) that eliminated the requirement for states to submit a
state SEA plan to DOL for review and approval prior to imple-
menting a SEA program mean that it is easier than ever for states
to establish programs.  The fact that a state’s SEA legislation
conforms to the basic tenets of federal SEA legislation, includ-
ing the requirement that profiling be used in selecting SEA pro-
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gram participants, will now be sufficient for DOL approval of a
state’s approach to implementing SEA.

• The SEA program will gradually expand to additional states.  In
fact, three additional states, Arkansas, Washington State, and
Massachusetts, have been working on enacting the conforming
state legislation necessary to establish their own SEA programs.

• There may be a need for a self-employment program that serves
a broader population of the unemployed, so that individuals who
are not dislocated workers would be eligible to participate.  Such
a program could not use WIA dislocated worker funding for
business development services (e.g., microenterprise training),
but states would have the option to fund such services for a
broad range of jobseekers.  Such a program, however, would
have the potential problem of employer opposition if nondislo-
cated UI claimants are permitted to participate.

• The availability of technical assistance to additional states inter-
ested in implementing SEA programs will be critical in creating
effective programs.  With diminishing direct involvement of
DOL staff in the planning process, a “how-to” manual for states
to assist them in developing and operating these programs be-
comes a particularly critical need.

• If SEA programs are to be successful in the long-run, states will
have to strengthen the interprogram linkages between UI pro-
grams and self-employment service providers.  In particular,
state SEA programs will need to establish strong working rela-
tionships with both microenterprise training providers under the
Workforce Investment Act and with the Small Business Admin-
istration’s network of small business development centers,
which can provide SEA program participants with extensive
business counseling and technical assistance services.

Notes

This paper represents the views of the authors and does not necessarily reflect the poli-
cies or positions of the U.S. Department of Labor, the New York State Department of
Labor, or the Urban Institute.  Jacob Benus and Wayne Gordon provided substantive
comments which helped improve on a prior version of this paper.
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1. Based on data from the series of BLS Displaced Worker Supplements to the Cur-
rent Population Survey (Wandner 1997, p. 96).  Also see U.S. Department of La-
bor (1998).

2. Based on data from the biannual displaced worker surveys conducted by the Bu-
reau of Labor Statistics (BLS), “blue-collar workers,” in particular those workers
in manufacturing industries, accounted for half of all displaced workers in the
early 1980s.  However, the most recent BLS displaced worker survey (February
1998) indicates that slightly more displaced workers were from managerial, pro-
fessional specialty, and technical occupations (30 percent) compared with those
“blue-collar” occupations more typically associated with worker displacement
(defined here as precision production, craft, and repair workers plus operators,
fabricators, and laborers).

3. For an in-depth review of these preliminary results and their impact on federal
SEA program legislation, see Messenger and Wandner (1994).

4. Like many states, Pennsylvania uses screens in the first stage of their profiling
process to exclude claimants who do not meet certain criteria; e.g., claimants with
definite dates of recall.  However, all claimants who reach the second stage of the
profiling process (the statistical model) are informed about SEA in the eight
SDAs with active SEA programs.

5. Maryland has one statewide vendor who hosts the initial meeting.  However, cor-
respondence from the UI agency precedes this meeting.  Claimant letters are for-
warded to the service vendor, who then extends invitations to attend an informa-
tion meeting.  Pennsylvania’s SDAs follow different procedures including
holding the initial meeting at the vendor’s site.

6. For example, the 1996 annual reports indicated that very few loans were received
in Oregon, Maine, and Delaware.  In that year, loans were relatively common
only in New York, but many of them came from personal sources, not from finan-
cial institutions. 

7. Note that SEA participants are counts of individuals, whereas insured unemploy-
ment refers to weekly averages measured in thousands.

8. In 1996, household data from the monthly Current Population Survey (CPS) indi-
cated that the average age of those working as self-employed in nonagricultural
industries was 44.4 years, compared with 38.4 years for wage and salary workers.

9. Typically the base period is the first four of the five most recent fully completed
calendar quarters preceding the UI claim. 

10. The presence of WBA maximums places an upper limit on weekly benefits for
many high wage workers. There is no similar upper limit on weekly and quarter-
ly earnings.  Thus, the earnings differentials would be larger than the differentials
in WBAs that have a constrained maximum.

11. New Jersey and Maine present partial exceptions to this statement.
12. In New York, 1996 fourth-quarter wage and salary data are based on state income

tax records.
13. In 1997, only three people participated in Oregon’s SEA program.  This explains

the low figures.
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14. There is a question of whether new businesses started by SEA participants dis-
place existing businesses.  Although the potential displacement effect is likely to
be quite small given the small number of SEA participants, it is impossible to es-
timate this effect with existing data.

15. The variable cost estimates shown in Benus et al. (1995, Table 10.2) have been in-
flated by a ratio of 1.1938, which represents the ratio of the 1997 all items con-
sumer price index (CPI) to the 1990 level of the CPI.

16. While California and Delaware have enacted all the necessary legislation to oper-
ate SEA, the programs in both states were inactive in 1998.  During 1997, these
states reported 19 and 40 weeks compensated by their respective SEA programs.
Both reported zero weeks compensated in 1998 (ETA report 5159).  It should be
noted that the Delaware SEA program actively enrolled participants in previous
years, but SEA has never been actively pursued in California.  States also cur-
tailed their SEA operations due to the scheduled expiration of SEA in December
1998.

17. A profiling process for interstate claimants has not yet been established.
18. It should be noted that among states with an SEA program, only Pennsylvania

does not use a probability threshold determining program eligibility.  Many states
do not establish explicit probability thresholds as part of their profiling proce-
dures for WPRS.  Typically, claimants who pass the initial screens in the first
stage of the profiling process are ranked in order of their probability of benefit ex-
haustion, from those with the highest exhaustion probabilities to those with the
lowest probabilities.  Then, individuals are referred to services beginning with
those at the top of the ranking (with highest exhaustion probabilities) and pro-
ceeding down the list until the supply of available reemployment services is ex-
hausted.

19. Data provided by the New York State Department of Labor, Unemployment In-
surance program office.

20. See the discussion on profiling and employer attachment in the second section of
this chapter for an analysis of this issue.
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Comments on Chapter 5

Jacob M. Benus
IMPAQ International

The chapter by Jon Messenger, Carolyn Peterson-Vaccaro, and
Wayne Vroman effectively describes the likely benefits and the poten-
tial problems generated by the implementation of profiling in self-em-
ployment assistance (SEA) programs.  The chapter also speculates
about the impact of profiling on SEA programs.  I believe that the im-
pact of profiling on SEA programs can and should be analyzed more
rigorously.  In fact, the U.S. Department of Labor (DOL) may already
have the data to measure this impact.  Before describing how DOL
might evaluate the impact of profiling on SEA programs, I will first
briefly review the contents of the chapter.

The first section of the chapter describes the UI Self-Employment
Demonstrations project.1 These demonstrations were part of an exper-
imental design project to evaluate the impact of SEA programs on the
unemployed.  The project was funded by DOL and implemented in the
states of Washington and Massachusetts.

To reduce the potential for “excess costs,” the Massachusetts
demonstration incorporated a UI exhaustion algorithm.  Only those
above a cutoff probability (i.e., 0.25) were invited to participate in the
program (this cutoff eliminated 12 percent of the UI claimants).  This
exhaustion algorithm was included in the demonstration largely in re-
sponse to legislative requirements and states’ concerns about excess
costs.  Another feature of the Massachusetts demonstration was the
withdrawal of the work search waiver after 24 weeks.  That is, after 24
weeks, participants had to drop out of the SEA program and search for
regular wage and salary employment in order to remain eligible for the
remaining 6 weeks of UI benefits (approximately $1,500).
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Between these two features of the demonstration (i.e., profiling and
the 24-week benefit cutoff), I believe that the 24-week benefit cutoff
was much more important in promoting budget neutrality.  If this asser-
tion is correct, the chapter’s statements about the effectiveness of pro-
filing on budget neutrality may not be warranted.  The problem is that
without a rigorous evaluation, we cannot be certain about the impact of
profiling.

The chapter next goes into an assessment of the implementation of
SEA in eight states.  Essentially, the findings in this section confirm the
results of the Self-Employment Demonstrations.  That is, highly edu-
cated individuals from professional, technical, and managerial occupa-
tions with high prior earnings make up the bulk of SEA participants.
Following this discussion, the chapter describes the use of profiling in
the state programs, the implementation of profiling, and the operational
issues that profiling raises.

One of the more interesting operational issues described in the
chapter is reprofiling.  That is, UI claimants who are determined to be
ineligible for SEA as a result of a low profiling score may request that
their score be recalculated in an effort to become eligible.  In New
York, the only state to permit reprofiling, one-third of the 1,800 partici-
pants in 1997 came into the program after having been reprofiled.

The chapter concludes with the authors pointing out the positives
and negatives of profiling for SEA programs.  One of the positives
claimed for profiling is that profiling results in, or at least enhances,
budget neutrality.  This conclusion is partly based on evidence from the
Massachusetts demonstration.  This evidence, however, is weak and, in
my opinion, not convincing.

I believe we can get more definitive evidence on this issue from
data available in the UI Self-Employment Demonstrations.  To analyze
the impact of profiling, we can apply a profiling model to the Washing-
ton State sample (where profiling was not used).  That is, we can pro-
file the treatment and control group members in the Washington sam-
ple and eliminate those who fall below the threshold.  Using this ap-
proach, we can estimate excess costs with and without the eliminated
group.  This exercise can quantify the impact of profiling.  If profiling
has no impact on budget neutrality, we should reconsider the assertion
that profiling is essential to promote budget neutrality in SEA pro-
grams.

156 Benus
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The above analysis can be enhanced by altering the threshold level.
For example, we can alter the threshold level from 0.25 to 0.50.  If pro-
filing reduces excess costs, one might expect excess costs to be lower
under the 0.50 threshold than under the 0.25 threshold.  This is clearly
a testable hypothesis, and the data for testing the hypothesis are avail-
able from the UI Self-Employment Demonstrations.

My main conclusion is that the argument in favor of profiling in
SEA programs rests heavily on the presumed impact of profiling on
budget neutrality.  Let’s measure whether this presumption is correct.
DOL has the data to do it!  It would be a shame to leave such an impor-
tant issue unanswered.

Note

1. For a description of this project, see Benus et al. (1995).  
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Comments on Chapter 5

Wayne Gordon
U.S. Department of Labor

It should first be understood that the self-employment assistance
(SEA) program is small, as measured by the number of states having
implemented programs in the six years since authorization.  Eleven
states took the first step of implementation by changing legislation, but
only eight can claim any significant effort.  Of the eight, three started
relatively late in the initial five-year authorization.

Achieving widespread state commitment to the program was made
difficult because of uncertainty about the continuation of the program
after December of 1998.  Now that the authorization is permanent, the
U.S. Department of Labor (DOL) expects several more states to imple-
ment SEA programs soon, and DOL is encouraging more states to con-
sider doing so. This is vital to long-term survival of the program.

An important question that the chapter fails to address is: With pro-
filing thresholds so low in many of the SEA states, what role does pro-
filing play?  It appears that the first step of the profiling process, which
applies screens to exclude those with union hiring hall and employer at-
tachment, as well as self-selection, are the more powerful determinants
of who enrolls in SEA programs.  For example, many people express an
interest in SEA-type programs.  DOL handles many letters and phone
inquiries about how to get into the SEA program.  Second, the profiling
models exclude some demographic characteristics that are key predic-
tors of successful entrepreneurial success.  Third, not all entrepreneur-
ial activity in SEA is in direct competition with past employers.  Final-
ly, if it can be shown that the self-employed hire new workers, then
widening the SEA offer to more initial claimants would not threaten
trust-fund solvency if these employers are paying UI taxes on behalf of
new employees.
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Under the Workforce Investment Act, new administrative relation-
ships are being forged between the public employment service and oth-
er agencies like small business development centers and the Service
Corps of Retired Executives.  It would be interesting to hear more in
the chapter about what states are doing to make these specialized ser-
vices available to SEA participants, and how continuous improvement
principles can be achieved.  In relation to such supplementary services,
it would be useful to 1) identify which entrepreneurial services would
be useful in promoting success of SEA recipients, 2) determine the
costs of these services which are often provided “in kind,” and 3) es-
tablish a feedback loop between these new service providers and the UI
system to ensure that SEA claimants are satisfying eligibility require-
ments.

State and federal reporting of SEA activity needs to be revisited to
determine the best type of information for policymakers and the gener-
al public.  Currently, since only a small number of states have pro-
grams, the annual report method described in the chapter is adequate.
However, if many more states were to operate SEA programs, this type
of reporting would be excessively burdensome.  Furthermore, not all
successful outcomes for SEA participants can be captured under cur-
rent WIA performance measures.  Separate measures will need to be in-
corporated under WIA to properly capture performance outcomes that
are unique to SEA.  A specialized program such as SEA, which targets
a small slice of the UI claimant population, requires regular evaluation
to ensure effectiveness and use of best practices.  Performance moni-
toring should be the first system in this continuous improvement loop.

160 Gordon



6
Targeting Reemployment Bonuses

Christopher J. O’Leary
W.E. Upjohn Institute for Employment Research

Paul T. Decker
Mathematica Policy Research, Inc.

Stephen A. Wandner
U.S. Department of Labor

Field experiments to evaluate the potential for using cash bonus of-
fers to promote early return to work by unemployment insurance (UI)
claimants were conducted in four states between 1984 and 1989.  The
first experiment was initiated by the Illinois Employment Security De-
partment and yielded encouraging results.  This led the U.S. Depart-
ment of Labor to include a bonus treatment in the New Jersey reem-
ployment experiment.  Even though evidence from New Jersey was not
strongly positive, to further clarify the findings from Illinois, the Labor
Department sponsored multitreatment experiments in Pennsylvania
and in Washington State.  Results from the latter two experiments were
not supportive of the idea that the reemployment bonus could be a cost-
effective way to promote rapid reemployment, and policy momentum
for the bonus idea faded.

In 1994, the Clinton administration proposed to Congress a federal
reemployment bonus program to be narrowly targeted to dislocated UI
claimants by a worker profiling mechanism based on objective charac-
teristics such as level of education and length of work experience.1 The
previous year, a profiling mechanism of this type had been incorporat-
ed into federal legislation which authorized programs to provide job
search assistance and self-employment allowances.  Clinton’s 1994
reemployment bonus proposal died in Congress, and reemployment
bonuses are not presently available in the United States.  However, any
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future legislative initiative on bonuses would likely include a targeting
mechanism.

By 1995, mechanisms for early identification of UI beneficiaries
who are likely to experience long jobless spells were implemented in
all states.  These procedures are called profiling models and are part of
state Worker Profiling and Reemployment Services (WPRS) systems
required by the 1993 federal law.  The models are designed to identify
UI beneficiaries who are most likely to exhaust their benefit entitle-
ment, so that reemployment services can be delivered quickly and pro-
longed unemployment can be forestalled.

Since WPRS profiling models currently being used by the states
identify potentially dislocated workers, they offer a natural means for
targeting reemployment bonus offers.  This chapter summarizes recent
findings from simulation analysis using data from the Pennsylvania and
Washington experiments.  These experiments were financed with mon-
ey that Congress earmarked in 1987 to investigate methods for promot-
ing reemployment of workers dislocated from their jobs because of
structural change in the economy.  While the first evaluations found lit-
tle evidence that the reemployment bonus is an effective intervention
for dislocated workers, our simulation results suggest that targeting
reemployment bonus offers with state profiling models may apprecia-
bly improve the cost-effectiveness of the bonus.

The analysis of this chapter yields positive evidence consistent
with findings from targeting studies for other employment programs
that targeting services can increase reemployment success.  For exam-
ple, Corson and Decker (1996), who applied a similar simulation
analysis to the job search assistance intervention for dislocated workers
in the New Jersey experiment, estimated a significant improvement in
program effectiveness.

THE REEMPLOYMENT BONUS EXPERIMENT

The first reemployment bonus experiment was conducted in Illi-
nois during 1984–1985.  It found that a $500 reemployment bonus of-
fer to UI claimants for returning to work within 11 weeks (the qualifi-
cation period) and staying employed at least four months (the
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Table 6.1  Treatment Designs for the Reemployment Bonus Experiments

State
Bonus

amount ($) Qualification period (weeks)

Illinois 500 11
New Jersey Declininga 12
Pennsylvania 6

3 × WBA Low bonus, short
qualification

Low bonus, long
qualification

6 × WBA High bonus, short
qualification

High bonus, long
qualification

Declininga — Declininga, long
qualification

Washington (0.2 × potential UI
duration) + 1 week

(0.4 × potential UI
duration) + 1 week

2 × WBA Low bonus, short
qualification

Low bonus, long
qualification

4 × WBA Medium bonus, short
qualification

Medium bonus, long
qualification

6 × WBA High bonus, short
qualification

High bonus, long
qualification

a Declining means an initial bonus offer of half the remaining U.I. entitlement payable
for reemployment within two weeks and then declining by 10% per week.

12

reemployment requirement) reduced the duration of UI compensated
unemployment by 1.15 weeks and saved more than two dollars in UI
benefit payments for every dollar paid out in bonuses and administra-
tion of the bonus offer (Woodbury and Spiegelman 1987).  Treatment
designs for the four experiments are given in Table 6.1, and mean net
impact estimates are in Table 6.2.2

Encouraging results from the Illinois reemployment bonus experi-
ment led to replication trials in other states to test if the large effects
found in Illinois could be duplicated.  The other experiments varied the
bonus amount and the qualification period in an attempt to find the op-
timal bonus.

The reemployment bonus offer in the 1985–1986 New Jersey ex-
periment also had a four-month reemployment requirement, but it had a
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Table 6.2  Mean Net Impacts on Weeks and Dollars of UI in the
Benefit Year across Four Experiments

Experiment
Net impact on weeks 

of UI benefits
Net impact on dollars 

of UI benefits

Illinois –1.15** (0.29) –194** (47)
New Jersey –0.69** (0.23) –101** (45)
Pennsylvania –0.54** (0.21) –95** (37)
Washington –0.40** (0.21) –63** (33)

NOTE: The impact estimates reported in this table are based on the full analytic
samples examined in each experiment.  Eligibility conditions for these samples
are summarized in Table 6.3.  The remaining estimates in this chapter for Pennsyl-
vania and Washington are based on samples restricted by profiling considerations.
Standard errors are in parentheses.  

12-week qualification period and a bonus amount that decreased as the
duration of insured unemployment lengthened.  Net impacts on UI re-
ceipt in the New Jersey experiment were much smaller than in Illinois,
with the bonus offer yielding only a 0.69 week reduction in UI pay-
ments.  This raised questions about the appeal to the UI system of such
a bonus offer (Corson et al. 1989).

The states of Pennsylvania and Washington each conducted sepa-
rate reemployment bonus experiments in 1988–1989 involving a total
of 11 different treatments, as described in Table 6.1.  The Washington
experiment had a mean bonus offer of about 3.5 times the weekly ben-
efit amount (WBA) and a qualification period that averaged about 7.5
weeks long.  Pennsylvania paid either three or six times the WBA and
had qualification periods of either 6 or 12 weeks.  There was also a long
qualification period treatment with a declining bonus in Pennsylvania.
Some of the bonus offers in Pennsylvania and Washington were nearly
identical.  These were the short qualification/high bonus offer and long
qualification/high bonus offer treatments (Decker and O’Leary 1995, 
p. 536).  As a result, it was hoped that the evaluation findings from the
two experiments would be complementary and reinforcing.

The Pennsylvania and Washington treatments were intended to
supplement information provided by the Illinois experiment by identi-
fying which bonus amount and qualification period was most effective.
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Among the five treatments in Pennsylvania and six treatments in
Washington, only four were cost-effective from the perspective of the
UI system (Decker and O’Leary 1995).  As reported in Table 6.2, the
mean net impact of the five Pennsylvania treatments of –0.54 weeks 
of UI and the mean net impact of the six Washington treatments of
–0.41 weeks of UI were even more modest than the New Jersey re-
sults.

Other analyses have examined the individual experiments and their
relationship to one another.  The Illinois results were found to be
stronger than the other experiments because of the opportunity to re-
duce much longer potential durations of benefits since extended bene-
fits were available during roughly the first half of the operation of the
Illinois experiment (Davidson and Woodbury 1991; O’Leary, Spiegel-
man, and Kline 1995).  New Jersey impacts were found to be weaker
than those in Illinois because of the differences in the behavioral re-
sponses to fixed versus declining reemployment bonus offers (Decker
1994).  Slightly stronger results in Pennsylvania than Washington were
attributed to tighter labor markets in Pennsylvania than in Washington
during the operation of the two experiments (O’Leary, Spiegelman, and
Kline 1995).  Differences in impact estimates among the experiments
may be further reconciled by examining the alternative targeting of of-
fers resulting from the differing eligibility conditions among the exper-
iments.

It is important to note that each of the four experiments compared
reemployment earnings of those offered a reemployment bonus with
those in control groups not offered a bonus.  Despite spells of compen-
sated unemployment, which were shorter on average, reemployment
earnings were no lower for those offered a bonus.  Treatment and con-
trol reemployment earnings were virtually identical in all of the experi-
ments, suggesting that the offer of a reemployment bonus does not in-
duce job seekers to accept lower quality jobs as measured by the rate of
compensation.  Long-term follow-up evidence from the New Jersey ex-
periment is particularly compelling on this point.  Earnings were
tracked in each of six years immediately following the experiment, and
neither in any particular year nor cumulatively over the six-year period
was there a significant difference in earnings between those offered a
bonus and those in the control group (Corson and Haimson 1995, 
p. 36).3
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ELIGIBILITY FOR THE EXPERIMENTS

Previous analyses of the reemployment bonus experiments have
examined neither the effects of targeting bonus offers nor the effects of
differences in eligibility conditions.  In most analyses, the implicit tar-
geting resulting from eligibility criteria for the experiments has been
accepted as a contextual datum.  Each of the four experiments had
slightly different eligibility requirements for unemployed workers to
participate as members of treatment or control groups.  The experi-
ments were mainly focused on permanently separated employees who
were going to have difficulty finding new employment.  However, the
degree of sample screening varied; this was because of a conscious ef-
fort to coordinate designs to increase the information provided by the
collection of experiments.

Eligibility criteria for the four experiments separated into UI and
dislocated worker criteria are summarized in Table 6.3. The require-
ments were intended to assure that workers opened a UI benefit claim,
dealt with UI administrative rules, and experienced some degree of dis-
placement from work.

To elicit the maximum possible bonus impact, offers should be
made as soon as possible after a claim for UI benefits is opened.  The
offer was made after employment service (ES) registration in Illinois,
after a first UI payment in New Jersey, and after claiming a UI waiting
week in Pennsylvania.4 In the Washington experiment, the bonus offer
was made during the initial UI claim interview, which is well before re-
ceipt of the first benefit payment.  Furthermore, bonus payments in
Washington were sometimes made to persons who never even filed for
waiting-week credit.5 The other experiments required UI payment for
bonus payment eligibility.

The presence and extent of dislocated worker criteria varied great-
ly across the experiments.  Screening was extensive in New Jersey,
while it was nonexistent in Washington.  In terms of this design feature,
the Illinois and Pennsylvania experiments fell in between.  In Illinois,
New Jersey, and Pennsylvania, offers were aimed mainly at permanent-
ly separated unemployed workers.  Those awaiting recall and union hir-
ing hall members were either explicitly or indirectly excluded.  No such
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Table 6.3  Eligibility Criteria for the Reemployment Bonus Experiments

State UI eligibility criteria Dislocated worker criteria

Illinois Initial UI claims only Eligible for a full 26 weeks
of potential duration

Registered with Job 
Service (to exclude
temporary layoffs and
union hiring hall
members)

At least age 20, not older
than 54

New Jersey First UI payments only Three years tenure on prior
job

Age 25 or older
Union hiring hall exclusion
Exclude temporary layoffs:

recall expected on a
specific date

Pennsylvania Initial UI claims only Union hiring hall exclusion
Regular UI claims 
Initially satisfied monetary 

eligibility conditions 
Not separated from job due to 

a labor dispute 
Signed for a waiting week or 

first payment within 6 
weeks of benefit 
application date

Exclude employer attached:
must not have a specific
recall date within 60 days
after benefit application

Washington Initial UI claims only 
Eligible to receive benefits 

from the state UI trust fund 
Monetarily valid claims at the 

time of filing
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exclusion was imposed in Washington, where the sample design pro-
vided that more restrictive screens could be imposed on the experimen-
tal data as part of the subgroup analysis.  Results from Washington in-
dicate that targeting offers to dislocated workers, defined as those with
three or more years of prior job tenure, would modestly increase treat-
ment effects.6 Additionally, requiring a waiting week in Washington
would probably have increased net impacts of the bonus offer.7

STATE PROFILING MODELS

In all states, profiling done as part of a WPRS system involves a
two-step process.  The first step excludes UI claimants expecting recall
by their previous employers and those who are members of full-referral
union hiring halls.  These exclusions are applied to focus services on
dislocated workers, and because such UI beneficiaries are not required
to actively seek reemployment on their own.  The second step identifies
those among the remaining group who are most likely to exhaust UI
benefits.  Almost all states perform the second profiling step using a sta-
tistical model that predicts the probability of benefit exhaustion.

The factors used to help predict exhaustion in state WPRS models
usually include education, job tenure, change in employment in the pri-
or industry and occupation, and the local unemployment rate.  Federal
civil rights law prohibits UI benefit eligibility screens based on age,
race, or gender, so these factors are excluded.  When workers open a
new claim for UI benefits, their personal and labor market characteris-
tics are used in a profiling equation to predict their individual probabil-
ity of UI benefit exhaustion.  State WPRS systems then quickly refer UI
claimants with a high probability of exhausting benefits to special
reemployment assistance (Wandner 1997).

As seen in Table 6.4, the profiling models in Pennsylvania and
Washington also include variables summarizing beneficiary UI entitle-
ment.  The profiling models in these two states have similar elements,
but the Washington model includes more variables in the education and
industry categories.8 Furthermore, because of the great differences in
Washington labor markets, three different models are used in that state.
Our simulation analysis was based only on the model for the Puget
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Table 6.4  Variables in the Pennsylvania and Washington 
WPRS Profiling Modelsa

Variable

Number of 
categories in 
Pennsylvania

Number of 
categories in 
Washington

Education 2 5
Job tenure 1 1
Industry 2 17
Local economic conditions 1 1
UI entitlement 2 2

a Variables for age, race, and gender are prohibited by federal civil rights law.

Sound area, which is home to more than half of the state’s profiled UI
claimants.

TARGETING THE BONUS OFFER

Bonus targeting simulations were performed using both the param-
eters in the actual Pennsylvania and Washington models set in 1994 and
new models for each state estimated on the control group data from the
experiments.9 The newly estimated models used similar methods and
prediction factors as the original state models.10 Results from the two
sets of models were broadly consistent.  In this chapter, we present only
results from the new models estimated on data gathered during the ex-
periments in Pennsylvania and Washington.

Predicted exhaustion probabilities were computed for UI claimants
in both the treatment and the control groups.  Cases were then sorted
from the highest to lowest exhaustion probability.  The net impacts of
the bonus offer were then computed for different groups defined by
deciles of the distribution of predicted exhaustion probabilities.  Alter-
native possible target groups were formed by gradually lowering the
exhaustion probability threshold.  Impact estimates were computed by
contrasting benefit receipt by treatment group members with control
group members in the same deciles of ex ante predicted probability of
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Table 6.5  Impacts of Combined Treatments on UI Benefit Dollars 
Paid per Claimant by Predicted Probability of UI 
Benefit Exhaustion

Pennsylvania Washington

Exhaustion 
probability group

Cumulative 
percentage 

group
Decile
group

Cumulative
percentage

group
Decile
group

Top 10% of predicted
exhaustion probabilities

–245 
(216)

–245 
(216)

–106 
(165)

–106 
(165)

Top 20%, 9th decile –244 
(153)

–235 
(219)

–176 
(113)

–264* 
(154)

Top 30%, 8th decile –175 
(124)

–34 
(206)

–95 
(91)

92 
(148)

Top 40%, 7th decile –199* 
(108)

–246 
(219)

–91 
(78)

–29 
(141)

Top 50%, 6th decile –161* 
(95)

–16 
(193)

–117* 
(69)

–213 
(129)

Top 60%, 5th decile –174** 
(85)

–260 
(192)

–112* 
(62)

–51 
(120)

Top 70%, 4th decile –119 
(78)

193 
(185)

–57 
(56)

107 
(113)

Top 80%, 3rd decile –100 
(72)

12 
(188)

–35 
(51)

32 
(108)

Top 90%, 2nd decile –105 
(67)

–165 
(183)

–32 
(47)

45 
(94)

Total, 1st decile –115* 
(63)

–196 
(187)

–30 
(44)

48 
(73)

Sample size 5,201 5,201 12,144 12,144

NOTE: Standard errors are in parentheses.  ** = Statistically significant at the 95 per-
cent confidence level in a two-tailed test; * = statistically significant at the 90 percent
confidence level in a two-tailed test.  

UI benefit exhaustion.  Estimates for both the incremental decile
groups and the cumulative samples were examined.

The estimates provided in Table 6.5 do not provide clear guidance
about which probability threshold generates the largest impacts.  Im-
pacts are relatively large when the offer is made to either the top 20 or
50 percent of the exhaustion probability distribution.  For the Pennsyl-
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vania experiment, the 10th, 9th, 7th, and 5th deciles have the largest es-
timated impacts.  For the Washington experiment, the 9th and 6th
deciles have the greatest estimated impacts.  In the Washington experi-
ment the lower five deciles all have smaller impacts, while for Pennsyl-
vania the lowest two deciles have substantial effects.  All of this sug-
gests that narrowly targeting a bonus offer to those most likely to
exhaust, may not be the best strategy to maximize the overall response.
Based on these findings, we choose to examine the effects of bonus of-
fers made to the top quarter and the top half of the exhaustion probabil-
ity distribution.

NET IMPACTS OF TARGETED BONUS OFFERS

Net impact estimates of all Pennsylvania and Washington treat-
ments on dollars of UI payments in the benefit year are reported in
Table 6.6 for the full sample, the top 50 percent most likely to exhaust
UI benefits, and the top 25 percent most likely to exhaust.  The results
suggest that targeting a reemployment bonus to claimants with high ex-
haustion probabilities can yield larger reductions in UI receipt than a
nontargeted bonus.  However, the use of a higher probability threshold
for targeting does not necessarily translate into larger UI reductions.

Among the 11 individual treatments in the two states, there is not a
consistent pattern of higher treatment impacts for samples above the
percentile cutoffs.  Targeting to either the top 25 percent or top 50 per-
cent of the distribution yields higher impacts in 9 of the 11 treatments
compared to a nontargeted bonus offer.  The common factor among the
treatments with higher impacts above the thresholds is that in most cas-
es they involve a long qualification period.

For the mean bonus offer in both experiments, impacts are larger
and statistically significant when the offer is made to the top 50 percent
of the exhaustion probability distribution.  Targeting to the top half of
the distribution raises the impact on UI benefit payments in the Penn-
sylvania experiment from –$115 to –$161, and in the Washington ex-
periment from –$30 to –$117.

Our findings suggest that targeting a reemployment bonus to
claimants with high predicted exhaustion probabilities can yield larger
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Table 6.6  Summary of Net Impacts on Benefit Year UI Payments 
($ per claimant)

Bonus amt. Qualif. period Top 25% Top 50% Full sample

Pennsylvania bonus offersa

Low Short 156 
(244)

72 
(173)

–33 
(112)

Low Long –169 
(199)

–188 
(135)

–116 
(91)

High Short –110 
(213)

22 
(147)

–72 
(99)

High Long –236 
(180)

–264**
(125)

–159* 
(83)

Declining Long –252 
(209)

–301**
(146)

–147 
(100)

Mean Mean –152 
(136)

–161* 
(95)

–115* 
(63)

Washington bonus offersb

Low Short –77 
(145)

–47 
(95)

32 
(61)

Low Long –139 
(136)

–187**
(93)

–74 
(59)

Medium Short –143 
(138)

–121 
(93)

11 
(60)

Medium Long 12 
(136)

–33 
(93)

1 
(59)

High Short –135 
(157)

–126 
(108)

–87 
(67)

High Long –279* 
(158)

–228**
(108)

–104 
(68)

Mean Mean –117 
(100)

–117* 
(69)

–30 
(44)

NOTE: Standard deviations are in parentheses.  ** = Statistically significant at the 95
percent level of confidence in a two-tailed test; * = statistically significant at the 90 per-
cent level of confidence in a two-tailed test.  
a Pennsylvania bonus amount: low = 3 × WBA; high = 6 × WBA; declining = half the

remaining UI entitlement with the initial offer good for two weeks and then declining
by 10 percent per week.  Pennsylvania qualification period: short = 6 weeks, long =
12 weeks.

b Washington bonus amount: low = 2 × WBA; medium = 4 × WBA; high = 6 × WBA.
Washington qualification period: short = 0.2 × (potential UI duration) + 1 week; long
= 0.4 × (potential UI duration) + 1 week. 
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reductions in UI receipt than a nontargeted bonus.  However, targeting
does not guarantee larger reductions in benefit payments.  Furthermore,
the use of a higher probability threshold for targeting does not neces-
sarily translate into larger UI reductions.  In our estimates, the lower
threshold (top 50 percent) usually yields larger impacts for the targeted
group than the higher threshold (top 25 percent).  We also found that
the improved response associated with targeting follows more consis-
tently for bonus offers with a long rather than short qualification period.

NET BENEFITS

Net benefits are considered here from three distinct perspectives:
the UI system, government, and all of society.  The most narrow view of
net benefits considered is that of the UI system itself.  It is reasonable to
assume that in an actual bonus program, bonuses would be paid from the
UI trust fund.  Costs to the UI system are bonus payments and adminis-
trative costs, while benefits are the savings in UI payments to claimants
plus any increased UI tax revenue resulting from increased earnings.

A somewhat broader perspective for assessing net benefits is the
government taken as a whole.  Government represents the collection of
all public agencies that levy taxes and dispense public services.  Bene-
fits to government from a bonus program include the reduction in UI
compensation paid, and additional taxes generated as a result of in-
creased earnings.  The latter include income taxes, payroll taxes, and
taxes on employee earnings paid by employers.  Costs to the govern-
ment include the cost of administering the bonus offer program and
bonus payments.

The ultimate acceptability of a program depends on whether it gen-
erates positive net benefits to society as a whole.  Society gains from a
program if the aggregate value of output increases.  For a bonus pro-
gram, gains to society may be approximated by the increase in com-
pensation paid to claimants who respond to the bonus offer by obtain-
ing jobs more quickly.  Societal costs are simply the costs of
administering the program.11

Previous examinations of net benefits for reemployment bonus of-
fers found results to be increasingly favorable as the perspective was
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gradually broadened from the UI system itself, to the government, and
finally to society as a whole.  The bonus offers have generally not been
found to be cost-effective from the narrow perspective of the UI sys-
tem.  At best, a nontargeted bonus appears to be a break-even proposi-
tion for society as a whole (O’Leary, Spiegelman, and Kline 1995, pp.
264–267).

The estimates of administrative costs used in our net benefit com-
putations probably bound the range of costs that would be experienced
in an actual program.  The cost per offer in Pennsylvania was esti-
mated at $33, while the cost in Washington was put at $3.  The Penn-
sylvania estimate reflects the administrative cost of running the ex-
periment, while the Washington estimate was provided by the state
employment security agency as the likely cost per offer under an on-
going program.  Certain costs associated with running an experiment
would not be incurred in an operational program, and this largely ex-
plains the difference in the two estimates.  It is likely that the average
administrative cost of an ongoing program would lie between these ex-
tremes.

Based on the predicted probability of UI benefit exhaustion, Table
6.7 presents estimates from each of the three evaluation perspectives of
net benefits for bonus offers made to the top 25 percent, the top 50 per-
cent, and all of those for whom the model was estimated.  That is, union
hiring hall members and temporary layoffs awaiting job recall were ex-
cluded when making computations.12 Restricted sample sizes mean
that few of the parameters in Table 6.7 were estimated with statistical
precision; nonetheless, we proceed to discuss the observed patterns of
response to targeted bonus offers.

From the narrow perspective of the UI system, net benefit compu-
tations for the Pennsylvania experiment suggest that targeting the
bonus offers increases net benefits for all three long qualification period
treatments, but diminishes net benefits for treatments with a short qual-
ification period.  The improved net benefits for the long qualification
bonus offers were large enough to result in the overall mean response to
targeted bonus offers having positive point estimates for the Pennsylva-
nia experiment.  These results are driven mainly by the reduction in UI
benefit payments due to targeting, since the added bonus payment costs
from targeting were estimated to be modest in the Pennsylvania sam-
ple.
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For all government and society, targeting offers in the Pennsylvania
experiment improved net benefits for all treatments except the high
bonus/long qualification period offer.  The result for this treatment was
due to lower earnings observed for the targeted group.  In Pennsylvania
the high bonus/long qualification offer is the only treatment which sug-
gested that a bonus offer might induce reemployment in jobs inferior to
the prior one.13 In contrast, the low bonus/long qualification offer did
not have unfavorable impacts on earnings and resulted in very favor-
able net benefit estimates.

Evidence from the Washington experiment also suggests that tar-
geting to those most likely to exhaust UI benefits can improve the cost-
effectiveness of bonus offers.  However, the results for Washington are
not as pronounced as in the Pennsylvania data.  The higher bonus pay-
ment costs in the Washington experiment are the reason that treatments
with the higher bonus amounts fail to have positive net benefits for ei-
ther target group.

The most favorable treatment design and targeting plan to emerge
from our analysis combines a low bonus amount with a long qualifica-
tion period, targeted to the 50 percent most likely to exhaust UI bene-
fits: for example, a bonus amount set at three times the weekly benefit
amount, a qualification period 12 weeks long, and targeted to the half of
claimants most likely to exhaust their UI benefit entitlement.  Our esti-
mates suggest that such a bonus offer would promote quicker return to
work and save the UI trust funds between $50 and $100 per offer.  The
net benefits to all government and to society should be significantly
greater.

CAVEATS

Targeting with profiling models improves the appeal of the reem-
ployment bonus program for employment policy.  However, two poten-
tial behavioral effects might reduce cost-effectiveness for an opera-
tional program.14 First, an actual bonus program could have a
displacement effect.  Displacement occurs if UI claimants who are of-
fered a bonus increase their rate of reemployment at the expense of oth-
er job seekers not offered a bonus.  Second, there is also the risk that an
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Table 6.7  Net Benefits of the Bonus Offers above Alternative Percentile Cutoffs of Predicted UI Exhaustion
Probabilities ($ per claimant)

Offer UI systema All governmentb Societyc

Bonus 
amount

Qualification 
period Top 25% Top 50%

Full 
sample Top 25% Top 50%

Full 
sample Top 25% Top 50%

Full 
sample

Pennsylvania treatments
Low Short –223 

(245)
–87 

(173)
–40 

(113)
325 

(1,022)
65 

(765)
–48 

(502)
1,638 
(992)

432 
(745)

–57 
(489)

Low Long 66 
(200)

93 
(135)

28 
(91)

300 
(830)

363 
(599)

147 
(401)

679 
(806)

790 
(584)

331 
(391)

High Short –37 
(215)

–148 
(148)

–54 
(100)

231 
(897)

56 
(635)

0 
(421)

557 
(871)

588 
(617)

133 
(409)

High Long 43 
(182)

69 
(126)

–23 
(84)

–78 
(755)

80 
(525)

51 
(355)

–402 
(733)

1 
(510)

191 
(345)

Declining Long 134 
(211)

186 
(147)

31 
(101)

421 
(890)

603 
(636)

304 
(442)

841 
(865)

1,239** 
(619)

797 
(430)

Mean Mean 19 
(137)

30 
(95)

–10 
(64)

192 
(584)

227 
(428)

95 
(282)

494 
(568)

567 
(417)

286 
(275)

Washington treatments
Low Short 19 

(145)
–11 
(95)

–81 
(61)

91 
(2,110)

–183 
(1,143)

–434 
(724)

239 
(2,105)

–578 
(1,139)

–1,181 
(721)

Low Long 59 
(136)

112
(93)

20 
(59)

241 
(2,616)

172 
(1,434)

56 
(899)

602 
(2,612)

195 
(1,431)

116 
(897)

Medium Short –6 
(138)

–1 
(94)

–113* 
(60)

–533 
(1,801)

–177 
(1,156)

–471 
(720)

–1,757 
(1,796)

–590 
(1,152)

–1,195* 
(717)
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Medium Long –221 
(137)

–151 
(93)

–143** 
(60)

–680 
(1,817)

–403 
(1,038)

–524 
(659)

–1534 
(1,812)

–845 
(1,034)

–1,273* 
(656)

High Short –111 
(160)

–105 
(109)

–87 
(68)

–512 
(2,221)

–317 
(1,265)

–350 
(845)

–1,339 
(2,215)

–708 
(1,260)

–879 
(842)

High Long –112 
(161)

–84 
(110)

–131* 
(69)

518 
(3088)

150 
(1686)

–13 
(1027)

2,096 
(3,084)

778 
(1,682)

387 
(1,025)

Mean Mean –56 
(101)

–32 
(69)

–86* 
(44)

–169 
(1,519)

–132 
(852)

–303 
(528)

–379 
(1,516)

–336 
(849)

–725 
(526)

NOTE: Standard errors are in parentheses. ** = Statistically significant at the 95 percent confidence level in a two-tailed test; * = sta-
tistically significant at the 90 percent confidence level in a two-tailed test.
a For the UI system, net benefits are UI benefit savings plus UI tax revenues on additional earnings minus the costs of bonus pay-

ments and program administration.  The current average UI tax rates on earnings are 1.00 percent in Pennsylvania and 1.15 percent
in Washington.

b For government, net benefits are UI benefit savings plus all added tax revenues due to added earnings (UI taxes, Federal Income
Contribution Act tax of 15.02 percent, federal income taxes assumed to be 15 percent, and state income taxes which are 2.80 per-
cent in Pennsylvania and zero in Washington) minus the costs of bonus payments and program administration.  

c For society as a whole, net benefits are simply additional earnings minus administrative costs since taxes and transfer payments
cancel from a societal perspective. 
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operational bonus offer program could induce an entry effect; that is,
the availability of a reemployment bonus might result in a larger pro-
portion of unemployed job seekers filing for UI, or entering the UI sys-
tem.

If entry and displacement effects are sizeable, actual program cost-
effectiveness will be lowered.  However, targeting offers to only those
most likely to exhaust UI should reduce both these risks.  Targeting
would introduce uncertainty that a bonus offer would be forthcoming
upon filing a UI claim, which should reduce the chance of a large en-
try effect.  Targeting should also lower any potential for displacement,
since a smaller proportion of claimants would receive the bonus of-
fer.15

CONCLUSION

Earlier research has indicated that a nontargeted reemployment
bonus program is not good public policy since it would not reliably
conserve UI trust fund reserves.  In this chapter, profiling models simi-
lar to those in state WPRS systems are used to reexamine evidence
from the Pennsylvania and Washington reemployment bonus experi-
ments.

Targeting offers with WPRS models to UI claimants identified as
most likely to exhaust benefits is estimated to increase cost-effective-
ness of the reemployment bonus.  The best candidate to emerge for a
targeted reemployment bonus is a low bonus amount, with a long qual-
ification period, targeted to the half of profiled claimants most likely to
exhaust their UI benefit entitlement.

A reemployment bonus targeted with WPRS models is an appeal-
ing policy option for a cost-effective early intervention to promote
reemployment.  It would be administratively simple to implement, it is
likely to be cost neutral to the UI program, and it may yield significant
positive net benefits to individuals and society.  Similar to other reem-
ployment initiatives examined in this volume, targeting services with
statistical models based on participant characteristics appears to be a
practical and cost-effective strategy.
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Notes

For constructive comments that helped to improve this paper, we thank Jennifer War-
lick, Jeff Smith, and participants at the Targeting Employment Services Conference,
Kalamazoo, Michigan, April 30–May 1, 1999.  Kenneth Kline provided excellent re-
search assistance.  We thank Nancy Mack and Claire Black for clerical assistance.
Opinions expressed are our own and do not necessarily represent those of the W.E. Up-
john Institute for Employment Research, Mathematica Policy Research, or the U.S. De-
partment of Labor.  We accept responsibility for any errors.

1. In this chapter, a dislocated worker is someone with significant prior job attach-
ment who has lost his job and has little prospect of returning to it or to another job
in a similar occupation and industry.  This is consistent with the program eligibil-
ity definition in the Economic Dislocation and Worker Adjustment Assistance Act
(EDWAA) of 1988, which amended Title III of the Job Training Partnership Act
(JTPA) of 1982, and provides funds to states and local substate grantees so they
can help dislocated workers find and qualify for new jobs.  The EDWAA defini-
tion includes workers who lose their jobs because of plant closures or mass lay-
offs; long-term unemployed persons with limited job opportunities in their fields;
and farmers, ranchers, and other self-employed persons who become unemployed
due to general economic conditions.  Leigh (1995) summarized the EDWAA.

2. Local public employment offices served as enrollment sites in each of the experi-
ments.  They were selected to achieve samples which were representative of UI
claimants in the state as a whole.  Sampling of claimants within each local office
was done by random assignment.  Sample sizes were set large enough to achieve
the precision needed for estimating individual and subgroup treatment impacts of
policy interest. 

3. O’Leary, Decker, and Wandner (2001) reported that earnings outcomes were
more favorable for the targeted groups, but there was no significant impact.  How-
ever, groups in the bottom 75 and 50 percent of the exhaustion probability distri-
bution in the Washington experiment had statistically significant reductions in
earnings.  That is, the strongest observed tendency of the bonus to induce reem-
ployment in inferior jobs was exhibited by those below the targeting thresholds.
Targeting would minimize any tendency in this direction.

4. The waiting week is a period of noncompensable unemployment which must pre-
cede UI payments in a new benefit year.

5. Spiegelman, O’Leary, and Kline (1992, p. 8) explained the eligibility arrange-
ment for people in the Washington experiment who started a new UI benefit year
but never claimed a waiting week or benefit.

6. Bonus impacts for UI claimants with three or more years of tenure in the Wash-
ington experiment were somewhat larger, but they were not statistically signifi-
cantly greater than impacts for the complementary group (Spiegelman, O’Leary,
and Kline 1992, pp. 116–119).
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7. Interpretation of this result is tentative because of the econometric problem that
estimation involves sample selection based on an endogenous variable (Spiegel-
man, O’Leary, and Kline 1992, p. 110).  However, the finding appears to be vali-
dated by results under ex ante eligibility screens applied in the other experiments.

8. Examples of WPRS profiling models from a number of states are given in Bal-
ducchi (1996).  Most states with statistical models have chosen to predict UI ex-
haustion using a logistic regression specification.

9. Both Pennsylvania and Washington use logistic regression models to predict UI
benefit exhaustion, since the variable that we are trying to predict is whether indi-
viduals exhaust their UI benefits or do not.

10. Details about the original state profiling models, the newly estimated models, and
all simulation results are given in O’Leary, Decker, and Wandner (1998).

11. Details of the component estimates for the net benefit computations are provided
in O’Leary, Decker, and Wandner (2001).

12. This is the first screen in the WPRS profiling system.  Union hiring hall members
and those awaiting recall had to be excluded from the Washington sample for
computations.  As seen in Table 6.2, such beneficiaries were not in the Pennsylva-
nia data at all since they were not given bonus offers.

13. This earnings result for the high bonus offer in Pennsylvania is consistent with the
interpretation by Nicholson (2001) of the reemployment bonus as a wage subsidy.

14. As suggested by Meyer (1995).
15. Davidson and Woodbury (1993) found that without targeting displacement could

be in the range of 30 to 60 percent, even though bonus offers induce quicker job
matches which generates more income growth and new job vacancies.  Targeting
could significantly reduce this risk.
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Comments on Chapter 6

Jennifer Warlick
University of Notre Dame

This chapter considers the desirability of using profiling to target
reemployment bonuses to those displaced workers expected to have the
most difficulty finding new employment and hence the longest spells of
unemployment.  It reports on simulations conducted by the authors that
utilize parameters estimated in experiments conducted in Washington
and Pennsylvania.  Their analysis is very interesting and first rate.
Moreover, the chapter is clearly and concisely written.  By limiting the
description of the technical aspects of the microsimulations, the authors
focus the reader’s attention on the policy issues at hand: can targeting
with profiling enhance the power of reemployment bonuses?  If so, how
is the target group best defined?  Which combination of sample selec-
tion and bonus eligibility criteria maximizes the impact of reemploy-
ment bonuses?

My primary impression is that this chapter is too short.  Indeed, my
comments focus more on what the authors do not say than on what they
do say.  The chapter left me wanting to know more; not more about the
experiments or the simulations themselves—I trust that there is little
improvement that could be made in the technical area.  Rather, I want
to know more about the unemployed workers who were treated by the
experiments and whether the bonuses were in their best interest.  I want
to know more about the motivations of the unemployed, how they ap-
proach the search for a new job, and what goes through their minds as
they decide whether to accept jobs that might be offered to them.  Do
they weigh short-run gains against long-run payoffs?  Does the
prospect of a reemployment bonus in a time when every penny counts
prompt them to choose a different job than they would have in its ab-
sence?  When a bonus is available, do they accept the first offer they re-
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ceive rather than continue the search for a job that might better match
their skills and could lead to greater long-run payoffs?  And if this is the
case, does the policy of reemployment bonuses promote the best inter-
ests of the unemployed?  Can the outcomes be labeled “reemployment
successes,” to borrow a term from the chapter, or is it in the best inter-
est of the UI program that the bonuses seek to promote?

The analysis of the net benefits of the reemployment bonuses fo-
cuses on entities other than the unemployed individual.  For example,
in the section entitled “Net Benefits,” the authors state:

Previous examinations of net benefits for reemployment bonus of-
fers found more favorable results as the perspective broadened
from the UI system, to all government, to society as a whole.  The
net benefits to the UI system of a reemployment bonus offer are
the reduction in UI benefit payments, minus the cost of bonus pay-
ments, minus any additional costs that result from administering a
reemployment bonus.

If the best interests of the individual were the primary focus, I suspect
that the net benefits would be the difference in the discounted flow of
future earnings between the treatment and control groups.  This mea-
sure would take into account both differences in wage and salary levels
and the expected tenure on the jobs.  Yes, I worry that the bonuses
could affect not only the type of job accepted but also the length of em-
ployment on that job. 

It may be that it isn’t possible to calculate this measure with the
data from the Washington and Pennsylvania experiments.  From the de-
scription in the chapter I could not tell whether and how long the ex-
periments followed the unemployed after they returned to work.  If
these are not available, it is understandable that the potential effects of
bonuses on earnings and job duration are not investigated empirically
here.

It has also occurred to me that the effects of the bonuses on worker
well-being lie beyond the scope of this chapter but are addressed in oth-
er chapters of this volume.  My comments may reflect the fact that I
read only one-tenth of the total manuscript.  If I had read the whole
manuscript, would my questions be answered?

Similarly, would I have bothered to raise these questions if I were
more familiar with this literature?  Experts in this area may be able to
tell me that other studies not included in this volume have examined
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my questions and demonstrated that bonuses do not affect job search,
job choice, or job tenure.  Does the fact that bonuses are targeted at the
unemployed workers most likely to exhaust benefits suggest a different
sort of mental calculus?  How do these workers see their choices?  Is
the decision rule I suggested above—that of weighing the short-run
gains of accepting a “bird in the hand” plus bonus versus the long-run
payoffs of continued search for a better placement—inappropriate for
them?  Or might you tell me that the rules of UI programs eliminate this
issue by requiring that UI beneficiaries accept the first job offer they re-
ceive.  I hope not, because that too would seem a shortsighted policy.

If the issues I have raised are not answered elsewhere in this vol-
ume or are not common knowledge among the audience targeted as
readers of this book, then I urge the authors to acknowledge this line of
questioning.  Perhaps this could be done in the Caveats section, or
maybe at an earlier point in the chapter in a discussion of the meaning
of “reemployment success.”  Only then could I agree with their conclu-
sion that “a reemployment bonus targeted with WPRS models is an ap-
pealing policy option for a cost-effective early intervention to promote
reemployment.  It . . . may yield significant positive net benefits to indi-
viduals and society.”

In the absence of such a discussion, I am left with a lingering im-
pression that the reemployment bonuses share with welfare reform an
emphasis on reducing expenditures even if it means sacrificing the
well-being of the targeted group.  My understanding of the UI system is
that it was designed to give unemployed workers an opportunity to
search not only for a job, but also for a job that was right for them.  In
contrast, a system of bonuses that encourages UI beneficiaries to rush
through the search process seems to have cost savings as its goal.  If
this emphasis on cost saving is not the message that the authors want to
send, I think it would be prudent for them to give equal time to the best
interests of the unemployed.
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Passage of the Workforce Investment Act (WIA) has focused poli-
cymakers’ attention on measuring the performance of employment and
training programs.  Explicit performance measures can provide timely
information to policymakers and program operators for assessing and
improving their policies and programs. 

Under WIA’s predecessor, the Job Training Partnership Act (JTPA),
policymakers relied on two approaches for obtaining this information.
First, they used formal program evaluations, including the National
JTPA Study.  These evaluations estimated the “value added” or the re-
turn on investment (ROI) of these programs and their net benefit to par-
ticipants, taxpayers, and governments. 

Second, policymakers implemented a system of performance stan-
dards.  Under this system, they assess the performance of their pro-
grams by whether measures of participants’ output, such as their en-
tered employment rate, employment retention rates, or postprogram
wage levels, exceed pre-designated targets or standards (Barnow
1992).  Policymakers intend that these performance standards would
substitute for more costly and less timely formal ROI evaluations.  Al-
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though the relative merits of these approaches for measuring program
performance has been hotly contested, one purpose that both share is
that they provide policymakers and program operators with an objec-
tive basis for assessing and improving their programs. 

It is our contention in this chapter that timely and accurate value-
added performance measures not only help policymakers improve the
effectiveness of their programs, but these measures also can help im-
prove programs by providing likely participants with better information.
This information should affect their participation decisions and lead to
more efficient use of both their own and government’s training re-
sources.  To understand this point, consider that participation in many
employment and training programs often involves (at least) a two-stage
decision process in which individuals decide whether to apply for pro-
grams, and program operators decide whether to admit them to the pro-
gram.  Individuals’ decisions to apply for or enroll in a program depend
on the net benefits that they expect to receive from them.  Therefore, pro-
gram performance measures should improve individual decision-mak-
ing and improve program performance by ensuring that those who apply
to the program in the first place are those most likely to benefit from it.  

In this chapter, we show how information about the training deci-
sions made by unemployed adults and the impact of the programs in
which they enrolled can improve program performance by potentially
improving individual decision making.  We base our analysis on the ex-
periences of dislocated workers in Washington State, some of whom
enrolled in community college courses around the time of their job
losses.  

In the remainder of the chapter, we describe the factors that indi-
viduals should take into account when deciding whether to participate
in training.  Here we observe that the cost of retraining displaced work-
ers is likely larger than the cost for other training participants, such as
youths and economically disadvantaged persons.  Therefore, this popu-
lation likely requires that training generate larger impacts in order for it
to be worthwhile.  We next examine how individuals’ characteristics re-
late to their propensity to enroll and complete such courses.  We assume
that improving labor market prospects is the dominant factor influenc-
ing dislocated workers’ decisions to enroll in community college cours-
es.  Accordingly, information about the characteristics of individuals
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who enroll in these courses provides information about the types of in-
dividuals who are most likely to benefit from retraining.  We then pre-
sent estimates of the impact of alternative community college curricula
on earnings based on a formal evaluation of the returns to classroom
training.  We believe that this information is helpful not only to policy-
makers who subsidized community college schooling, but also to dis-
placed workers.  Finally, we discuss how to use this information to
improve program performance by improving individuals’ decision-
making. 

DECIDING WHETHER TO PARTICIPATE IN TRAINING

We base our analysis of the training or schooling decisions of dis-
placed workers on the simplifying assumption that dislocated workers
view attending school as a way to improve their labor market prospects.
Accordingly, we can judge the success of public investments in these
workers’ training or schooling on whether this goal is met.  This section
discusses two frameworks presented in the academic literature for char-
acterizing the decision to invest in training following the loss of a job
(Heckman, LaLonde, and Smith 1999).  

A broader view of school attendance would include the possibility
that dislocated workers attend school for their own immediate enjoy-
ment or to create job opportunities that are more enjoyable, even if not
higher paying.  Because most displaced workers can attend school and
not search for work without jeopardizing their unemployment insur-
ance (UI) benefits, it is possible that substantial numbers decide to take
a break from work to pursue personal interests.  This motivation for at-
tending school can be productive from a social point of view, because it
lowers the cost of job loss, and thereby the cost born by firms and soci-
ety from making production more efficient.  The importance of invest-
ment versus consumption motives might be assessed by surveying dis-
located workers about their motivation for seeking retraining.  We
know of no such survey data with which we could examine this con-
tention.  Accordingly, in this chapter we focus solely on the implica-
tions of economic motives for seeking training.  
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Training Augments Human Capital

In the more familiar “human capital” framework, individuals view
training as an investment.  Accordingly, individuals decide to partici-
pate in training when the benefits they expect to receive exceed the
costs of training.  Further, when choosing among alternative courses of
study, individuals will choose the one with the greatest net benefit. 

In most settings, analysts measure the benefit of training as the dif-
ference between participants’ postprogram earnings and the earnings
they would have received had they not participated in training.  This
earnings impact could result from either increased wage rates or in-
creased hours worked.  Therefore, in order for displaced workers to
make productive decisions about whether to participate in training and
what to study, they should know what the likely impact of training is
and whether this impact varies among programs or alternative courses
of study.

The impact of classroom training reported in studies of economi-
cally disadvantaged persons or the returns to community college
schooling reported for young adults may provide a misleading basis for
displaced workers’ training decisions.  First, displaced workers are old-
er than the other training participants, and the impact of retraining may
differ by age.  Second, they are also better educated and already possess
more vocational skills on which to build.  Finally, if the impact of re-
training varies among individuals in a population, then the average im-
pact for a group whose cost of participation is low is likely to be lower
than for a population whose cost of participation is high.  In the latter
case, the only persons who participate in training are those who expect
the benefits of retraining to outweigh the more substantial costs.  If dis-
placed workers based their training decisions on the average annual im-
pact measured for young community college students or economically
disadvantaged trainees, they may understate the likely benefits of train-
ing.  Individuals who have had difficulty finding and keeping any job
may participate in a training program that they expect to yield relative-
ly small impacts, whereas a corresponding displaced worker would not.
As a consequence, the impact of training as measured by the average of
the individual benefits for all young participants is likely to be lower
than for a sample of displaced workers.  A related point is that evidence
showing that displaced workers receive larger benefits from training
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than younger individuals does not imply that training is more effective
for displaced workers. 

Another determinant of displaced workers’ decisions to participate
in retraining is the cost of these programs.  There are three components
of the cost of training.  First, there are the direct costs, which include
tuition, fees, supplies, transportation, and care for children and elderly
relatives.  Next, there are the personal costs, which include the emo-
tional impact of returning to a classroom setting and the toll that time
spent in training might take on a person’s family.  These costs might be
negative for some participants if they consider schooling a form of con-
sumption or entertainment.  In any case, these emotional costs are diffi-
cult to quantify.  As a result, although they are acknowledged, analysts
usually do not explicitly take them into account.  Finally, the largest
cost of retraining can be the lost earnings that displaced workers expe-
rience if they delay their return to work in order to invest in new skills.
If displaced workers decide to return to school to acquire new skills,
they are likely to search for new jobs less intensely.  As a result, while
they are in school they lose earnings that they would have received 
had they found a new job.  These lost, or forgone, earnings constitute a
cost of training.  Further, displaced workers who return to school also
may forgo, at least for the time being, both the formal and informal on-
the-job training that they would have received at a new job.  Under
these circumstances, the labor market experience that they lose while in
school also is a cost of training. 

Compared with other individuals whom policymakers encourage to
receive training, the foregone earnings costs of training are likely to be
especially high for displaced workers.  Forgone earnings are likely low-
er for economically disadvantaged workers and for teenagers and
young adults, whose likelihood of being employed and earnings power
are lower.  The upshot is that in order to justify their higher costs of
training, displaced workers must experience larger impacts (in terms of
dollars gained) from retraining programs than other training partici-
pants. 

Training Facilitates Job Search

A second way to characterize the training decisions of displaced
workers is based on the idea that access to training may facilitate job
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search.  In this setting, unemployed persons seek to enroll in training
because they believe that this opportunity increases their chances of re-
ceiving an acceptable job offer.  What distinguishes this framework is
that training may facilitate productive networking by the unemployed.
The increased contacts that they experience at a training center or com-
munity college may increase the likelihood that they receive an offer of
a new job.  In this case, training does not increase skills but would in-
crease employment rates and possibly wages if this networking led to
better job matches between displaced workers and employers.  

According to the job search characterization of training, evidence
that displaced workers have high early dropout rates from training pro-
grams or community college courses would not necessarily indicate
that these programs or courses were ineffective.  Instead, this evidence
may simply indicate that displaced workers use training opportunities
to facilitate their job search and that they leave training once they are
reemployed. 

DETERMINANTS OF TRAINING PARTICIPATION

In order for displaced workers to make productive decisions about
training participation, they need to know more than the likely impacts
of training.  According to the human capital framework outlined earlier
in this chapter, individuals participate in training only if the benefits ex-
ceed the costs.  Evidence on how different personal characteristics af-
fect the propensity to participate in training provides information about
what characteristics make individuals more likely to benefit from train-
ing.  

The evidence that we present in this chapter on the determinants of
displaced workers’ decisions to participate in training comes from
studying all persons displaced from UI-covered jobs in Washington
State during the first half the 1990s.  The evidence is largely based on
the subsample of persons who filed a valid claim for unemployment in-
surance benefits following the loss of a job that they had held for at
least six quarters, and who were consistently attached to the state’s
workforce during the period that we studied.  Our sample is unusually
large for this kind of study, containing over 121,000 persons. 
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The workforce attachment restriction reduced our sample by nearly
one-half.  One implication of this fact is that many displaced workers,
including those who attend a community college around the time of
their job loss, do not remain consistently attached to the state’s UI-cov-
ered workforce.  We find that such persons are more likely to be women
and to be older.  Neither of these groups are known for high rates of
geographic mobility and are likely to still be residing in the state after
their displacements.  Therefore, if policymakers subsidize training for
the purposes of raising worker productivity, a significant amount of
community college schooling must generate extremely low returns be-
cause many participants do not work very often following training.

Nonetheless, our results on the propensity to participate in training
are not sensitive to our restricting the sample to displaced workers who
remain consistently attached to the state’s workforce.  In results report-
ed elsewhere, we find that the influence of factors that are associated
with community college participation among displaced workers who
remain consistently attached to the state’s workforce is the same as it is
for displaced workers who are not consistently attached to the state’s
workforce following their job loss (Jacobson, LaLonde, and Sullivan
1999). 

The training that we consider here are courses at 25 of Washington
State’s community colleges in which dislocated workers enrolled
around the time of their displacements.  About one-fifth of our sample,
or approximately 25,000 persons, enrolled in at least one community
college course around the time of their job loss.  We define the period
around the individual’s job loss to encompass the three quarters leading
up to the quarter that they separate from their employer and the 11
quarters following the quarter of their job loss.  Our sample consists
primarily of prime-age workers, so the participation behavior and im-
pacts that we report here are for a population that is not often studied in
this literature.  The average age of our sample members is approxi-
mately 37, and their wage rate prior to the quarter of their job loss was
about $18 per hour. 

Washington’s dislocated workers were not restricted in making
choices about their selection of courses or which colleges to attend.  In
particular, there were no entrance restrictions based on education levels
or prior success in school.  However, schools did enforce the usual pre-
requisites for attendance in more advanced courses.  There also were no
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requirements to enter a degree- or certificate-granting program, but
only a very small fraction of workers in our sample appeared to pursue
a new credential.  

Dislocated workers were aided in attending school by low in-state
tuition, as well as counseling programs, particularly those supported by
unions and firms in the aerospace and timber industries.  Some workers
obtained financial support through JTPA, but very few qualified for
substantial amounts of federal Pell Grants or Stafford Loans.  Perhaps
most important, starting in late 1992, Washington State routinely per-
mitted UI recipients to attend school without having to satisfy any re-
quirement to search for work.  In addition, in 1994, the state began
funding a special program that provided financial assistance to commu-
nity colleges that expanded their enrollments of displaced workers and
developed new, more relevant curricula.  

We found that nearly one-half of Washington’s displaced workers
who enrolled in community college courses dropped out or otherwise
did not complete a single course with a passing grade.  As a result, only
11 percent of the state’s displaced workers completed one or more com-
munity college courses around the time of their job loss.  These stu-
dents who completed at least one course acquired on average 28 com-
munity college credits.  The state’s community college system operates
on a quarter system in which the typical course is worth five credits and
an associate’s degree requires 90 credits.  Hence, even among this sub-
set of trainees, the average number of credits obtained amounts to
slightly more than one-half of a year of full-time schooling.  

We also considered the types of courses completed by displaced
workers.  Of the 28 completed credits, approximately 12 were complet-
ed in courses teaching more technically oriented vocational skills or in
academic math and science classes.  These courses included those
teaching skills in the health fields, such as a respiratory therapist or a
dental hygienist, and in the construction trades.  

In our analysis, we found that these types of courses generated larg-
er earnings impacts.  As a result, we refer to them as “high-return” class-
es.  We arrived at this grouping of courses after we first considered the
returns associated with courses in nine different subject areas.  From this
analysis it was apparent that the impacts of community college school-
ing were concentrated entirely in a subset of these subject areas.  Within
these particular subject areas, completing more courses was associated
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with increased earnings.  We refer to all other courses as “low-return”
classes.  These courses included academic courses in the humanities and
social sciences, as well as relatively nonquantitative vocational courses.

As shown in Table 7.1, the distribution of completed credits among
displaced workers is skewed.  Approximately one-half of those who
complete at least 1 credit complete no more than 10 credits.  This
amounts to about two classes.  The table also indicates that most dis-
placed workers completed 10 or fewer credits in high-return classes.
The main point is that very few displaced workers who enroll in com-

Table 7.1  Total Credits Completed by Washington State 
Displaced Workers

All community college credits

Number of completed credits (% distribution)

(std. dev.) 1–5 6–10 11–20 21–40 41–75 76+

Males 28 (30) 0.27 0.15 0.16 0.17 0.15 0.10
Females 25 (28) 0.32 0.15 0.15 0.14 0.15 0.08

By type of community college credits

Number of completed credits (% distribution)

(std. dev.) 0 1–5 6–20 21+

Group 1a

Males 15 (23) 0.30 0.23 0.22 0.24
Females 9 (15) 0.42 0.25 0.20 0.13

Group 2b

Males 13 (19) 0.31 0.22 0.27 0.20
Females 16 (21) 0.18 0.27 0.29 0.27

a Group 1 credits are from courses teaching more technical academic and vocational
skills.  

SOURCE: Authors’ calculations from a sample of workers dislocated from UI covered
jobs between 1990 and 1994.  Each worker had filed a valid UI claim, accumulated at
least six quarters of tenure with his or her former employer, and had remained consis-
tently attached to the state’s workforce during the period that we studied.

Mean
number

Mean
number

b Group 2 credits are from all other courses, including basic skills classes.  
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munity college courses complete enough classes to obtain even a cer-
tificate.  If community college schooling is a productive investment, it
must be because of the benefit stemming from completing only a few
courses. 

Determinants of Training Participation

As we discussed in the previous section, evidence that displaced
workers who possess particular characteristics are more likely than oth-
ers to receive training suggests that these types of persons are more
likely to view the benefits of training as outweighing its costs.  We be-
gin by considering how different personal characteristics are associated
with the rates that displaced workers enroll in and complete communi-
ty college schooling.  In our analysis, we hold constant differences
among individuals’ gender, whether they are non-Hispanic whites, their
age at displacement, prior schooling levels, years of service with prior
employer, prior industry, whether their prior employer was located in
the Seattle metropolitan statistical area (MSA), the state’s other MSAs,
or the rural regions of the state, the year and calendar quarter of dis-
placement, and earnings prior to displacement.  

We summarize our analysis in Table 7.2. As shown in the first row
of the table, women’s enrollment rates are eight percentage points
greater than observationally similar males.  In other words, if we were
to observe a sample of male and female displaced workers who were all
non-Hispanic whites, the same age, the same number of years of prior
schooling, the same tenure at displacement, who were displaced from
the same industry, located in the same region of the state, and at the
same time, we would predict that the enrollment rates of the women
would be eight percentage points greater than those of their male coun-
terparts.  Given that the average enrollment rate for the entire sample is
approximately 20 percent, this impact is substantial.  In the second col-
umn of the table, we observe that women also are more likely than
males to both enroll in and complete some community college school-
ing.  The gap in training rates between the genders is four percentage
points.  Given that the average training rate for the entire sample is 11
percent, this impact also is substantial.  These results indicate that dis-
located females are more likely than males to view training as benefi-
cial either as a vehicle to improve their skills or as a vehicle to facilitate
their job search.
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Table 7.2  Impact of Demographic Characteristics on Enrollment and
Training Rates of Displaced Workers in Washington State
(percentage point difference)

Characteristics Enrollment ratea Training rateb

Females vs. males 8 4
Non-Hispanic whites vs. minority –2 1
Age at displacement (yr.)

22–24 vs. 55–60 12 9
25–29 vs. 55–60 9 6
30–34 vs. 55–60 7 5 
35–39 vs. 55–60 6 5
40–44 vs. 55–60 6 4
45–49 vs. 55–60 5 3
50–54 vs. 55–60 3 2

Prior education
High school dropout vs. some college –8 –8
High school graduate vs. some college –6 –5
College graduate vs. some college –4 –4

Tenure at displacement
3–6 yr. vs. 1.5–3 yr. 1 1
6 or more yr. vs. 1.5–3 yr. 3 3

NOTE: Workers displaced during 1990 through 1994 from UI covered employment in
Washington.  Because of our sample is large, these results are generally statistically sig-
nificant at conventional levels of statistical significance.  For information on the stan-
dard errors associated with these estimates see Jacobson, LaLonde, and Sullivan
(1999).
a The “enrollment rate” measures the percentage of persons who enrolled in a commu-

nity college course during the period between three quarters prior to the quarter of
their jobs loss until the 11th quarter after their job loss.

b The “training rate” measures the percentage of displaced workers who enrolled in
and completed at least one community college credit around the time of their job
losses.

The reason that women complete more training than men is that
they are more likely to enroll in community college courses in the first
place.  However, once they enroll, they are not more likely than are
their male counterparts to complete a course.  Indeed, we find that
among displaced workers who enroll in community college courses,
women are, if anything, less likely to complete at least one course.
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This finding suggests that the factors which determine and motivate
displaced workers’ enrollment decisions may differ from their deci-
sions to complete training.  In light of our previous discussion about the
varied motivations for training participation, this finding is not surpris-
ing. 

Turning to the second row of the table, we observe that the enroll-
ment and training rates of both minority and non-Hispanic white dis-
placed workers are similar.  The results indicate that non-Hispanic
whites are slightly more likely to complete some training, while mi-
norities are more likely to enroll in community college courses follow-
ing their job loss.  In work not summarized in the table, we find that the
reason for this result is that although minorities are more likely to en-
roll in community college schooling, once they have enrolled they are
approximately 15 percent less likely to complete at least one course.
Although this result may suggest that minorities have more difficulty
adapting to a classroom training environment, this may not be the cor-
rect interpretation of this finding.  As our discussion in the previous
section suggested, the networking opportunities associated with being
at a community college may be greater for minorities, whose transition
rates from unemployment to new jobs in the absence of training are
usually lower than are those of whites.

Beginning in the third row of Table 7.2, we observe that participa-
tion in training declines with age.  Enrollment and training rates are the
largest for the youngest displaced workers in their early twenties and
decline with age.  The probability that displaced workers in their early
twenties enroll in community college courses is approximately 12 per-
centage points greater than observationally similar workers who are in
their late fifties.  Participation rates drop sharply with age until individ-
uals are in their mid thirties.  At this point participation rates decline
slowly but steadily as individuals approach their sixties.  As shown in
the table, the enrollment rates of displaced workers in their thirties and
forties is approximately 6 percentage points greater than the enrollment
rates of displaced workers in their late fifties.  This difference implies
that the enrollment rates in community college schooling is approxi-
mately one-third less for displaced workers in their late fifties com-
pared to those in their thirties and forties. 

This relationship between displaced workers’ ages and participa-
tion rates in training is consistent with the human capital rationale for
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training.  Younger displaced workers are more likely to enroll in train-
ing because their forgone earnings are likely lower and they have a
longer time frame to realize returns to their investments.  At the very
least, our findings indicate that displaced workers who are older have
less incentive to participate in training or perhaps encounter greater
barriers to acquiring skills through community colleges. 

One of the most interesting sets of results in the table is the rela-
tionship between displaced workers’ prior schooling and their partici-
pation rates in community college.  The displaced workers who are
most likely to enroll in these courses are those who previously had ac-
quired some postsecondary schooling.  Enrollment and training rates
among high school graduates are approximately 6 and 5 percentage
points lower, respectively, than those with some postsecondary school-
ing.  The gap between high school dropouts is even larger.  Further,
those with some prior postsecondary schooling also are more likely to
receive training than those with college degrees.   

The foregoing relationship between displaced workers’ prior
schooling and training participation also holds among the subset of dis-
placed workers who enroll in at least one community college course.  In
results not reported in the table, we find that displaced workers with
some prior postsecondary schooling are approximately 33 percent more
likely to complete at least one community college course than high
school dropouts who enroll in courses.  They also are more likely to
complete at least one course than enrollees who have only a high
school degree or who have a higher degree.  

These results suggest that community college retraining is more at-
tractive to displaced workers with prior postsecondary schooling than it
is for other dislocated workers.  Because we account for many produc-
tivity-related characteristics, such as individuals’ prior industry, years
of service, and earnings, our result implies that among workers with ap-
proximately the same productivity, those who had acquired some prior
postsecondary schooling benefit more from community college retrain-
ing.  Further, since we attempt to account for the magnitude of dis-
placed workers’ earnings losses in our analysis, it is unlikely that dif-
ferences between individuals’ forgone earnings could explain our
result. Instead, our result suggests that displaced workers with prior
postsecondary schooling are a good match for community college–
based retraining.
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There are a couple of reasons why displaced workers with prior
postsecondary schooling may find attending community colleges to be
an attractive option following their job loss.  First, the emotional costs
associated with enrolling in community college courses may be less for
displaced workers who acquired this type of schooling in the past.  An
advantage that these displaced workers have is that they know more
about community colleges and their programs.  Second, these individu-
als also may benefit more from returning to school than those with
postsecondary degrees or those who have no more than a high school
education, because they may be able to quickly obtain a degree or some
other credential.  This possibility would influence displaced workers’
training decisions if employers viewed having a credential as an impor-
tant factor when making hiring decisions.  However, when we took into
account the number and type of credits displaced workers completed,
we did not find evidence that obtaining a degree worked to their advan-
tage. 

What Determines the Number of Completed Credits?

Another measure of displaced workers’ participation in retraining
is how intensely they participated in community college schooling.  To
address this question, we examined how the personal characteristics of
displaced workers predicted the number of credits that they completed
in Washington State’s community colleges.  For this analysis we limit-
ed our sample to displaced workers who completed at least one course.
As we noted above, this group of trainees completed on average ap-
proximately 28 credits.  

We found that the personal characteristics that are associated with
greater participation rates in retraining also are associated with greater
intensity of participation.  However, these relationships are often not
very strong.  Accordingly, these results highlight the importance of the
enrollment decision in explaining differences in the amount of training
acquired by displaced workers.  As shown in Table 7.3, women com-
plete on average two more credits than observationally similar men.
Given that this subsample of displaced workers complete an average of
28 credits, this difference is relatively modest.  By contrast, we ob-
served above that women were substantially more likely than men to
enroll in community college courses. 
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Table 7.3  Impact of Demographic Characteristics on the Number of
Credits Completed by Displaced Workers in Washington State
(difference between groups’ credits)

Total credits

Characteristics Total credits Males Females

Females vs. males 2 — —
Non-Hispanic whites vs. minority 2 3 1
Age at displacement (yr.)

22–24 vs. 55–60 6 5 8
25–29 vs. 55–60 7 5 9
30–34 vs. 55–60 7 6 7
35–39 vs. 55–60 8 7 8
40–44 vs. 55–60 7 5 8
45–49 vs. 55–60 4 3 5
50–54 vs. 55–60 3 2 4

Prior education
High school dropout vs. some college –4 –6 –2
High school graduate vs. some college 0 0 0
College graduate vs. some college –6 –6 –6

Tenure at displacement
3–6 yr. vs. 1.5–3 yr. 3 3 2
6 or more yr. vs. 1.5–3 yr. 4 3 4

NOTE: See Table 7.1 for average number of credits and description of sample.  Differ-
ence between the number of credits completed by groups indicated in the rows of the
table.

The relationship between the age of displaced workers’ when they
lost their job and the number of credits they complete also is weaker.
As shown in the table, the youngest displaced workers complete six
more credits than the oldest displaced workers, but they complete about
the same number of credits as displaced workers in their early forties.
These results indicate that young displaced workers acquire more train-
ing than their prime-age counterparts, because they are more likely to
enroll and complete at least one course.  However, among displaced
workers who complete at least one course, age is not a strong predictor
of how much training they acquire. 
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We reach a similar conclusion when examining the relationship be-
tween prior schooling and the intensity of retraining.  Once again this
relation is much weaker than the relation between this characteristic
and enrollment or training rates.  Displaced workers with some prior
postsecondary schooling complete approximately the same number of
credits as those with a high school degree and approximately one more
course than their counterparts who were high school dropouts or who
had a college degree.  These results indicate that the reason displaced
workers with some prior postsecondary schooling receive more train-
ing is that they are more likely to enroll in community college courses
and complete at least one course.  Once they have completed that
course, they take additional training only modestly more intensely than
other dislocated workers. 

IMPACT OF COMMUNITY COLLEGE SCHOOLING 
ON SUBSEQUENT EARNINGS

Measures of the value-added of community college courses provide
information on the average impact of training.  Such measures alone,
however, are not sufficient to guide displaced workers’ training deci-
sions (Hollenbeck 1992; Kane and Rouse 1993; Leigh and Gill 1997).
The impact of training received by displaced workers who are indiffer-
ent about participating in community college schooling, and who re-
quire encouragement from counselors, may differ from the impact for
the average participant.  More importantly, information about the impact
of training is insufficient because training decisions depend on individu-
als’ perceptions of both the impacts and the costs of training.  

Nevertheless, before we can assess the net benefits of retraining,
we must document the likely gains from community college schooling.
To arrive at our estimate, we developed a statistical model of individual
earnings that took account of differences among individuals’ observed
characteristics and unobserved characteristics that were fixed through
time.  Accordingly, our framework controls for differences among dis-
placed workers’ prior schooling, prior work experience, and family
background characteristics that could account for differences in the
amount of community college schooling that they acquire around the
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time of their displacements.  Further, we also account for differences in
the rate of growth in earnings as a function of gender, ethnicity, and the
likely size of the earnings loss that is connected with their displace-
ments.  

We identify the impact of community college schooling essentially
by comparing the postschooling earnings of displaced workers who are
observationally similar but who had acquired more or fewer communi-
ty college credits. In this framework, information about displaced
workers who did not acquire any schooling is not required to estimate
the impacts of schooling, although it does help us obtain more precise
estimates. 

Average Impact of Community College Courses

As shown in Table 7.4, male displaced workers who acquired com-
munity college schooling around the time of their displacement saw
their annual (long-term) earnings rise by approximately $24 per com-
pleted credit.  For females we estimate an impact of $20 per completed
credit.  Therefore, a male displaced worker who completed the average
number of credits (among those who completed at least one credit) ex-
perienced an earnings increase of approximately $672 ($24 per credit 
× 28 credits).  The average annual earnings of these displaced workers
in the postdisplacement period was approximately $20,000.  Hence,
this impact of retraining constitutes approximately 3–4 percent of total
earnings.  

Turning to the impacts of community college schooling for select-
ed demographic groups, we observe that minority men benefited less
from the training that they received than white men, whereas among
women the impacts for minorities and whites were about the same.
Community college schooling increased the earnings of very young
displaced workers by more than the earnings of their older counter-
parts.  This result is consistent with our earlier finding that younger dis-
placed workers are more likely to participate in training.  

The values in Table 7.4 also suggest that the estimated impact of
community college schooling is larger for those who are more experi-
enced and better educated to begin with.  In general, low-tenure dis-
placed workers are less productive than their counterparts with longer
tenure with their former employers.  Among those who had acquired
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Table 7.4  Impact of Community College Credits on Annual Earnings

Group Males ($) Females ($)

Total 24 20
Demographic group

Minority 8 20
Age 22–24 32 36
Less than six years’ tenure 16 12
More than high school degree 28 28

Type of course
High-return coursesa 64 68
Low-return coursesb –36 –12

NOTE: This table shows the average impact of a completed credit on earnings three
years after completing last community college course.
a More quantitative vocational courses or academic math and science courses.
b All other courses including less quantitative vocational courses or humanities and so-

cial sciences courses.
SOURCE: Authors’ calculations based on Washington State administrative data (see
Table 7.1).  For information about the standard errors associated with these estimates,
see Jacobson, LaLonde, and Sullivan (1997, 1999).

relatively little tenure, the estimated impact of a community college
credit is approximately one-third less than the average impact for all
displaced workers.  Similarly, we find that the impact of schooling is
modestly higher among displaced workers who had more prior school-
ing.  These results help to explain why high-tenure displaced workers
with more prior schooling are more likely to participate in training, de-
spite probably having higher costs of participation.

Despite these positive earnings gains, our results indicate that com-
munity college schooling usually helped displaced workers offset only
a fraction of the losses associated with their displacements.  Trainees
completed on average about one-half of a year’s worth of community
college schooling.  We observed above that this investment subsequent-
ly translated into an approximately 3–4 percent earnings increase.  Ex-
trapolating further, we would expect one year of community college
schooling to raise the typical displaced worker’s earnings by about 6
percent.  In our sample, it is unusual for displaced workers to complete
this much schooling.  As other research has shown, however, long-term
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earnings losses associated with displacement range from 15 to 25 per-
cent per year and can be larger for workers from some industries
(Ruhm 1991; Jacobson, LaLonde, and Sullivan 1993; Schoeni 1996).
Therefore, our results suggest that it would take three to four years of
full-time community college-style retraining in order for displaced
workers to obtain the skills necessary to offset the long-term losses as-
sociated with displacement. 

Average Impact of Different Types of Courses

Our analysis of community college schooling indicates that it can
generate modest earnings impacts for a variety of displaced workers.
However, as we analyzed our results more closely, it became clear that
the impact of community college schooling resulted almost entirely
from large impacts associated with courses in the health-related fields,
in more technically oriented vocations including the trades, and in aca-
demic math and science classes.  As shown by Panel C, the impact of
community college schooling appears to depend more on the types of
courses that individuals complete than on their characteristics.  Dis-
placed workers who complete what we call high-return courses experi-
ence very large earnings increases per completed credit.  Extrapolating
from the values in the table, we estimate that a displaced worker who
completed 15 high-return credits (just three to four courses) experi-
enced nearly a $1,000 rise in their annual earnings. 

All other categories of courses, including those that taught less
technically oriented vocational skills or academic subject matter, usu-
ally generated small or even negative earnings impacts.  These results
imply that such courses probably make displaced workers financially
worse off. Indeed, male displaced workers appear to be made substan-
tially worse off on average by enrolling in school and completing low-
return courses.  This result could be spurious if displaced workers who
experienced larger earnings losses in connection with their job losses
also tended to complete more low-return courses.  However, our sta-
tistical framework takes this possibility into account.  One way to in-
terpret our finding for low-return courses is that when displaced work-
ers invest in such training, they not only may fail to acquire any
productive skills, but they also may lose valuable labor market expe-
rience.   



206 Jacobson, LaLonde, and Sullivan

To explore further our finding about the adverse impacts of low-re-
turn courses, we limited our analysis to the subsample of displaced
workers who had completed 15 or more high-return credits.  This group
of displaced workers was on average more skilled than other training
participants.  We then asked whether this more skilled group experi-
enced any earnings gains from completing low-return courses?  Once
again, we found that even among this group of displaced workers, the
numbers of low-return courses completed were not associated with in-
creased earnings.  We interpret this result as strong evidence that our
findings on the disparate impacts of high- and low-return courses are
not due to differences in the types of individuals who enroll in these
kinds of classes.  

The impacts of high-return courses that we report here help explain
why more productive and younger displaced workers experience larger
average impacts of schooling.  We find that both more-skilled displaced
workers and younger displaced workers are more likely than other dis-
placed workers to enroll in such courses.  Consequently, they gain more
from training partly because they complete training in areas that are
better rewarded in the labor market.  These results also are consistent
with a general finding in the training literature indicating a complemen-
tarity between skills and the receipt of training.  In the private sector,
employers are much more likely to train their most skilled workers,
probably because the gains from training are largest for this group. 

PROGRAM PERFORMANCE AND INDIVIDUAL
DECISION MAKING

Whether displaced workers’ retraining is likely to pay off depends
on the types of courses that they complete and the costs that they incur
in order to be retrained.  As we observed in the previous section, a dis-
placed worker choosing to complete low-return courses is likely to be
worse off as a result of participating in training.  Individuals unaware of
this tendency would make better decisions, if they received this infor-
mation around the time of their displacements.  By contrast, those who
complete some of the high-return courses may benefit from training,
depending on its costs.
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To assess whether the benefits of high-return courses likely exceed
their costs, we consider a hypothetical example.  Suppose that a dis-
placed worker enrolled in community college courses for one full aca-
demic quarter.  During that quarter, she completed 15 credits in high-re-
turn classes.  We estimate above that this training might increase her
annual earnings by an average of $1,000 per year.  If this displaced
worker could expect to earn $20,000 a year in the absence of training
and she loses one-quarter of that pay because she enrolls in school full
time, then the forgone earnings cost of her retraining is about $5,000.
Alternatively, if she works part time while going to school, the forgone
earnings cost of her retraining might be closer to $2,500.  We also as-
sume that the cost of tuition, fees, transportation, and child care
amounts to $2,000.  Ignoring the emotional costs of training, total train-
ing costs for the trainee who works part time amounts to $4,500.  The
question now becomes, is a $1,000 annual impact sufficient to justify a
$4,500 investment in training?  The answer is that it depends.  If the
displaced worker is relatively old, her working career may not be long
enough for the impacts to offset the costs.  Further, if a displaced work-
er’s newly acquired skills depreciate, over time her annual earnings im-
pacts from this retraining will diminish so that the cumulative impacts
may be insufficient to cover the cost of retraining.  

The answer also depends on how we discount the future earnings
gains from retraining.  We must discount future gains because a $1,000
gain in earnings ten years from now is not worth the same to an indi-
vidual as a $1,000 gain in earnings one year from now.  If we use an in-
terest rate of 5 percent, an individual should be indifferent between re-
ceiving $1,000 ten years from now or $614 today.   

In this example, we discount future gains according to a rate of 
5 percent.  We also assume that during the first year after leaving train-
ing, displaced workers did not experience any earnings gains.  We im-
pose this assumption because we found in our study, that earnings im-
pacts during the first year after training were often either negative or
zero.

We now consider the calculation of net benefits of high-return com-
munity college courses for four hypothetical displaced workers whose
ages were 25, 35, 45, and 55 when they lost their jobs.  We also show
how the calculation is sensitive to assumptions about the depreciation
rate of displaced workers’ newly acquired skills by assuming 1) no skill
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depreciation, and 2) a 5 percent rate of skill depreciation.  In Table 7.5,
we present the net benefit calculation based on these assumptions.  In
the third row, we report the adjustment that we make to annual earnings
gains to account for 1) these gains continuing through the remainder of
a person’s career, 2) the possibility that the skills acquired in communi-
ty college courses depreciate, and 3) the discount rate.  The present val-
ue of the gains from schooling at the time a displaced worker makes the
decision to enroll in courses is given by the product of the average an-
nual impact times the adjustment factor.  The net benefit of schooling is
the difference between the total impact and the costs. 

As we can see from Table 7.5, if newly acquired skills do not de-
preciate, the net benefits of retraining for all but the oldest displaced
workers are very substantial.  The net present value for a 35-year-old,
the approximate mean age of our sample of displaced workers, com-
pleting an academic quarter of high-return courses is $14,400.  Given
the assumed costs of this retraining, this gain implies an (internal) rate
of return on investment of approximately 20 percent.  Even by the stan-
dards of the late 1990s stock market, this gain is substantial.  By con-

Table 7.5  Computing the Net Benefits of High-Return Community
College Courses

Age at displacement

—25— —35—

Annual impact ($) 1,000 1,000 1,000 1,000 1,000 1,000 1,000
Depreciation rate (%) 0 5 0 5 0 5 0
Adjustment factora 16.2 8.4 14.4 8.1 11.5 7.3 6.8
Total impactb ($) 16,200 8,400 14,400 8,100 11,500 7,300 6,800
Costs ($) 4,500 4,500 4,500 4,500 4,500 4,500 4,500
Net benefit ($) 11,700 3,900 9,900 3,600 7,000 2,800 2,300

NOTE: The calculations are based on a discount rate of 5% and an assumption that in-
dividuals’ working lives end when they are 65.  
a These numbers are the product of the annual impact and the adjustment for the time

value of money, skill depreciation, and years left in career.
b The adjustment factor accounts for the time value of money, skill depreciation, and

years left in career.

—45— 55Variable
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trast, the same $1,000 gain in annual earnings translates into a smaller
$6,800 present value for displaced workers in their mid fifties.  If the
forgone earnings associated with training participation were double
their assumed levels, the net benefit of completing an academic quarter
of high-return courses would be negative.  Under these circumstances,
older displaced workers would be better off not enrolling in training. 

The foregoing calculations in Table 7.5 depend on several assump-
tions.  We assumed that skills did not depreciate.  Some analysts of pri-
vate sector training have reported evidence of skill depreciation (Lil-
lard and Tan 1992).  If the value of newly acquired skills depreciate at a
rate of only 5 percent per year, the net benefit of retraining declines
substantially.  As shown in Table 7.5, the present value of the gain for a
35-year-old displaced worker falls from $9,900 to only $3,600.  

Another important assumption underlying our calculations con-
cerns how much displaced workers would have earned had they not
been in school.  In a depressed labor market, the likelihood of receiving
a job offer may be so low that the forgone earnings associated with re-
training are insubstantial.  By contrast, the cost of retraining displaced
workers is greater when labor markets are tight and unemployment
rates are low, as they have been during recent years.  If there are no for-
gone earnings costs associated with training, the net benefits of retrain-
ing would rise by an additional $2,500 for each age group in the table.
The internal rate of return from training also would then rise substan-
tially for each group.  Nevertheless, an important point to recognize is
that even if the retraining costs depicted in the table are too large, the
net benefits are always larger for younger displaced workers.  

We believe in general there are some forgone earnings costs associ-
ated with retraining.  In our data, we find that displaced workers earn
less when they are in enrolled in school than when they are out of school.
Those who enroll in community college courses earn less than observa-
tionally similar persons who did not enroll in such classes.  Further,
those who enroll in more courses during any given time period earn less
than their counterparts who enroll in fewer courses (Jacobson, LaLonde,
and Sullivan 1997).  On one hand, this evidence may indicate that those
who train more intensely are those who had not yet received an accept-
able job offer.  On the other hand, it also may indicate the potential for
substantial forgone earnings costs associated with retraining. 
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CONCLUDING REMARKS

The preceding discussion outlines a framework that program oper-
ators, counselors, and displaced workers can use to assess whether re-
training in a college environment is likely to raise earnings.  We have
contended in this chapter that policymakers can enhance program per-
formance not only when program operators understand the benefits of
training, but also when individuals themselves have better information
to make more informed decisions.  Displaced workers who are contem-
plating retraining should be aware of all the costs of their decisions as
well as the benefits that they are likely to receive from different curric-
ula.  

By having this information, dislocated workers are likely to direct
their energies toward more productive activities, which may include
forgoing training and focusing on a job search.  For many displaced
workers, policies designed to facilitate reemployment are likely more
beneficial than those designed to encourage retraining.  Among those
displaced workers who opt for retraining, policies that encourage more-
skilled persons to acquire more quantitatively oriented skills are likely
more beneficial than those that encourage them to acquire less quantita-
tive or more general skills. 

Although our results indicate that the subset of high-return courses
generate substantial gains for displaced workers, this finding does not
imply that those displaced workers who are inclined to enroll only in
less quantitative courses would experience the same large returns if in-
stead they enrolled in the high-return courses.  Our results measure the
impact of high-return courses among those displaced workers who ac-
tually enrolled in them.  Indeed, our findings suggest that because these
persons were more skilled to begin with—more tenure with their for-
mer employer and higher predisplacement earnings—they would expe-
rience higher returns from these types of classes.  We would expect that
those inclined to enroll only in the low-return courses would not expe-
rience gains as large if policymakers encouraged them instead to enroll
in more high-return courses. 

At the same time, we should note that we found that those who ben-
efit from the high-return classes do not appear to benefit from complet-
ing additional low-return courses.  Therefore, the substantial gains that
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we report in this chapter for high-return courses are not simply a result
of the skills of the individual, but an interaction between the individual
and the type of courses (or programs) that they complete. 

Our empirical results apply to displaced workers from Washington
State who enrolled in community college courses around the time of
their job losses in the early 1990s.  Obviously, the impacts could be dif-
ferent for other displaced workers in other time periods, in other parts
of the country, or for those who matriculated into private training insti-
tutions.  We have performed a similar analysis for workers who were
displaced from firms in Allegheny County, Pennsylvania, in the early
1980s and obtained similar results (Jacobson, LaLonde, and Sullivan
1997).  With the growth in popularity of vocational programs in com-
munity colleges during the last two decades, it would be surprising if
the benefits associated with retraining in private institutions were sub-
stantially larger.  In any event, even for individuals considering en-
rolling in private training institutions, our framework and results are
still valuable.  If applied, it would ensure that applicants for such pro-
grams are those who expected to obtain the largest net benefits from re-
training. 

Finally, we contend that the impact of this study on dislocated
workers’ decisions to enroll in community colleges and select specific
courses of study would depend on the extent to which

• their personal goal is to increase their earnings power,
• the accuracy of their assessments of the returns to various 

courses, and
• the accuracy of their assessment of the costs of attending school.

The social value of providing this information would be highest if dis-
located workers 1) do not have an accurate view of the benefits and
costs of attending school, and 2) are attending school primarily to in-
crease their future earnings. 

Importantly, the value of the information to dislocated workers
would be even greater if they are interested and able to excel in high-re-
turn courses.  However, from society’s viewpoint, the cost-effective-
ness of training also would increase if policymakers and program oper-
ators simply discouraged from taking training those displaced workers
who are likely to make themselves financially no better off or even
worse off by attending school.  One way to discourage such persons
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from taking training is to provide them with accurate information about
the likely costs and benefits of specific types of training.  If the cost of
providing this information is sufficiently low, it could constitute an ex-
ceptionally effective way to raise both the private and social returns to
government-subsidized training.  Such information would help individ-
uals self-select into training in a way that would make it more likely
that public training resources are directed toward those who are likely
to derive the greatest benefit from retraining.  Clearly, the value of pro-
viding such information should be assessed in future research. 

Note

We thank Kevin Hollenbeck for comments on an earlier version of this paper.  The
views expressed in this paper are solely those of the authors and do not reflect those of
the U.S. Department of Labor.  This research has been supported by the Employment
and Training Administration under contract number K-630707-00-80-30.
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Comments on Chapter 7

Kevin Hollenbeck
W.E. Upjohn Institute for Employment Research

The general policy issue being discussed at this conference is tar-
geting of services.  This chapter delves into the question of the appro-
priateness of investment in formal education at community colleges for
unemployed individuals.  It tangentially addresses targeting to the ex-
tent that it identifies characteristics of individuals who tend to have in-
vestment successes and the educational experiences that tend to have a
payoff.  In the Workforce Investment Act (WIA), as I understand it, lo-
cal boards will provide individual training accounts (ITAs) to or will
enter into on-the-job-training contracts for adults or dislocated workers
who do not or cannot find employment after receiving core and inten-
sive services.  But also, boards are obliged to provide information on
eligible training providers to anyone under core services.  As boards
implement these policies, the central questions they must address are
how much and what type of information about which providers should
be supplied to which individuals.  Furthermore, boards need to deter-
mine the size of the ITAs—should the targeting be narrow with a rela-
tively large voucher or wider with a relatively smaller voucher?  This
chapter provides some information that will be useful to boards as they
wrestle with these issues; however, the information is highly limited in
scope and usefulness.

Jacobson, LaLonde, and Sullivan have accessed a very rich data
source on community college attendance of displaced workers in the
state of Washington from 1990 to 1994.  They have quarterly earnings
records, unemployment insurance claimant data, administrative data
from the Job Training Partnership Act (JTPA) for all persons who re-
ceived community college subsidies, and data from a special survey of
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community college students.  The inclusions that they place on the data
are as follows:

• had six or more quarters of tenure prior to separating from their
employer between 90:3 and 94:1,

• had an active unemployment insurance (UI) claim one quarter
after their job loss (coverage issue),

• were between the ages of 22 and 60 (inclusive) during the quar-
ter that they separated, and 

• had positive earnings during each calendar year between 1987
and 1995, except during the eight quarters following their job
loss (displacement).

The last criterion is important because it cut the useable sample in half
from about 250,000 to 121,000, and because it meant that individuals
who never became employed (or became self-employed or moved out
of state) after training are not observed or analyzed.

I liked the fact that Jacobson, LaLonde, and Sullivan use three
measures of community college “behavior.”  First, enrollment is de-
fined as completing an application form.  About one-quarter of the
analysis sample enrolled in community colleges.  Training is defined as
having completed at least one course.  Incredibly, less than half of the
individuals in the sample who enrolled received training under this def-
inition.  In other words, more than half of the individuals who enrolled
did not complete even a single course.  Intensity of training is the num-
ber of credits completed.  The conditional mean (on having completed
at least one course) is 28 credits (slightly more than one-quarter of what
it takes to complete an associate’s degree in a quarter system).

The authors first present and discuss estimates of equations that ex-
plain participation behavior—i.e., enrollment, conditional training, and
intensity.  They then determine the wage returns to each of these types
of behavior, and, finally, they suggest a process and even some wording
of information that is provided to individuals who encounter an em-
ployment center.  Some interesting findings about the enrollment rate
and training rate are as follows: 

• Women are more likely than men to enroll in a community col-
lege; however, they are no more likely to complete at least one
course given enrollment.

• Minorities and non-Hispanic whites are equally likely to enroll
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in a community college, but minorities are less likely to com-
plete at least one course given enrollment.

• Age has a monotonically inverse relationship to enrollment and
training, although the relationship is not smooth.  Individuals in
their twenties are most likely to enroll and be trained; the rates
are smaller but level off for individuals in their thirties and for-
ties, and then drop off considerably for individuals in their late
fifties.

• Individuals who had some prior postsecondary schooling but not
a bachelor’s degree (which the authors refer to as “some col-
lege”) were more likely to enroll and be trained than individuals
with just a high school diploma or less and individuals who were
college graduates.

They suggest that their findings regarding intensity of training, i.e.,
number of credits completed, are similar to the enrollment and training
findings, but the strength of the relationships is not as great.

What I really like about the chapter is its attention to the “full re-
turn” to formal education, not just its impacts on earnings.  Usual prac-
tice in estimating the returns to education is to estimate an earnings
equation that has educational variables as covariates and to call the co-
efficient on education the returns to education.  However, as Jacobson,
LaLonde, and Sullivan point out, this is the benefit side of the invest-
ment, and an accounting of costs needs to be performed in order to de-
termine the full return on investment.  They point out that attending
community colleges has direct, emotional, and opportunity costs in the
form of forgone wages.

In their estimates of the impact of attending community college on
annual earnings, i.e., the benefit side of the equation, the authors find
that the average annual impact of completing one credit is about $20
for women and $24 for men.  At the conditional mean intensity of 28
credits, they point out that this works out to about 3 to 4 percent.  Mi-
nority males earned a lower return; young individuals having more than
six years of (prior) job tenure and more educated individuals earned a
higher return.

In attempting to analyze the impact of particular educational expe-
riences at community colleges on earnings, the authors make what I be-
lieve is an unfortunate choice in how they characterize curriculum op-



tions.  They show that the returns to “quantitative vocational courses or
academic math and science courses” are higher than the returns to “less
quantitative vocational courses or humanities and social sciences
courses.”  It is an unfortunate choice for a variable because community
college students don’t have much of an opportunity to choose courses
once they have selected whether they are going to pursue an occupa-
tional or a transfer program and once they have selected which program
they’re going to pursue.  It would be far more useful to potential com-
munity college students to know the (average) returns to a transfer pro-
gram of studies (and an Associate of Arts or an Associate of Science de-
gree) versus an occupational program (and an Applied Associate of
Science degree).  Next in importance would be particular program or
concentration areas (i.e., political science, administrative assistant,
dental assistant, library science, etc.).  My experience is that once stu-
dents have chosen their program and degree option, their course selec-
tions are rather limited.  They do have a choice about how quickly they
pursue their program area, so sequencing patterns, or even quarters en-
rolled, would have been more relevant.

Furthermore, the authors say that they control for observed and
time-invariant unobserved characteristics, but there must be unob-
served characteristics (which must be time-varying) that are not con-
trolled in their specification.  How much one learns or benefits from a
quantitative or nonquantitative course must depend on tastes, prefer-
ences, talent, quality and quantity of educational background, apti-
tudes, learning style, occupational awareness, and a host of other vari-
ables.  I am very uncomfortable using these results to recommend that
any and all individuals should pursue quantitative course work without
regard to their own interests, aptitudes, and educational background.

There is a discernible change in tone and rigor in the chapter when
the authors consider the cost side of the investment decision.  Basically,
they no longer rely on any data; rather, they present (simulated) scenar-
ios.  Their base case is a woman who pursues a community college pro-
gram on a full-time basis for one quarter.  They simulate a benefit of
$1,000 in annual earnings.  On the cost side, they suggest that direct
costs (including tuition, fees, transportation, and child care) would be
$2,000 and that forgone earnings would be $5,000 (three months at an-
nual earnings of $20,000).  They ignore emotional costs.  Table 7.4 in
the chapter shows the lifetime net benefit of this investment assuming a

218 Hollenbeck
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5 percent discount rate, varying the annual depreciation rate of the
skills learned between 0 and 5 percent, and varying the age at displace-
ment from 25 to 35 to 45 to 55.  My basic quibble here is whether the
cost assumptions are realistic.  Jacobson, LaLonde, and Sullivan report
having extensive community college surveys, and I’m wondering what
those data report in the way of direct, out-of-pocket costs to students.
Furthermore, they have quarterly earnings data, so they should be able
to provide mean differences in earnings between observationally equiv-
alent students and nonstudents.  I suspect that forgone earnings are very
small, because most community college students are employed while
attending school.  Additionally, the benefit is assumed to be a one-time
shift of $1,000 in annual earnings, but the earnings advantage will most
likely grow over time as trained individuals receive more on-the-job
training and have higher promotion likelihoods.  On the other hand, I
suspect that 5 percent is a low discount rate for community college stu-
dents.

The final major point I want to make is the question of the general-
izability (or external validity) of these findings.  Recall that they are
specific to displaced workers in the state of Washington who chose or
were directed into community college programs in the early 1990s.
Community colleges are only one type of eligible training institution
out of many types of training institutions, and displaced workers are
only one type of client who will be seeking information on the benefits
(and costs) to training at a one-stop employment center.
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First Participants
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W.E. Upjohn Institute for Employment Research

This chapter describes the design and evaluation of a recently com-
pleted Work First pilot, funded by the Employment and Training Ad-
ministration of the U.S. Department of Labor, which uses statistical
methods to assess each customer’s employability and then uses the as-
sessment to refer them to services.  The pilot addresses the need for ear-
ly identification of employment barriers faced by welfare recipients and
for the targeting of services.  Welfare-to-work programs typically treat
all recipients the same, providing the same basic services regardless of
a participant’s skills, aptitudes, and motivation.  Yet, barriers vary
widely.  Some customers require little assistance in finding a job, while
others have multiple barriers and stand to benefit from more intensive,
targeted services.1 However, most Work First programs do not have
sufficient funds to provide case managers for all customers who need
more specialized attention and advocacy.

This pilot develops administrative tools to target services to cus-
tomers without changing the nature of the program or significantly rais-
ing costs.  Statistical techniques were developed to estimate the likeli-
hood of employment based on participants’ demographic and work
history information found in administrative records.  An employability
score was computed for each customer and was then used to assign
each participant to one of three providers.  Each provider offered the
same basic set of services but differed in the mix of services and in their
approach to delivering services.  The pilot used these differences to de-
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termine the best provider for each customer.  The pilot was designed by
the W.E. Upjohn Institute for Employment Research and conducted in
Michigan at the Kalamazoo/St. Joseph Workforce Development Board
(WDB), which is administered by the Institute.

The evaluation, based on random assignment, provides evidence
that the pilot was successful in using statistical tools to improve pro-
gram outcomes by placing more welfare recipients into jobs.  It showed
that the statistical assessment tool successfully distinguished among
participants with respect to barriers to employment.  It also found that
referring participants to service providers according to their individual-
ized statistical needs assessment (employability score) increased the
overall effectiveness of the program as measured by the program goal
of customers finding and retaining a job for 90 consecutive days.

MICHIGAN’S WORK FIRST PROGRAM

Program Overview

The purpose of Michigan’s Work First Program is to move welfare
recipients into jobs as quickly as possible.  It was developed from
waivers to Aid to Families with Dependent Children (AFDC), ap-
proved by the Clinton Administration in 1994 and 1996, and has con-
tinued under Temporary Assistance for Needy Families (TANF).  The
program provides welfare recipients reemployment skills, support, and
opportunities to obtain employment, and it offers instruction in the
proper techniques for writing resumes, completing applications, and in-
terviewing for jobs.  All enrollees receive similar services regardless of
their needs.  More intensive skill training is available only to those who
hold a job or those who have repeatedly failed to find employment.  Af-
ter clients complete the core services, they are expected to search inten-
sively for work and accept offers that provide at least 20 hours of work
per week at or above minimum wage.2 Customers employed for 90
consecutive days in a qualified job are considered a successful out-
come, and they are terminated from the program.  As an incentive for
finding work, participants are allowed to keep the first $200 earned
each month and 20 percent over that without reducing benefits.  Partic-
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ipants also receive transportation, child care, and Medicaid for a limit-
ed time.

This statistical assessment model was based on the outcomes of
participants entering the program during 1996.  Table 8.1 displays the
characteristics of Work First participants who enrolled in the program
in 1996.  Participants were predominantly single parents who had not
completed high school and who had been on welfare for less than 36
months during the last five years.  Some of the participants had com-
pleted a general equivalency diploma (GED), but few received voca-
tional training.

Work First participants engaged in a variety of activities as part of
their requirement for successfully participating in the program.  Most
participants began with assessment and employability planning (code
12).  As shown in Table 8.2, 83 percent of all participants received these
services in 1996.  The percentage was higher for those who were not
employed prior to entering Work First, about 90 percent.  Around half
of the participants engaged in group or individual job-search assis-
tance, which includes counseling, job-seeking skills training, and may
include support on a one-to-one basis (code 13).  Fifty-three percent
were employed in a job (code 1) that paid minimum wage or more and
the employment was for 20 hours or more per week (or 35 hours if a
working spouse).  Another 6 percent were employed in unsubsidized
employment that did not meet the requirements of code 1.  Nineteen
percent of the participants were in unsubsidized employment when re-
ferred, obtained subsidized employment meeting the requirements of
code 1 prior to reporting, or obtained the appropriate employment prior
to reporting to the first activity.  Only a handful of participants (2 per-
cent) were referred to community service programs or vocational edu-
cational training.

Differences in Activities among Providers

The Kalamazoo/St. Joseph WDB contracted with three organiza-
tions to provide employment services to participants of the Work First
program.  The providers delivered services that met state and federal
requirements regarding content and duration.  However, there was
some flexibility within the requirements.  WDB staff observed that
providers differed in their styles and philosophies in delivering services
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Table 8.1  Variables Used in the Work First Statistical 
Assessment Model

Name Description Mean (%)

sglprnt =1 if single parent 82.7
age Age at time of enrollment (yr.) 29.7
age2 Age squared
noschl No formal schooling 3.8
grlt9 Completed less than 9th grade 5.6
gr9 Completed 9th grade 5.6
gr10 Completed 10th grade 8.9
gr11 Completed 11th grade 19.1
gr12 Completed 12th grade 

(omitted from analysis, thus reference)
38.7

post1 Completed one year of postsecondary 1.2
post2 Completed two years of postsecondary 1.6
post3 Completed three years of postsecondary 0.4
post4 Completed four years of postsecondary 0.1
ged Earned GED certification 16.1
YOU Youth Opportunities Unlimited 18.9
Goodwill Goodwill Industries 17.9
foundat Behavioral Foundation 30.3
comstock Comstock 4.5
sturgis Sturgis 4.0
rivers3 Three Rivers 24.0
voced Attended postsecondary vocational 

education program
1.4

notarget Not a target group, which includes AFDC 
received in any 36 of preceding 60 months, 
youngest child 16–18, or custodial parent 
under 24 and who has not completed high 
school or with little or no work experience

52.8

AFDC36 Received AFDC any 36 of preceding 
60 months 

34.3

code20_1 Qualified unsubsidized employment prior 
to assignment

19.0

code20_2 Qualified unsubsidized employment prior 
to assignment in previous enrollment 

0.3
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Table 8.1  (Continued)

Name Description Mean (%)

nocmpl Terminated as noncompliant in previous
enrollment (code 59, 60, or 61)

5.7

employed Terminated as employed in qualified 
unsubsidized job

Observations 1,546

SOURCE: Author’s calculations of Kalamazoo/St. Joseph Work First administrative
data, 1996–1997.

42.7

and in the number of hours in which participants were engaged in spe-
cific activities.  These observed differences were critical to the pilot by
providing the opportunity to refer participants to the provider, and thus
the mix and style of services, that best met their needs.

The length of time that Work First enrollees engaged in activities
varied by type of activity and by subcontractor.  For example, as shown

Table 8.2  Selected Activities of Work First Programs

Activity Code
Mean
(%)

Standard
deviation Minimum Maximum

Unsubsidized employment 01 53 0.50 0 1
Job readiness 10 9 0.28 0 1
Assessment and employ-

ability planning
12 83 0.37 0 1

Job search 13 55 0.50 0 1
Part-time employment 19 6 0.24 0 1
Employment prior to

assignment
20 19 0.39 0 1

Community service 33 1 0.11 0 1
Voc. ed. training 34 1 0.09 0 1

SOURCE: Author’s calculations of Kalamazoo/St. Joseph Work First administrative
data, 1996–1997.
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in Table 8.3, 38.1 percent of the participants spent two hours in the as-
sessment and employability planning activity, while 39.6 percent spent
20 hours in the same activity.  Of the three subcontractors within the
Kalamazoo area, Youth Opportunities Unlimited (YOU) averaged 7.3
hours, the Behavioral Foundation 11.2 hours, and Goodwill 16.0 hours
in this activity.  The higher average for Goodwill results from a much
larger percentage of participants spending time in the services than
those assigned to other providers.  More than three-quarters of those
going to Goodwill spent 20 hours in this service.  Only 27 percent of
the participants receiving services from either YOU or the Foundation

Table 8.3  Distribution of Hours Engaged in Assessment and
Employability Planning

Percentage

Hours All Foundation Goodwill YOU

1 5.9 1.9 1.9 14.6
2 38.1 38.3 19.0 52.8
3 0.2 0.5 0.0 0.0
4 0.4 0.5 0.5 0.0
5 0.1 0.0 0.5 0.0
6 0.1 0.0 0.0 0.4
7 0.0 0.0 0.0 0.0
8 0.1 0.0 0.0 0.4
9 0.0 0.0 0.0 0.0
10 0.1 0.0 0.0 0.4
11 0.7 0.0 0.5 1.9
12 0.2 0.5 0.0 0.0
13 0.0 0.0 0.0 0.0
14 0.2 0.5 0.0 0.0
15 4.8 11.1 0.0 0.0
16 9.3 19.6 0.9 1.9
17 0.0 0.0 0.0 0.0
18 0.0 0.0 0.0 0.0
19 0.0 0.0 0.0 0.0
20 39.6 26.9 76.8 27.7

SOURCE: Author’s calculations of Kalamazoo/St. Joseph Work First admin-
istrative data, 1996–1997.
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received 20 hours of this service.  For those going to YOU, two-thirds
of the participants received two hours or less of assessment and plan-
ning.  Time spent in this activity for those receiving services from the
Foundation were split between 2, 15 or 16, and 20 hours.  The wide dis-
tribution may indicate that these individuals have more discretion in
how much time they spend in various activities.  

Hours spent in group or individual job-search activities were much
more uniform.  Ninety-seven percent of the participants spent 20 hours,
and there was no significant difference in the amount of hours the three
subcontractors devoted to this activity.

Providers also differed in their approaches to delivering services.
For instance, one provider stressed a goal-oriented approach to job
search, requiring that participants call a given number of employers
each day until they found a job.  Another provider offered more assis-
tance to customers in conducting phone inquiries and interviewing for
jobs.  Staff would work directly with customers to show them how to
find employment postings and telephone numbers, how to inquire
about the job posting, and how to present themselves during interviews.
This same organization would also provide more intensive training at
times to those who were not able to find a job during their initial sever-
al weeks in the program.

STATISTICAL ASSESSMENT MODEL

The purpose of the statistical assessment (or statistical profiling)
model is to use information commonly collected during the intake
process to identify Work First participants who are likely to obtain em-
ployment with minimal intervention (or conversely, to identify individ-
uals who need the most assistance in finding and maintaining employ-
ment).  The following information is available at intake and is used as
explanatory variables in the statistical assessment model: age, parental
status, educational attainment, AFDC history, service provider, target
group, employment prior to enrolling in Work First, and compliance
history of participant if they were previously enrolled in the program.
During the operation of the pilot, a successful outcome was defined as
working in a qualified job for 90 consecutive days (with a grace period
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of no longer than a week if they changed jobs).  A qualified job must of-
fer a single parent at least minimum wage and 20 hours a week.

Data were obtained from the intake forms and the tracking system
developed and maintained by the Kalamazoo/St. Joseph WDB.  For
most participants, multiple activities were recorded.  The type of activ-
ity, the number of hours engaged in each activity, and the starting and
ending dates of each activity were included in the files.  Consequently,
it was possible to piece together a sequence of activities between the
time participants entered and left the program.

A logistic statistical procedure was used to estimate the relation-
ship between a Work First participant’s personal characteristics and the
likelihood of finding qualified employment.  The dependent variable in
this statistical model is discrete, taking on the value of 1 (if employed)
or 0 (if not employed).  The probability of employment lies between 0
and 1 (that is, 0 percent and 100 percent).  A logistic estimation proce-
dure transforms the discrete event into a smooth functional form
bounded by 0 and 1 and estimates the effect of specified variables on
the probability of employment.

Estimates were based on a sample of Work First participants from
the Kalamazoo/St. Joseph WDB who enrolled in the program during
1996.  The 1996 period was used because all who enrolled in Work
First during that time had completed the program before the start of the
pilot and thus their outcomes were known.3 The variable definitions
and sample means are displayed in Table 8.1.

Results of the logit estimation are shown in Table 8.4. Focusing on
the signs of the statistically significant coefficients, Work First partici-
pants are more likely to complete 90 consecutive days of employment
if they had completed 12th grade (the omitted variable in the equation),
were older, were employed prior to first assignment, enrolled in the
program earlier in the year rather than later, and were not out of com-
pliance if they had previously enrolled in Work First.4

The only variable that may need an explanation for its inclusion in
the model is the date of admission into Work First.  The coefficient on
this variable is negative and statistically significant.  Therefore, those
who enrolled in Work First in more recent periods experienced a lower
probability of finding and maintaining employment for 90 consecutive
days.  The percentage of Work First participants reaching this status
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Table 8.4  Logit Estimates of the Basic Statistical Assessment Model

95% Confidence
interval

Variable Coefficient
Standard

error z P>|z |
Lower
limit

Upper
limit

sglprnt 0.223 0.156 1.429 0.153 –0.083 0.528
age 0.115 0.041 2.790 0.005 0.034 0.196
age2 –0.002 0.001 –2.602 0.009 –0.003 –0.000
noschl –1.801 0.555 –3.244 0.001 –2.889 –0.713
grlt9 –0.454 0.304 –1.495 0.135 –1.049 0.141
gr9 –0.167 0.252 –0.662 0.508 –0.661 0.327
gr10 –0.775 0.218 –3.553 0.000 –1.203 –0.348
gr11 –0.431 0.157 –2.744 0.006 –0.739 –0.123
ged 0.174 0.162 1.074 0.283 –0.143 0.492
voced –0.591 0.487 –1.212 0.225 –1.546 0.364
post1 0.079 0.501 0.159 0.874 –0.903 1.062
post2 0.162 0.438 0.371 0.711 –0.695 1.020
post3 0.011 0.884 0.013 0.990 –1.721 1.744
goodwill –0.463 0.187 –2.485 0.013 –0.829 –0.098
foundat –0.560 0.164 –3.406 0.001 –0.883 –0.238
sturgis 0.005 0.300 0.017 0.986 –0.582 0.593
comstock 0.127 0.302 0.421 0.673 –0.465 0.719
rivers3 –0.454 0.172 –2.641 0.008 –0.791 –0.117
notarget 0.064 0.116 0.555 0.579 –0.163 0.292
addate –0.003 0.001 –5.424 0.000 –0.004 –0.002
code20_1 1.107 0.144 7.683 0.000 0.825 1.390
code20_2 –0.393 1.055 –0.373 0.709 –2.46 1.674
nocmpl –0.750 0.281 –2.672 0.008 –1.301 –0.200
Constant 36.921 7.260 5.086 0.000 22.693 51.150

No. observ. 1,546
Pseudo R2 0.1010

NOTE: Dependent variable: employed for 90 days = 1; log Likelihood = –948.47621;
χ2(23) = 213.10; Prob > χ2 = 0.0000.
SOURCE: Author’s calculations of Kalamazoo/St. Joseph Work First administrative
data, 1996–1997.
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steadily declined from the first quarter of 1996, when the sample began.
During the first and second quarters of 1996, 53 percent of participants
in the sample were employed for 90 days, after which the percentage
dropped to 50 percent during the third quarter, 31 percent during the
fourth quarter, and 24 percent during the first quarter of 1997.  The ad-
mission date variable can be interpreted as a proxy for attributes of
Work First participants that are not captured in the characteristics in-
cluded in the model.  Work First staff observed that as the pool of wel-
fare recipients going through the program diminished, enrollees were
increasingly less qualified to find and hold jobs.  The variable may also
capture changes in the program and changes in local labor market con-
ditions over time.

Applying the estimated coefficients to the characteristics associat-
ed with each Work First participant yields predictions of the probabili-
ty of employment for each individual.  Consequently, each Work First
enrollee can be ranked according to their estimated probability.5 For
heuristic purposes, one can view the distribution of employability
scores as representing participants lined up to enter the Work First pro-
gram according to their probabilities of finding employment.  If the
door is envisioned to be on the left side of the graph in Figure 8.1, those
with the least propensity to find a job are at the front of the line, and the
participants with the highest propensity are at the end of the queue.  Ac-
cording to our model, the estimated probabilities of employment range
from a low of 0.02 to a high of 0.85.  Therefore, the person at the head
of the line has almost no chance of finding a job and would need con-
siderably more assistance than the person at the end of the line, who is
almost certain to find employment without much help.  Although 43
percent of the Work First participants in the sample found employment,
the model did not assign anyone a probability of 100 percent.  Howev-
er, the spread is quite large, spanning most of the range from 0 to 1.

The assignment of participants to a provider was based on the par-
ticipant’s employability score.  The distribution of scores was divided
into three groups, as shown in Figure 8.1.  For evaluation purposes,
participants were randomly assigned to a treatment group or a control
group.  Based upon prior analysis and the opinions of WDB staff, those
in the treatment group with low employability scores were assigned to
Goodwill, those in the middle group were referred to Youth Opportuni-
ties Unlimited (YOU), and those in the high employability group were
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assigned to the Behavioral Foundation.  The assignment of participants
in the control group will be discussed in the next section.

EVALUATION OF THE KALAMAZOO/ST. JOSEPH 
WORK FIRST PROFILING PILOT

Design of the Evaluation

The Kalamazoo/St. Joseph Work First profiling pilot was evaluated
using a random assignment approach.  The evaluation included partici-
pants who entered the program from March 1998 to March 2000.  Dur-
ing the two-year period, nearly 3,600 welfare recipients who were sin-
gle parents were assigned to the three providers serving the Kalamazoo
area.6

The computerized intake process was designed so that welfare re-
cipients referred to Work First from the Family Independence Agency
(FIA) were randomly assigned to various groups.  The random assign-

Figure 8.1  Referral of Participants to Providers Based on 
Employability Scores
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ment procedure took place in three steps.  First, participants were di-
vided into one of three groups, depending upon their employability
score.  Assignment of participants to the three employability groups
was based on their relative ranking in the distribution of employability
scores of those who enrolled in Work First at that session.  It was not
based on a predetermined cutoff value.  Those participants with em-
ployability scores in the lowest 40 percent of the distribution were as-
signed to the low employability group (L), the next 20 percent were as-
signed to the middle group (M), and the highest 40 percent were
assigned to the high group (H).  Second, those within each group were
randomly divided into control and treatment groups of equal size.
Third, enrollees in the control group were randomly assigned to one of
the three providers.  Those in the treatment group were assigned to a
predetermined provider that was considered to be most effective for
those in each of the three employability groups.  The middle group in-
cluded only 20 percent of the participants because the treatment
provider for that group, YOU, could accommodate only that percentage
due to capacity constraints.7 The number of participants in each group
is displayed in Table 8.5.

The primary outcome measure for the evaluation is the retention
rate; that is, whether or not the participant was employed 90 consecu-
tive days.  Table 8.6 shows the retention rates of those in the control
and treatment groups by employability group and provider.  In this
case, there is considerable variation both between groups and within
groups.  Note that the actual retention rate averaged for each group in-
creases from the lowest employability group to the highest.  For the
control group, it increases from 11.6 percent for the lowest group to
21.7 percent for the highest employability group.  The treatment group
also follows the pattern of increasing retention rates from low to high
employability groups.  The same monotonic increase is exhibited for
each provider except YOU.  However, as shown in Table 8.7, the upper
and lower bounds of the 95 percent confidence intervals overlap across
the various groups.8

Retention Rates by Various Combinations of Providers

In order to determine whether different combinations of assign-
ments of employability groups to service providers yield different out-
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comes, we examined six combinations.9 The effects of the various
combinations are measured by computing the number of participants
within each employability group who retained their jobs if everyone 
in that group received services from the same provider.  To illustrate
this approach, consider the first combination listed in Table 8.8. The
designation “gyk” refers to the combination in which all participants in
the low employability group (the left-most group in Table 8.6 is hy-
pothetically assigned to Goodwill [g]; all participants in the middle
employability group are assigned to YOU [y]; and all participants in 
the high employability group are assigned to Behavioral Foundation
[k]).  Since participants in the control group were randomly assigned 

Table 8.5  Number of Participants Assigned to Each Provider

Employability group

Low Middle High Total

Provider Contr. Treat. Contr. Treat. Contr. Treat. Contr. Treat.

Goodwill 144 402 73 164 381 402
Foundation 177 83 211 402 471 402
YOU 59 26 194 54 140 194
Total 380 402 183 194 429 402 992 998

SOURCE: Author’s calculations of Kalamazoo/St. Joseph Work First administrative
data, 1998–2000.

Table 8.6  Retention Rates, by Provider and Employability Group (%)

Low Middle High

Provider Contr. Treat. Contr. Treat. Contr. Treat.

Goodwill 15.3 15.4 21.9 22.6
Foundation 7.9 14.5 22.3 23.4
YOU 13.6 37.0 17.0 16.7
Average 11.6 20.8 21.7

SOURCE: Author’s calculations of Kalamazoo/St. Joseph Work First administrative
data, 1996–1997.
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Table 8.7  Upper and Lower Bounds of the 95 Percent Confidence Intervals for the Retention
Rates of Each Provider (%)

Employability group

Low Middle High

Provider Lower Mean Upper Lower Mean Upper Lower Mean Upper

Control group
Goodwill 9.4 15.3 21.2 12.4 21.9 31.4 16.2 22.6 29
Foundation 3.9 7.9 11.9 6.9 14.5 22.1 16.7 22.3 27.9
YOU 4.9 13.6 22.3 18.8 37.0 55.2 6.8 16.7 26.6

Treatment group 11.9 15.4 18.9 11.7 17.0 22.3 19.3 23.4 27.5

SOURCE: Author’s calculations of Kalamazoo/St. Joseph Work First administrative data, 1996–1997.
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to each of the providers within each of the three employability groups,
using the subgroup assigned to a particular subcontractor to represent
the effects for everyone in that employability group is a sound ap-
proach.

Using this approach, the appropriate retention rate for each em-
ployability group is multiplied by the total number of participants in the
control group to compute the number of participants within that group
who retained their job for 90 consecutive days.  For instance, for the
first combination, the retention rate of 0.153 for Goodwill is multiplied
by 380, the size of the control for the low employment group (see Table
8.5).  This yields 58, which indicates that 58 participants in the control
group of the low employability group would have retained their jobs if
all were assigned to Goodwill.  The same calculation is performed for
the middle group, multiplying 0.370 by 183, which yields 68, and for
the high group, multiplying 0.223 by 429, which yields 96.  Summing
these three numbers yields the total number of participants in the three
control groups who retained their jobs, 222.  Dividing by the total num-
ber of participants in the control groups results in the hypothetical re-
tention rate if the combination “gyk” were used to assign participants.

Table 8.8  Number of Participants Employed 90 Consecutive
Days by Combination of Providers

Combination
of providers Low Middle High Total

1 gyk 58 68 96 222 1
2 gky 58 26 72 156 5
3 ygk 52 40 96 188 3
4 ykg 52 26 97 175 4
5 kyg 30 68 97 195 2
6 kgy 30 40 72 142 6

NOTE: Providers are designated as letters: “g” = Goodwill; “k” = Founda-
tion; and “y” = YOU.  The combination “gyk” refers to the low employabili-
ty group assigned to Goodwill, the middle employability group to YOU, and
the high employability group to the Foundation.
SOURCE:  Author’s calculations of Kalamazoo/St. Joseph Work First ad-
ministrative data, 1996–1997.

Ranking

Employability group
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Performing these calculations for all six combinations provides a
convenient measure of the effectiveness of the various combinations.
As shown in Table 8.8, the number of retentions ranges from a high of
222 for the combination “gyk” to a low of 142 for “kgy.”  The differ-
ence between the highest and lowest is 80 retentions, or 56 percent.
The difference between the highest number and the average is 47, or 27
percent.  The results indicate that using the statistical tool to assess and
refer Work First participants can increase the effectiveness of the pro-
gram without increasing cost.  The optimal combination of providers
“gyk” yields a 27 percent higher retention rate than if the participants
were randomly assigned to the providers.

Differences between any of the various pairs of combinations are
statistically significant at the 95 percent significance level.  Table 8.9
displays the difference in the retention rates and the t-statistics for each
pair of combinations.  For instance, the difference between the reten-
tion rate for combination “gyk” and for combination “gky” is 0.066
(e.g., 65 ÷ 992).  The t-statistic for this pair is 5.26, which is much
greater than the critical value of 1.96 for a 95 percent significance lev-
el.  Note that 10 out of the possible 15 pairs are statistically significant.
Only those with differences in the retention rates of less than 2 percent-
age points (approximately 20 participants out of 992) are not statistical-
ly significant.

Based upon the analysis of the effectiveness of the combinations of
providers, it appears that Goodwill had a comparative advantage in
serving low employability participants, YOU in serving middle em-
ployability participants, and Behavioral Foundation in serving high
employability customers.  This combination of assignments was the
same as the treatment group, which was determined by staff knowledge
of the approaches taken by each provider and an analysis of welfare re-
cipients who had participated in the program before the pilot began.
However, it is beyond the scope of the pilot to determine the specific
aspects of each provider’s approach that led to this outcome.10

Benefit/Cost Analysis of the Statistical Assessment 
and Referral System11

The benefits of using the statistical assessment and referral system
can be quantified by taking into account the earnings received by those
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Table 8.9  Differences in Retention Rates between Pairs of
Combinations of Providers

Providers 1 2 3 4 5

Differences in retention rates
1 gyk — 0.066 0.034 0.046 0.026 0.080
2 gky — –0.031 –0.019 –0.039 0.014
3 ygk — 0.012 –0.008 0.045
4 ykg –0.020 0.033
5 kyg — 0.053
6 kgy —

t-Statistics of difference in retention rates
1 gyk — 5.260 2.671 3.654 2.028 6.487
2 gky — –2.603 –1.618 –3.245 1.244
3 ygk — 0.986 –0.644 3.842
4 ykg — –1.630 2.860
5 kyg — 4.481
6 kgy —

NOTE: Standard deviation derived according to the following formula:

�p̂�q̂� ��� +�����1
�
n2

1
�
n1

where p̂ = ; q̂ = 1 – p̂; and x1 and x2 are the number of successes in the 
x1 + x2
�
n1 + n2

samples of size n1 and n2.
SOURCE:  Author’s calculations of Kalamazoo/St. Joseph Work First adminis-
trative data, 1996–1997.

6

additional participants who retained their jobs.  As shown in the previ-
ous section, the optimal assignment rule yielded a net increase of 47
participants who retained their jobs 90 consecutive days over the num-
ber retaining their jobs in the group created by random assignment.
Consequently, the net effect of the statistical assessment and referral
system is computed by considering the difference in retention rates and
earnings of the two groups.  A benefit-to-cost ratio is then calculated by
dividing the net effect by the cost of the pilot.12
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The earnings are comprised of two components: the number of par-
ticipants who retained their jobs (R) and the average weekly earnings of
each participant in that group during the 90 days (calculated here as 13
weeks) of employment (E).  As shown in Table 8.10, the average week-
ly earnings of those in the optimal assignment group (referred to as the
treatment group and denoted by subscript T in this section) is $192 and
of those in the randomly assigned group (the control group denoted by
subscript C) is $195.  The difference in earnings of the two groups (BT

– BC) can be decomposed in the following way, using the control group
as the base of comparison:

BT – BC = [(RT – RC)EC] + [(ET – EC)RC] + [(RT – RC)(ET – EC)]

This decomposition yields the net effect in terms of additional earnings
to program participants as a result of the statistical assessment and re-
ferral system.  It is assumed here that the earnings difference continues
for eight quarters, with two possible scenarios considered.  The first
scenario assumes that the difference in the number of participants re-
taining their jobs for 90 days persists throughout the 8 quarters.  The

Table 8.10  Average Weekly Earnings by Different
Combinations of Providers

Combination of providers
Average weekly

earnings ($)

gyk (treatment group) 192
gky 211
ygk 181

Randomly assigned (control group) 195

NOTE: Providers are designated by letters: “g” Goodwill; “k”
Foundation; and “y” YOU.  The combination “gyk” refers to the
low employability group assigned to Goodwill, the middle em-
ployability group to YOU, and the high employability group to
Foundation.

ykg 175
kyg 165
kgy 189
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second scenario assumes that the difference in job retention narrows
throughout the eight-quarter period until the two series are equal.  In
both scenarios, wages are assumed to grow by 3 percent per year, and a
10 percent annual discount rate is used when computing the net present
value of the earnings streams.  As shown in Table 8.11, under the first
scenario, the net present value of the difference in the earnings streams
of the treatment and control groups is $840,827; under the second sce-
nario, it is $471,054.

The additional costs incurred to develop and operate the statistical
assessment and referral system for the two-year life of the pilot totaled

Table 8.11  Difference in Earnings between Treatment and
Control Groups and Benefit-to-Cost Ratio of 
the System

Quarters after
leaving program

No narrowing of
earnings gap

Narrowing of
earnings gap

1 112,179 112,179
2 113,666 98,706
3 115,165 85,073
4 116,675 71,279
5 118,197 57,321

Benefit-to-cost ratio 5.8 3.3

NOTE: The first column of earnings assumes that the retention rates remain
the same throughout the eight-quarter period while the average weekly
earnings converge.  The second column of earnings assumes that they con-
verge until they are equal in the ninth quarter.  Wages are assumed to in-
crease 3 percent per year, and a 10 percent discount rate is assumed for the
net present value calculation.

Treatment group earnings minus control
group earnings ($)

6 119,730 43,197
7 121,274 28,906
8 122,830 14,445

Net present value ($) 840,827 471,054
Program cost ($) 145,000 145,000
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$145,000.  This expense included designing and integrating the system
into the existing Work First program, which cost roughly $105,000, and
hiring a part-time person to administer the system during the intake and
orientation process, which amounted to another $40,000 during the
two-year period.  Dividing the net present value for each scenario by
the program costs of $145,000 yields a benefit-to-cost ratio for the first
scenario of 5.8 and a ratio for the second scenario of 3.3.

CONCLUSION

The purpose of the Work First pilot was to determine the benefits of
using a statistical assessment tool to target employment services to
meet the needs of Work First participants more effectively.  The statis-
tical assessment tool estimated the probability that a participant would
be employed for 90 consecutive days by relating this outcome to the
personal characteristics and work history of former Work First partici-
pants.  Estimates were based on administrative records of welfare re-
cipients who had participated in the Work First program prior to the
time of the pilot.

The evaluation yielded the following results.  First, the statistical
model exhibited sufficient precision to distinguish among participants
according to their likelihood of working 90 consecutive days.  Second,
there was considerable variation in the retention rates among the vari-
ous combinations of providers offering services to participants in the
three employability groups, as identified by the assessment tool.  The
retention rate of the combination of providers that yielded the highest
rate was 56 percent higher than the combination yielding the lowest
rate, and 27 percent higher than if the participants were randomly as-
signed to providers.  Third, the benefit-to-cost ratio of the pilot project
ranged from 3.3 to 5.8, depending on the assumptions regarding the
persistence over time of the earnings differences between the treatment
and control groups.

The results of the Kalamazoo/St. Joseph Work First pilot provide
evidence that the statistical assessment and referral system can be suc-
cessful in identifying needs and in targeting services to help meet the
needs of customers in finding jobs.  By using the system developed for
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the pilot, more Work First participants can have successful outcomes
without increasing the cost of the program.  The pilot opens the pos-
sibility for statistical tools to be used to help improve the effective-
ness and efficiency of other employment programs and service delivery
systems.  

Notes

The author acknowledges the valuable assistance of Stephen Wandner, Ronald Putz,
and Jon Messenger of the U.S. Department of Labor and of Timothy Bartik, Christo-
pher O’Leary, Lillian Vesic-Petrovic, Radika Rajachar, Kris Kracker, Robert Straits,
Craig Schreuder, Phyllis Molhoek, Claire Black, and Nancy Mack of the W.E. Upjohn
Institute.

1. For example, Gueron and Pauly (1991), from their evaluations of welfare-to-work
demonstrations, suggest that increased service intensity improves employment
rates of clients and that spreading resources too thinly reduces program effective-
ness.  In addition, the evaluation of programs such as California GAINS (Freed-
man et al. 1996) suggests the importance of assessment in getting welfare recipi-
ents into jobs.

2. Allowable work activities include 1) unsubsidized employment; 2) subsidized
private sector employment; 3) subsidized public sector employment; 4) on-the-
job training; 5) job search and job readiness training and activities up to six
weeks; 6) community service programs; and 7) no more than 12 months of voca-
tional educational training.

3. Individuals can and do enroll in Work First several times.  However, only about 8
percent of those who enrolled during 1996 enrolled more than once.  We included
each enrollee only once in the sample and included their latest appearance so that
we could use any previous history in the analysis.

4. These results are consistent with previous studies that examine employment
prospects of welfare recipients.  Estimates based on the national SIPP survey
found that education and prior employment history were important determinants
of the likelihood of leaving welfare for employment (see Eberts 1997, Appendix).
A study for the state of Texas also found these factors to be important (Schexnay-
der, King, and Olson 1991).  The Texas study also found that the number of chil-
dren, the age of the welfare recipient, the duration on welfare, and the use of the
employment service and participation in job-training programs also affected the
likelihood of employment in the expected direction.  The employment- and train-
ing-related results from Texas are consistent with our results from Work First that
prior employment and compliance with previous Work First enrollment positive-
ly affect the likelihood of qualified employment.

5. Several criteria can be used to judge the ability of the model to distinguish among
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Work First participants as to their likelihood of finding employment.  Two mea-
sures are considered here: 1) the relative steepness of the distribution of each in-
dividual’s employment probabilities, and 2) the width of the confidence intervals.
The model satisfies both criteria, as described in Eberts (2002).

6. About half of the participants went through the program at least twice.  For pur-
poses of the evaluation, we included only the last time the person appeared in the
program, if they appeared more than once.  We adopted this approach to avoid bi-
asing the evaluation toward multiple enrollees.  One could argue that including
the same person more than once in the evaluation overweights that person’s expe-
rience relative to those who entered the program only once.  More will be said
about this approach in a subsequent section. 

7. The actual assignment of employability scores was slightly different from the
way in which the statistical assessment model was originally estimated.  The
model was estimated based on the entire set of individuals who participated in
and completed the program during a year’s time.  The computation of the em-
ployability score, based on the coefficients from the model, was done at each in-
take and orientation session.  These sessions took place twice a week.  Obviously,
only a small number of people who participated in the program each year attend-
ed each session. 

Because of the small number of participants at each session, it may be the
case that individuals in attendance on any given day were not fully representative
of the Work First population.  In examining the distribution of employability
scores for each session, we found that on some days the employability scores
would cluster on the high side, while on other days they would center on the low
side of the distribution.  Since the cutoffs were determined by dividing the distri-
bution of scores of individuals who showed up on a given day, it could be the case
that individuals with lower-than-average employability scores were assigned to
the “high” employability group, while on another day individuals with higher-
than-average employability scores were assigned to the “low” employability
group.  It depends upon who was referred to a particular session. 

Another difference between the employability scores as originally estimated
and those assigned to participants during the pilot was the magnitude of the score.
We recognized that the employability scores declined over the year in which the
statistical assessment model was estimated.  This relationship was consistent with
the general observation by the WDB staff that as an increasing number of Work
First participants found jobs, those remaining would have lower skills and be
harder to place into jobs.  To account for this trend, we included in the model the
date that the participant enrolled in the program.  The coefficient on this variable
(addate), as shown in Table 8.4, was relatively large and highly statistically sig-
nificant.  The value of the coefficient (–0.003) was large relative to the mean of
the variable (approximately 14,460, which is the date expressed in machine lan-
guage).  

However, it turns out that as time increased from the date in which the mod-
el was estimated to when it was used to assign the employability scores, the coef-
ficient played a much larger role in determining the size of the predicted value.
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The mean value of the employability score fell from about 0.30 in the original
model to 0.05 in the evaluation.  Most of the difference is due to the more ad-
vanced date.  When the date is rolled back to its average value during the period
in which the model was estimated, the mean employability score for the sample
used in the evaluation increases to 0.46.  

Further investigation shows that the rank ordering of employability scores
computed with and without the adjustment for the time is highly correlated.  The
correlation coefficient of the actual employability score assigned to participants
during the evaluation and the hypothetical one when the date of enrollment is
rolled back by two years is 0.82. 

8. The overlap is not as great between the low and middle employability groups as it
is between the middle and high groups.  The difference in the average retention
rates for the low and middle employability groups is statistically significant at the
95 percent significance level.  On the other hand, the difference in the average re-
tention rates for the middle and high employability groups is not.

9. More than six combinations are possible with three providers and three groups by
assigning more than one employability group to a provider.  However, we adhered
to the WDB’s contractual arrangement during the pilot that all three providers de-
livered services.  Therefore, we eliminated from consideration combinations that
assigned two or three groups to one service provider.

10. As previously noted, the retention rate for those in the middle employability con-
trol group assigned to YOU is higher than the rate for the treatment group as-
signed to YOU.  If, as intended, individuals were randomly assigned to the treat-
ment and control groups, and those within the control group were randomly
assigned to the providers, one would expect the two retention rates to be similar.
We tried two alternative approaches of deriving retention estimates for the differ-
ent combinations that may mitigate the problem.  The first approach controlled for
factors that could be responsible for the significant difference between the treat-
ment and control groups assigned to a specific provider.  One possible factor is the
date on which participants enter the program.  It could be the case that because of
the small number enrolled during each session and the nonrandom nature of re-
ferrals from FIA, the time of enrollment may lead to these differences.  The sec-
ond method combined the outcomes of both the control and the treatment groups.
In this way, we reduced the effect of the timing of enrollment by considering out-
comes from both groups.  Both approaches yield results that are similar to the
original approach.

11. I thank Kevin Hollenbeck and Jeff Smith for suggestions and guidance on con-
ducting the benefit/cost analysis.

12. The social value of the new system may be less than the value computed here be-
cause of displacement effects among the welfare population.  It is conceivable
that the additional retention by participants of the program with the new system
may displace other welfare recipients from their existing jobs or preclude new
Work First participants from finding jobs since the additional retentions reduce
the job vacancies.
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9
Targeting Job Retention Services

for Welfare Recipients

Anu Rangarajan, Peter Schochet, and Dexter Chu
Mathematica Policy Research

The Personal Responsibility and Work Opportunity Reconciliation
Act of 1996 (PRWORA) terminated the welfare program known as Aid
to Families with Dependent Children (AFDC).  The federal govern-
ment now provides states with block grants to provide cash assistance
under the Temporary Assistance for Needy Families (TANF) program.
States have wide discretion to structure TANF eligibility, but federal
law imposes a lifetime limit of 60 months on benefit receipt and impos-
es work requirements on adult recipients after a maximum of two years
of benefit receipt.

These changes mean that welfare recipients must now find jobs and
stay employed.  To help welfare recipients reach these goals, many
state welfare agencies are setting up (or are considering setting up) job
retention programs.  However, because large numbers of welfare recip-
ients are moving into the workforce, states may not have sufficient re-
sources to provide job retention and advancement services to all wel-
fare recipients who become employed.  Therefore, states may want to
target job retention services to those groups of newly employed welfare
recipients who are at high risk of losing their jobs and who can most
benefit from these services.

This chapter examines the feasibility of targeting clients for job re-
tention services.  In particular, we give states and programs some guid-
ance on how they can identify welfare recipients for job retention ser-
vices.  We do not address what specific services should be offered or
targeted, rather, we provide a general statistical framework that can be
used to rank clients by their likelihood of having poor labor market out-
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comes.  States can then use these rankings to target clients who are in
need of services and who can benefit from them. 

This chapter is in two sections.  First, we provide a framework for
agencies that may want to develop targeting mechanisms and discuss
the key steps they must take to target clients.  Then, using data from the
National Longitudinal Survey of Youth (NLSY), we present a targeting
strategy that can serve as a useful guide for programs that want to use it
to target clients or to conduct their own targeting analysis.1

Using the NLSY data, we find that it is feasible to successfully
identify clients who are at high risk of having labor market problems so
they may be targeted for more intensive job retention services.  This is
because we observe diversity in the characteristics of welfare recipients
and the types of jobs they find, diversity in their employment patterns
over a longer period, and some association between these individual
and job characteristics and long-term employment outcomes.  These
modest associations allow us to predict which cases are likely to have
poor employment outcomes and are in particular need of job retention
services.  It is worth emphasizing that initial job characteristics are
good predictors of job retention, and using these characteristics largely
accounts for the success of our targeting analysis.

The remainder of the chapter is organized as follows.  The first sec-
tion describes the data and sample used in our empirical application.
Next, we discuss our methodological approach to targeting and provide
a framework for agencies that want to develop their own targeting
mechanisms.  We lay out, in six steps, how agencies or programs can
conduct their own targeting.  In the third section, we use the NLSY data
to illustrate our approach to targeting.  The data or resources to develop
targeting mechanisms may not be currently available in some states or
local areas, so the targeting strategy based on the NLSY data can serve
as a useful guide for programs that may want to attempt to target clients
before conducting their own analysis.  The last section provides some
concluding comments.

DATA AND SAMPLES

Our targeting analysis attempts to identify cases at high risk of ad-
verse labor market outcomes and provide decision rules for programs
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to select these individuals for services.  This analysis uses data from the
1979–1994 NLSY.2 The NLSY selected a nationally representative
sample of youths who were between the ages of 14 and 22 in 1979 and
followed the sample members for the next 15 years, until they reached
ages 29 to 37.3 The data include detailed information on sample mem-
bers’ program participation, labor force participation, and other socio-
demographic and economic variables.

Our sample includes 601 young women who, at some point during
the panel period, started a job either while receiving AFDC or within
three months after ending an AFDC spell.  To observe employment ex-
periences over the long run, the sample also includes only those welfare
recipients for whom we have five years of follow-up data after initial
job start.

The welfare recipients in our sample are fairly disadvantaged, al-
though there is some diversity in their demographic characteristics.  Our
sample members were on average about 23 years old at the time their
jobs started (Table 9.1); however, over 17 percent were teenage mothers.
About 64 percent had an infant or toddler less than two years of age.
About one-third of sample members did not have a high school creden-
tial.  In addition, more than 50 percent scored in the bottom 25 percent of
those taking the Armed Forces Qualifying Test (AFQT), although more
than 15 percent scored in the upper half of test takers nationally.4

In general, our sample members found fairly unstable, entry-level
jobs that provided low pay, offered few fringe benefits, and had high
turnover.  Sample members earned an average of $6.60 per hour (in
1997 dollars), and about 33 percent held jobs that paid less than $5.50
per hour; only about 20 percent found jobs that paid $8.00 or more per
hour (Table 9.2). Just under half of the sample held full-time jobs (de-
fined as jobs with 35 or more hours of work per week).  In addition, just
under half reported working in jobs that offered paid vacation, and
about 42 percent had jobs that offered some health insurance.  Finally,
about 48 percent worked in evening or variable-shift jobs.

Job retention was a problem for most welfare recipients in our sam-
ple.  Nearly 45 percent ended their initial employment spells within
four months, and more than 75 percent ended them within one year (not
shown).  However, many of those who lost their jobs found new ones.
For example, about 60 percent found another job within one year.

We find that because of the cycling in and out of employment, there
is some diversity in the employment experiences of our sample mem-
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Table 9.1  Characteristics of the Sample

Characteristic
All welfare recipients 

who find jobs (%) Averages

Age at start of job (yr.)
Less than 20 17.4
20–24 57.1
30 or more 2.6
Average age 22.5

Age of youngest child (yr.)
0–2 63.8
3–5 28.6
6 or older 7.6
Average age 2.2

Child care arrangement
Relative care 47.1
Nonrelative care 22.5
Center-based care 15.3
Other arrangements 14.1

Lives with mother/partner 55.9
Degree attained

High school diploma 53.6
GED 13.0

AFQT scores (percentile)
Less than 10 23.9
11–25 28.7
26–50 31.6
More than 50 15.8
Average score 28.7

Has a valid driver’s license 71.0
Health limitations 6.1

Sample size 601

NOTE: All estimates are weighted using the 1979 sample weights.  Data per-
tain to the start of the first observed employment spell while case was on wel-
fare or within three months after case left welfare.  Sample includes those for
whom we have a five-year follow-up period.
SOURCE: Data from the 1979–1994 NLSY Surveys.
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Table 9.2  Characteristics of Initial Jobs Obtained by Sample Members

Characteristic
All welfare recipients 

who find jobs (%) Averages

Hourly wages (1997 $)
Less than $4.50 21.1
$4.50–$5.49 11.9
$5.50–$6.49 24.2
$6.50–$7.99 22.0
$8 or more 20.8
Average wages 6.59

Hours worked per week
1–19 20.3
20–29 16.0
30–34 11.5
35–39 10.1
40–more 42.1
Average hours worked 31.2

Weekly earnings (1997 $)
Less than $100 21.2
$100–$174 21.5
$175–$249 25.1
$250–$324 17.6
$325 or more 14.5
Average earnings 214.09

Fringe benefits available
Health insurance 41.9
Life insurance 29.1
Paid vacation 47.1

Shift workload
Regular day shift 52.3
Evening shift 31.5
Variable shift 16.2

Occupation
Manager/professional/technical 7.1
Sales 4.2
Clerical 24.6
Operators 12.6
Service 36.8
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Table 9.2  (Continued)

Characteristic
All welfare recipients 

who find jobs (%) Averages

Private household 10.1
Other 4.5

Sample size 601

NOTE: All estimates are weighted using the 1979 sample weights.  Data pertain to the
start of the first observed employment spell while case was on welfare or within three
months after case left welfare.  Sample includes those for whom we have a five-year
follow-up period.
SOURCE: Data from the 1979–1994 NLSY Surveys.

Occupation (continued)

bers during the five-year period after they found their initial jobs.  For
example, as seen in Table 9.3, about 25 percent of the sample were em-
ployed in less than 25 percent of the weeks over the five-year period af-
ter initial job start, whereas about 30 percent worked more than three-
quarters of the weeks during the five-year period.

Because our analysis uses data obtained before the passage of
PRWORA, some of these findings should be viewed with caution.  For
example, the work requirements and time limits imposed by the new
law may affect the number of people who enter the labor force, as well
as their employment patterns.  However, while the law may affect indi-
viduals’ employment experiences, we do not believe that it will affect
the more fundamental relationships between individual or job charac-
teristics and employment experiences, which lie at the core of the tar-
geting analysis.

METHODOLOGICAL APPROACH: KEY STEPS FOR
MAKING TARGETING DECISIONS

Step 1: Identify Individual Characteristics

Targeting involves identifying key individual characteristics that
programs can use to determine who will receive certain services.  In se-
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Table 9.3  Employment Experiences during the Five-Year Period after
the Start of the First Employment Spell

Variable Sample members (%) Averages

% of total weeks employed
Less than 25 25.8
25–50 22.1
50–75 22.8
More than 75 29.3
Average pecentage of weeks employed 52.5

Number of employment spells
1 16.1
2 29.9
3 20.9
4 or more 33.2
Average number of spells 3.0

Sample size 601

NOTE: Figures pertain to the percentage of sample members in the specified cate-
gories.  For example, 25.8 percent of sample members worked fewer than 25 percent of
weeks during the five-year period after job start.
SOURCE: Data from the 1979–1994 NLSY Surveys.

lecting characteristics, agencies must choose those perceived to be
good predictors of labor market outcomes.  The choices can be made on
the basis of past research or on the experience of the program staff in
working with clients, as well as their perceptions of who succeeds and
who does not.  It is important to select characteristics that can be easily
identified at low cost, are readily available to program staff, and are
perceived as fair.  Programs might consider such characteristics as edu-
cational attainment, presence of young children, presence of supportive
adults, available transportation and time to commute to a job, as well as
job characteristics.  In contrast, programs might want to avoid using
such characteristics as test scores even if they predict outcomes well,
because obtaining them on a systematic basis for all might be difficult.
It is also important to minimize the number of data items that program
staff will have to consider.
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Step 2: Define Outcomes and Goals That Describe Risk Status

Agencies must make decisions on what they consider adverse out-
comes, to define the group they intend to target for specialized services.
For instance, our study shows considerable diversity among welfare re-
cipients who find jobs.  Some recipients are able to maintain their jobs
more or less continuously or with only short breaks in employment.
Others cycle in and out of low-paying jobs, whereas others lose their
jobs and have difficulty obtaining other ones.  The risk criteria that state
and local agency staff use may be related to the proportion of time wel-
fare recipients are employed during a given period, the number of jobs
they hold during a given period, the proportion of time they receive
welfare after job start, or other outcomes considered important for tar-
geting of services.

Step 3: Select among Potential Characteristics

Agencies will have to choose from the list of potential characteris-
tics for targeting, as not all identified characteristics will be good pre-
dictors of outcomes.  Characteristics should only be used if they can ef-
fectively distinguish between persons with a high risk of job loss (those
more likely to benefit from specialized services) and those with a low
risk of job loss.

Efficiency is a key criterion for assessing whether a characteristic is
a good predictor of outcomes.  An efficient targeting characteristic is
one that describes many high-risk cases and only a few low-risk ones.
Therefore, programs that target using this variable will ensure that few
resources are spent on those who are unlikely to need services.  As an
example, consider people who have health problems.  If most people
who have health problems are likely to have poor labor market out-
comes, this would be an efficient characteristic on which to target.
However, if many with health problems do well in the labor market,
targeting on this variable may not be an efficient use of resources.

An efficient characteristic is also one that enables a program to
serve a higher proportion of needy clients than would be the case if ser-
vices were allocated randomly.  For example, suppose that two-thirds
of all welfare recipients who obtain employment were high-risk cases
who likely would lose their jobs quickly.  If programs randomly select-
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ed 100 clients for services, 67 (two-thirds of the 100) would be high-
risk cases who may benefit from additional services.  Thus, in this case,
a characteristic should be selected only if more than two-thirds of those
targeted for services on the basis of the characteristic were high-risk
cases.  Otherwise, programs could do just as well by randomly serving
clients.

It is important to keep in mind that the targeting strategies we dis-
cuss here do not address the issue of effectiveness of services in pro-
moting job retention.  In selecting characteristics, programs may want
to consider whether targeting on the specific characteristic has promise
and whether the kinds of intervention that can be implemented for the
targeted group have the potential to improve outcomes.

Step 4: Decide Whether to Use Single or Multiple Characteristics

Programs can target people for services on the basis of a single
characteristic or a combination of characteristics.  Under the single-
characteristic approach, an agency would examine each characteristic
in isolation and then would use the methods described in Step 3 to se-
lect efficient characteristics.  The multiple-characteristic approach con-
siders combinations of characteristics that individuals possess and de-
termines how these combinations relate to the risk of adverse
outcomes.5 Programs using the single-characteristic approach would
target anyone who has the characteristic for program services.  With the
multiple-characteristic approach, programs would consider a variety of
characteristics and would select those individuals who have one or
more of the characteristics, recognizing that those who face multiple
barriers are likely to be at higher risk for facing adverse outcomes.

Single-characteristic approach

The main advantage of this approach is that the rules are simple to
define and easy to implement.  After an agency has identified a charac-
teristic to target, any individual with that characteristic will be selected
to receive special services.  A second advantage is that, depending on
the characteristic selected, the approach may simplify the decision of
what services to provide.  For example, if people with health limita-
tions are targeted, programs may want to ensure that this group has
health insurance or access to medical services.
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One of the drawbacks of the single-characteristic approach is that it
is less effective than the multiple-characteristic approach in identifying
all high-risk cases or in ranking cases according to their need for ser-
vices.  Second, it is somewhat less flexible with respect to enabling
programs to select different numbers of clients for possible service re-
ceipt.  For instance, certain characteristics, such as health limitations,
may describe only a small proportion of the overall group of individu-
als at high risk.  Finally, program staff may consider this method unfair
because it selects only individuals with certain characteristics for pro-
gram services.

Multiple-characteristic approach

The main advantage of the multiple-characteristic approach is that
it is better able to identify and distinguish those at high-risk for adverse
outcomes.  If programs make decisions on whom to target for services
on a periodic basis after collecting information on a group of clients,
this approach also can rank people in order of their risk of having poor
outcomes and, consequently, in order of their need for services (see
Step 6).  This ranking feature allows programs to better select the num-
ber and types of individuals who are to receive program services.  Fi-
nally, program staff may perceive it as a more equitable approach to
sharing resources.

The main drawback of this approach is that it is slightly more com-
plex than the single-characteristic approach to implement.  For each in-
dividual, program staff will have to determine the combination of char-
acteristics he or she possesses, and whether that individual needs
special services.

Step 5: Select the Numbers and Types of Clients to Serve

Programs may want to have the flexibility to choose the numbers
and types of clients to serve, as program resources or client needs may
dictate these choices.  For example, agencies confronting tight resource
constraints might have to decide in advance what fraction of clients they
will serve.  With respect to whom to serve, some agencies may choose to
serve the neediest set of individuals.  In contrast, other agencies may de-
cide that this approach is not the best use of their resources; they may
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prefer to spread those resources among a middle group of welfare recip-
ients who may face fewer barriers, but who may be more likely to bene-
fit from services.  As discussed previously, because the multiple-charac-
teristic approach allows programs to rank individuals according to their
risk of having adverse outcomes, it more readily allows programs to
choose the number and types of clients they want to serve.

Step 6: Time the Identification of Clients for Targeting

Program staff also have to determine the timing of targeting deci-
sions.  For instance, decisions could be made either on a periodic basis,
after information on a group of clients has been collected, or on a case-
by-case basis, as soon as each client is ready to receive services.  This
choice will depend on a number of factors, including caseload size,
staff size, how quickly services can be provided, assessments of how
quickly clients need services, and how quickly the decision rules can be
applied.

The timing choice does not affect the way the single-characteristic
approach is applied, but it does affect the way the multiple-characteris-
tic approach is applied.  If programs make decisions periodically,
clients can be ranked on the basis of their likelihood of being high-risk
cases, and programs could use these rankings to select cases for ser-
vices.  The rankings would be constructed by using aggregate “scores”
for each person that are based on several characteristics (see the appen-
dix).  States use this procedure to profile unemployment insurance (UI)
claimants who are likely to exhaust benefits (Wandner and Messenger
1999).  Programs that make decisions on a case-by-case basis would
not be able to rank cases.  Instead, they would provide services to an in-
dividual if the person’s aggregate score were higher than some prede-
termined cutoff value (see the appendix).

TARGETING STRATEGY USING NATIONAL DATA

To apply the targeting approach most effectively, each state or lo-
cal agency should attempt to identify targeting characteristics appro-
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priate to their local areas, and program staff must use local data to de-
termine the most appropriate set of decision rules for their own loca-
tion.  Local area circumstances differ to varying degrees, as do the
characteristics of individuals who live in each area.  Consequently,
agencies can create the best decision rules by using data specific to
their own areas and identify the most efficient characteristics for tar-
geting purposes.

In this section, we use data from the NLSY sample to identify tar-
geting characteristics for programs that are considering providing job
retention services to welfare recipients who find jobs.6 This analysis
has two purposes.  First, for agencies that want to conduct their own
targeting analysis, this discussion illustrates how to use the proposed
targeting framework discussed in the previous section.  Second, for
agencies that currently lack the data or tools required to conduct target-
ing analyses but that may be interested in targeting, the NLSY provides
preliminary decision rules.

It is important to recognize that our decision rules are based on na-
tional data and on our definition of high-risk cases.  Caseload charac-
teristics in any given locality might differ from the characteristics of the
individuals in our sample.  Moreover, the relationship between individ-
ual characteristics and employment outcomes may differ across locali-
ties.  Program staff who choose to use the rules proposed in this report
should consider these findings as broad guidelines, and should adapt
them to their local circumstances to the extent possible.

Using the NLSY data, we examined eight potential characteristics
that programs could use to select individuals for targeting job retention
services:

• was a teenage mother at the time of initial employment;
• was employed less than half the time in the year preceding initial

employment;
• has no high school diploma or GED;
• has a preschool child;
• received less than $8 per hour (in 1997 dollars) as starting pay in

job;
• receives no fringe benefits on the job;
• does not have a valid driver’s license;
• has health limitations.
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In defining outcomes, we focus on sustained employment during
the five-year period after job start.  We defined a high-risk case as one
who worked less than 70 percent of the weeks during that period.7 We
now summarize the findings from our analysis.

• It is possible to identify single characteristics by using the uni-
variate procedure to identify and target services to high-risk
cases.

Table 9.4 shows the efficiency measures of the eight potential tar-
geting variables.  The first column presents the sample means (that is,
the percentage of individuals who have each characteristic), and the sec-
ond shows the proportion in that group who need services (that is, who
had poor employment outcomes).  We find that three-quarters or more of
those in three of the eight groups (age less than 20 years, high school
dropout, and health limitations) are high-risk cases.  For instance, pro-
grams that targeted people younger than 20 years of age at the time of
initial employment would serve about 17 percent of all welfare recipi-
ents who found employment.  However, more than 80 percent of those
served would be high-risk cases.  Similarly, by targeting those with
health limitations, programs would serve only 6 percent of all cases, but
about 88 percent who receive services would be high-risk cases.  If pro-
grams wanted to serve high school dropouts, they would serve about 34
percent of all cases.  About three-quarters would need services.8

Targeting on most of the other variables individually produced ei-
ther no better or only slightly better results than would have been ob-
tained if the programs were to serve a random set of individuals who
find jobs.  This finding is driven in part by the fact that a high fraction
of the sample members have these characteristics.  For instance, more
than 90 percent have a preschool child.  However, according to our def-
inition of high risk, only two-thirds of the full sample are likely to need
services.  Therefore, by targeting this group, programs will serve many
more cases than need services, which will lead to inefficient use of re-
sources.

• Programs can do better by using a combination of characteristics
and applying the multiple-characteristic procedure for targeting.

By using the same set of eight characteristics, the multiple-charac-
teristic or multivariate procedure produced decision rules that were
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Table 9.4  Selecting Individual Characteristics for Targeting Purposes
Using the Univariate Procedure

Characteristic

% of 
sample with
characteristic

% with 
characteristic 

that needs 
servicesa

% of all 
high-risk 

cases receiving
services

Age younger than 20 yr. 17.4 80.6 21.7
Employed less than half

the time in year prior 
to job start 79.2 66.6 83.0

No high school
diploma/GED 34.2 74.8 39.3

Presence of preschool
child 92.4 64.4 93.6

Wage less than $8 in 
1997 dollars 79.2 65.6 83.2

No fringe benefits 81.1 70.0 87.8
No valid driver’s license 29.0 71.8 32.6
Has health limitations 6.1 88.1 8.3

NOTE: Characteristics are defined at the start of the initial employment spells.
a Refers to those in the group who are at high risk for adverse employment outcomes.
SOURCE: Data from the 1979–1994 NLSY Surveys.

able to distinguish between high- and low-risk cases reasonably accu-
rately.  Table 9.5 displays findings on how well the multivariate method
performed for different fractions of overall caseloads that programs
might want to serve.9 From Columns 1 and 2, we see that if programs
serve 10 percent of their caseloads, more than 90 percent of those
served will need services (assuming that programs serve the cases at
highest risk for negative employment outcomes).  Similarly, if they
choose to serve 50 percent of their caseloads, more than 80 percent of
those served will be high-risk cases who may benefit from services.
The values in Column 2 suggest that as programs become more selec-
tive with respect to the numbers to serve, they are better able to identi-
fy the highest-risk cases.10

Compared with the single-characteristic decision rule, the multiple-
characteristic decision rule will serve a greater proportion of high-risk
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Table 9.5  Efficiency of the Multiple-Characteristic
Approach for Targeting Purposes Using the
Multivariate Procedure

Fraction of cases served,
ranked according to 

highest level of risk (%)
% that need 

servicesa

% of all 
high-risk 

cases

10 91.1 12.6
20 90.2 27.3
30 87.8 39.2
40 84.6 50.0
50 82.1 60.8
60 79.9 72.7
70 77.9 80.8
80 74.4 88.2
90 71.5 95.1

a Refers to those in the group served who are at high risk for adverse
employment outcomes.

SOURCE: Data from the 1979–1994 NLSY Surveys.

cases for the same total number of people served.  For example, pro-
grams that want to serve about 20 percent of their cases could choose to
serve teenage mothers (see Table 9.4), or they could use the multivari-
ate method to choose the 20 percent with the highest probability of
poor outcomes.  By targeting the single characteristic, 80 percent of
those served will be high-risk cases; according to the multivariate
methods, more than 90 percent will be high-risk cases (Tables 9.4 and
9.5).

• Implementing decision rules is straightforward.  However, pro-
grams must take into account their own goals and area charac-
teristics when applying these rules.

If programs choose to use the single-characteristic decision rules,
implementation is straightforward.  Program staff would identify cases
with a particular characteristic and would provide services only to
those cases.
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Program staff could implement the multivariate decision rule in
two stages.  In the first stage, program staff would calculate an aggre-
gate score for each individual based on the characteristics the individ-
ual possesses.  The weights attached to each characteristic, displayed in
Table 9.6, would be used to construct these aggregate scores.11 For ex-
ample, a high school dropout who has a wage of $6 per hour and no
fringe benefits, but none of the other characteristics listed in Table 9.6,
would receive an aggregate score of 10 (3 + 2 + 5).  Individuals with
higher aggregate scores are more likely to be high-risk cases than are
those with lower scores.

In the second stage, programs would use the aggregate scores to
identify cases requiring special services.  If program staff decide to
make targeting decisions periodically, after collecting information on a
group of clients, they would rank all these clients on the basis of their
aggregate scores and would select those with the highest scores.  How-
ever, if program staff decide to make targeting decisions sequentially,
on a case-by-case basis, they would have to measure an individual’s ag-
gregate score against a cutoff value and provide services if the aggre-
gate score were higher than that cutoff value.  The cutoff values are dis-

Table 9.6  Checklist for Multivariate Targeting

Barriers Weight
Check 

characteristic
Associated

points

Age younger than 20 �� � —
Employed less than half the time in

year prior to job start �� � —
No high school diploma/GED ��� � —
Presence of preschool child �� � —
Wage less than $8 in 1997 dollars �� � —
No fringe benefits ����� � —
No valid driver’s license �� � —
Has health limitations ����� � —

Total score _______

NOTE: Discussion of the calculation of the weights is contained in the appendix.
SOURCE: Data from the 1979–1994 NLSY Surveys.
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played in Table 9.7 and depend on the fraction of the caseload that the
programs want to serve.  In particular, the fewer cases a program wants
to serve, the higher the cutoff value it will have to use.  Thus, if the pro-
gram had the goal of serving at least 70 percent of cases, a client with
an aggregate score of 10 would receive services (because the cutoff val-
ue would be 10).  If the goal was to serve only 50 percent of cases, this
person would not receive services (because the cutoff value would be
12).

As we have mentioned, the decision rules described here were cre-
ated using information on a nationally representative sample of youths
who received welfare and found a job at some point between 1979 and
1990.  The caseload characteristics in any locality might differ from the
characteristics of the individuals in our sample.  Moreover, the relation-
ship between the characteristics and being a high-risk case may differ
among localities.  Program staff are encouraged to work with re-
searchers to generate their own set of weights and cutoff values using
local data.  However, program staff who decide to use our results as
guidelines should adjust them based on good-sense judgments of local
area characteristics (in the absence of data for analysis).  For instance,
in urban areas with mass transit, programs may want to ignore whether
or not a welfare recipient has a driver’s license in calculating weights,
as this characteristic is unlikely to form a barrier to work.  Furthermore,
program staff may want to adjust their cutoff values downward because
they are dropping this characteristic from consideration.

Table 9.7  Cutoff Scores for Multivariate Targeting

Fraction served (%) Cutoff levels

70 10
50 12
30 14
20 15
10 17

NOTE: Discussion of the calculation of the cutoffs is con-
tained in the appendix.
SOURCE: Data from the 1979–1994 NLSY Surveys.
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CONCLUSIONS

Our analysis has shown that programs can successfully identify
high-risk cases using data on individual and job characteristics that are
likely to be available to program staff.  Programs can use single charac-
teristics (such as age, education levels, or health problems) to identify
high-risk cases.  Alternatively, they can more accurately identify high-
risk cases by targeting on a combination of client characteristics.  The
decision rules we construct can provide guidance to programs that want
to target clients, and the programs can use the framework to develop
their own decision rules.12

The challenge for program operators as they decide to go ahead
with targeting is how to select cases so that resources can be put to the
best use.  Differences in program goals and resources, local circum-
stances, and area and client characteristics all determine whom pro-
grams might want to target.  Because of these differences, each state or
local area ideally should conduct its own assessments of the feasibility
of targeting and should identify the key characteristics most appropri-
ate for targeting in its local area.  Conducting these assessments and
formulating targeting decisions at the state or local level will require
data, both on the characteristics of welfare recipients and on the out-
comes, so that a determination can be made of how characteristics re-
late to outcomes.

Before attempting to target individuals for job retention services,
programs have to consider several factors.  First, programs should con-
sider whether there is sufficient diversity among welfare recipients’
characteristics, the types of jobs they find, and their employment expe-
riences.  For example, if all welfare recipients who find jobs have a
hard time holding on to their jobs, targeting would not be very mean-
ingful.  However, if some groups of individuals can hold sustained em-
ployment on their own, while others cannot, programs may want to
know who the latter are so they can focus resources more intensively
on those who most need them.  A second factor that may determine
whether or not a program targets clients for services depends on
whether it has resource constraints.  If a program has no resource con-
straints, it can serve all clients.  By doing so, it will ensure that every-
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one who potentially needs services is covered.  However, if programs
want to use their resources efficiently, they may want to allocate their
resources to those who most need services.  Finally, the types of ser-
vices being provided may guide whether targeting makes sense.  If a
program is considering delivering intensive services that are costly and
require extensive outreach, it may be worth considering targeting.
However, if a program is considering a more passive approach to ser-
vice delivery (for example, making available job search assistance or
child care subsidies, where service use may be driven by client de-
mand), targeting may be less relevant.

Notes

This research was supported by Department of Health and Human Services Contract
Number 282-92-0044 (21).  We are grateful to Lawrence Wolf, Nancye Campbell,
Howard Rolston, and Kelleen Kaye at DHHS, Stuart Kerachsky, Alan Hershey, and
Phil Gleason at Mathematica, and Chris O’Leary and Timothy Bartik from the Upjohn
Institute for useful comments.  We also thank Tim Novak for skillful programming sup-
port, Laura Berenson, and Patricia Ciaccio for skillful editing, and Jennifer Baskwell
for exemplary production support.

1. Some government agencies are already profiling clients so they can be targeted
for services.  For example, since 1994, all states have identified those cases who
file for benefits under the Unemployment Insurance (UI) program who are likely
to exhaust their UI benefits (Eberts and O’Leary 1996).  In this volume, Eberts
(see p. 221) discusses the use of profiling to target services in state welfare-to-
work programs.

2. To increase sample sizes, the random and supplemental samples were used for the
analysis.

3. Our sample excludes the small fraction of older women who receive welfare.  For
instance, in 1995, about 14 percent of households receiving welfare were headed
by individuals over 40 years of age.

4. More detailed information on characteristics of sample members, the jobs they
found, and their employment experiences can be found in Rangarajan, Schochet,
and Chu (1998).

5. The appendix briefly discusses the methods by which agencies can implement the
single- or multiple-characteristic approach.

6. In this section, we focus on targeting welfare recipients who have found jobs for
job retention services.  The general targeting approach, however, can be used by
agencies that may want to consider targeting clients for other types of services.
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7. Nearly two-thirds of the NLSY sample members were classified as being at high
risk for adverse labor market outcomes.  The 70 percent cutoff is based on the re-
sults of “cluster analysis” that split the sample into those who had low earnings
and intermittent jobs (the high-risk cases that were employed less than 70 percent
of the time) and those with higher earnings and more stable employment (the low-
risk cases).

8. The third column of Table 9.4 shows the percentage of all high-risk cases who
would be served by targeting on each characteristic.  For example, by targeting on
those people younger than 20 years of age at time of initial employment, pro-
grams would serve about 22 percent of all high-risk cases.

9. The purpose of Table 9.5 is to indicate how well the multiple-characteristic ap-
proach performs (compared with the single-characteristic approach described in
Table 9.4). 

10. The multivariate decision rule also gives programs the flexibility to decide whom
to serve or the types of services to provide.  For example, programs may choose
to provide the most intensive services to the top 5 percent of the highest-risk cas-
es and to provide less intensive services to the next 20 or 30 percent of the cases
that may benefit from certain types of job retention services.

11. The weights are calculated from a simple regression model and reflect the relative
magnitudes of the coefficient estimates from the model.  The estimation of the
model is described in the appendix.

12. To some extent, programs may already be targeting clients for job retention ser-
vices, although they may not explicitly call it targeting.  For instance, programs
may allow clients to “self-select” into programs, or case managers may conduct
assessments and then decide who receives what type of assistance.  The targeting
tool presented in this chapter can help case managers as they decide how to direct
clients to appropriate services.
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Appendix:

Statistical Methods for the Multivariate 
Targeting Analysis

The multivariate targeting procedure provides decision rules to target cas-
es for postemployment services on the basis of a combination of their individ-
ual and job characteristics.  This appendix provides details on the statistical as-
pects of how this procedure can be implemented by program staff who choose
to create multivariate decision rules using their own caseload data.  This same
procedure was used to create the decision rules using the NLSY data that we
describe in this report.

To construct decision rules using the multivariate procedure, programs
must first identify individual and job characteristics that potentially can be
used for targeting.  In addition, programs must decide who the group is that
they consider at risk of adverse employment outcomes.  Finally, they must col-
lect data on a representative sample of their caseload—the test sample—so
that decision rules constructed using this sample will apply to cases they will
serve in the future.  The data must include information on the targeting vari-
ables and on employment outcomes so that programs can define which cases
in the sample are high-risk cases (using their own definitions of a high-risk
case).

The tools necessary to construct decision rules are 1) weights needed to
assign to each targeting variable, and 2) cutoff values to determine which cas-
es should be targeted for services.  These tools are obtained from a regression
model, where the targeting variables are used to predict whether a case in the
test sample was a high-risk case.  Program staff can then use these tools to de-
termine whether the cases that programs serve in the future should be targeted
for specialized postemployment services.

The tools necessary to construct decision rules using the multivariate ap-
proach can be obtained in the following three steps.

1) Estimate a logit regression model. Using data on the test sample,
programs should regress the probability that a case was a high-risk
case on the selected targeting variables (such as individual and job
characteristics).1 The parameter estimates from this model represent
the effects of each targeting variable on the likelihood that a case
should be targeted for services.  Many statistical software packages
can be used to estimate the model.  Targeting variables that have little
ability to predict who is a high-risk case (that is, that are statistically
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insignificant) should be removed from the model, and the model
should be reestimated.  The overall predictive power of the final mod-
el should be assessed using the criteria presented in this report.2

2) Construct weights to assign to each targeting variable. The weights
are the parameter estimates from the logit model.  Program staff may
want to scale each of the weights by a fixed factor (for example, 10 or
100) and then round them to make the weights user-friendly.3

3) Construct cutoff values for different assumptions about the propor-
tion of the caseload that programs may want to serve. To construct
the cutoff values, programs first need to construct an “aggregate
score” for each case in the test sample.  The aggregate score for a par-
ticular case is a weighted average of measures of the case’s character-
istics, where the weights are those constructed in step 2.

The cutoff values can then be constructed using these aggregate
scores.  Suppose that a program aims to serve 10 percent of the case-
load.  The cutoff value for that program is selected so that 10 percent
of those in the test sample have an aggregate score greater than the
cutoff value, and 90 percent have an aggregate score less than the 
cutoff value.  Similarly, the cutoff value for a program that aims to
serve 40 percent of the caseload is that value such that 40 percent of
those in the test sample have an aggregate score greater than that 
value.

Once these weights and cutoff values have been obtained using the
test sample, programs can use these tools to target cases in the future
for specialized postemployment services. The process of assigning cas-
es, however, will differ depending on how sites choose to time the se-
lection process.  Programs may choose to target after collecting infor-
mation on a large number of cases.  In these instances, aggregate scores
should be constructed for each case by taking a weighted average of the
case’s characteristics near the job start date and using the weights con-
structed in step 2 above.  Cases should then be ranked on the basis of
their aggregate scores, and programs should select cases with large
scores.  Alternatively, programs may choose to assign a case in isola-
tion as soon as they have information on the case.  In these instances, a
case should be targeted for services if the case’s aggregate score is
above the selected cutoff value (created in step 3 above).  The relevant
cutoff value to use will depend on the proportion of the caseload the
program desires to target.
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Appendix Notes

1. For example, the following logit model could be estimated using maximum likeli-
hood methods:

Pr(case was high risk) = 

where x is a vector of characteristics for an individual, and � is a vector of param-
eters to be estimated.  Alternatively, a probit regression model could be estimated.

2. Specifically, this assessment can be performed in four main steps: 1) predicted
probabilities should be constructed for each individual using the equation in the
previous footnote based on the estimated parameters; 2) individuals should be sort-
ed on the basis of their predicted probabilities; 3) a prespecified percentage of indi-
viduals with the largest predicted probabilities should be “selected” for services;
and 4) the proportion of those selected for services who are actually high-risk cas-
es should be calculated.  The model has sufficient predictive power if the propor-
tion calculated in step 4 is larger than the proportion that would occur if all cases
were randomly assigned to services.  The assessment should be performed for var-
ious prespecified percentages used in step 3.

3. This procedure was used to create the checklist of weights in Table 12 of Rangara-
jan, Schochet, and Chu (1998), where the logit model was estimated using data on
the NLSY sample.

ex′�

�
1 + ex′�
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Comments on Chapter 9

Timothy J. Bartik
W.E. Upjohn Institute for Employment Research

The chapter by Rangarajan, Schochet, and Chu develops a simple
model that uses data from the National Longitudinal Survey of Youth
(NLSY) to predict whether a welfare recipient who gets a job will be
employed less than 70 percent of the weeks during the five years after
starting the job.  These individuals are considered at risk or in need of
services. 

The chapter outlines how data on individuals can be used to esti-
mate a single- or multiple-characteristic model that can target who is
most likely to be at risk.  The multiple-characteristic model does better
in predicting who is at risk.  The authors estimate a logit model predict-
ing which ex-welfare recipients will have employment retention prob-
lems and then restate these logit coefficients as simple weights, which
can be used to assign points to each client.  This approach could easily
be implemented by agencies.  An agency would measure each client’s
characteristics, multiply by the weight on each characteristic to get a
certain number of points, and add up all these points to determine
which clients are the neediest.  In the model estimated here, risk is best
predicted by whether the person has health limitations, whether the job
lacks fringe benefits, and whether the person lacks a high school diplo-
ma or GED.  Less importance is estimated for other characteristics,
such as the job’s wage, the client’s age, prior employment, or posses-
sion of a driver’s license.  All these characteristics could easily be mea-
sured by a social agency, so it would be straightforward for the agency
to predict which clients out of a group of potential clients would be
most likely to have employment retention problems. 

From my perspective as a social scientist, I would like to see an ap-
pendix that gives the actual estimates of the logit model.  Of course,
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agencies don’t need the actual point estimates and standard errors to
implement the model, as long as they have the weights.  But the main
issues I want to raise go beyond the authors’ model to consider the pos-
sible purposes of targeting models.  In addition, I want to consider how
such purposes might vary between targeting unemployment insurance
(UI) services and targeting welfare services. 

One purpose of targeting models is to best allocate a limited social
program budget among potential clients.  Given the shortage of funds,
we can’t serve everyone who might need services.  We would prefer to
have some rational basis for targeting services.  Targeting based on
need is appealing, both politically and morally, and the authors have
developed an algorithm for this, for which they are to be commended.
Targeting based on need is better than simply flipping a coin. 

In addition to moral or political purposes, targeting might have the
purpose of maximizing the total “value-added” of social services.  Tar-
geting might help social programs maximize their value-added in two
ways.  First, for a given service, a targeting algorithm might identify
those who would gain the greatest value-added from the service.  Sec-
ond, if the program offers several services, targeting algorithms might
identify those clients who would most gain from a particular service or
mix of services.

Compared with targeting based on client need, targeting to maxi-
mize program value-added is much more difficult.  Ideally, such target-
ing would be based on estimates of the effects of program participation
on outcomes in a model that allows such effects to vary with the char-
acteristics of the person or job.  If we want to target different services to
different persons, such a model would need to be estimated separately
for program participation in different services.  This type of targeting is
more difficult than what the authors have tried to do, or what most of
the targeting literature has tried to do, because the models needed for
such targeting are more difficult to estimate.  As is well known, there
are generally big issues of selection bias in estimating the effects of
program participation, as persons who participate in a program may
self-select or be selected by the programs.  Without some corrections
for this selection bias, the estimated effects of program participation
may instead represent the effects of this selection. 

If we could predict client need extremely accurately, and some peo-
ple had zero need for services, obviously there would be some correla-
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tion between predicted need and value-added: for those with zero need
for services, there can be no value-added of services.  But in the au-
thors’ research, and in the research of others, our predictions of need
are usually quite imperfect.  Given this imperfection, it is unclear
whether predicted need has any correlation with program value-added.

There are some differences between recipients of UI and welfare
that make targeting more difficult for welfare recipients.  First, I sus-
pect that there is less of a correlation between need and value-added for
welfare recipients than for UI recipients.  Some people do fine in the
labor market on their own and don’t need services.  Others, who may be
a bit needier could benefit greatly from services.  Other people do hor-
ribly in the labor market, and the kinds of services we can afford to of-
fer don’t help.  In other words, I have a triage view of the effectiveness
of services in improving clients’ labor market outcomes.  Among UI re-
cipients, I suspect we mostly have persons from the first and second
group: people who don’t need services, and somewhat needier people
who could benefit from services.  Hence, it is intuitively plausible that
targeting on need could proxy for targeting on value-added, although
one would like studies to confirm this.  Among welfare recipients, I
suspect we have many recipients who fall into the third group and are
very needy, but are perhaps too needy for the services we can offer to
really help them.  So I suspect targeting based on need is less of a proxy
for targeting based on value-added.  The authors recognize this possible
problem, but they need to discuss it further.  

A second difference between UI recipients and welfare recipients
is the difference in possible services to offer.  For UI, the targeting is-
sue is whom to target for mandatory job search assistance.  The evi-
dence suggests that such a service probably helps a wide variety of
persons gain employment more quickly.  For welfare, there is more un-
certainty about what services should be offered and more actual varia-
tion in services offered.  In my view, the services offered to welfare re-
cipients should differ quite a bit, because welfare recipients are a very
needy population.  Tolstoy’s opening sentence in Anna Karenina
claimed that “Happy families are all alike; every unhappy family is un-
happy in its own way.”  Perhaps we can adapt this observation to so-
cial programs to say that the deeper the problems of a potential client
of a social program, the more complex and diverse are their needs for
services.



Because different welfare recipients will benefit from different ser-
vices, the type of targeting we do for welfare recipients should depend
on what services we are able to offer.  Targeting services based on
whether the welfare recipient is disabled makes more sense if we have
services that provide support for people with disabilities.  If we lack
such services, I doubt whether targeting based on disability will im-
prove program value-added.  Targeting clients based on whether their
job placement has fringe benefits makes sense if we have a postem-
ployment service that can help clients find better jobs, or help clients
get the Medicaid benefits to which they are entitled.  This suggests an-
other possible use of the authors’ estimates, which is to decide what
services should be offered, not which clients to target.  We should seek
to adjust our services to what the clients need, not simply adjust the
clients served to what we happen to offer. 

For highly needy populations such as welfare recipients, doing tar-
geting right requires much more than a statistical targeting algorithm
for choosing clients.  Welfare reform is already providing the simple
services of mandatory job search and work activities.  We have already
thrown off welfare most of the welfare recipients who can readily find
a job if forced to do so.  Those who remain on welfare probably need a
very diverse set of intensive services.  This requires at least two stages
to targeting: first, through some simple targeting algorithms, determin-
ing who needs more intensive tests to determine specific service needs,
and second, based on these more intensive tests, determining what mix
of specific services to provide to each client.

For example, work by Sandra and Sheldon Danziger and their col-
leagues indicates that many welfare recipients are clinically depressed
(Danziger et al. 2000).  Some welfare recipients may need antidepres-
sants as much or perhaps more than they need job training, but we can’t
prescribe antidepressants based on a statistical targeting algorithm or a
short intake interview.  We can use the targeting algorithms to allocate
the scarce resource of expensive diagnostic tests.  These more expen-
sive diagnostic tests, such as medical exams, would then be used to tar-
get specific services.

In sum, the chapter by Rangarajan, Schochet, and Chu is a well-
done first step toward the important goal of being able to target job re-
tention services based on need.  But we have much more work to do to
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accomplish the more important but complex goal of targeting the right
services to the right clients in order to maximize program value-added.
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Comments on Chapters 8 and 9

Don Oellerich
U.S. Department of Health and Human Services

These chapters are quite timely and important.  They address an is-
sue for welfare that has received limited attention—the profiling and
targeting of employment-related services to recipients of cash assis-
tance.  While not new to the welfare world, the emphasis on work be-
gan in the late 1960s with the Work Incentive program and was further
emphasized in the 1984 amendments, which created the Job Opportuni-
ties in the Business Sector program.  Welfare reform of 1996 and the
creation of the Temporary Assistance for Needy Families (TANF)
marked a giant step in welfare by placing an increased emphasis on
work.  Both chapters focus on targeting a defined at-risk group for ser-
vices, moving systematically from the greater welfare population to a
smaller group of needy recipients.

Peter Schochet commented that the U.S. Department of Health and
Human Services (HHS) is relatively new to reemployment services.
While this is true, we have been involved in a large number of random-
assignment welfare-to-work experiments since the 1980s.  While nei-
ther targeting nor profiling was a focus of these experiments, identifying
who would benefit from a given set of services has been part of the agen-
da.  Program administrators need to be able to target different types of
programs and services to those clients most in need and most likely to
benefit.  This is particularly true for high-cost services and differentially
targeting very disadvantaged and long-term recipients.  An example of
an early targeting approach was a model employed in Riverside, Cali-
fornia.  The initial placement into either job search or basic needs train-
ing was made based on objective assessment of the applicant’s educa-
tion level—if she had a high school diploma, she was referred to job
search.  For those with high school degrees, their success or failure in the
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labor market was the screener for the need for training.  This model has
become known as the Work First model and has gained wide acceptance
with states in operating their TANF programs.  Work First has proven to
be effective in moving welfare recipients to work very quickly.

Both of the previous chapters take positive steps in moving for-
ward the idea that we can make valid predictions for welfare recipients
and identify those who are likely or not likely to succeed in the labor
force.  Chapter 8, by Eberts, focused on Work First, which in my mind
is the dominant model used by states for the treatment of welfare recip-
ients, particularly as they enter the program.  Chapter 9, by Rangarajan,
Schochet, and Chu, deals with the other end.  That is, how to maintain
employment for those welfare recipients who manage to get a job, and
how to help them leave welfare.  Both chapters make the case that tar-
geting could provide a useful tool for defining who might be in need of
services, or who is at risk of failing.  I don’t think the authors go far
enough.  We need to extend this work to not only identify those at risk
but also to identify points of intervention; that is, identify the service
needs of clients and identify the strengths that clients bring with them.
This is a lot to ask from such models.

HHS is very interested in targeting services, and it is developing
several new projects in that direction.  These projects are looking at
both welfare-to-work strategies for entering and current recipients (the
focus of Chapter 8) and job retention and advancement (the focus of the
Chapter 9).  Hopefully we will learn more over the coming years.  An
example of a project focused on the former is one jointly sponsored by
the Office of the Assistant Secretary for Planning and Evaluation and
the Administration for Children and Families (ACF).  This project has
two components.  The first is to get a broad sweep of what is currently
going on in the welfare world in terms of identifying disadvantaged
clients and targeting them for services.  The second piece of this project
is more in depth; we will go to 8 to 10 states and observe what the lo-
calities are doing.  A second project is in the area of retention and ad-
vancement; here again, targeting and profiling will come in handy.  In
the past, the approach has been for those who leave welfare for work to
be terminated from the program with little or no employment related
services.  Today, retention and advancement is an important part of our
agenda for ensuring the success of welfare reform.  If you start off in a
job that is not great or even one that is just okay, we want to provide a
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set of services that will help you advance in that job, earn a higher
wage, and move to a new and better job if that is what is needed.  The
track record thus far for advancement and retention services is not very
positive.  ACF, as a first phase in furthering our understanding, is cur-
rently awarding planning grants to 13 states to work on retention strate-
gies.  From these 13 states it is hoped that we can secure at least sever-
al random assignment sites for evaluation purposes of the various
strategies that are developed.

A last project I want to mention is one being carried out in Mary-
land, sponsored by ACF.  In this project, they are examining the imple-
mentation of assessment practices by line workers at client intake.  The
aim is to document the information that line workers have for support-
ing decision making and to find out what changes in this information
base would make line workers more effective.

A key point, which has already been mentioned, is that welfare re-
form has made fundamental changes in the way welfare operates.  Eli-
gibility determination and check-writing used to be the main job of line
workers.  Tools were developed so they could do that job right, and
they did it very well.  Now they have a new role.  Not only do they have
to work on eligibility, they have to work on being a job coach, an em-
ployment counselor, a needs assessor, and a referral person to direct
clients into the right services.  Front-line staff need a whole new set of
tools that are not yet in welfare offices.  

Part of the reason for the increased focus on work is the Personal
Responsibility and Work Opportunity Reconciliation Act (PRWORA)
of 1996.  People who are on welfare have to go to work to maintain
their benefits, and there is pressure on the states to get people to work.
The initial target is to have 25 percent of the caseload in work-related
activities, with this target rising to 50 percent of the caseload in 2002
and thereafter; that is, half the people on the welfare roles have to be in
work activities.  Also, the hours that these people must be participating
has gone up, along with the participation rate.  The requirement started
at 20 hours and is now at 25, and it will soon go up to 30 hours a week.
Part-time work will no longer help meet performance targets.  The
pressure is on the line worker to make decisions about who needs what,
and when to move them to the right place.  

There are some additional incentives for states to do the right
things.  Our financial incentives for high performance total $200 mil-



lion per year.  These payments reward work outcomes, job placement,
and success in the labor force.  Success in the labor force has two com-
ponents: job retention and wage growth.  Again, there is an incentive to
provide what we call postemployment services.  You want to get people
into work and move them along.  A targeting strategy that would help
us to identify those people in need and what they need would come in
very handy.  Models such as the one demonstrated by Eberts or one that
could be developed based on the results of Rangarajan, Schochet, and
Chu may help to fill this need.

Peter Schochet raised some good questions.  Do the associations
between the variables estimated in the models still hold, or have they
changed?  I believe that the associations have changed, and one of the
things that I heard through the day is the need to develop the models
and periodically update them so they are in tune with what is happen-
ing.  

Welfare recipients always went to work.  There was always a por-
tion of the caseload that left very quickly, went to work, but unfortu-
nately came back.  So the data from the analysis show about half of the
people leaving welfare, with about half of those leaving for work and
half of them coming back onto public assistance within a year.  Prelim-
inary data on trends since PRWORA was enacted in 1996 suggest that
things are changing.  People are still leaving for work, but in higher
proportions: instead of half, about 60 to 65 percent are getting jobs at
exit.  That is as high as anything that we have seen in any of the wel-
fare-to-work experiments.  It is just phenomenal as far we are con-
cerned.  

Equally important is the fact that people who leave are much less
likely to come back onto the welfare rolls.  Previously, half of the peo-
ple would return within a year.  In some states, the fraction has now
dropped to 20 percent.  People are going out, finding, and keeping a
job.  How well are they doing?  We are studying that in 13 or 14 differ-
ent locations.  A number of states are also doing their own evaluations.
We have what we call the “welfare leavers” studies, because the first
question that was asked after welfare reform is, what is happening to all
of these people leaving?  The caseload in late 1998 was 44 percent low-
er than it was in 1993.  There were about 2.2 million fewer families on
in December 1998 compared with January 1993.  
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Not only is work effort up for people who are leaving welfare rolls,
but it is up for the people still receiving assistance.  It used to be that in
any month, about 8 percent of the caseload was engaged in work.  The
recent data indicate that this fraction is up to 18 percent.  Beyond
PRWORA, we believe that these results are due to a combination of a
strong economy and changes in the way that states figure earnings dis-
regards.  The old rules likely discouraged work.  Newer policies such as
Michigan’s, where they are allowed to keep the first $200 plus 20 per-
cent of anything beyond, encourage work.  So we are seeing more work
happening all of the time.  

We would like to target people for additional services while they
are on the caseload so they can increase their labor supply and move
on.  Many welfare recipients have characteristics that would classify
them as at-risk.  Schochet said that in his data, two-thirds of his sample
could be considered at-risk.  The question that needs to be addressed is,
what are the service needs of this large group of at-risk clients?

Tim Bartik mentioned, and I know Sheldon Danziger talks about
this fact, that people with mental disabilities, mental health problems,
and learning disabilities are a very large share of the welfare caseload.
People with cognitive impairments, developmental disabilities, sub-
stance abuse problems, and victims of domestic violence are all clients.
About half of the caseload can be considered long-term, meaning that
they have received assistance for 30 months or more.  People who have
been on welfare for 30 months or more don’t do a lot of working.  They
don’t have a strong labor force attachment.  About 45 percent of this
group have neither a GED nor a high school diploma.  Reading and
math skills are an employment barrier for between 40 and 50 percent,
physical disability hinders 20 to 35 percent, about 15 percent have de-
bilitating substance abuse problems, and domestic violence affects 20
to 30 percent of the caseload in any given year. 

As Schochet pointed out, if there is no variability in the caseload,
you cannot target services.  As caseloads decline, I expect that the vari-
ability in client types will diminish on the welfare rolls and that re-
maining clients will be increasingly harder to serve.  In terms of ob-
servable characteristics, the trends observed for entry cohorts from
1988 to 1997 are the age of the mother at entrance, the age of the moth-
er at first birth, and education of the mother and youngest child.  There



had been no change in program entrance, but the caseload itself is
changing slightly, meaning that there is a distinct population of those
leaving.  

State-by-state variation in client populations is quite large: some
states have had caseload reductions of 90 percent.  That is, they have 10
percent of their former caseload from just 1993 to 1998.  Other states
may have seen caseload reductions of 11 percent.  The big states of Cal-
ifornia and New York have reduced caseloads by about 25 percent.  

We will certainly have variation among the states, rather than one
size fits all.  I like the idea of the Upjohn Institute model, where it could
be adapted to other states and reestimated because it uses information
that is readily available.  When I look at Eberts’s model, I noticed that
it only explained about 10 percent of the variation.  What that tells me
is that 90 percent of the variation is still left unexplained by the set of
variables.  So there is a lot of randomness in this selection process, even
when your probability is spread.  Additional variables might help re-
duce this unexplained variation.  I liked the implementation plan.  It
was simple and straightforward.  

I think that the model Eberts presented with the personal computer-
based operating system is really nice and slick.  For a line worker to
have something like that at their disposal to help direct clients would be
a great help.  It’s a great advance over what is currently done.  On the
welfare side, we clearly have a tendency to ask, what do clients need?
That requires a systematic plan for assessment and referral.  

I conclude with two final thoughts.  One concern I have is the time
required for assessment; the distribution appears to be bimodal.  Clients
appear to require either 2 hours or 20 hours for assessment.  Is it the
case that those requiring 20 hours have more risk factors?  I was un-
clear about what’s going on in the assessment box.  It would be helpful
if you tell us about that.  Also, it would be helpful to know how the
reemployment probability correlates to the time required for assess-
ment.  
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Terry Colpitts
Human Resources Development Canada

The Service and Outcome Measurement System (SOMS) was de-
veloped by Human Resources Development Canada (HRDC) to be a
tool for promoting employment.  SOMS was intended to help frontline
staff in local public employment service offices counsel job-seekers
about the best strategies for gaining employment and to assist analysts
and managers in determining the best employment and/or training
strategies for specific client groups.  A microcomputer-based prototype
of SOMS was built in 1994.  It had three main elements: 1) a relational
database of client specific information for employment insurance bene-
ficiaries and/or participants of HRDC employment or training pro-
grams, 2) a means for examining the results of past services provided
by the public employment service, and 3) a computerized model to pre-
dict what services would most benefit a particular job-seeker.  In 1997,
an algorithm was added to SOMS for predicting what service would
best promote employment among groups defined by geographic and
demographic characteristics.   

While SOMS has not been adopted in Canada, many useful les-
sons were learned in the course of its development and pilot testing.
This chapter attempts to communicate the most important of those les-
sons while telling the story of SOMS.  We begin by describing the pol-
icy context of SOMS.  We then briefly explain the technical structure
of SOMS, how SOMS could be used by frontline staff to assist job-
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seekers, and how the model could be used to manage job-seeking by
groups.  The chapter concludes by reviewing some recent events 
in SOMS development, and reflecting on SOMS prospects for the
future.  

BACKGROUND

SOMS originated as a contribution by the Strategic Policy branch
to the effort within HRDC known as the Knowledge Product Strategy.1

SOMS built upon the multitude of evaluation studies performed by
Strategic Policy’s Evaluation and Data Development (EDD) branch
during the prior 15 years.  EDD viewed SOMS as a user-friendly vehi-
cle for letting scientific research inform the management and practice
of employment service delivery.  Relying on an extensive client data-
base summarizing past patterns of client services and outcomes, SOMS
was intended to inform the choice of employment services for over four
million annual customers of HRDC’s nationwide network of local
Canada Employment Centers (CEC).  

Leading-edge evaluation techniques used within EDD formed the
foundation for SOMS.  However, to ensure that SOMS resulted in a
user-friendly tool for management and practice, three development
principles were established: 1) to link internal and external files to pro-
vide a detailed, sole source, multiple-year record of interventions pro-
vided to clients, their labor force participation and earnings history, as
well as standard sociodemographic characteristics; 2) to develop and
test statistical models to determine “point-in-time” intervention im-
pacts at the client-specific level of detail; and 3) to incorporate the data
and models in an interactive, micro-based system.

The SOMS prototype delivered to senior HRDC executives in the
fall of 1994 was faithful to these principles as well as to the overriding
objective of using research to inform practice.  A series of SOMS
demonstrations made to various groups in HRDC’s national headquar-
ters and many regional offices resulted in strong positive support for
the SOMS initiative.  There was so much support for the project and
hopes were so high that SOMS developers tried to cool expectations.
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SOMS was not intended to serve as an “expert system” to replace em-
ployment security officers, a potential trumpeted by some executives
but feared by local office staff.   

Concerns were also expressed about the privacy of client informa-
tion held in the SOMS database, which was sometimes referred to as
the “Big Brother” database.  Some critics took the alternative position
that the SOMS database was faulty, despite extensive data-checking
and scrubbing routines employed by EDD.  These criticisms and how
they were addressed are explained in the following discussion of the
four main system components and their historical development.2

SOMS RELATIONAL DATABASE

The core of SOMS is a large relational database system.  In the ab-
sence of highly reliable and credible data that can be accessed quickly,
SOMS’s other components would not be acceptable to practitioners.
The SOMS topology of data sources and preparation are summarized
diagramatically in Figure 10.1.

The initial step in the data-building process was extraction of infor-
mation from 19 different administrative silos.  Sources for these data
included HRDC, provincial, and external mainframe systems.  This
compilation required 18 months and was completed by EDD staff in
December 1995.  The data is longitudinal in nature, meaning it contains
information on individual clients over time.  Nine years of data cover-
ing the period 1987–1995 were originally archived in SOMS.  Pro-
gramming specifications were defined for more than 2,000 variables
grouped into four modules—individual, interventions, providers, and
outcomes.  

Extensive data-scrubbing routines were used in creating the lon-
gitudinal client database.  In 1996, Oracle database software was se-
lected as the HRDC standard for the regional database system, and by
early 1997, an Oracle-based SOMS regional database system was
operational.  This database accommodated about 250 of the most im-
portant variables from the large longitudinal file on over 10 million
clients.3
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SOMS SERVICE DELIVERY TOOL

While the SOMS database was being constructed between 1994
and 1997, a prototype called Client Monitoring System (CMS)4 was
being used for focus-group testing in 30 Human Resources Centre of
Canada (HRCC) offices located in six main metropolitan areas.  Figure
10.2 shows a graphical user interface screen from SOMS, similar to
that used in the CMS prototype, which is used for reviewing client data.

CMS contained 6,000 records of HRDC clients who had been sur-
veyed in 1994 as the first step in an evaluation of an initiative called the
Employability Improvement Program.  The focus group testing oc-
curred during a sensitive period.  HRDC had been formed only three
months earlier by combining all or part of four previous federal depart-
ments.  At the same time that its reorganization was under way, the fed-
eral government announced a workforce reduction of 25,000 full-time

Figure 10.1  SOMS Topology
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NOTE: By entering a Social Insurance Number into this screen, the service de-
livery person obtains access to a rich data source on a client’s sociodemo-
graphic characteristics (Personal); data from the 1991 Census on the area in
which they presently live (Location); income, earnings, unemployment insur-
ance (UI), and social assistance benefits received over a multiple-year period
(Income); detailed information on UI claims over a multiple-year period
(Claims); a multiple-year record of employment, unemployment, and not in
the labor force spells (Job Status); a multiple-year record of HRDC interven-
tions provided (Interventions); and a multiple-year record of training provided
(Training).  Each of these information sections is shown as a file tab near the
top of the record.  The Personal tab (highlighted) is the one active in the screen
above.  At the far right and near the top, there is a button labeled “What Works
Best Solution.”  By pressing this button, it is possible to view which of about
25 possible HRCC interventions will lead to the best result for the client in
terms of improving income, earnings, saving employment insurance, improv-
ing time employed, or reducing dependency on employment insurance.  The
solution is unique to the individual.  The “What Works Best Solution” can be
of assistance in making a service delivery decision but it is not a replacement
for the good judgment of the counselor. 

Figure 10.2  SOMS Graphical User Interface to Review Client Data
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staff equivalents with HRDC’s share of the reduction set at 5,000 per-
sons.5

The initial reaction of many service delivery staff to CMS was one
of skepticism and suspicion, as it came on the heels of a major work-
force reduction.  Simultaneously, a policy of devolving employment
policy responsibilities from the federal to the provincial governments
was being pursued.  This added to the concerns of service delivery
staff for their own job security.  CMS, although being touted as an aid
to service delivery by improving the effectiveness of program target-
ing, was viewed as a possible replacement for the case management
approach.  In the minds of some, it was viewed as an expert system
that could replace counselors in HRCCs as a way to help the national
headquarters achieve its goal of reducing full-time staff equivalents by
20 percent.

Despite the unfortunate context, focus group tests proceeded as
planned.  Interviews with HRCC staff after exposure to CMS features
in focus groups indicated that most participants could imagine them-
selves working with a refined version of the software.  Despite this ma-
jority view, there were pockets of resistance to the CMS approach that
included two distinct camps: the “philosophically opposed” (or “Lud-
dites,” about 5 percent of participants) and the “threatened pessimists”
(about 33 percent).6 The former group saw CMS as a challenge to their
counseling methods, while the latter group feared CMS as a replace-
ment for their services.  Nonetheless, some constructive suggestions
did surface from the focus group participants.  These included the fol-
lowing:

1) Change the name Client Monitoring System, especially the
word monitoring, which was viewed as threatening to both
staff and clients because it implied “Big Brother.”

2) Link CMS data with other key HRDC systems in various
stages of development.

3) Ensure that management and service delivery staff have a
shared understanding of how CMS would be used in improving
the day-to-day operations at the HRCCs.  

As a consequence of the focus group testing, an “alpha” version of
the system was developed.  The system name was changed from CMS
to SOMS.  Attempts were also made to link SOMS with other data and
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accountability systems.  However, these efforts failed because of in-
compatibility with the older data structures.   

In 1996, after the successful business case presentation of SOMS to
the Project Review Committee, Strategic Policy, and Systems branch
formed a joint partnership to further SOMS development.   Later that
year, “beta” focus group tests of the SOMS system were planned for 10
of the 30 alpha HRCC sites.  Around this time, devolution of employ-
ment programs from the federal government to the provinces was being
done through bilateral agreements.  As provincial management took
over, several of the selected beta test sites dropped out of the plans for
focus groups.  In the end, only two of the selected local HRCC offices
were left to participate in the beta tests, which went ahead in late 1996
and early 1997.

As a result of the sharp decline in the number of beta test sites, the
methodological design for live system testing was modified.  The test
period was shortened to include only a comparison of the pretraining
questionnaire data against that collected one month after system train-
ing.7 Focus group participants were positive about the quality of the in-
formation, the organization and presentation of client data in easily
navigable screens, and the high level of security for confidential in-
formation.  On the negative side, they downplayed the value of SOMS
in helping to improve the quality of their work with clients.  They 
also expressed concerns about the reliability and completeness of the
data.  

Despite the sometimes negative perceptions of SOMS’s service de-
livery tool, in a March 1997 presentation of the system to an Assistant
Deputy Minister with primary responsibility for all HRDC training and
employment programs, the Assistant Deputy Minister suggested that
SOMS replace the existing antiquated data-entry processing system
used by local HRCCs.  However, SOMS was not designed as a data-en-
try system.  The time and resources needed to make the necessary
changes were judged too large.  In addition, resistance to a new system
during a period of high uncertainty with respect to HRDC’s role in the
local labor market was likely to be strong.  Rather than risk the entire
project, which had in early 1997 received Treasury Board support and
multiyear funding as an accountability system for HRDC, efforts were
turned toward marketing and implementing SOMS’s business applica-
tion tool.
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SOMS’S BUSINESS PLANNING TOOL

The other component of SOMS, its management reporting/ac-
countability tool, was still relevant in a devolved department and devel-
opment of this component, including the maintenance and updating of
the relational database that supports the tool, continued.  This compo-
nent loaded directly on the end user’s desktop computer and permitted
managers and analysts to review summarized group data for the 10.8
million clients at various levels of detail and for different outcome
measures.  All of the national data were available at a glance in either
spreadsheet or graphical format.  Users could rapidly and easily explore
the data of any multi-dimensional cube at any level of detail by filtering
on the client (age, sex, education, unemployment compensation claim,
etc.) and geographic dimensions.  Users could also choose the outcome
measure(s) to use in analyzing the effectiveness of service provided
and its impact on clients served.  The accountability portion of SOMS
provided the manager or analyst with a powerful tool to review perfor-
mance in order to make strategic decisions on where and to whom re-
sources should be targeted.

Three data “cubes” (data sets) were developed and tested in the
beta evaluation of SOMS: annual income information, employment in-
surance claims information, and intervention and results information.
To build the cubes for analyzing grouped client data, data was first ex-
tracted and packaged in a format suitable for building the cubes by us-
ing software called Transformer.  In Transformer, the analyst defines
the data elements that need to be extracted from the source database
and the important relationships between the elements.  This forms the
data model, which, after extensive testing for data consistency and cor-
rect relationships between the variables, is executed against the SOMS
database to produce a number of PowerCubes.  Each PowerCube con-
tains a selection of extracted data, structured to show defined relation-
ships, and stored in a proprietary format.

A six-week pilot test of the business application tool was conduct-
ed in Ontario during the summer of 1997.  The test revealed that while
the software was not as user-friendly as other “spreadsheet/analysis”
software used, its graphical interface was far superior.  Moreover, in
comparison to other data sources available, SOMS was found superior,
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as was the data quality and its organization.  Shortcomings were noted
in SOMS’s geographic structure, the presence of “stale” data, and its
querying ability.

Since the testing of SOMS’s business application ended, agree-
ments were reached with an HRDC partner—The Canadian Labour
Force Development Board—and two provincial governments to test
SOMS’s business application tool on a trial basis.  Other provincial
governments also expressed an interest in testing SOMS. 

SOMS’S PREDICTIVE MODELING COMPONENT8

The predictive modeling component, which slowed SOMS’s ac-
ceptance by frontline delivery staff, was the system’s Achilles’ heel.
The predictive models were designed to calculate which of the many
programs and services delivered by HRDC had the best probability of
improving the employment and earnings prospects for a client based on
their sociodemographic characteristics and their past history of em-
ployment, earnings, and service receipt.  The models were intended to
allay criticisms often directed by local managers with respect to evalu-
ation studies; namely, that although relevant to making policy decisions
at a national level, such studies were viewed as irrelevant to frontline
staff making day-to-day service delivery decisions.

To develop predictive “what works best” models at the level of the
client, it was necessary to reorient the standard program evaluation
strategy.  In a traditional quasi-experimental evaluation, the net pro-
gram effect is computed in a statistical model as the difference between
the labor market outcome of program participants and nonparticipants,
while adjusting for differences between the two groups.  In the SOMS
approach, all of the previous interventions received by a client are also
included in the statistical model as independent variables, along with
variables that measure standard sociodemographic variables, and vari-
ous periods of elapsed time since the interventions were provided.
Lagged dependent variables were also used as predictors of outcomes.
Finally, to make the model relevant at the level of the individual, a
number of interactive terms were also added using a “stepwise” regres-
sion procedure.  
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From each of the four regression outcome models specified—earn-
ings, weeks of employment, savings in unemployment compensation,
and probability of employment—predictive models were then devel-
oped for each of 25 interventions identified.  To determine what works
best, the predictive models use the regression outcome for a particular
individual and increment the intervention by 1 (employment interven-
tions) or by a specified typical number of weeks (training interventions)
and estimate the outcome.  The difference between the predicted and
regression outcome measures equals the value of an additional unit of
the intervention.  By comparing the effect of each of the 25 interven-
tions for any one individual, it is then possible to say which interven-
tion will have the best effect.

While this approach was judged theoretically sound by leading
econometricians, considerable difficulties were encountered in attempt-
ing to arrive at findings that could be generalized to the population and
adequately differentiated between competing interventions.  In early
model rounds, although it appeared that the models could isolate the
best intervention for a client, the predictive models often resulted in a
majority of the clients (as much as 70 percent) being targeted to the
same intervention.  Furthermore, each of the outcome models tended to
favor a different intervention.  

Several refinements were adopted to improve the ability of the
models to discriminate among alternative interventions.  The revised
models were able to identify more than one favorable intervention for
each outcome, but confidence intervals for the program effect estimates
were too large to precisely state which intervention was best.  More-
over, the effect estimated for a number of the service outcomes was not
statistically significant.  While our efforts did not yield a tool to assist in
service delivery, a number of findings which arose from the modeling
efforts are important to consider.  

First, in attempting to develop participation models to account for
self-selection bias, it was found that there were such extreme differences
between those who were past clients of HRDC and those who had never
received service, that the participation models could not be built.  The
inability to construct a comparison group that both had not received an
intervention at some time since 1987 and resembled those who did re-
ceive services strongly suggests the existence and operation of dual la-
bor markets in Canada.  That is, distinct markets for workers who are
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usually job-attached and radically different markets for those who rely
on the public employment service to assist them during jobless spells.  

Secondly, missing data on key variables for large proportions of the
sample populations resulted in large and significant bias in the estima-
tion of program effects.  This finding illustrates the importance of valid
and complete client data entry in administrative systems, especially for
those variables which are strong predictors of success.   It also suggests
that it would be useful to modify administrative data systems to capture
certain information that, although not essential for program administra-
tion per se, is highly relevant in measuring success and maintaining ac-
countability.

A number of reasons were postulated for our inability to predict re-
liably what would work best for a particular client in a given labor mar-
ket area.  In addition to the phenomena reported above, other potential
reasons, which are backed up by the analysis conducted and/or the em-
pirical research, suggest that the problem may result from the presence
of unknown or unmeasurable attributes of clients, i.e., unexplained het-
erogeneity.  In effect, people differ with respect to certain behaviors in
ways that we cannot comprehend or model using available data.  Also,
individual programs have become more heterogeneous over time due to
1) dilution of selection criteria, 2) increasing devolution of service de-
livery from the federal to provincial governments, and 3) tailoring of
interventions to match the characteristics of local labor markets.  In-
creasing variation in the content and intensity of programs delivered
can, by itself, result in imprecise estimates of intervention effects since
the interventions themselves are imprecise.  

Finally, the unavailability of precise cost data means that a cost-ef-
fectiveness ranking of net impacts for alternative interventions cannot
be produced.   If reliable cost data were available, the uncertainty about
program referral resulting from overlapping confidence intervals might
be greatly reduced.  

RECENT SOMS DEVELOPMENTS

SOMS has moved far beyond the prototype stage.  It is a fully test-
ed, leading-edge, multifaceted accountability and targeting system
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ready for wide-scale deployment throughout HRDC.  Increased use of
SOMS by national and regional headquarters for quickly constructing
participant and/or comparison group samples affirmed it to be a reliable
database for quick sample design and construction.  Heightened inter-
est in the SOMS business application tool by provinces and regions lent
strength to the planned conversion of SOMS’s programming code and
an update of the SOMS database. 

SOMS modeling revisions, which were completed in early 2000,
succeeded in dramatically narrowing the confidence intervals, thus per-
mitting much more precise statements about what works best.  As a re-
sult, the SOMS modeling component was much more useful than at any
prior stage of development.  However, recent developments regarding
the use of personal information for research and evaluation purposes
that entailed the linking of databases from various sources have slowed
the development pace, as multiple approvals are required by senior of-
ficials in more than one federal department or agency.  Since patterns of
program participants change over time, model estimates of what works
best for whom have a finite useful lifetime.  Unless the required ap-
provals are sought and granted to build a new SOMS relational data-
base system with refreshed current data, SOMS’s potential as a service
delivery and resource allocation tool will be lost.9

CONCLUSION

In the development of any accountability and targeting system, the
highest importance must be placed on developing a reliable and credi-
ble database.  If the results are to be meaningful and accepted, the data
foundation must be trusted.  Nonetheless, even after the best efforts to
achieve this ideal, data anomalies will crop up in a system where the
data is subdivided in so many ways to produce program effect esti-
mates. 

Building a system to meet many competing needs across a large or-
ganization is a challenging task.  Constant testing and validation must
be done to ensure that needs are met in terms of functionality, simplici-
ty, and system compatibility.  
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Sometimes, as was found with SOMS, a system can be so techno-
logically advanced that it is hard to link it with older systems.  A new
system can also pose a threat to the status quo and, as a result, be cast in
a bad light or discredited entirely.  Sufficient attention must be given to
such factors for proper planning of a system with the size and complex-
ity of SOMS.  However, even the best planning cannot foresee all con-
tingencies, and timing may play an overly significant role in deciding
the fate and acceptance of a system.  

Finally, “what gets measured, gets done (and gets attention).”  In
HRDC’s case, the important measures following the announcement of
the new accountability system for the Employment Benefits and Sup-
port Measures (EBSM) were the short-term (3-month postprogram) un-
employment insurance savings and return to work.  SOMS reported on
both in annual time increments.  Instead of focusing on SOMS as a
short-term EBSM outcome monitoring system, an effort was made to
simply add that functionality to SOMS’s other features.  In retrospect,
concentration on a simple outcome monitoring system would probably
have had the greatest effect on improving the acceptance of SOMS at
the field level.  However, besides being wasteful of resources, a second
monitoring system would have increased confusion in HRCC’s trying
to determine which system was best.  

To avoid systems proliferation, efforts focused on linking and part-
nering the SOMS effort with other parts of the HRDC organization.
This was seen as a means of reducing the total number of systems in
use, while simultaneously improving their impact on the clients served
and the results achieved.  

Notes

This paper does not necessarily represent the views and opinions of the Government of
Canada, nor those of the Department of Human Resources Development Canada.

1. In 1995, with the introduction of a revised program structure, Employment Bene-
fits and Support Measures (EBSM), a formal accountability structure was intro-
duced, requiring HRDC to report annually to Parliament on EBSM performance
in meeting its short-term objectives of generating employment and saving em-
ployment insurance funds.  Medium-term measures of employment stability, in-
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come enhancement, etc. were also specified, but reporting on these measures
needed the EBSM to have been in operation for a number of years before mea-
sures could be taken.  

2. These points were brought out in various presentations made by the SOMS devel-
opment team and were reinforced by the findings from focus group testing of var-
ious SOMS components over the 1995–1998 period.

3. A client is defined by SOMS to be anyone who had an employment insur-
ance claim and/or a training or employment intervention at some point since
1987.

4. At the time of the focus group testing, and until early 1996, SOMS was called the
Client Monitoring System (CMS).  Focus group testing revealed the need for a
change in the system’s name.

5. In 1994, the Department of Employment and Immigration Canada (EIC) was re-
organized as part of a major restructuring of the federal government.  EIC lost its
immigration component.  All or part of four other federal departments were added
to the remaining EIC.  The newly formed HRDC accounts for almost all of the
federal labor market and social programming.  With spending of almost $70 bil-
lion annually, HRDC accounts for one-half of total federal government spending.

6. Human Resources Development Canada (1995). 
7. In each of the two offices, one manager was separately trained in using SOMS’s

PowerPlay business application.
8. Full model details are provided in the appendix.
9. In May 2000, the SOMS database was wiped out in response to concerns raised

by the Office of the Privacy Commissioner regarding the extensive data holdings
of HRDC.
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Appendix

Details of the Modeling Approach for SOMS

In the past, program evaluations undertaken by HRDC have focused on
determining the net effect of a program on a particular outcome indicator, by
the use of a pre/post comparison group methodology and the estimation of a
regression model, which took the form of

(A.1) Yi = β0 + Xiβ1 + Piβ2 + µi

In this equation, the dependent variable Y is the outcome indicator; β0 is
the intercept term; the vector Xi contains the environmental and demographic
variables of the program participants and comparison group members, and β1

denotes their coefficients; Pi is a 1,0 variable indicating whether the individual
participated in the program or not; β2 is the marginal effect of a program; and
µi is a random error term.

While the β2 coefficient provides information on the incremental impact
of the program being evaluated, it does not provide frontline HRCC staff with
an answer to the question of whether the program would work for their clients,
or, in the limit, for a particular client.  Also, and as is normally the case, the de-
lineation of individuals as participants or comparison group members is based
on receipt or nonreceipt of a program.  There may well be differences between
the two groups in terms of the quantities of other programs received in the
past.  The implicit assumption of the standard equation for estimating program
impact in a quasi-experimental research design is that the two groups are sim-
ilar in terms of past programs and there is no bias in the estimate of the impact
of the program under consideration.

In order to answer the question of which of the many available HRDC in-
terventions would maximize the benefits received by a client, it was necessary
to significantly alter the standard regression equation noted above.  The heart
of the SOMS predictive capability is a regression equation of the form:

(A.2) UIi,95 = β0 + UIi,(95–T)β1 + Tijβ2 + Xiβ3 + Iiβ4 + Ziβ5 + ψiβ6 + µi

for i = 1, . . . , 93,026

where,

• UIi,95 is unemployment insurance benefits paid in 1995 for the ith indi-
vidual.
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• β0 is the intercept term.
• UIi,(95–T) is a vector of three values, representing lagged UI benefits

paid in years T – 1, T – 2, and T – 3, where T is the year of the first
recorded intervention on file for the ith client.  The coefficient vector
for UIi,(95–T) is denoted by β1.1

• The vector Tij measures weeks since the last occurrence of intervention
j for the ith client.  Tij consists of up to three elements, representing the
distribution of times in separate linear pieces.  This approach provides
a flexible method of dealing with nonlinear relationships in the elapsed
time since an intervention occurred in the past and the residual effect of
the past intervention on the outcome indicator.  The number of compo-
nents and their precise definitions varies across interventions.  The cor-
responding coefficient vector is β2.2

• The vector Xi contains environmental and demographic variables, and
β3 denotes their coefficients.

• Ii is the vector of intervention variables whose coefficients are β4.  The
vector, comprising 25 intervention variables (10 employment and 15
training), captures data on receipt of interventions over the period
1987–1994.  Employment interventions are measured in terms of the
frequency of occurrence over the time period, while training interven-
tions are measured as the duration of training, in weeks.  Both types are
represented in the model by up to three component variables, where
each component represents a piece of the distribution of the observed
frequencies or durations as either a dummy variable or a linear approx-
imation.  The purpose of including components of this kind is to iden-
tify nonlinear relationships between the quantity of the intervention
and the observed effect on the outcome indicator.3

• The variable denoted by Zi captures the time elapsed between the re-
ceipt of the earliest intervention on record for the ith client and January
1, 1994.  The coefficient β5 gives the relationship between this time
variable and the outcome indicator. 

• Terms representing the Kronecker product of the demographic, envi-
ronmental, time, and lagged dependent variables (Xi, Zi, and UIi,(95–T))
with the intervention variables (Tij) are denoted by ψi.  The coefficients
of these interaction terms are denoted by β6.

• Finally, µi is a random error term.

The model is estimated by ordinary least squares (OLS).  All variables ex-
cept the interaction terms are forced into the model.  For the interaction terms,
a forward stepwise procedure is applied and only those interaction terms
(components of ψi) which meet or exceed a 0.20 significance level are includ-
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ed in the model.  Before the stepwise procedure is applied, a total of 1,809 in-
teractive terms are available to the model.  Variables entered on a step may be
dropped at a later point in the procedure if their calculated significance level
falls below 0.22.  The significance levels set for model inclusion and exclusion
were chosen to achieve a balance between competing concerns.  That is, to in-
clude a sufficient number of interaction terms to allow for differing estimates
of what works best for clients, while at the same time trying to avoid the prob-
lem of multicollinearity.   The resulting OLS estimates of the coefficients β1,
β2, . . . , β6 are denoted by b1, b2 , . . . , b6.

The model described above can be used to estimate the reduction in UI
benefits paid that results from the receipt of any given type of intervention.
These savings can be assessed on an individual basis or on any level of aggre-
gation (e.g., HRCC, region, province, etc.).  The calculation requires several
steps, as follows:

1) Estimate unemployment compensation receipt by the ith person, UIi,95

by substituting the OLS estimates b1, b2 , . . . , b6 for β1, β2, . . . , β6

into Equation A.2 and evaluating the equation for the ith person’s
characteristics (Tij, Xi , Ii, Zi, ψi). 

2) Increment the value of the particular intervention j received by per-
son i (Tij).  The intervention is increased by one unit if the interven-
tion is measured as a frequency, or by the historically observed aver-
age number of weeks per occurrence if it is measured as a duration
(e.g., the average duration of a training course).

3) Recalculate values of all explanatory variables (Tij, Xi, Ii, Zi, ψi)
which depend on the value of the intervention.

4) Reestimate UIi,95 using the recalculated explanatory variables and the
original OLS parameter estimates (b1, b2, . . . , b6).

5) The estimated effect of the intervention is then produced by subtract-
ing the result of step 1 from that of step 4.

In addition to the savings in UI benefits paid, models were specified and
tested for three other dependent variables: earnings in 1995, weeks of employ-
ment in 1995, and probability of employment in 1995.  For the first two of
these outcome indicators, a process similar to the one described above was fol-
lowed to arrive at the final predictive equations.  In the third case, a logistic re-
gression model was used instead of OLS.  The stepwise selection of interac-
tion terms was different for each of the four outcome indicators.

Effects were estimated for 22 of the 25 interventions.4 The estimation,
therefore, required 88 predictive equations—i.e., 4 outcomes by 22 interven-
tions.  Since the predictive models use interactive terms consisting of environ-
mental and demographic variables specific to the client, SOMS can estimate
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the impact of any one of the 22 interventions in terms of its predicted impact
on a client’s earnings, income, etc.  In so doing, SOMS brings evaluative in-
formation down to the service delivery level and answers the question of
“what works best” for a specific HRCC client.

The SOMS models are continually being refined and reestimated as a con-
sequence of the dynamic nature of the data and the interventions upon which
the SOMS models are based.  New data, in addition to permitting reestimation
of models, can also suggest changes in the formulation of the SOMS outcome
models.  Consequently, SOMS should be viewed as a dynamic model exercise
which is sufficiently flexible to adapt to changes in the underlying data, as well
as changes in HRDC’s requirements for accountability and for information on
what works best.

Appendix Notes

1. Previous SOMS models had only one lagged dependent variable term, defined for
the period T – 1.

2. In previous SOMS models, Tij was linear in construction, implying an assumption
that the effect of past interventions was constant and not influenced by the time
elapsed since receipt.  The assumption of linearity runs counter to empirical litera-
ture, which suggests that the attenuation of effects is best depicted by a nonlinear
curve.  

3. Previous SOMS models accounted for possible nonlinear relationships between
the intervention and its effect on the outcome indicator by using squared values of
the main intervention variables, measured as either frequencies or durations.  

4. Three of the interventions were residual categories for interventions that either
were not captured specifically in the data (e.g., “other” purchased training) or oc-
curred too infrequently to be modeled as separate interventions.  These interven-
tions were included in the models to compensate for their effects on the outcome
indicators, but the process to estimate effects was not applied to them because such
information would offer no guidance with respect to identifying an optimal inter-
vention for a client or group of clients.
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Comments on Chapter 10

Jeffrey Smith
University of Maryland

The Service and Outcome Measurement System (SOMS) repre-
sents an important advance in attempts to use statistical models to
guide the assignment of participants in social programs to particular in-
terventions.  Such efforts are important given that what little evidence
we have suggests that caseworkers may not do particularly well at this
task (see Bell and Orr forthcoming; Plesca and Smith 2001; and Lech-
ner and Smith 2001).  The lessons that Human Resources Development
Canada (HRDC) learned from developing the SOMS should provide
useful guidance to similar efforts in the United States to develop the
Frontline Decision Support System (FDSS) to guide the assignment of
individuals to services provided under WIA (the Workforce Investment
Act).

Using statistical models to target (or profile) participants into alter-
native services is the administrative innovation de jour in the public
sector agencies that provide these services.  Like earlier administrative
innovations de jour, such as performance standards, statistical targeting
is proceeding much faster in practice than the research base that should
support and guide its development.  One of the things that has remained
foggy in much of the small literature on statistical treatment rules
(STRs), of which SOMS and FDSS are examples, is the importance
both conceptually and practically of the choice of variable on the basis
of which to allocate individuals to services.  This issue is discussed at
length in Berger, Black, and Smith (2000).

In the U.S. unemployment insurance (UI) system, the variable used
to target services is the predicted probability of UI benefit exhaustion.
In the welfare-to-work programs described in Chapter 8, it is predicted
levels of employment.  The thing that makes SOMS relatively unique is
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that it is explicitly designed to allocate participants to services based on
the predicted impacts of those services rather than on expected out-
come levels in the absence of service.  By targeting based on the ex-
pected gains from alternative services rather than on predicted outcome
levels, the SOMS maximizes the efficiency gains from the program,
thereby providing (it is hoped) the largest bang per long-suffering (and
in Canada they are indeed long-suffering) taxpayer dollar.  These gains
may come, of course, at some equity cost, as persons who would do
poorly in the absence of expensive services will not receive those ex-
pensive services if their predicted benefit from them is small.

In addition to highlighting the conceptual value of basing an STR
on predicted impacts, the SOMS also serves to illustrate the fact that
constructing automated systems to assign participants to services repre-
sents a very difficult task indeed.  SOMS and other similar systems rep-
resent an attempt to create an automated, ongoing, non-experimental
program evaluation of a large number of alternative services.  Automat-
ed in this context means that, once established, the system can reliably
generate impact estimates without the frequent intervention of an
econometrician.  The parameters of interest in the evaluation implicit in
the SOMS include predicted subgroup impacts for a nearly infinite
number of subgroups defined by observable demographic characteris-
tics, past service receipt, and past transfer payment receipt.  The diffi-
culty of the task is recognized when it is considered that we really do
not yet have a robust methodology for conducting one-shot non-exper-
imental evaluations (see, for example, the discussion in Heckman,
LaLonde, and Smith 1999).  Thus, it is not at all surprising that the
SOMS developers had some troubles along the way.

In the remainder of my remarks, I would like to briefly discuss
some specific issues that were raised in the course of developing
SOMS.  Some of these are mentioned in Chapter 10 and some are not.
The first issue concerns the econometric method used to generate
SOMS’s impact estimates.  This method consists more or less of “one
grand regression.”  The implied comparison group is persons with low
intensity services rather than persons who never receive any services
but would be eligible for them.  As Colpitts notes in the chapter, this
was due in part to the fact that persons who were eligible but did not
participate during the long period covered by the SOMS database were
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an unusual group.  This reflects the fact that the eligible population is
more saturated with employment and training programs in Canada than
it is in the United States.  

This econometric strategy relies on the assumption of what Heck-
man and Robb (1985) call “selection on observables.”  The idea here is
that conditioning on observable characteristics—in this case quite a lot
of them but with some notable omissions, such as years of schooling—
will control for all selective differences between participants in any of
the different services.  This is a tall order for a non-experimental esti-
mator in an evaluation examining only one service; it is perhaps an
even taller one in the case of a system that seeks to generate credible
impact estimates for more than a dozen services.  

The virtues of this econometric strategy are threefold.  First, it is
readily understood by agency staff and can be explained in a simple
manner (at least relative to other available evaluation strategies).  Sec-
ond, unlike the currently popular matching strategies examined in, e.g.,
Heckman et al. (1998) and Heckman, Ichimura, and Todd (1997), the
SOMS econometric strategy uses off-the-shelf software.  This is impor-
tant for a system that, once launched, should require little in the way of
expensive econometric maintenance.  Third, it uses the data at hand,
which do not include any obvious sources of exogenous variation that
could be used as instruments in models that attempt to take account of
selection on unobservables (e.g., motivation and ability) as well as se-
lection on observables.  It remains an important open question whether
it would be possible in future versions of SOMS or in other systems of
this type to adopt more ambitious econometric strategies.

The second issue worth raising is how to code the extremely het-
erogeneous interventions commonly offered to the disadvantaged and
the unemployed.  These include somewhat standardized services such
as job clubs or job search assistance, as well as quite heterogeneous ser-
vices such as classroom training in occupational skills.  For the latter,
should the system treat all classroom training of this type as one ser-
vice, thereby leaving the case worker with substantial discretion about
what specific occupation to have the participant train for?  Or should it
define training more narrowly, and attempt to produce separate impacts
for specific occupational groups?  This is complicated by the fact that
not all types of training will be available in all localities.  This issue



was not addressed in great detail in SOMS, where existing administra-
tive categories were taken essentially as given.  The optimal way to ap-
proach this question remains an issue for future research.

Related to this issue is the question of how to deal with multitreat-
ment paths.  In many programs of the type offered in Canada during the
time that SOMS was created, participants may receive a sequence of
services rather than just one.  In some cases, these sequences may be
preplanned, as when it is expected that job search assistance will follow
classroom training for those who have not already located a job.  In oth-
er cases, they may reflect a search for a good match between the partic-
ipant and the service being provided.  In these cases, the initial services
received resemble the “tasters” built into the New Deal for Young Peo-
ple in the United Kingdom.  These tasters explicitly allow New Deal
participants to try out the different types of services offered by the pro-
gram in the hope that additional information will lead to a better match
between participant and service and thereby to a larger impact.

If the sequences are preplanned, a particular sequence of services
(if sufficiently common) can simply be treated as a separate service, for
which a separate impact estimate is generated.  In the case where the
sequences represent “search” among possible service matches, things
become trickier, both in the predictive sense and in the sense of what
services received by past participants to include in the impact estima-
tion model.  This aspect of the design of service allocation systems
would also benefit from further analysis, both conceptual and empiri-
cal.

The final issue pertains to which set of services to attempt to esti-
mate impacts for at all.  Another way to think of this issue is how to in-
corporate prior information that certain services, such as orientation in-
terviews or individual counseling sessions, are unlikely to have
detectable impacts.  Attempting to estimate impacts for services that are
known in advance to have impacts too small to measure will reduce the
credibility of the system and may lead to some embarrassing numbers
(as indeed it did in some early versions of SOMS).  It is important in
designing these systems to focus on key services and not to attempt too
much, especially in the first round of development.

In looking to the future it is useful to consider two lines of devel-
opment for statistical treatment allocation systems such as SOMS in
Canada and FDSS in the United States.  The first is their transformation
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into true expert systems.  We already have a lot of knowledge from both
social experiments and from high-quality non-experimental evalua-
tions about what works and for whom.  As noted by Manski (2001), the
data sets from some of these evaluations could usefully be mined to ex-
tract even more information along these lines.  This information is ig-
nored in SOMS, which relies solely on its own internal impact esti-
mates—estimates based on a methodology that emphasizes ease of
automation over econometric appeal.  Combining the evidence from
other evaluations with the internal estimates from SOMS (or other sim-
ilar systems) would substantially increase the likelihood that the system
would actually fulfill its appointed task of helping to associate partici-
pants with the services that would benefit them the most.

Second, the service allocation component of SOMS or of other
similar systems could be used to generate useful exogenous variation in
service receipt that would then in turn reduce the bias associated with
future internal impact estimates from the system.  The basic idea is to
introduce some randomization into the set of services recommended as
a permanent feature of the system.  The randomization would not re-
quire that anyone be denied service, only that some systematic varia-
tion in service receipt be introduced by varying the set of services rec-
ommended or their ordering in a way unrelated to the observable
characteristics of the participant.  In technical terms, the system would
be creating an instrument that could be used to help in evaluating the
program.  Building this aspect into the system would relatively pain-
lessly increase the credibility of, and reduce the bias associated with,
the impact estimates used to guide service allocation.

In conclusion, it should be clear that statistical treatment allocation
systems such as SOMS display great promise at improving the efficien-
cy of service allocation in social programs.  At the same time, the re-
search base underlying these systems is woeful, a situation that the
chapters in this volume only begin to address.  Much remains to be
done.

Disclaimer

The author worked as an occasional paid consultant to Abt Associates of Canada (now
Applied Research Consultants) in the course of their work on the Service Outcomes



and Monitoring System (SOMS) under contract to Human Resources Development
Canada (HRDC).  The views expressed in this comment do not necessarily represent
those of any person or organization other than the author.
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Predicting Long-Term

Unemployment in Canada
Prospects and Policy Implications

Ging Wong, Harold Henson, and Arun Roy
Human Resources Development Canada

The problem of long-term unemployment—jobless but seeking
work for 12 months or more—was persistent throughout the 1980s and
1990s in all 30 member countries of the Organisation for Economic
Co-operation and Development (OECD).  However, the extent of the
problem differed greatly among countries.  In Canada, Norway, Swe-
den, and the United States, the proportion of unemployed who were
long-term unemployed (LTU) was relatively low, ranging from 9.5 per-
cent in the United States to 17.1 percent in Sweden in 1996.  This com-
pares with 30.7 percent on average in the G7 countries, 34 percent on
average for the 30 OECD countries, and 49.3 percent for the 15 mem-
bers of the European Union (Organisation for Economic Co-operation
and Development 1998b, 1998c).  Nevertheless, these lower rates in
North America and northern Europe represent significant increases
over rates observed a decade earlier.

Targeting of reemployment services to the LTU became part of na-
tional employment policy in both the United States and Australia
during the 1990s (Organisation for Economic Co-operation and Devel-
opment 1998a).  In the United States, the Worker Profiling and Reem-
ployment Services (WPRS) system, established by 1993 legislation, re-
quired early identification and referral to services of unemployment
compensation beneficiaries who are predicted as likely to be LTU.  In
Australia, a formal early identification and intervention strategy was
devised and implemented by the Commonwealth Employment Service
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(CES) in 1994 as part of their reform policy called “Working Nation.”
In Australia, the LTU and those determined to be “at risk” are given
preferential access to case management and labor market programs de-
livered by either a public or private provider.  

To date, Canada has not developed a policy for targeting services to
the LTU.  It has not been a pressing concern, because until recently the
number of LTU has been low.  Instead, Canada has focused its labor
market reform efforts to deal with unemployment recidivism.  Rather
than large numbers of LTU, Canada has a high incidence of part-year
employment in fishing, agriculture, and tourism with consequent sea-
sonal unemployment.  Public concern about long-term unemployment
surfaced in the 1990s as the ratio of unemployment compensation bene-
ficiaries to all unemployed (the B/U ratio) fell.  The B/U ratio declined
dramatically from 0.83 in 1989 to 0.42 in 1997.  Research revealed that
about half of this drop was due to tightening of the unemployment com-
pensation system, but that the other half was due to changes in the nature
of the labor market.  In particular, B/U has dropped because the share of
unemployed Canadians who have not worked for the last 12 months has
nearly doubled, from 20.8 percent in 1989 to 38.4 percent in 1997.1

The next section of this chapter documents the rise in Canadian
long-term unemployment, and the related trends in exhaustion of un-
employment compensation entitlement.  The chapter then reports on an
empirical exercise using Canadian data that attempt early identification
of individuals who are at risk of remaining jobless for 52 weeks or
more.  Such a model, however, is useful only if linked to efficacious
employment measures.  The next section therefore reports which ser-
vices are most likely to promote reemployment for those at risk of
long-term joblessness.  For Canadian unemployment compensation re-
cipients, estimates are provided of how net benefits of interventions
vary depending upon the timing of the intervention.  A summary and
concluding remarks appear in the final section.  

THE LABOR MARKET CONTEXT

Labour Force Survey (LFS) data are used to provide descriptive
statistics about the magnitude and trends in the growth of long-term un-
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SOURCE: Statistics Canada, LFS

Figure 11.1  Proportion of Total Unemployment That Is Long-Term and
the Unemployment Rate, 1976–1998 

employment.2 The LTU increased from 3 percent of all unemployed in
1976 to 5 percent in 1981, to 7 percent in 1991, and reached a peak of
15 percent in 1994.  In recent years the LTU has declined, reaching 10
percent in 1998 (Figure 11.1). In spite of declines in recent years, the
incidence of LTU doubled between 1981 and 1998 and increased three-
fold between 1976 and 1998.  In absolute numbers, the size of the LTU
has been in the range of 125,000 to 175,000 in recent years.  In 1998,
the number of workers reported to have been in the LTU category was
126,000.

There is a strong positive correlation between the aggregate unem-
ployment rate and the incidence of long-term unemployment.  This
means that as the unemployment rate increases in a recession, the inci-
dence of long-term unemployment also increases.  It is also evident that
the incidence of long-term unemployment declines much more slowly
than the unemployment rate during subsequent recoveries.

Among age groups, long-term unemployment is substantially high-
er among older workers (55 and over) than among prime-age or young
workers.  The incidence is particularly low for youth because of their
high turnover in the labor market.3 By gender, the incidence of long-
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term unemployment is also slightly higher among males than females.
The incidence among those with only primary education is substantial-
ly higher than the average.  But contrary to expectations, long-term un-
employment is not lower among those with postsecondary education
than among individuals with high school education.  

There are some notable variations in the incidence of long-term un-
employment among provinces.  It is relatively high in Quebec and low-
er than the average in Ontario, the prairie provinces, and British Co-
lumbia.  In the Atlantic provinces it has always remained at or below
the national average.  This is because a significant part of unemploy-
ment in the Atlantic provinces is of the seasonal variety (Green and
Sargent 1995; Wesa 1995).

In summary, the aggregate data suggest that the LTU carry a large
burden of the costs of recession and that this group shares relatively lit-
tle in the benefits of recovery.  The incidence of long-term unemploy-
ment appears to be higher for older workers, males, those with primary
education, and in the province of Quebec.  

Higher levels of unemployment have budgetary implications that
operate through lower tax receipts and higher outlays of income sup-
port for the unemployed than would have been the case.  The unem-
ployment compensation payment cost of long-term unemployment can
be estimated as (Be – BI) × Ne, where Be is the average dollar amount
paid to UI exhaustees, BI is the average dollar amount paid to all UI
claimants, and Ne is the total number of UI exhaustees.  

In 1997, the cost of long-term unemployment was $1.6 billion,
which works out to 16 percent of the total benefit payments in that year.
This means that if the risk of long-term unemployment could be re-
duced by 75 percent through more active policies, a savings of $1.2 bil-
lion could be generated in the insurance account alone.  Figure 11.2
shows that the cost of long-term unemployment varies cyclically, in-
creasing in times of a recession and declining in times of a recovery.

PREDICTING LONG-TERM UNEMPLOYMENT

Our modeling approach for early identification of long-term unem-
ployment draws on the practical experience of the United States and
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SOURCE: Our own estimates of (Be – BI) × Ne based on data from the HRDC Status
Vector. 

Figure 11.2  Estimated Cost of Long-Term Unemployment 
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Australia (Wandner 1997; Chapman 1993).  Worker profiling systems
in those countries rely on readily observable personal and labor market
characteristics as predictors of continuing unemployment.  In the Unit-
ed States, the factors include recall status, union hiring hall agreement,
education, job tenure, change in employment in previous industry,
change in employment in previous occupation, and local unemploy-
ment rate.  In Australia, seven key predictors are used: age, educational
attainment, aboriginal status, foreign country birthplace, disability, En-
glish speaking ability, and geographic location.

Neither the U.S. nor the Australian system exploits the fact that the
probability of exiting unemployment changes with the duration of un-
employment.4 Our models for Canada do capture this “duration depen-
dence.”  In most cases the chance of exit falls as the unemployment
spell lengthens.  Consequently, the LTU find it increasingly difficult to
find work.  In part, this may be due to a reduction in job search intensi-
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ty over time.  There is evidence in Canada that job search effort remains
at a fairly high level for the first 9 months of unemployment but de-
clines steadily thereafter, stabilizing at a much lower level after 18
months.5 Another reason for the declining likelihood of leaving unem-
ployment may be the reluctance of employers to engage someone un-
employed for an extended period.  

To try models identifying workers at risk of long-term unemploy-
ment, we use 1996 data from a relatively new longitudinal database
called the Canadian Out of Employment Panel (COEP) (Crossley and
Wong 1997).  The COEP survey collects detailed microlevel informa-
tion on the sampled individuals and their households on a regular basis. 

A sample from the 1996 COEP was selected to include UI/EI6 cov-
ered workers who had job separations between October 1995 and Sep-
tember 1996.  The sample was restricted to those who were laid off,
ended a contract, or were dismissed.  A final sample of 8,020 observa-
tions was used for regression analysis.  Table 11.1 summarizes the sta-
tistical characteristics of this sample data.  The first column reports the
proportion of the sample with various demographic, labor market, and
job search characteristics.  The second column reports the proportion in
each subgroup who experienced long-term unemployment.  

Overall, 23.3 percent of the individuals in the analytical COEP
sample became LTU.  The figures in Table 11.1 suggest several factors
which may be relevant in predicting long-term unemployment.  For ex-
ample, 28.4 percent of females were found to become LTU, as were
43.3 percent of older workers, 36.6 percent of disabled, 33.6 percent of
those without a recall date, and 39.9 percent of those dismissed from
their last job. 

We examine two different approaches for predicting long-term un-
employment.  These alternate models are referred to as the Weibull and
the probit (see the appendix for technical details).  A practical distinc-
tion between the two regards the form of the dependent variable.  For
the Weibull model, the number of weeks unemployed is the dependent
variable, while for the probit model the dependent variable is binary
having a value of 1 if long-term unemployment was experienced, and 0
otherwise.  

When comparing probit and Weibull results, it should be remem-
bered that probit coefficient signs are opposite those obtained from
Weibull formulations.  Probit coefficients represent the effect of factors
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Table 11.1  Sample Characteristics

Variable 
% of 

Sample LTU (%)

Demographics
Males 56.9 19.5
Females 43.1 28.4
Youth (15–24) 15.4 15.8
Prime (25–54) 75.8 22.5
Older 55+ 8.8 43.3
More than high school 45.0 21.6
Disabled 7.3 36.6
Not disabled 92.7 22.3
Disabled and old 1.1 46.6
Not disabled and old 98.9 23.0
Has child 3–5 yr. old 6.4 17.5
Canadian-born 86.8 22.6
Not Canadian-born 13.2 27.8

Labor market
Atlantic 12.0 24.3
Quebec 31.7 26.3
Ontario 30.6 22.2
Prairies 13.9 18.7
British Columbia 11.8 20.2
Primary industry 6.9 19.6
Manufacturing industry 18.7 23.3
Construction industry 12.7 14.0
Services industry 53.3 24.9
Public administration 7.0 32.5
Knowledge occupation 7.0 18.1
Management occupation 4.6 31.5
Data occupation 7.8 28.3
Services occupation 13.2 30.2
Goods occupation 45.3 17.2
Data and service occupation 1.4 35.0
Seasonal job 29.0 15.3
Nonseasonal job 71.0 26.6
Had part-time job 13.2 20.7
Had full-time job 86.8 23.7
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Table 11.1  (Continued)

Variable 
% of 

Sample LTU (%)

Job search
Had a recall date 55.3 15.0
No recall date 44.7 33.6
Dismissed 4.6 39.9
Not dismissed from last job 95.4 22.5
Had UI/EI in previous year 47.5 18.2
No UI/EI in previous year 52.5 27.9

SOURCE: Statistics Canada (2001).

on the probability of becoming LTU, while the Weibull coefficients
represent the effect of factors on the probability of leaving unemploy-
ment.  Table 11.2 presents the results of model estimation with the in-
fluence of each factor listed as a determinant of long-term unemploy-
ment.  For the probit model, both the variable coefficient estimate and
the marginal impact of the variable on the probability of long-term un-
employment are given.  

Beyond the simple correlations suggested in Table 11.1, the model
estimates provide information about the influence of a factor control-
ling for all other measured factors.  The negative sign for males in the
probit regression indicates that, ceteris paribus, male job losers are less
likely to become LTU.  For the Weibull regression, the positive sign for
males indicates a more favorable prospect for reemployment.  The pro-
bit models also suggest that older job losers are more at risk of LTU, as
are individuals who reported a disability and those who did not have a
recall date.  Not surprisingly, educational attainment appears to have a
significant negative relationship with long-term unemployment.  Coef-
ficients on regional location are not significant, except in Atlantic
Canada.  This may be due to the fact that regional dummies are mask-
ing within-region unemployment differentials.  Taken at face value, the
regression results appear to suggest that once a person becomes unem-
ployed, there is little difference among regions in the probability of be-
coming LTU.  
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The U.S. systems for WPRS are based on models predicting UI
claimants’ exhaustion of benefit entitlement.  Table 11.3 presents re-
sults of predicting UI/EI benefit exhaustion in the Canadian context.
The same set of variables is used to predict benefit exhaustion as were
used for the probit and Weibull models given in Table 11.2.  Therefore,
this Canadian benefit exhaustion model was expected to have many
properties similar to those reported in Table 11.2.  One interesting dif-
ference is that part-time workers in general were less likely to be LTU,
but part-time status had no impact on the probability of exhausting
UI/EI.  

At this exploratory stage of system development, an important
question concerns the predictive accuracy of the estimated equations.
Predictions were computed from the above equations using estimated
parameter values.  For the probit model, predicted probabilities greater
than or equal to 0.5 were classified as likely to experience long-term
unemployment.7 For the Weibull model, the time until exit from unem-
ployment was predicted for each observation with predicted values
greater than 52 weeks classified at risk of long-term unemployment.

In our calculations, the probit prediction success rate of 55.0 per-
cent was better than the 45.5 percent observed for the Weibull.  Both
models are good improvements on the 21.3 percent point estimate of
LTU given by the sample proportions.8 For the Canadian exhaustion
model, the probit prediction success rate of 56.4 percent was much
better than the 32.6 percent success rate given by the sample propor-
tions.  These prediction reliability rates compared favorably with those
obtained for U.S. models.  Olson, Kelso, Decker, and Klepinger (see 
p. 29) reported success rates of 58.8 percent for their effort with U.S.
models.  Notably, exhaustion in U.S. models occurs at 26 weeks, while
the Canadian models must predict 52 weeks into the future. 

IMPACTS OF REEMPLOYMENT SERVICES

If a good model for predicting the probability of long-term unem-
ployment can be developed, it could be used as part of a system for ear-
ly referral to reemployment services in Canada.  To make such refer-
rals to services valuable, estimates of the net impacts of reemployment
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Table 11.2  Determinants of Long-Term Unemployment

Probit

Variable Coefficient P > |t| impact (%) Coefficient P > |t|

Demographics
Male –0.36 0.00 –10.2 0.24 0.00
Youth –0.99 0.00 –19.9 0.57 0.00
Prime –0.71 0.00 –22.5 0.41 0.00
More than high school –0.21 0.01 –5.7 0.15 0.00
Disabled 0.42 0.00 13.3 –0.29 0.00
Disabled and old –0.15 0.58 –4.0 0.06 0.70
Has child 3–5 yr. old –0.05 0.72 –1.3 0.05 0.64
Canadian-born –0.22 0.03 –6.5 0.15 0.04

Labor market
Atlantic 0.20 0.03 5.9 –0.25 0.00
Quebec 0.15 0.15 4.4 –0.16 0.03
Ontario –0.07 0.52 –1.8 0.03 0.69
Prairies –0.16 0.07 –4.2 0.07 0.29
Primary industry 0.13 0.51 3.7 –0.14 0.24
Manufacturing industry 0.04 0.80 1.2 0.08 0.45
Construction industry –0.09 0.61 –2.3 0.03 0.74
Service industry –0.14 0.33 –3.9 0.11 0.21
Knowledge occupation –0.37 0.22 –8.8 0.27 0.24
Management occupation –0.14 0.63 –3.7 0.22 0.32

Marginal 
Weibull
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Data occupation –0.14 0.59 –3.9 0.23 0.28
Service occupation –0.04 0.87 –1.2 0.17 0.41
Goods occupation –0.39 0.15 –10.8 0.42 0.05
Weeks of work in last 52 –0.13 0.33 –12.8 0.28 0.00
Seasonal employment –0.09 0.20 –2.6 –0.01 0.77
Had part-time job –0.26 0.02 –6.7 0.32 0.00

Job search
Had recall date –0.63 0.00 –18.1 0.49 0.00
Dismissed 0.15 0.43 4.5 –0.04 0.74
Weeks of UI/EI entitlement 0.00 0.28 0.0 0.00 0.94
UI/EI in previous year –0.20 0.01 –5.6 0.21 0.00

Constant 1.10 0.00 –4.92 0.00
P 0.94 0.00

N 8,020
Pseudo R2 0.1226
log Likelihood –3,771

NOTE: Estimated with COEP data, P = 1 indicates no duration dependence.  Coefficients on Weibull indicate
the percent change in the probability in leaving unemployment in a week.

8,020

–3E+06
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Table 11.3  Predicting UI/EI Benefit Exhaustion

Probit

Variable Coefficient P > |t|
Marginal

impact (%)

Demographics
Male –0.38 0.00 –13.1
Youth –0.61 0.00 –17.9
Prime –0.51 0.00 –18.7
More than high school –0.32 0.00 –10.8
Disabled 0.20 0.20 7.1
Disabled and old 0.17 0.60 6.2
Has child 3–-5 yr. old 0.01 0.96 0.2
Canadian-born –0.27 0.03 –9.9

Labor market
Atlantic 0.36 0.00 13.2
Quebec 0.07 0.61 2.3
Ontario 0.11 0.41 3.7
Prairies 0.03 0.82 0.9
Primary industry 0.30 0.15 11.0
Manufacturing industry 0.00 0.99 0.1
Construction industry 0.22 0.27 8.0
Service industry –0.14 0.45 –4.7
Knowledge occupation –0.63 0.05 –17.7
Management occupation –0.55 0.08 –16.3
Data occupation –0.62 0.03 –19.5
Service occupation –0.19 0.52 –6.4
Goods occupation –0.85 0.00 –27.6
Weeks of work in last 52 –0.79 0.00 –27.2
Seasonal employment 0.02 0.81 0.8
Had part-time job 0.08 0.54 3.0

Job search
Had recall date –0.39 0.00 –13.6
Dismissed 0.06 0.80 2.2
Weeks of UI/EI entitlement –0.01 0.08 0.0
UI/EI in previous year –0.15 0.10 –5.2

Constant 2.26 0.00

N 4,432
Pseudo R2 0.1059

NOTE: Estimated with COEP.
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services for participants from the predicted LTU group and non-LTU
group are required.  A recently completed project on benchmarking
reemployment services for the purposes of setting new baselines for the
UI/EI reforms provides some evidence of impact on UI/EI claim dura-
tions. 

Using administrative data prior to the 1996 UI/EI reform, the net
UI savings impact resulting from reemployment services was calculat-
ed by comparing the actual UI benefits draw of a claimant with his or
her expected draw in the absence of a reemployment service.  The ex-
pected values for claim duration were derived from UI actuarial tables
as the comparison group matched on several characteristics to the
reemployment service program participants. 

For this chapter, UI savings in terms of UI/EI benefit weeks payout
have been recalculated to illustrate the potential of selected reemploy-
ment services within time frames that could reduce unemployment time
and cost.  Savings are measured from the end of participation in the
reemployment service and are equal to the difference between actual
weeks collected on the claim following participation and the expected
remaining weeks estimated from the actuarial tables.9

Descriptions of the reemployment services are provided in Table
11.4. Table 11.5 reports estimates of net UI/EI weeks of benefit pay-
ments saved for selected reemployment services.  Positive values indi-
cate savings relative to the expected claim duration derived from actu-
arial tables; negative values mean that program interventions exceed
the expected duration of benefits for people without interventions.  This
shows that each intervention has a different schedule in which it could
work to generate UI savings.

The following highlights can be drawn from Table 11.5:

• For each service or program appearing in the table, the earlier
the program delivery, the greater the net savings.  An interven-
tion commencing in the first five weeks of a claim generated at
least two weeks of savings in all cases except Self-Employment
Assistance.  

• Job Creation Projects and Job Opportunities both provide wage
subsidies and are both effective in producing savings.  In the
case of Job Creation Projects, the wage subsidy is in the form of
regular UI benefits or enhanced UI benefits.  Job Opportunities
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Table 11. 4  Canadian Reemployment Services

Employment Assistance Services typically follow from a preliminary
client assessment or Service Needs Determination.  These include job search
strategies (two-day course); job-finding clubs (up to three weeks); group
employment counseling (9–15 hours); community-based employment
assistance for targeted disadvantaged clients; and diagnostic assessment from
a counselor referral.

Feepayers are enrolled in an approved training course but pay their own
tuition or course costs.  They receive their regular UI benefits for as long as
they attend the course.  At the end of the course, benefits may be paid for an
additional three weeks while the feepayer looks for work.

Direct Purchase Option is an option available to local employment of-
fices in a variety of programs for the purchase of training from public or pri-
vate institutions.

Job Entry was designed to help youth, particularly those who did not
complete secondary school or make the school-to-work transition.  It offered
a mix of classroom training and work experience.

Coordinating Groups are a component of Purchase of Training, which
provides clients with the opportunity to learn new job skills in a classroom
setting.  Training may be purchased from private or public sector trainers ei-
ther directly through government-to-government and Canada Employment
Center purchases, or indirectly through local coordinating groups.  Eligible
training must meet the needs of the local labor market and the client’s inter-
ests and aptitudes.

Job Opportunities are directed to persons who have problems joining the
labor force, the objective being to provide job opportunities leading to long-
term employment.  The program provides employers with a wage subsidy to
hire selected clients. 

Job Creation Projects provide opportunities for unemployed workers to
maintain their work skills during unemployment.  Participants receive regular
or enhanced UI benefits in place of wages.  

Self-Employment Assistance promotes self-sufficiency in the labor mar-
ket through self-employment.  Income support may be paid for a maximum
of 52 weeks while a person is starting and running a microbusiness.  Counsel-
ing, training, and technical support could be provided by a designated com-
munity organization.
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Table 11.5  Net Weeks of UI/EI Benefits Saved Following Participation in Selected Reemployment Services, 1995

Training

Intervention
start week

assistance
services Fee-payers

purchase
option Job entry

Coordinating
groups

Job
creation

Job
opportunities

employment
assistance

0–5 2.53 2.05 3.65 3.44 3.64 2.96 11.88 1.35
6–10 1.47 1.08 2.16 2.28 2.39 1.99 11.35 0.56
11–15 1.35 0.61 1.00 1.85 1.78 1.33 9.02 0.46
16–20 1.01 –0.03 0.45 1.11 1.37 1.07 9.01 0.53
21–25 0.47 –0.34 –0.27 0.34 0.62 0.69 6.22 0.33
26–30 0.71 negative –0.87 –0.36 –0.10 0.16 6.32 0.26
31–35 0.46 — negative –1.12 –0.37 0.08 5.53 0.12
36–40 –0.20 — — negative negative –0.46 5.74 0.00
41–45 –0.60 — — — — –0.73 3.19 0.00

Av. duration
(weeks)

7 33 26 22 17 14 2 UI weeksa 45

a Job Opportunities participants spent about 24 weeks in their program.  They collected UI for about 2.5 weeks and received a wage
subsidy for about 21.5 weeks.  

Employment Direct 
Wage subsidy

Self-
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clients stop collecting UI and their wage subsidy derives from
other sources.  The UI savings are thus much larger for Job Op-
portunities clients. 

• Self-employment assistance (SEA) allows a participant up to 52
weeks of income support.  The average in 1995 was 45 weeks.
Given the long duration, savings from SEA are small.  The sav-
ings occurring for programs beginning in the first five weeks of
a claim reach 1.35 weeks and apply to clients with SEA pro-
grams of relatively short duration (about 25 weeks).

• The three training programs (Direct Purchase Option, Job Entry,
and Coordinating Groups) yield about the same net savings
when delivered in the first 10 weeks of UI.  Feepayers, paid by
the participant and typically of longer duration, delivers lower
but still positive savings.

SUMMARY AND CONCLUSIONS

To sum up, there is evidence that long-term unemployment is a
growing and serious labor market problem in Canada.  Having just
completed a major structural reform in UI/EI and reemployment ser-
vices (employment benefits and support measures) to address problems
associated with recurrent unemployment spells, the Canadian govern-
ment is committed to a new prevention strategy for the at-risk popula-
tions.  In this policy context, there is an interest in discovering what has
worked (and what has not) regarding worker profiling and early reem-
ployment services for the LTU.  

Our preliminary analysis indicates some modest prospects for suc-
cess in identifying the probability of long-term unemployment for the
newly unemployed.  Assuming that the existing array of reeemploy-
ment services are appropriate for the LTU, targeting of this at-risk
group could produce both labor market efficiency and equity benefits.
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Notes

We are indebted to Jeff Smith (University of Western Ontario) and Alice Nakamura
(University of Alberta) for invaluable advice on modeling issues, and to Lesle Wesa for
producing net impact estimates for employment interventions used in this study.  All er-
rors are, of course, ours.

1. See Applied Research Branch (1998, pp. 41 and 43).  Note that the number used in
the analysis is not the LTU but those not employed for a year, which includes both
unemployed and out of the labor force.  

2. The Canadian LFS is a monthly survey of the labor market activities of the sam-
pled population and is comparable with the U.S. Current Population Survey.  The
LFS data covers the entire labor market and thus provides a measure of long-term
unemployment at the aggregate labor market level.

3. See Lavoie 1996, Table I.
4. The following discussion draws heavily from Chapman and Smith (1993, pp. 7–9). 
5. This appears to be true regardless of UI eligibility (Créémieux et al. 1995a, 1995b).
6. Unemployment insurance was renamed employment insurance in 1996.
7. See Greene (1993, pp. 651-653) for further discussion of this procedure.  Note that

the results can be improved by using other cutoff values.  The use of the mean of
the dependent variable improves the results somewhat.  A grid search of possible
values can raise the 55.0 percent to over 80 percent.  However, as the issue of the
appropriate cutoff is controversial, it was decided to stay with the value of 0.5. 

8. Note that the 21.3 percent LTU is different than the 23.3 percent given in Table
11.1.  The results reported here are based on the observations used in the regres-
sion, whereas Table 11.1 is based on all observations.  The sample used in the re-
gression is different because any observation with even one undefined variable is
omitted from the analysis. 

9. See Wong and Wesa (1999) for a more complete description of the methodology, in
particular the difference strategy that was used to control for self-selection.
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Appendix

Estimating the Probability of Long-Term Unemployment

Duration models are typically used to empirically investigate the
probability or hazard of exiting unemployment at time t given that the
unemployment spell has lasted to time t (Kiefer 1988).  Following 
the formulation of Chapman and Smith (1993), the general specifica-
tion of the Cox proportional hazard framework is used:

(A.1) h(t, X′b, a) = H(X′b) × H0(t, a),

where h(.) is the hazard function given the unemployment duration t;
H(.) is the relative hazard; H0(.) is the baseline hazard; X is a matrix of
explanatory variables; b is a vector of parameters associated with X,
and a is a parameter associated with baseline.

The function is made up of the proportional factor H, which repre-
sents the observed heterogeneity effect, and H0, which captures base-
line hazard.  Since the chance of leaving unemployment often declines
with duration, the efficient estimator is based on the Weibull distribu-
tion.  The component parts of the Weibull form for Equation A.1 can be
written as follows:

H(X′b) = exp(b0 + X′b)

and

H0(t, a) = t(a–1),

so that Equation A.1 can be written as 

(A.2) h (t, X′b, a) = exp(b0 + X′b) × t(a–1).

This general formulation permits both duration dependence and
observed heterogeneity.  If the value of parameter a is constrained to
equal 1, no duration dependence is allowed.  On the other hand, values
of less than 1 mean there is negative duration dependence. 
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Probit regression models for predicting the probability of long-
term unemployment are also estimated in this chapter.  For the probit,
the risk of unemployment is assumed to be distributed normally, and
the dependent variable is dichotomous.  The variable takes a value of 1
representing the event of long-term unemployment for those with 52 or
more consecutive weeks of unemployment, and 0 otherwise.  The pro-
bit model permits measurement of the strength of the relationship be-
tween the outcome and independent variables in an equation predicting
the probability of long-term unemployment. 
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Comments on Chapter 11

Jeffrey Smith
University of Maryland

This chapter presents two separate analyses.  The first considers the
predictability of long-term unemployment, or its close cousin, exhaus-
tion of unemployment insurance (UI/EI) benefits.1 The second presents
some basic estimates of the impact of particular employment and train-
ing services on the duration of unemployment, with the impacts vary-
ing both by type of service and by when the services begin in the course
of the UI/EI spell.  I consider each analysis in turn.

In thinking about predicting long-term unemployment, it is useful
to step back and ask an important but sometimes neglected question:
why bother?  There are two possible reasons.  The first is that we might
want to allocate some treatment based on predicted probabilities of be-
ing long-term unemployed for equity reasons.  That is, we may have a
limited budget for providing employment and training services to the
unemployed, and so we may want to concentrate them on the worse off
among the unemployed, where we equate worse off with having a long
expected duration of unemployment.  Although Berger, Black, and
Smith (2000) show that this equation is not as obvious as it might seem,
it is surely not unreasonable.  Once we decide to focus services on
those likely to become long-term unemployed, we would like to find a
model that does a good job of sorting persons by expected duration;
that is, a model that effectively predicts (out of sample!) long-term un-
employment.  

The model presented by Wong, Hensen, and Roy appears to do rea-
sonably well at predicting long-term unemployment (within sample, in
this case).  In future work, it would be nice to go further—in particular,
to compare the specification employed here with the specifications used
in the various profiling models in the Worker Profiling and Reemploy-
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ment System (WPRS) for UI recipients in the United States.  These
range from the very spare specification with only a small handful of
variables utilized in the Maryland model to the vast armada of covari-
ates employed in the Kentucky model (see Berger et al. 1997).  There
are also intermediate models such as those of Pennsylvania and Wash-
ington.  

Three related questions are important here.  First, how well do
these models perform in the Canadian context?  Second, can evidence
on their relative performance based on U.S. data be generalized to the
Canadian context?  Third, what variables represent the most important
predictors of unemployment duration in the Canadian context?  The
second question indicates the extent to which Canada can rely on U.S.
research on predictive models.  The third question holds great practical
importance, as including additional covariates can substantially in-
crease the cost (if additional data sets must be employed) and complex-
ity of a predictive model.

The second reason for basing service allocation on the predicted
probability of long-term unemployment or some close analogue such as
UI/EI benefit exhaustion is efficiency.  We might imagine that the im-
pact of employment and training services, whether required as in the
U.S. WPRS, or optional as in the current Canadian policy environment,
varies with the probability of long-term unemployment.  Assuming that
the cost of providing the services is roughly constant across persons, ef-
ficiency dictates assigning the services to those with the largest im-
pacts.  In general, the presumption is that the impact of employment
and training services will be larger for persons with a high probability
of long-term unemployment, although the evidence for this presump-
tion is mixed at best.  On this point see, e.g., Black et al. (2001) and
O’Leary, Decker, and Wandner in this volume (p. 161).

When efficiency is the aim, the model predicting long-term unem-
ployment has both a different justification and a different goal.  It
should now seek to do the best job possible of distinguishing persons
who will and will not have a large impact from whatever services are to
be provided conditional on the predicted probability.  This is not quite
the same thing as simply doing as well as possible at predicting long-
term unemployment.  For example, if subgroups among the long-term
unemployed have low mean impacts of service, then the model should
exclude them from services.  The present chapter does not address the
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conceptual and practical distinctions between the two motivations for
predicting long-term unemployment; it would be useful to do so in fu-
ture work.

Turn now to the authors’ analysis of the impacts of reemployment
services on the duration of UI/EI claims, conditional on type of em-
ployment and training service received and on when in the spell the ser-
vice is received.  This analysis addresses the right questions—what are
the impacts of different services that might be provided to the unem-
ployed, and when is the optimal point in a spell to provide a given ser-
vice.  The first of these two questions relates to the discussion of the
Service Outcomes and Measurement System and other profiling meth-
ods described in Chapter 10.  For efficiency reasons, we want to assign
unemployed persons to those services that will benefit them the most.
The second question is also an important one, and one that has received
relatively little study.  It is a question that has implicitly been answered
in different ways by different programs.  On the one hand, the WPRS
system in the United States implicitly assumes that early service provi-
sion is best.  On the other hand, the service allocation scheme embod-
ied in the new Workforce Investment Act program in the United States
assumes that expensive services should be deferred until inexpensive
ones have been tried.  Despite this variation in practice, I am not aware
of much evidence on this question in the literature.  More evidence,
such as that provided here, is of great use.

At the same time, while the chapter asks the right questions, it is
difficult to evaluate the quality of the answers.  The text omits impor-
tant aspects of the econometric strategy used to identify the impacts of
training, both in terms of broad concepts and specific details.  A long
literature, including papers such as LaLonde (1986), Heckman and
Hotz (1989), Heckman, LaLonde, and Smith (1999), and Smith and
Todd (forthcoming), documents the importance of the choice of non-
experimental evaluation strategy.  While the audience for this book is a
nontechnical one, it remains very important to convey the gist of the
econometric strategy so that readers familiar with the econometric
evaluation literature can judge the likely extent and source of bias in
the impact estimates.

The reader should also keep in mind that impacts on UI/EI benefit
receipt represent only one component of a complete social cost/benefit
analysis.  Providing employment and training programs to the unem-



ployed has a number of effects.  Some effects are distributional.  For
example, employed persons paying payroll taxes benefit if the training
reduces the amount of benefits paid by an amount that exceeds the di-
rect cost of training.  This reduction in benefits comes at the expense of
the unemployed persons who would otherwise have received them.
Other effects of the program may relate to efficiency, as when the pro-
gram allows efficient training to occur that would otherwise not have
occurred due to credit constraints.  These aspects of the social cost/ben-
efit calculation need to be carefully distinguished.  In particular, all
costs, including the direct costs of training and the net effects of the
training programs on the efficiency costs associated with the distor-
tionary taxes used to fund the UI program, should be taken into account
in the analysis. 

It is also important to keep in mind that there may be general equi-
librium effects associated with these programs.  For example, such ef-
fects could result from skill price changes resulting from increases in
the supply of skilled labor due to the training being provided.  Partial
equilibrium analyses such as that presented in this chapter will not cap-
ture these effects.  Indeed, the impact estimates provided by a partial
equilibrium analysis may be biased in the presence of general equilibri-
um effects, which may cause the experiences of comparison group
members to differ from what they would have been in the absence of
the program.

Note

1. A few years ago, Canada took the bold step of changing the name of unemploy-
ment insurance (UI) to employment insurance (EI).  To avoid confusion, in these
comments I will refer to the program as either unemployment insurance or UI/EI.
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Part IV

New Directions for Targeting
Employment Services





12
A Frontline Decision Support
System for One-Stop Centers

Randall W. Eberts, Christopher J. O’Leary, and Kelly J. DeRango
W.E. Upjohn Institute for Employment Research

The Workforce Investment Act (WIA) of 1998 emphasizes the inte-
gration and coordination of employment services.  Central to achieving
this aim is the federal requirement that local areas receiving WIA fund-
ing must establish one-stop centers, where providers of various em-
ployment services within a local labor market are assembled in one lo-
cation.  This arrangement is expected to coordinate and streamline the
delivery of employment-related programs and to meet the needs of both
job seekers and employers more effectively than did the previous
arrangement.

Successful implementation of the one-stop system requires new
management tools and techniques to help staff meet the challenges pre-
sented by the one-stop environment.  A major challenge is the large vol-
ume of customers expected to use the system.  Increased use of services
is expected because of a reduced emphasis on program eligibility as a
condition for participation in the workforce investment system.  None-
theless, resources for comprehensive assessment and counseling are
limited, and frontline staff have few tools with which to help them
make decisions.

A prime challenge for frontline staff is to determine which set of
services best meets the needs of customers who enter a one-stop center,
and to do this in a consistent, rational, and efficient manner.  However,
not all one-stop center staff may have sufficient experience to make in-
formed decisions for clients participating in the wide variety of pro-
grams offered.  The coordination of services under the new one-stop
arrangement now requires staff to serve customers with various back-
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grounds, whereas prior to the creation of one-stop centers, staff typical-
ly concentrated in a single program area and saw clients with similar
barriers.  An additional complication is the emphasis that WIA places
on performance outcomes and accountability.  WIA requires that pro-
gram success be measured by employment, earnings, job retention, and
knowledge or skill attainment.

The Frontline Decision Support System (FDSS) is a set of adminis-
trative tools that is being developed to help frontline staff successfully
perform their duties within one-stop centers. The goal of these tools is
to assist staff in quickly assessing the needs of customers and in refer-
ring customers to services that best meet their needs.  FDSS includes
new tools to help customers conduct a systematic search for jobs that
offer the best match, to set a realistic wage goal, and to assist staff in
determining which one-stop center services are likely to be effective in
meeting the needs of specific customers in becoming employed.   

The W.E. Upjohn Institute for Employment Research is working to
design, develop, test, and implement an FDSS in pilot sites within the
states of Georgia and Washington.  These states were chosen because
they offer an opportunity to demonstrate the adaptability and capability
of the FDSS within different one-stop center operating environments.
Recognizing that the computer operating systems for the one-stop cen-
ters vary among states, FDSS is being designed so that states can easily
integrate the decision tools into their specific computer systems.  The
FDSS tools are designed to be used within the data-retrieval and dis-
play systems being implemented by states for their one-stop centers.  

The design and implementation of FDSS is a cooperative effort of
the U.S. Department of Labor (DOL), the state employment agencies of
Georgia and Washington, and the W.E. Upjohn Institute.  After testing
the system at sites in these states, DOL intends to offer FDSS tools to
other interested states.  With research and operations carried out within
the same organization, the Institute is uniquely positioned to coordinate
the analytical and administrative tasks required to develop, test, and
implement FDSS within the one-stop centers.  The Institute not only
conducts employment-related research but also administers the state
and federal employment programs that are the responsibility of the lo-
cal Workforce Investment Board.  The Institute has served as the ad-
ministrator of federal and state employment-related programs for the
Kalamazoo, Michigan, area since the early 1970s.  During that period,
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the Institute has operated programs under the Comprehensive Employ-
ment and Training Act, the Job Training Partnership Act, and currently
WIA.  

The purpose of this chapter is to present an overview of FDSS and
to give examples of the analysis underlying some of the decision algo-
rithms that are the backbone of the FDSS tools.  In the next section, we
summarize the overall concept of FDSS and provide an outline of the
typical client flow through the one-stop centers.  We then proceed to de-
scribe examples of the statistical models that are used in the systematic
job search module of FDSS.  These models include estimates of the
likelihood of finding a job in the industry in which the worker was em-
ployed prior to displacement and estimates of the earnings that a dis-
placed worker might expect when looking for reemployment.  We next
outline the algorithm that identifies occupations that are related to a
worker’s occupation held prior to displacement.  The purpose of this al-
gorithm is to provide workers who have been frustrated by their initial
job search efforts with a list of occupations that have skills and attrib-
utes similar to the ones embodied in jobs held prior to displacement.
This list of related occupations allows a worker to conduct a more sys-
tematic job search effort.  Finally, we describe the features of the sec-
ond FDSS module, the service referral module, which is currently un-
der development.  This module assesses the most effective set of
services based on the individual’s characteristics and employment
history.

FRONTLINE DECISION SUPPORT
WITHIN ONE-STOP CENTERS

FDSS provides one-stop center staff with client information and as-
sessment tools that can be used in helping clients conduct a systemic
job search and in determining the set of employment services that
should work best for specific clients.  To understand the role of FDSS,
it is first necessary to provide a brief overview of one-stop centers, the
services they provide, and the way in which staff interact with cus-
tomers.  The operation of one-stop centers varies among states, and
even among local areas within states.  Consequently, we can provide
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only a stylized description of one-stop centers, which suffices for our
purpose of describing how FDSS can be integrated into the general ap-
proach of these centers.  

As mandated by WIA, one-stop centers provide a central physical
location for the provision of services offered by federal and state em-
ployment programs.  WIA requires that the following programs be in-
cluded: unemployment insurance, employment service, dislocated
worker and youth training, welfare-to-work, veterans’ employment and
training programs, adult education, postsecondary vocational educa-
tion, vocational rehabilitation, Title V of the Older Americans Act, and
trade adjustment assistance.  Other programs may also be included un-
der the one-stop center’s umbrella of services.  One-stop centers are de-
signed to serve customers within local Workforce Investment Areas,
which usually encompass the population of one or more counties with-
in a state.  Workforce Investment Areas with large populations or which
span a large geographical area may choose to establish several one-stop
centers.  WIA required that each state develop a system of one-stop
centers that would be fully operational by July 2000.   Most states met
this target date.  

Services provided by the one-stop centers are divided into three
levels: core, intensive, and training.  Services within each level are
characterized by the amount of staff involvement and the extent to
which customers can access the service independently.  Core services
typically have the broadest access and the least staff involvement of the
three categories.  Many core services are accessible on a self-serve ba-
sis.  All adults and dislocated workers can access core services, which
include assessment interviews, resume workshops, labor market infor-
mation, and interviews for referral to other services.

Intensive services, the next level of services within a one-stop cen-
ter, require a greater level of staff involvement, and access is more re-
stricted than for core services.  Services within the intensive category
include individual and group counseling, case management, aptitude
and skill proficiency testing,  job finding clubs, creation of a job search
plan, and career planning.  Training services, the third and final level of
services offered by one-stop centers, use staff most intensively and are
open to customers only through referrals.  One-stop centers typically
contract with organizations outside the centers to provide these ser-
vices.  Included in this set of services is adult basic skills education, on-
the-job training, work experience, and occupational skills training.  
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Several challenges must be surmounted for successful implementa-
tion of one-stop centers.  The first is the large volume of customers ex-
pected to use the centers.  Nationally, nearly 50 million people are ex-
pected to use the one-stop centers each year.  Center staff will be faced
with serving more people than under previous organizational arrange-
ments.  The move toward integrating services raises another challenge:
staff will be asked to serve clients who may have unfamiliar back-
grounds and needs.  For instance, a staff person who worked extensive-
ly with dislocated workers under JTPA may now be asked to work with
welfare recipients as well.   Job search techniques and services that are
appropriate for dislocated workers may not be as effective for welfare
recipients.  The lack of prior experience counseling welfare recipients
may hinder staff effectiveness.  WIA does not provide additional re-
sources for staffing or significant cross training.  

Another challenge for operators of one-stop centers is to refer cus-
tomers to services in the most effective matter.  The efficiency and ef-
fectiveness of a center’s operations are driven by the difference in cost
of providing the three levels of services.  As shown in Figure 12.1, the
cost of services increases dramatically and the anticipated number of
participants falls as one moves from core services to training services.
Therefore, the ability to identify the needs of individuals and to refer
them to the appropriate service as early as possible in the process will
determine the cost-effectiveness of the one-stop centers.  FDSS is de-
signed to address the need for more informed decision-making and the
strategic referral of services.   

FDSS includes two basic modules or sets of tools.  Figure 12.2
shows how the two modules fit into the operation of the one-stop cen-
ter.  The first is the systematic job search module.  This set of tools pro-
vides clients with customized information about several aspects of the
job search process, with the purpose of assisting them in conducting a
more systematic search.  Initial job search activities are concentrated in
the core services, and consequently this is where the systematic search
module will be incorporated.  A large proportion of individuals who
come to the one-stop centers are looking for job search assistance in the
form of labor market information, assistance with preparing resumes,
an initial understanding of the likelihood of finding a job, and what
wage or salary level to expect.  The first prototype FDSS includes algo-
rithms for five programs: employment service, unemployment insur-
ance, skill training, welfare-to-work, and veterans employment and
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Figure 12.1  Use and Cost of One-Stop Career Center Services under the 
Workforce Investment Act 
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Figure 12.2  One-Stop Center Client Flow

training programs.  To illustrate how these algorithms are constructed,
this chapter focuses on the tools developed for displaced workers.  

The systematic job search module includes three basic components
to help job seekers become better informed about their job prospects
and expected earnings.  The first component, referred to as the industry
transition component, estimates the likelihood that a customer can find
a job in the industry in which they were previously employed.  Obvi-
ously, this component is designed primarily to inform displaced work-
ers about their job prospects.  Research has shown that displaced work-
ers tend to wait for jobs to open up in the industries in which they
worked before displacement.  Workers prefer to return to jobs with
which they are familiar, and typically salaries are higher for those who
stay in the same industry.  However, in many cases, a worker was dis-
placed because of general downsizing in that industry, which reduces
the chances that a job in the same industry will become available.
Waiting for such an event to occur increases the amount of unemploy-
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ment insurance (UI) benefits the person will draw and reduces the like-
lihood of finding employment, even in another industry.  The purpose
of the systematic search module of FDSS is to help inform job seekers
as to their prospects for finding jobs and to provide realistic assess-
ments of likely compensation levels.  

The need for a realistic assessment of expected reemployment
earnings leads to the second component of the systematic search mod-
ule—the earnings algorithm. The earnings algorithm is a statistical
model that uses personal characteristics, work history, prior earnings,
and educational attainment to predict earnings upon reemployment.  

The third component is the related-occupations algorithm.  The al-
gorithm offers job seekers who have exhausted their likely job
prospects within their prior occupation with a list of other occupations
that are similar to their prior occupation.  We offer different algorithms
based on available data and show how they differ.  More detailed de-
scriptions of these algorithms are provided below.

The second module of FDSS is the service referral module.  As
mentioned in the overview of one-stop centers, a critical element for
successful implementation of one-stop centers is staff ability to identify
the needs of customers and to refer them expeditiously to services that
best address their barriers to employment.  Compounding this chal-
lenge is the possible lack of staff experience in serving a wide range of
customers.  The purpose of the FDSS service referral module is to com-
pile and process information about the effectiveness of various alterna-
tive services in a way that better informs staff for referring customers to
services.  The service referral module uses information about the char-
acteristics and outcomes of individuals who have recently participated
in and completed services offered by one-stop centers.  This informa-
tion is used to estimate statistical relationships between personal attrib-
utes and outcomes.  It should be emphasized that this module does not
supplant staff referral decisions.  Rather, it provides a means for staff to
make better informed decisions. 

The service referral module has two basic algorithms.  The first is
to estimate a person’s employability, or likelihood of finding a job; the
flip side of this is identifying an individual’s barriers to employment.
The second algorithm delineates the paths, or sequential combinations
of services, that lead to successful outcomes.  By conditioning these
paths on the employability of a specific customer, the service referral
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module can rank the likely effectiveness of various programs for indi-
viduals having specific observable characteristics. 

TOOLS FOR THE SYSTEMATIC SEARCH ALGORITHM

The systematic job search module consists of three tools: 1) the
probability of return to the prior industry, 2) likely reemployment earn-
ings, and 3) three alternative approaches to identifying occupations re-
lated to a prior one.  For the first two tools, examples are provided for
both Georgia and Washington using data on UI beneficiaries.  The
Georgia examples are for metropolitan Atlanta, and the Washington ex-
amples are for the south Puget Sound area.  The third tool, identifica-
tion of related occupations, is based on three sources: analyst ratings,
national survey data, and Georgia Employment Service job placement
data.

Return to Industry

Many one-stop customers, particularly displaced workers, will
switch employers.  Prior research suggests that earnings losses will be
minimized if the new job is in the same industry and occupation.  As
suggested by Becker’s (1964) theory of human capital formation, the
quickest way to return to the prior lifetime earnings path is to resume
employment and begin building firm-specific human capital in a new
job.  To help clients more realistically assess job prospects, FDSS pro-
vides an estimate of the probability of returning to employment in their
prior industry.

Reliable data are available from UI wage records in both Georgia
and Washington to identify the industry in which the person was em-
ployed before and after displacement.  Unfortunately, similar informa-
tion is not available for an individual’s occupation.  Table 12.1 shows
an industry transition matrix for UI clients in metropolitan Atlanta.  In-
dustries are separated into nine categories with the prior industry cate-
gory in the left column and the reemployment industry along the top
row.  In each row, the largest element is on the diagonal of the matrix,
indicating that the largest share of industry UI recipients return to work
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Table 12.1  Industry of Employment Transition Matrix: Percentage of Unemployment Insurance Clients, 
Metropolitan Atlanta, Georgia

Reemploy. 
ind.

Prior ind.

Agric.,
forestry,
fishing

Mining, 
construction Manufacturing

Transp.,
comm.,
utilities

Wholesale
trade

Retail
trade

Finance, 
insurance,
real estate Services

Public
admin.

Agric., forestry, fishery 26.3 10.1 10.9 4.9 10.5 11.7 3.2 20.6 1.6
Mining, const. 0.5 60.1 5.8 3.9 5.3 5.1 2.5 15.0 1.6
Manufacturing 0.3 3.8 40.1 5.7 11.7 8.9 3.0 24.8 1.6
Transp., comm., util. 0.4 2.9 6.4 41.8 8.0 7.2 4.7 26.6 2.0
Wholesale trade 0.4 4.5 14.2 7.4 28.6 11.7 3.9 27.8 1.5
Retail trade 0.3 2.4 6.2 5.5 7.3 45.5 4.7 26.6 1.5
FIRE 0.3 2.5 4.2 4.7 5.1 6.8 38.3 35.7 2.4
Services 0.3 2.6 6.2 6.2 6.2 8.4 5.9 61.6 25.3
Public admin. 0.5 3.6 5.4 7.9 4.0 7.8 6.1 39.4 25.3

SOURCE: Based on data provided by the Georgia Department of Labor.
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in the same industry.  These aggregate average return probabilities
range from 20.8 percent in agriculture, forestry, and fishery, to 73.3 per-
cent in mining and construction.   

Table 12.2 summarizes the percentage change in quarterly earnings
for these industry employment changes in the Atlanta metropolitan
area.  The diagonal of Table 12.2 is positive for all industries except
public administration, indicating that those who manage to be reem-
ployed in their prior industry have earnings gains despite changing
jobs.  Similar patterns can be seen for south Puget Sound, Washington,
in Tables 12.3 and 12.4. However, a larger share of UI claimants man-
aged to be reemployed in their prior industry, and earnings growth was
somewhat stronger in that region of Washington than in metropolitan
Atlanta.

To provide individual estimates of the probability of being reem-
ployed in the prior industry, we estimated logit models for each indus-
try transition.1 The logit model relates whether or not an individual
stays in the same industry to a set of explanatory variables including
prior earnings, age, educational attainment, the quarter of the year in
which UI was applied for, and indicators for prior occupation.2 The
logit model also included variables that indicated whether an individual
was a member of the following population groups: youth, veterans, cur-
rently employed, receiving public welfare assistance, and dislocated
workers.3 For Washington we were also able to include an indicator of
union membership.  Because of eligibility conditions, UI beneficiaries
include very few people currently enrolled in school, so that category is
not included.

Tables 12.5 and 12.6 provide examples of earnings models estimat-
ed on UI recipients in Atlanta and south Puget Sound whose prior job
was in the manufacturing industry.  Comparing parameter estimates
across the two regions in the different states shows a large degree of
consistency.  In all cases where parameters on similar variables were
estimated with adequate statistical precision, the estimates are of the
same sign and similar magnitude.  As an additional way of comparing
the models, Tables 12.5 and 12.6 each consider the same three exam-
ples for evaluating the probability of returning to work in the manufac-
turing industry.  Example 1 is a person aged 35, with a high school ed-
ucation, who earned $30,000 per year in a clerical/sales occupation,
and applied for UI in the second calendar quarter.4 The probability of
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Table 12.2  Mean Percentage Change in Earnings for the Industry of Employment Transition Matrix, Metropolitan 
Atlanta, Georgia

Reemploy. 
ind.

Prior ind.

Agric.,
forestry,
fishing

Mining, 
const. Manufacturing

Transp.,
comm.,
utilities

Wholesale
trade

Retail
trade

Finance, 
insurance,
real estate Services

Public
admin.

Agric., forestry, fishery 1.6 1.6 –3.0 –0.9 32.4 –12.1 12.8 –3.5 –16.6
Mining, const. –30.6 6.4 –7.8 –0.9 –2.1 –25.4 3.3 –9.9 –25.5
Manufacturing –34.3 –14.3 6.6 –0.5 –2.1 –29.4 –9.0 –15.7 –21.4
Trans., comm., util. –25.8 0.1 –2.1 6.2 –4.3 –25.2 –9.3 –15.8 –19.0
Wholesale trade –28.3 –2.0 –2.0 1.3 7.1 –21.4 –0.7 –7.4 –26.8
Retail trade –12.1 0.8 9.0 6.0 10.1 1.9 10.2 –3.1 –9.7
FIRE –28.3 –9.9 –6.6 –10.1 1.4 –26.4 8.6 –11.2 –23.4
Services –20.3 6.3 8.7 9.3 14.4 –20.0 6.7 3.9 –8.4
Public admin. –22.7 –7.7 1.7 2.2 12.2 –21.5 –8.6 –2.4 –4.2

SOURCE: Based on data provided by the Georgia Department of Labor.
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Table 12.3  Industry of Employment Transition Matrix: Percentage of Unemployment Insurance Clients, South 
Puget Sound, Washington

Reemploy. 
ind.

Prior ind.

Agric.,
forestry,
fishing

Mining, 
const. Manufacturing

Transp.,
comm.,
utilities

Wholesale
trade

Retail
trade

Finance, 
insurance,
real estate Services

Public
admin.

Agric., forestry, fishery 20.8 11.3 13.5 8.8 5.3 12.8 3.5 21.4 2.6
Mining, const. 0.9 73.3 4.5 3.6 3.8 3.7 1.6 7.6 1.1
Manufacturing 1.0 5.7 54.8 4.7 7.1 6.9 1.7 16.9 1.2
Trans., comm., util. 0.7 4.2 4.9 61.0 5.9 5.7 2.3 14.0 1.4
Wholesale trade 0.4 7.7 15.9 7.2 29.2 12.1 3.3 22.8 1.4
Retail trade 0.7 3.7 6.7 4.7 7.2 50.9 3.9 21.0 1.3
FIRE 0.6 3.8 4.3 4.6 2.8 7.2 48.9 26.2 1.6
Services 0.7 3.3 5.9 4.6 4.1 8.9 4.6 65.1 2.9
Public admin. 0.3 5.2 8.2 8.0 6.6 9.2 3.6 28.9 30.0

SOURCE: Based on data provided by the Washington State Employment Security Department.
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Table 12.4  Mean Percentage Change in Earnings for the Industry of Employment Transition Matrix, South Puget 
Sound, Washington

Reemploy. 
ind.

Prior ind.

Agric.,
forestry,
fishing

Mining, 
const. Manufacturing

Transp.,
comm.,
utilities

Wholesale
trade

Retail
trade

Finance, 
insurance,
real estate Services

Public
admin.

Agric., forestry, fishery 7.4 8.1 11.1 24.4 7.6 –2.5 13.3 –5.1 –4.6
Mining, const. 9.1 9.0 14.1 16.5 13.4 –0.9 16.9 3.7 10.1
Manufacturing 5.5 –0.3 1.2 –8.0 –5.9 –9.5 –0.7 –9.0 1.9
Trans., comm., util. 0.1 8.4 16.9 8.4 1.8 –0.1 7.2 0.6 –2.6
Wholesale trade 4.1 16.9 2.4 3.2 1.6 –3.8 2.5 –2.0 5.0
Retail trade –1.6 24.7 29.2 20.7 12.5 3.4 10.7 8.3 27.3
FIRE –15.9 8.8 14.5 10.5 3.5 –1.1 4.3 –4.0 –0.8
Services –0.5 18.6 22.3 17.8 15.6 2.6 16.2 3.7 11.2
Public admin. –24.2 –11.5 6.1 3.8 –3.0 –21.1 3.5 –11.9 8.8

SOURCE: Based on data provided by the Washington State Employment Security Department.
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returning to the same industry was estimated to be 0.294 in Georgia and
0.346 in Washington.  The second example shows the Washington
model to be much more sensitive to the prior earnings variable.  Dou-
bling prior earnings from $30,000 to $60,000 raised the chance of re-
turning to manufacturing to 0.532 in south Puget Sound and only to
0.327 in the Atlanta area.  The third example illustrates the same ten-
dency for a lower prior annual earnings of $10,000, with the probabili-
ty in Washington falling to 0.114 and that in Georgia falling to 0.172.

Reemployment Earnings

The WIA legislation permits intensive services to include “evalua-
tion to identify employment barriers and appropriate employment
goals” and also “the development of an individual employment plan, to
identify appropriate employment goals, appropriate achievement, and
appropriate combinations of services for the participant to achieve their
employment goals.”5 An underlying principle of WIA is that the best
training is a job.  Moderating wage expectations in order to gain a new
job may be the quickest way to return to the prior earnings path. This
establishes a need for a system like FDSS and requires that outcomes
be judged relative to individual targets.  FDSS provides an algorithm to
estimate the expected reemployment earnings for each job seeker.  By
providing the job seeker with a realistic assessment of earnings
prospects, he or she can conduct a more informed job search that can
hasten employment.  

Displaced workers and those who have had little attachment to the
workplace, such as welfare recipients, may have little understanding of
the earnings level that they might expect to find in the local labor mar-
ket given their skills and opportunities.  Displaced workers, for exam-
ple, may expect to receive wages in their new jobs comparable to those
in jobs they held prior to being displaced.  However, recent research
has shown that the earnings can drop by as much as 25 percent for
workers who have found jobs after being displaced.  Most of the loss in
earnings is due to loss in value of firm-specific skills (Jacobson,
Lalonde, and Sullivan 1993).  It is important to point out that the FDSS
earnings assessment is only suggestive.  Job seekers who find the rec-
ommended target to be out of line with their expectations may discuss
their differences with a staff person in the one-stop center.  The staff
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Table 12.5  Logistic Regression Summary for the Probability of Returning to the Same Industry 
for UI Clients in Atlanta Whose Prior Industry Is Manufacturing

Hypothetical workersa

Variable description estimate error effect 1 2 3

log(max. prior earnings) 0.663** 0.061 0.159 8.923 9.616 7.824
Age as of ref. date 0.017** 0.003 0.004 35 35 35
Education

Less than high school 0.032 0.058 0.008 0 0 1
More than high school –0.304** 0.060 –0.070 0 1 0

Youth, ages 14–21 –0.173 0.202 –0.041 0 0 0
Veteran –0.161** 0.073 –0.038 0 0 0
Welfare recipient 0.052 0.239 0.013 0 0 0
Dislocated worker –0.123** 0.054 0.029 0 0 0
Employed –0.036 0.144 –0.009 0 0 0
Reference date

In 2nd qtr. –0.043 0.063 –0.010 1 1 1
In 3rd qtr. –0.086 0.068 –0.020 0 0 0
In 4th qtr. –0.098 0.073 –0.023 0 0 0

Prior occupation
Clerical and sales –0.062 0.092 –0.015 1 1 1
Services 0.408** 0.150 0.101 0 0 0
Agric., forestry, fishing 1.144** 0.436 0.277 0 0 0
Processing 0.937** 0.132 0.230 0 0 0
Machine trades 1.021** 0.096 0.249 0 0 0

Parameter Std. Marg. 
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Bench work 0.988** 0.106 0.242 0 0 0
Structural work 1.089** 0.110 0.264 0 0 0
Miscellaneous 0.795** 0.088 0.196 0 0 0

Intercept –7.291** 0.549 –0.400 1 1 1

Probability of return 
to same industry 

0.294 0.327 0.172

NOTE: ** = Parameter statistically significant at the 95% confidence level in a two-tailed test.
a Hypothetical worker 1: age 35, high school education, earning $30,000 per year in a clerical/sales occupation, en-

tering in the 2nd quarter of the year; hypothetical worker 2: age 35, post-high school education, earning $60,000
per year in a clerical/sales occupation, entering in the 2nd quarter of the year; hypothetical worker 3: age 35, less
than high school education, earning $10,000 per year in a clerical/sales occupation, entering in the 2nd quarter of
the year.  

SOURCE: Based on data provided by the Georgia Department of Labor.
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Table 12.6  Logistic Regression Summary for the Probability of Returning to the Same 
Industry for UI Clients in South Puget Sound, Washington, Whose Prior Industry 
Is Manufacturing

Hypothetical workersa

Variable description estimate error effect 1 2 3

log(max. prior earnings) 0.733** 0.092 0.182 8.923 9.616 7.824
Age as of ref. date 0.026** 0.004 0.006 35 35 35
Education

Less than high school 0.077 0.095 0.019 0 0 1
More than high school –0.275** 0.086 –0.068 0 1 0

Youth, ages 14–21 0.208 0.188 0.051 0 0 0
Veteran –0.167 0.109 –0.042 0 0 0
Welfare recipient –0.402** 0.148 –0.100 0 0 0
Dislocated worker –0.102 0.174 –0.025 0 0 0
Employed 0.530** 0.090 0.125 0 1 0
Union –0.298* 0.168 –0.074 0 0 0
Reference date

In 2nd qtr. –0.035 0.097 –0.009 1 1 1
In 3rd qtr. –0.186** 0.091 –0.046 0 0 0
In 4th qtr. 0.207 0.149 0.051 0 0 0

Prior occupation
Clerical, sales –0.306** 0.152 –0.076 1 1 1
Services 0.173 0.221 0.042 0 0 0
Agric., forestry, fishing 1.048** 0.278 0.228 0 0 0

Parameter Std. Marg. 
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Processing 0.842** 0.160 0.190 0 0 0
Machine trades 0.891** 0.142 0.199 0 0 0
Bench work 1.064** 0.145 0.230 0 0 0
Structural work 0.841** 0.146 0.190 0 0 0
Miscellaneous 0.817** 0.134 0.185 0 0 0

Had job last quarter 0.618** 0.116 0.157 1 1 0
Intercept –8.419** 0.838 –2.085 1 1 1

Probability of return 
to same industry 

0.346 0.532 0.114

NOTE: ** = Parameter statistically significant at the 95% confidence level in a two-tailed test; * = parameter statis-
tically significant at the 90% confidence level in a two-tailed test.
a Hypothetical worker 1: age 35, high school education, earning $30,000 per year in a clerical/sales occupation, en-

tering in the 2nd quarter of the year; hypothetical worker 2: age 35, post-high school education, earning $60,000
per year in a clerical/sales occupation, entering in the 2nd quarter of the year; hypothetical worker 3: age 35, less
than high school education, earning $10,000 per year in a clerical/sales occupation, entering in the 2nd quarter of
the year.  

SOURCE: Based on data provided by the Washington State Employment Security Department.
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person may use several means in addition to FDSS to establish a realis-
tic earnings target, including past studies and current labor market con-
ditions. 

Quartile regression models are used to estimate earnings.  The up-
per and lower bounds on the earnings range are set at the 25th and 75th
percentiles, so one can think of this range as including earnings of half
the people with similar measured characteristics. The model relates
quarterly earnings to personal characteristics and labor market condi-
tions.  Many of these factors may be similar to those used by employ-
ment counselors to match job seekers to openings.  The model assesses
those factors in a systematic and consistent way so that customers with
similar needs and characteristics are treated similarly.  

The earnings models were developed using quarterly earnings data
from UI wage records, which are the most reliable source of earnings
data.  However, workers do not usually measure their compensation in
terms of quarterly earnings.  Rather, earnings are typically expressed as
hourly, weekly, monthly, and yearly rates of compensation.  Converting
the quarterly earnings to any of these other units is problematic, since
wage records do not indicate the number of hours worked or even the
number of weeks worked during a quarter.  By using the maximum
earnings in the year before and the year after receiving reemployment
services, we anticipate that quarterly earnings will reflect full-time
hours.  Conversion from quarterly earnings to hourly earnings can then
be achieved by applying the usual hours of work observed in each oc-
cupation and industry group using national survey data.6

For consistency of exposition, we report the results from the quar-
tile regression models for the manufacturing sector in metropolitan At-
lanta and south Puget Sound, the same regions and industry as used 
in the “return-to-prior-industry” models discussed above.  As shown in
Tables 12.7 and 12.8, the model includes variables typically used in
earnings models, such as educational attainment, prior job tenure, oc-
cupation, and industry.   Of course, the industry of reemployment is
known only after a person finds a job.  Since it is an endogenous vari-
able, it would be appropriate to find an instrument for this variable,
such as the industry transition regression described in the previous sec-
tion.  However, since our primary purpose is to construct a relatively
simple model that offers the best prediction of future wages, we have
not instrumented the variable.  Instead, when predicting the earnings
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for individuals we substitute the prediction of the likelihood the person
will find a job in the same industry as a predictor in the earnings equa-
tion.  Earnings models for Georgia and Washington also include age
and age squared to capture the earnings cycle over one’s working life. 

Georgia data permit the inclusion of additional explanatory vari-
ables measuring tenure on the previous job, possession of a driver’s li-
cense, availability for rotating shifts, employer attachment, current
school enrollment status, and an individual’s self-reported reservation
wage.  Washington data contain an indicator of union membership.
Both models include indicator variables for population groups that are
typically identified with the various programs offered by one-stop cen-
ters.  These groups include youth, veterans, currently employed, receiv-
ing public welfare assistance, dislocated workers, and economically
disadvantaged workers.

Results of the median regressions for the two models, as shown in
Tables 12.7 and 12.8, are broadly consistent with previous earnings re-
search.  In both models, prior earnings, education, and age are positive-
ly correlated with future earnings, and occupation variables in prior
employment are significant predictors of future earnings.  In addition,
returning to the industry of prior employment raises earnings by rough-
ly 17 percent in both models, and the coefficient estimates are highly
statistically significant.  Indicators for the various population groups
are not statistically significant except for welfare recipients in Washing-
ton and the economically disadvantaged and veterans in Georgia.   

Coefficient estimates related to variables unique to each state add
further insight into the determinants of a worker’s compensation.  For
Georgia, results show that possession of a driver’s license increases
earnings.  In addition, tenure on the previous job reduces earnings,
which supports the results of WPRS models that detachment and sub-
sequent loss of work experience reduces future earnings.  On the other
hand, those individuals with higher reservation wages receive higher
future earnings, possibly because they know of skills and other person-
al traits not measured in the data that make them attractive to employ-
ers.  In the Washington model, union membership raises earnings by 9
percent.  

The purpose of the earnings algorithm is to estimate an earnings
range for each one-stop customer.  To do this, the regression coeffi-
cients are multiplied by the individual’s characteristics.  Consider again
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Table 12.7  Quartile Regression Coefficient Estimates and Examples of Predicted Earnings from an Earnings Model 
for Recent Manufacturing Employees among UI Recipients, Metropolitan Atlanta

25th Percentile Median 75th Percentile
Hypothetical workera

Variable description
Param. 

est.
Std. 
error

Param. 
est.

Std. 
error

Param. 
est.

Std. 
error 1 2 3

log(max. prior earnings) 0.412** 0.019 0.466** 0.014 0.503** 0.012 8.923 9.616 7.824
Age as of ref. date 0.009** 0.005 0.003 0.004 –0.001 0.003 35 35 35
(Age)2 –1.3E–04 5.4E–05 –5.2E–05 4.3E–05 –5.6E–06 3.8E–05 1,225 1,225 1,225
Education

Less than high school 0.014 0.014 –0.008 0.011 0.012 0.010 0 0 1
More than high school 0.058** 0.014 0.062** 0.012 0.063** 0.010 0 1 0

Youth, age 14-21 –0.039 0.047 –0.057 0.038 –0.122** 0.034 0 0 0
Veteran 0.011 0.017 0.036** 0.014 0.028** 0.012 0 0 0
Welfare recipient –0.071 0.056 –0.048 0.045 –0.065 0.040 0 0 0
Dislocated worker 0.011 0.013 0.009 0.010 0.006 0.009 0 0 0
Employed 0.003 0.034 –0.012 0.028 –0.014 0.025 0 0 0
Education status –0.015 0.043 0.002 0.035 –0.011 0.031 0 0 0
Economically disadvantaged –0.046** 0.015 –0.031** 0.012 –0.031** 0.010 0 0 0
Exhausted prior UI claim 0.014 0.051 –0.006 0.040 0.062* 0.035 0 0 0
Weeks UI collected prior claim 0.002 0.002 0.003** 0.002 0.001 0.001 0 0 0
Workforce/employer attachment 0.053 0.037 –0.002 0.030 0.014 0.027 0 0 0
Does not have driver’s license –0.077** 0.024 –0.079** 0.020 –0.072** 0.017 0 0 0
Available for rotating shifts 0.027 0.017 0.024* 0.014 0.041** 0.012 0 0 0
Months of tenure, most recent

job
–0.002** 2.2E–04 –0.001** 1.8E–04 –0.001** 1.6E–04 24 48 8

(Months of tenure)2 3.2E–06 6.9E–07 3.6E–06 5.9E–07 2.6E–06 5.2E–07 576 2304 64
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Required hourly salary

In 2nd qtr. 0.014 0.015 –0.002 0.012 –0.001 0.011 1 1 1
In 3rd qtr. 0.005 0.017 0.003 0.014 0.002 0.012 0 0 0
In 4th qtr. –0.001 0.018 –0.012 0.015 –0.013 0.013 0 0 0
3 qtrs. after max. wage 0.008 0.015 0.004 0.012 0.017 0.011 1 1 1
4 qtrs. after max. wage 0.005 0.016 –0.003 0.013 –0.002 0.012 0 0 0
5 qtrs. after max. wage 0.010 0.015 0.034** 0.012 0.029** 0.011 0 0 0

Days left in current quarter 3.5E–04 2.2E–04 0.001** 1.8E–04 0.001** 1.6E–04 40 40 40
UI ref. date –0.004 0.003 –0.004* 0.002 –0.006** 0.002 13,581 13,581 13,581
(UI ref. date)2 1.4E–07 1.0E–07 1.6E–07 8.6E–07 2.2E–08 7.7E–08 184,523,177 184,523,177 184,523,177
Unemployment rate, t–3 0.022 0.667 0.135 0.547 1.141** 0.480 0 0 0
Post industry same as prior

industry
0.206** 0.013 0.181** 0.010 0.140** 0.009 0.292 0.325 0.171

Occupation
Clerical and sales –0.070** 0.021 –0.045** 0.017 –0.031** 0.015 1 1 1
Services –0.090** 0.036 –0.034 0.029 –0.050** 0.025 0 0 0
Agric., forestry, fishing –0.320** 0.105 –0.193** 0.087 –0.272** 0.075 0 0 0
Processing –0.104** 0.033 –0.076** 0.027 –0.017 0.023 0 0 0
Machine trades –0.059** 0.024 –0.041** 0.019 –0.015 0.017 0 0 0
Bench work –0.102** 0.026 –0.086** 0.021 –0.056** 0.018 0 0 0
Structural work –0.015 0.027 0.009 0.022 0.048** 0.019 0 0 0
Miscellaneous –0.105** 0.022 –0.078** 0.018 –0.038** 0.015 0 0 0

Intercept 30.072 19.087 32.627** 15.802 45.345** 14.170 1 1 1

0.022** 0.002 0.024** 0.001 0.023** 0.001 12 23 5
Reference date
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Table 12.7  (Continued)

25th Percentile Median 75th Percentile
Hypothetical workera

Variable description
Param. 

est.
Std. 
error

Param. 
est.

Std. 
error

Param. 
est.

Std. 
error 1 2 3

Predicted 25th 5,472 9,636 3,020
Predicted 50th 6,728 12,618 3,387
Predicted 75th 8,179 15,557 4,078

NOTE: ** = Parameter statistically significant at the 95% confidence level in a two-tailed test; * = parameter statistically significant at the
90% confidence level in a two-tailed test.
a Hypothetical worker 1: age 35, high school education, earning $30,000 per year in a clerical/sales occupation, entering in the 2nd quarter of

the year; hypothetical worker 2: age 35, post-high school education, earning $60,000 per year in a clerical/sales occupation, entering in the
2nd quarter of the year; hypothetical worker 3: age 35, less than high school education, earning $10,000 per year in a clerical/sales occupa-
tion, entering in the 2nd quarter of the year.

SOURCE: Based on data provided by the Georgia Department of Labor.
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the same three examples used above for evaluating the probability of
returning to work in the manufacturing industry.  Person 1 is 35 years
old, has a high school education, earns $30,000 per year (or $7,500 per
quarter) in a clerical/sales occupation, and applied for UI in the second
calendar quarter.  Median reemployment earnings for this individual in
metropolitan Atlanta are predicted to be $6,728 per quarter with lower
and upper bounds of $5,472 and $8,179.  A person with the same char-
acteristics but living in the south Puget Sound area is expected to earn
roughly the same amount: $7,164 per quarter, with lower and upper
bounds of $5,615 and $8,422.  Consider Person 2, who is identical to
Person 1 except that her prior earnings are doubled.  This change has
the effect of raising predicted median reemployment quarterly earnings
in metro Atlanta to $12,618 and in south Puget Sound to $12,394.  Per-
son 3 has characteristics similar to the first two, except that prior annu-
al earnings are $10,000.  For this example, predicted median reemploy-
ment quarterly earnings fall in metro Atlanta to $3,387 and in south
Puget Sound to $3,450. 

Related Occupations

The FDSS algorithm identifying related occupations provides cus-
tomers and frontline staff with a list of occupations that are related to
the occupation that a worker most recently held.  The purpose of the al-
gorithm is to provide a customer who does not immediately find a suit-
able job match with job options in other occupations that require simi-
lar skills and aptitudes.  Displaced workers are paid less upon
reemployment than those who change occupations voluntarily, in part
because of the poor match between their current occupational skills and
current job.  Providing customers with reliable information on alterna-
tives to their previous occupation may improve their reemployment
earnings and reduce the amount of time spent unemployed.  

A study by Markey and Parks (1989, p. 3) found that “more than
half of the workers in the United States who changed occupations did
so because of better pay, working conditions, or advancement opportu-
nities; however, about one in eight workers changed occupations be-
cause they lost their previous jobs.”  Fallick (1993) found evidence that
displaced workers increase the intensity of their job search in other in-
dustries when the employment growth rate in their previous industry is



362
E

berts, O
’L

eary, and D
eR

ango
Table 12.8  Quartile Regression Coefficient Estimates and Examples of Predicted Earnings from an 

Earnings Model for Recent Manufacturing Employees among UI Recipients, South Puget 
Sound, Washington

25th percentile Median 75th percentile

Variables est. error est. error est. error 1 2 3

log(max. prior earnings) 0.465** 0.024 0.630** 0.020 0.632** 0.024 8.923 9.616 7.824
Age as of ref. date 0.006 0.007 0.006 0.006 0.002 0.007 35 35 35
(Age)2 –9.1E–05 8.0E–05 –8.2E–05 6.9E–05 –5.0E–05 8.1E–05 1,225 1,225 1,225
Education

Less than high school –0.019 0.024 –0.019 0.020 –0.027 0.024 0 0 0
More than high school 0.059** 0.022 0.056** 0.019 0.040* 0.022 0 1 0

Youth, ages 14–21 –0.061 0.053 –0.009 0.045 –0.037 0.054 0 0 0
Veteran 0.040 0.027 0.019 0.023 0.018 0.028 0 0 0
Welfare recipient –0.170** 0.044 –0.135** 0.039 –0.143** 0.047 0 0 0
Dislocated worker 0.042 0.045 0.036 0.038 0.108** 0.046 0 0 0
Employed 0.084** 0.023 0.025 0.019 0.013 0.023 0 1 0
Union 0.115** 0.042 0.087** 0.036 0.097** 0.044 0 0 0
Economically disadvantaged –0.009 0.042 0.014 0.037 0.046 0.045 0 0 0
Reference date

In 2nd qtr. –0.006 0.024 –0.003 0.021 –0.017 0.025 1 1 1
In 3rd qtr. 0.020 0.023 0.018 0.020 0.051** 0.024 0 0 0
In 4th qtr. 0.062 0.038 0.025 0.033 –0.004 0.039 0 0 0
3 qtrs. after max. wage 0.023 0.023 –0.001 0.020 0.005 0.024 0 0 0
4 qtrs. after max. wage –0.050* 0.027 –0.053** 0.023 –0.061** 0.028 0 0 0
5 qtrs. after max. wage –0.010 0.026 –0.023 0.022 –0.003 0.027 0 0 0

Days left in current quarter 4.9E–04 3.5E–04 4.7E–04 3.0E–04 –4.0E–04 3.6E–04 37 37 37
Weeks benefits drawn –0.011** 0.001 –0.009** 0.001 –0.006** 0.001 1 1 1

Param. Std. Param. Std. Param. Std. 
Hypothetical workera
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Occupation
Clerical, sales –0.068* 0.038 –0.064** 0.032 –0.096** 0.039 1 1 1
Services –0.103* 0.056 –0.101** 0.047 –0.160** 0.057 0 0 0
Agric., forestry, fishing –0.057 0.068 –0.030 0.058 –0.106 0.070 0 0 0
Processing –0.120** 0.041 –0.129** 0.035 –0.073* 0.042 0 0 0
Machine trades –0.094** 0.037 –0.065** 0.031 –0.103** 0.037 0 0 0
Bench work –0.178** 0.038 –0.138** 0.031 –0.165** 0.037 0 0 0
Structural work –0.084** 0.037 –0.022 0.032 –0.000 0.038 0 0 0
Miscellaneous –0.121** 0.035 –0.080** 0.029 –0.093** 0.035 0 0 0

Post industry same as prior
industry 0.185** 0.019 0.168** 0.016 0.123** 0.020 0.346 0.532 0.114

Intercept 4.393** 0.238 3.163** 0.198 3.464** 0.238 1 1 1

Predicted 25th 5,615 9,249 3,228
Predicted 50th 7,164 12,394 3,450
Predicted 75th 8,422 14,081 4,087

NOTE: ** = Parameter statistically significant at the 95% confidence level in a two-tailed test; * = parameter statistically
significant at the 90% confidence level in a two-tailed test.
a Hypothetical worker 1: age 35, high school education, earning $30,000 per year in a clerical/sales occupation, entering in

the 2nd quarter of the year; hypothetical worker 2: age 35, post-high school education, earning $60,000 per year in a
clerical/sales occupation, entering in the 2nd quarter of the year; hypothetical worker 3: age 35, less than high school ed-
ucation, earning $10,000 per year in a clerical/sales occupation, entering in the 2nd quarter of the year.

SOURCE: Based on data provided by the Washington State Employment Security Department.
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low.  Shaw (1987) estimated that a 25 percent increase in the transfer-
ability of occupational skills leads to an 11 to 23 percent increase in the
rate of occupational change, depending on the age of the worker.  Tak-
en together, these results suggest that workers concentrate their search
efforts in industries and occupations similar to their own.  A reasonable
reemployment strategy might include identifying related occupations
and providing clients with timely information on the prospects for work
in those areas.  

Two methods are used to identify related occupations.  The first
methodology, based on the O*Net system, chooses occupations that are
considered to be closely related to the previously held occupation with
respect to a person’s qualifications, interests, work values, and previous
work activities, to name several of the attributes.  O*Net, developed by
the U.S. Department of Labor, incorporates the expert opinions of hu-
man resource professionals and analysts as to the characteristics of
each of more than 1,000 occupations and then relates the various occu-
pations by prioritizing the importance of these attributes for each occu-
pation.  This methodology addresses the decision to change occupa-
tions by asking the question, “What occupations are most related to my
previous occupation with respect to my qualifications, interests, and as-
pirations?”  This approach assumes that the person was qualified for the
job that he or she previously held.  O*Net matches the characteristics of
the previous job with the characteristics of other related occupations.
However, these transfers are hypothetical and are not based on actual
occupational transfers.  It does not take into account the actual demand
for a worker’s skills.

The second methodology is based on actual occupational changes
and addresses the transfer decision with the following question:  “For
workers who switch out of my occupation, into which occupations do
they most frequently move?”  This methodology provides a worker
with insights into the set of jobs that people like him most often obtain.
It incorporates both the qualifications of workers and the demand for
their skills.  Two data sets are used to record job changes and to com-
pile the list of occupational transfers.  The first data set is the Current
Population Survey (CPS), which is a national survey of households tak-
en each month.  The second data set is the administrative files from the
Georgia employment service, which includes self-reported work histo-
ries of each participant.  Unfortunately, Washington employment ser-
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vice records could not be used because they do not include occupation
codes.  

Each methodology has its advantages and disadvantages.  The first
methodology is based on extensive information about the characteris-
tics required by an occupation. Furthermore, because of its comprehen-
sive assessment of skill requirements for specific occupations, this
methodology allows one to link this information to possible course of-
ferings at local training and educational institutions in order to fill spe-
cific skill gaps.  The information can also be used to assist in determin-
ing the services that best meet the individual’s needs and then to make
the appropriate referral.  The tools can help determine not only which
programs are appropriate for the customer, but also which services
within a particular program may be most effective.   

However, one of the major drawbacks of this first methodology is
that it does not consider the demand by employers for those skills em-
bodied in the occupation.  For instance, the occupation that O*Net de-
termines to be highly related to a worker’s previous occupation may be
a good match with respect to skills, but there may be little demand for
that occupation in the local labor market.  

The primary advantage of the second methodology is that it incor-
porates both supply and demand considerations inherent in job
changes.  By using local data, it can provide a convenient perspective
on the occupations within which a person is most likely to find a job.
Its drawback is the lack of detailed information about the occupation.
There is little information about the qualifications of those who hold a
job in that occupation, except for information about educational attain-
ment.  Some of the deficiencies of this methodology with respect to de-
tailed occupation information may be addressed by combining the two
approaches.  

To illustrate the two approaches, we found occupations related to
the occupation of bookkeeping, accounting, and auditing clerks (O*Net
Occupation Code 43-3031.00).7 As shown in Table 12.9, O*Net identi-
fied occupations that appear to be closely related in terms of the type of
tasks required and the level of autonomy in executing the tasks—ele-
ments which O*Net focuses on in categorizing occupations.  Table
12.10 shows the matches of people who switched from computing and
account recording to other occupations, as recorded in the Georgia em-
ployment service records.  While the majority of job switchers stayed
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Table 12.9  Related Occupations for Bookkeeping, Accounting, and 
Auditing Clerks

O*Net occupation title O*Net occupation code

Billing, cost, and rate clerks 43-3021.02
Billing, posting, and calculating machine operators 43-3021.03
Brokerage clerks 43-4011.00
Loan interviewers and clerks 43-4131.00
Secretaries (except legal, medical, and executive) 43-6014.00
Office clerks, general 43-9061.00

NOTE: The O*Net occupation code for bookkeeping, accounting, and auditing clerks
is 43-3031.00.
SOURCE: O*Net Online (http://online.onetcenter.org).

within the same occupation, the next most prevalent job change was to
the occupation of packaging, and materials handling.  This choice of a
related occupation seems strange, but it most likely reflects the preva-
lence of job openings in the area for people with the skills embodied in
the occupation of computing and accounting.  Changes to occupations
more related to record keeping also took place.  Job changes recorded
using CPS data as reported in Table 12.11 reveal occupations more
closely aligned to record keeping than found for the Georgia data.
Most of these occupations are considered clerical, except for teachers.
The difference between the two data sets results perhaps from the in-
dustrial mix of jobs in local labor markets, which is not captured in na-
tional data such as the CPS.

SERVICE REFERRAL ALGORITHM

The second module of FDSS is the service referral algorithm.  As
mentioned in the overview of one-stop centers, a critical element for
successful implementation of one-stop centers is the staff’s ability to
identify the needs of customers and to refer them expeditiously to ser-
vices that best address their barriers to employment.  Compounding
this challenge is the possible lack of experience among the center’s



A
Frontline D

ecision Support System
 for O

ne-Stop C
enters

367

Table 12.10  Placements According to JS200 Record and Concordance with JS300 Job Orders File

Placement occupation (JS200)

No. of
placements

by ES
(JS200)

% of total
placements

(JS200)

Total of
past and
present

openings
(JS300)

Total
placements

(JS300)

Placements
as % of

openings

Dictionary of
occupational

titles code

Packaging, materials handling 1,435 13.7 88,542 82,710 93.4 92
Processing food, tobacco 1,125 10.7 50,953 48,472 95.1 52
Miscellaneous sales 948 9.0 23,656 21,397 90.5 29
Stenography, typing, filing 932 8.9 22,135 16,288 73.6 20
Food, beverage preparation, services 904 8.6 25,578 24,053 94.0 31
Information and message distribution 508 4.8 9,890 8,515 86.1 23
Fabrication, assembly, repair of metal

products
431 4.1 19,155 17,444 91.1 70

Miscellaneous personal services 260 2.5 7,800 6,381 81.8 35
Miscellaneous clerical 259 2.5 6,802 5,291 77.8 24
Fabrication, repair, textile, leather 243 2.3 7,787 7,499 96.3 78
Computing and account recording 3,443 32.8 22,969 20,690 90.1 21

NOTE: From occupation 21: computing and account recording.
SOURCE: Based on data provided by the Georgia Department of Labor.
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Table 12.11  Ten Most Frequent Occupation Changes from Bookkeepers, 
Accounting, and Auditing Clerks

Title
No. of

observations
Census

code

Accountants and auditors 22 23
Supervisors and proprietors, sales occupations 13 243
Managers and administrators, N.E.C. 11 22
Secretaries 12 313
General office clerks 7 379
Teachers, elementary school 7 156
Payroll and timekeeping clerks 5 338
Cashiers 8 276
Receptionists 5 319
Administrative support occupations, N.E.C. 6 389
Bookkeepers, accounting and auditing clerks 124 337

NOTE: The Census code number for bookkeepers, accounting, and auditing clerks is
337.
SOURCE: Based on analysis of Current Population Survey (CPS) data.

staff in serving a wide range of customers.  The purpose of the FDSS
service referral module is to compile and process information about the
effectiveness of various programs in a way that better informs staff
when referring customers to services. 

The service referral module is based on information about the char-
acteristics and outcomes of individuals who have recently participated
in services offered by one-stop centers.  These data are used to estimate
statistical relationships between personal attributes and outcomes.  The
service referral module uses these models to identify the sequence of
services that most often leads to successful employment outcomes for
individuals with specific characteristics. It should be emphasized that
this algorithm does not replace the staff’s referral decisions.  Rather, it
provides additional information to better inform the decision. 

The effectiveness of alternative paths for each customer depends
upon their employability.  Therefore, the service referral algorithm has
two basic components.  The first is a model to estimate a person’s em-
ployability, or likelihood of finding a job.  Conceptually, this is the flip
side of WPRS models, which identify the chance of UI benefit exhaus-
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tion.  The second component is a delineation of the paths, or sequential
combinations of services, that lead to successful outcomes.  By condi-
tioning alternative services on the employability of a specific customer,
a ranking can be produced of the effectiveness of various programs 
for individuals with specific measurable characteristics.  This ranking
would be a suggested ordering of service participation.    

Since it is based on prior values of exogenous variables, the em-
ployability index can be viewed as a summary of client characteristics.
Interacting the employability index with service indicators is a type 
of subgroup analysis (Heckman, Smith, and Clements 1997).  The
planned approach is analogous to that used by Eberts in Chapter 8 of
this volume (p. 221) for assigning welfare-to-work clients to alternative
bundles of reemployment services.  This method is also similar to the
procedure applied in this volume by O’Leary, Decker, and Wandner 
(p. 161), who essentially interacted an unemployment insurance benefit
exhaustion probability index with reemployment bonus intervention in-
dicators to identify the best exhaustion probability group for targeting a
bonus.

The exercise of O’Leary, Decker, and Wandner reexamined treat-
ment and control group data generated by random trials in a field ex-
periment.  However, service referral algorithms for FDSS are based on
administrative data in which program participation is subject to selec-
tion bias.  So that the effectiveness of alternative services may be
ranked for customers with different employability scores, impact esti-
mates will be computed while correcting for selection bias.  We plan a
simple single-equation least squares methodology, which will be vali-
dated by a matching approach that accounts for all possible nonlinear
influences of observable factors on selection for program participation
(Rosenbaum and Rubin 1983; Heckman, Ichimura, and Todd 1997;
Heckman, LaLonde, and Smith 1999; and Smith 2000).  

Employability Estimates

This algorithm estimates the likelihood of an individual finding
employment based upon prior work history, personal characteristics,
and educational attainment.  The estimate is based on the experience of
individuals who have recently enrolled with the employment service or
with other programs provided through one-stop centers.  However,
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since we are assessing their initial employability before receiving ser-
vices, we estimate the model using only those persons who have not yet
received services within their current enrollment period.   

The data come from the same administrative records that are used
to estimate the components of the systematic job search module de-
scribed in the previous section of this chapter.  The employability mod-
el is similar to the earnings algorithm, except that employment is used
as the dependent variable instead of earnings.  Thus, the sample in-
cludes individuals who have worked just prior to enrolling in one-stop
programs, as well as those who have not held a job prior to enrolling.
In this way, we are able to compare the measurable attributes of those
with and without recent employment as they enter a one-stop center.
The presumption is that those with more recent work experience are
more employable, even before they receive services.  

For illustrative purposes, an employability model for welfare recip-
ients in the State of Washington is discussed.  The explanatory vari-
ables include prior work history, educational attainment, participation
in public assistance programs, and their primary language.  As shown
in Table 12.12, the coefficients display the expected signs and many are
statistically significant.  For instance, people who have experienced
longer periods of unemployment are less likely to hold a job at the time
of intake.  People with more education are more likely to hold a job.
Those who are willing to relocate are also more likely to find employ-
ment.  Based on these variables and others, the probability of employ-
ment is predicted for each individual who enrolls in Work First. The
next step is to determine whether or not some services are more or less
effective for individuals within certain ranges of the distribution of em-
ployment probabilities.  

Path Analysis

The second component of the service-referral module is an analysis
of the various services that individuals receive to assist their efforts in
searching for and obtaining a job.  As discussed in the section on the
flow of clients through one-stop centers, it is apparent that individuals
typically receive more than one service during their participation peri-
od and that they receive those services in various sequences.  For in-
stance, a welfare recipient may start his or her participation in the Work
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Table 12.12  Logit Estimates of Employability Model for Welfare 
Recipients in the State of Washington

Variable description Coefficient
Std. 
error

Marginal/
discrete 
effect

Unemployed in
One of the four prior qtrs. –0.849** 0.038 –0.136
Two of the four prior qtrs. –1.153** 0.041 –0.169
Three of the four prior qtrs. –1.205** 0.045 –0.174
All four prior qtrs. –2.407** 0.045 –0.243

Max. quarterly wage in the four
prior qtrs.

4.7E–005** 1.0E–005 9.5E–006

(Max. quarterly wage)2 –2.1E–009** 5.8E–010 –4.1E–010
Education

Less than high school –0.206** 0.026 –0.039
GED –0.018 0.042 –0.004
Some college 0.063 0.047 0.013
Associate’s degree 0.080 0.056 0.016
Bachelor’s degree 0.147 0.096 0.030
Advanced degree 0.495** 0.176 0.109

Willing to relocate 0.082* 0.044 0.017
Minimum required wage 0.018** 0.006 0.004
On food stamps –0.038 0.106 –0.008
Not welfare recipient 0.334** 0.043 0.072
Economically disadvantaged 0.072 0.047 0.015
Language spoken at home

English 0.743** 0.053 0.169
Spanish 1.059** 0.079 0.248

Received deferrals –0.739** 0.029 –0.122
Intercept –0.002 0.080 –0.000

NOTE: Sample includes 46,732 individuals aged 14 and above, who had received some
services from the Washington State Work First program.  ** = Statistically significant
at the 95% level in a two-tailed test; * = statistically significant at the 90% level in a
two-tailed test.
SOURCE: Computations based on data provided by the Washington State Employment
Security Department and the Washington Work First activity file.
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First program by being referred to the program by the welfare (or social
service) agency, then being referred to a job search workshop, then to a
basic education program, and then back to a job search initiative.  The
final steps would be a job interview and employment.  Even after ob-
taining a job, the individual may participate in postemployment activi-
ties.  Another welfare recipient entering the same program may take a
different route to employment.  

Therefore, for programs that offer a sequence of services, the
analysis must identify the predominant paths that participants typically
follow.  Considering a collection of individual activities, such as at-
tending a job search workshop or enrolling in an education program
(without taking into account how they relate to other activities) does lit-
tle to capture the cumulative nature of the delivery of services.  Once
the pathways, or sequence of service activities, have been identified,
the effectiveness of these strings of services will be analyzed with re-
spect to each individual’s estimated likelihood of employment.  One
would expect to find that specific paths are more effective in leading to
employment for some individuals than others, depending upon the indi-
vidual’s propensity for employment as measured by the estimated em-
ployability.  

For Work First, the pathways are relatively short.  In some cases,
participants receive only one service before finding employment or oth-
erwise exiting the program.  Table 12.13 shows a sample of paths from
two starting points.  The top portion of Table 12.13 includes those who
were referred to the Employment Security Department (ESD) during
their participation in Work First.  The bottom portion includes those
who returned to Work First after working for a while but then losing
their job.  The specific activities are not important for the purpose of il-
lustrating the paths.8 Rather, the important point is that definite se-
quences of activities occur and that many of these paths consist of only
one recorded activity. 

Estimates of the Effect of Services on Employment Outcomes

To illustrate the effect of specific services on employment out-
comes, we estimate a model that relates employment in the quarter af-
ter exiting from the program to participation in services and other char-
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acteristics, including the predicted probability of employment derived
from the employability model.  We focus on the two most prevalent ser-
vices received by those returning to Work First—employment retention
services and labor market exchange (WPLEX).  We interact the pre-
dicted employability estimate for each individual with a variable indi-
cating whether or not they received either one of the two postemploy-
ment services.  

Results in Table 12.14 show that returnees who have participated in
WPLEX and postemployment retention services are more likely to find
a job and stay off of welfare than those who do not participate.  Fur-
thermore, WPLEX is more effective for those who have a higher prob-
ability of employment than those with a lower probability, according to
the employability estimate.  Therefore, while the magnitudes of the ef-
fects are small, the estimates do offer information about the appropriate
services for individuals with certain characteristics.  The service refer-
ral algorithm will follow a similar approach in estimating the effect of
services offered by other programs.   

SUMMARY

The Workforce Investment Act of 1998 calls for the creation of a
national network of one-stop centers where intake and referral of job
seekers to various programs will be done in a coordinated fashion.  Re-
source constraints dictate that each workforce development program
can serve only a portion of the population which might benefit.  Fund-
ing levels, from state and federal sources, determine how many work-
ers can be served.  Choosing which individuals are served depends on
decision rules applied by frontline staff in one-stop centers.  By target-
ing services to job seekers who will benefit the most, statistical tools
can help make these decisions more cost-effective for society, thereby
maximizing the net social benefit of program expenditures.  

The Frontline Decision Support System offers a variety of tools
that can help inform staff and customers in their job search efforts and
in their selection of reemployment services.  The tools are based on sta-
tistical techniques that use administrative data to estimate likely earn-
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Table 12.13  Selected Paths of Component Codes

Path Activity 1 Activity 2 Activity 3 Number %

Following referral to
ESD (RI)

1 No Show (RN) 422 5.5
2 Referred back early (RB) 343 4.5
3 Working full time–30+

hours/wk. (FT)
2.4

4 Working part time–29 or
less hours/wk. (PT)

120 1.6

5 Initial job search (JI) 107 1.4
6 Sanction (SA) 102 1.3
7 Referred back early (RB) Sanction (SA) 94 1.2
8 No show (RN) Sanction (SA) 90 1.2
9 No show (RN) Processing returned

referral (PR)
Sanction (SA) 81 1.1

10 Job search workshop (JW) Job search (JS) Working full time,
30+ hours/wk (FT)

79 1.0

Total 7,642

Following nonsub-
sidized employment
(PT or FT)

1 WPLEX Contact (PS) 701 16.3
Employment Retention 321 7.4

182
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2 (RS)
3 Working full time–30+

hours/wk (FT)
216 5.0

4 ESD (RI) 160 3.7
5 Working part time–29 or

less hours/wk (PT)
120 2.8

6 Referred back early (RB) 57 1.3
7 Job search (JS) 54 1.3
8 Counseling/anger

management; drug,
alcohol or mental health
treatment; temporary
incapacity, medical
treatment (XM)

51 1.2

9 ESD (RI) No show (RN) 50 1.2
10 Other (RO) 50 1.2

Total 4,291

SOURCE: Based on the Washington Work First activity file.
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ings prospects, industry transitions, related occupations, and outcomes
associated with participating in specific reemployment services.  FDSS
is an extension of previous methods like the Worker Profiling and
Reemployment Services system, which all states have implemented,
and the Work First pilot, which was implemented at the Kalamazoo-St.
Joseph, Michigan, Workforce Development Area.  At the time of this

Table 12.14  Logit Estimates of Service Impact Model for Work First 
Participants in the State of Washington

Variable Coefficients
Std. 
error

Marginal/discrete
effects

Unemployed in all four prior qtrs. 0.249** 0.083 0.053
Age as of ref. date 0.008** 0.003 0.002
Dislocated worker –0.888** 0.386 –0.141
Referred to ESD –0.409** 0.086 –0.074
Job Search activity –0.655** 0.105 –0.111
Job Search workshop –0.040 0.174 –0.008
Attend HS or GED –0.306* 0.183 –0.057
Training –0.610** 0.257 –0.105
On the job training –0.803** 0.206 –0.130
Pre-employment training –1.087** 0.327 –0.162
Deferrals –1.409** 0.110 –0.191
Other referrals (refer to) –0.069 0.144 –0.014
Sanction 0.261* 0.158 0.055
Referrals (refer back) 0.138 0.087 0.028
Employment retention 0.302* 0.168 0.064
WPLEX 0.361** 0.150 0.078
Predicted employability (PE) 0.426** 0.180 0.085
Employment retention × PE –0.088 0.382 –0.018
WPLEX × PE 0.551* 0.329 0.110
Intercept 0.161 0.129

NOTE: Sample includes 9,009 individuals who have found either part-time or full-time
employment after entering the Work First program.  The dependent variable is 1 if the
individual was off TANF after obtaining employment, and 0 if no record shows that
he/she left TANF.  ** = Statistically significant at the 95% level; * = statistically sig-
nificant at the 90% level.
SOURCE: Based on data provided by the Washington State Employment Security De-
partment and the Washington Work First activity file.
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writing, the W.E. Upjohn Institute is working closely with the states of
Georgia and Washington to design and implement FDSS in selected
one-stop centers.  

Notes

We thank Helen Parker and Richard Hardin and participants at the Targeting Employ-
ment Services conference, Kalamazoo, Michigan, April 30–May 1, 1999, for construc-
tive comments that helped to improve this chapter.  For research assistance we thank
Wei-Jang Huang, Ken Kline, and Kris Kracker.  Clerical assistance was provided by
Claire Black, Nancy Mack, and Phyllis Molhoek.  Opinions expressed are our own and
do not necessarily represent those of the W.E. Upjohn Institute for Employment Re-
search.  We accept responsibility for any errors.

1. Logit models were widely used by states as a basis for Worker Profiling and Reem-
ployment Services (WPRS) assignment rules.  Eberts and O’Leary (1996) provid-
ed an example from Michigan. 

2. Age, gender, and race were prohibited variables in WPRS models.  However, un-
like WPRS, the FDSS system does not set criteria for program eligibility.  The
graphical user interface for FDSS computer screens in one-stop centers will not
display age, gender, and race as variables on which “what if” scenarios can be ex-
amined.  These variables were included because statistical tests indicated that ex-
cluding these variables would introduce an omitted variables bias in estimation of
other model parameters, following the work of Kletzer (1998) and others.

3. These categories are defined by employment service practice.  The dislocated
worker definition is consistent with that in the Economic Dislocation and Work-
er Adjustment Assistance Act (EDWAA) of 1988.  The EDWAA definition in-
cludes those with significant prior job attachment who have lost their job and have
little prospect of returning to it or to another job in a similar occupation and in-
dustry.  

4. Note that the earnings variables in the models are quarterly figures, not annual fig-
ures.  

5.  Section 133(d)(3)(i) and (ii), Workforce Investment Act, Public Law 105-220–Au-
gust 7, 1998.  U.S. Congress (1998, Section 134[d][3][c]).

6. Using data from the Current Population Survey for a comparable time period, we
computed a (9 × 9) industry-occupation matrix of average hours worked using one-
digit industry and occupation groups.  

7. In making the comparisons, considerable effort was required in converting the oc-
cupation codes from O*Net to the occupation codes used in the CPS and by the
Georgia Employment Service.  Complete matching was not possible, but we came
as close as possible.  See DeRango et al. (2000) for more details.

8. A detailed discussion of these paths is given by Eberts, O’Leary, and Huang
(2000).  
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Comments on Chapter 12

Helen Parker
Georgia Department of Labor

The concept of using statistical profiling (targeting) on the front
line of the one-stop system emerging under the Workforce Investment
Act of 1998 (WIA) is a significant and timely development.  The Front-
line Decision Support System described by Eberts, O’Leary, and De-
Rango will help ensure both effective customer service and efficient
use of resources in the new integrated environment.  Its dual usefulness
as a management tool and a staff/customer resource makes FDSS a ver-
satile and valuable addition to the one-stop service delivery “toolkit.” 

As Eberts and O’Leary point out, FDSS will be an excellent man-
agement tool for resource allocation and continuous improvement.  At
the same time, it provides a much needed service for staff to help en-
sure that customers receive the services they really need—no less and
no more.  At a time when the workforce development system is moving
away from “one size fits all” services and toward the customer-focused,
customer-led service strategies envisioned by the WIA, this targeting
approach should facilitate, perhaps even force, individualized cus-
tomer-by-customer decision making.  With both the customer and the
staff armed with better information, service tailored to the unique needs
of the individual is not only achievable, but it becomes the norm. 

FDSS may also help us prevent what may be an unanticipated con-
sequence of the WIA’s perceived “work first” philosophy and delin-
eation of what some call “sequenced” services.  The WIA describes
three levels of services—core, intensive, and training—and would
seem to suggest, as Eberts and O’Leary note, that lack of success in ob-
taining employment is the criterion for moving from one level to the
next.  This creates an impossible—and decidedly not customer-friend-
ly—scenario that requires a customer literally to fail his way into need-
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ed services.  Because it helps the customer and staff identify both barri-
ers and needed services very early in the service continuum, FDSS
should enable staff to identify situations in which core services clearly
will not suffice, and to help those customers move more quickly into in-
terventions that will lead to employment. 

FDSS should also be particularly helpful when there is an econom-
ic downturn, when demand will outstrip available resources even more.
Higher unemployment not only increases customer demand for ser-
vices, it increases the demand for more staff-intensive services.  A tar-
geting tool like FDSS can help staff more quickly and more thoroughly
assess and guide their customers. 

While FDSS will be an extremely valuable tool for both staff and
management, it does not come “worry-free.”  The description of this
tool and its potential uses raises several concerns.  First, the system
must be designed with maximum flexibility, so that it can be used in a
wide variety of settings and with an equally wide variety of automated
systems.  The Upjohn Institute seems to have anticipated this by plan-
ning another version of the product for states and local areas that do not
use the federally supported one-stop operating system. 

Using wage records both to target jobs and to help determine cost-
effectiveness may prove rather limiting.  The wage records by them-
selves may be inadequate to give a true sense of an earnings range, and
the lack of real-time data will limit the usefulness of that aspect of the
tool.  From a customer service standpoint, the wage range itself may
create customer dissatisfaction in screening for jobs: neither the cus-
tomer who will settle for lower pay nor the one who demands access to
higher wages jobs—and there are many of both—will be satisfied with
the results.  Development of a meaningful cost/benefit analysis may
also prove a challenge.  While the costs of training have traditionally
been fairly easy to identify, the costs of other “softer” services like
counseling, workshops, and case management may prove difficult.  In
the integrated one-stop system envisioned by the WIA, distinguishing
between shared system costs toward which all partners contribute and
program-specific costs for services, which may also be split across
more than one fund source, may well hinder accurate determination of
costs.  The benefit side is equally complex; earnings, or “narrowing the
earnings gap,” is only one aspect of the benefit measurement and is
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likely to be inadequate unless both labor market and wage information
are more up to date and more market-specific. 

In developing and implementing FDSS, the U.S. Department of
Labor and the Upjohn Institute will need to confront the tensions inher-
ent in the service delivery approach mandated by WIA.  Perhaps most
troublesome is the tension between “most in need” and “most likely to
benefit.”  The pull between these two has always been a frustrating re-
ality in performance-driven systems like those under the Job Training
Partnership Act.  WIA does not relieve that potential for conflict, and in
fact it may exacerbate it as local areas struggle to meet the spirit of the
law with limited resources.  The ability of a staff member or a local
board to target customers and services hinges on determining whether
need or benefit receives priority.  If developed with an awareness of
that dilemma, FDSS may well offer at least a partial solution. 

A second tension, and one that FDSS designers may not yet have
considered seriously enough, stems from the very clear mandate in
WIA for customer choice in decisions about services and training.  The
concept of targeting and the decision-making tool itself may assume a
level of staff intervention or control that could be difficult to achieve.
For mandatory customers, such as profiled UI claimants and welfare re-
cipients, staff interventions might be tolerated more readily.  But cus-
tomers who simply want to access some mix of services and/or train-
ing, particularly those who already have expectations about the
services they want, may require more staff time to guide them than the
system has the capacity for or than is cost-effective. 

We also need to guard against the use of a tool like FDSS inadver-
tently reinforcing the tendency of workforce development and human
resource development systems to assume that we know better than the
customer what is best for him or her.  If one goal of WIA is to empow-
er the customer to make informed choices, this new tool needs to be as
customer-friendly as possible, and our staff need to be thoroughly
trained in what the FDSS is and what it isn’t.  Indeed, the “selling” of
this new tool and staff training on its uses are of paramount importance.
As with the development of Service and Outcome Measurement Sys-
tem in Canada, buy-in by management, and particularly by frontline
staff, is absolutely critical if the product is to reach its true potential.
We must also be sensitive to the very human reactions that staff and



customers may have to such a system, and this too must be a part of the
selling of and training for the product. 

Some staff and customers will feel threatened by such a tool.  Oth-
er staff are likely to use it as a shield behind which they can hide from
interaction with customers; it was, after all, the computer that made the
decision, as they see it.  Still others will see the system’s targeting rec-
ommendations as directives, not guidance, and will forego the role that
a professional staffer should play in helping a customer make good
decisions. 

A colleague of mine likes to describe the delivery of employment
services as a “high tech, high touch” business.  FDSS has the potential
to address both.  If it is developed as planned, it can add a level of so-
phistication and flexibility that the emerging workforce development
system will need for effective service.  It can enable staff to assist and
guide their customers, and empower customers to make more informed
choices about their service needs.  We just need to take care that, with
FDSS or any other such tool, “high tech” doesn’t substitute for the
“high touch” that many of our customers need and want. 
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A Panel Discussion on the

Experience and Future Plans 
of States

Panel Chair:  Rich Hobbie
National Association of State Workforce Agencies

Panelists:  Jim Finch
Utah Department of Workforce Services

Chuck Middlebrooks
South Carolina Employment Security Commission

Jack Weidenbach
Minnesota Department of Economic Security

Rich Hobbie

Because we are short on time, I will introduce our three distin-
guished panelists together and ask them to speak in the order in which I
introduce them.  Jim Finch is Director of Payment Services for the Utah
Department of Workforce Services.  Chuck Middlebrooks is Unem-
ployment Insurance Director for the South Carolina Employment Secu-
rity Commission.  Jack Weidenbach is Assistant Commissioner for the
Minnesota Department of Economic Security.  Each of the panelists
will share his experience with targeting employment services and his
plans for the future.  Jim Finch will speak first.       

Jim Finch

This conference has been a very interesting experience for me and,
I am sure, for everyone that operates at the level I do in the employment
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security system.  Targeting is just one piece of the total package that we
have to deal with.  While listening the last couple of days, I was re-
minded of my first experience with profiling, when I was a local office
manager in Salt Lake City.  Our benefit payment control chief devel-
oped a profiling system for people who were apt to commit unemploy-
ment fraud.  We tried it out for a little while, and it was very accurate.  

After I had three or four radio interviews, a couple trips to local
television stations, and newspaper reporters questioning me about this
profiling system, I realized that profiling can be a two-edged sword.
The model was very good at identifying clients and customers who
needed specific kinds of services, but it included some elements to
identify certain groups having rather vocal public representation.  As
soon as the word got out that they were being identified on demograph-
ic characteristics, and not for any other reason, it created a significant
public relations problem.  Keep that experience in mind as you are de-
veloping your profiling systems.  

When Rich Hobbie introduced me, he mentioned that I am director
of payment services for Utah’s Department of Workforce Services.  I
just want to touch on that.  At one time I was the unemployment insur-
ance director for the department.  However, in 1996, Utah’s approach
to welfare reform was to combine the Office of Family Support—
which we used to call the welfare department—with Job Service and
the JTPA agency to form a single department.  At the same time we es-
tablished a centralized telephone UI claims center.  It didn’t take long
to realize that the ongoing eligibility function of our welfare activities
could also be handled in the telephone center.  I was given responsibil-
ity for the ongoing eligibility function for welfare services, so my posi-
tion changed from unemployment services to payment services.  

As I listened to Randy Eberts’s presentation, and certainly Jim
Vollman’s luncheon talk yesterday, they very largely described where
Utah is now—not where we intend to go, but where we actually are.  In
Utah, we had 24 job service offices before we combined with the other
agencies.  The combination created 109 offices statewide, and we have
reduced that number to 51.  At the same time our customer base has ex-
panded.  We have many more people seeking services though this ex-
panded department than we did before.  As a consequence we have had
to implement Jim Vollman’s cone of service, or what we called the
Vollman wedge, which was mentioned earlier.  
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We have set up job connection rooms in our local offices where job
seekers use PCs to review job orders.  In essence, a routine job search is
self-directed with little or no help from an employment counselor.  Cus-
tomers who are determined to need more intensive services would then
be referred to the next level of service in the department.  For UI, pro-
filing is the entrance to more intensive services, which are offered in
employment centers.  For that reason, profiling has been an important
part of our system.  Without going into detail, I will say that some
method of profiling has become absolutely necessary within our system
because of our very high volume of customers.

Chuck Middlebrooks

When I was UI director in Maryland, we eagerly sought the oppor-
tunity from the U.S. Department of Labor to be the profiling test state.
We saw profiling as a way to bring together activities of EDWAA (Eco-
nomic Dislocation and Worker Adjustment Assistance), unemployment
insurance, and the job service.  Basically what we did was use profiling
as an opportunity for selecting people who would be targeted for a 10-
hour workshop, provided through the use of EDWAA resources.  This
provided a new entry into EDWAA for UI claimants.  Previously they
reached EDWAA services in a haphazard way.  We saw the profiling
demonstration as a real opportunity, and I believe targeting will contin-
ue to be used in the one-stop environment under WIA.  

How services might be coordinated for a more generalized intake
remains to be seen, but certainly where I am now, in South Carolina, we
plan to continue efforts in that direction.  I hadn’t yet arrived when pro-
filing started in South Carolina.  The first attempt was based on a suc-
cessful prior model which had nine factors.  I believe that South Caroli-
na was the state which identified delayed filing for UI as an important
predictor; it actually is the second best predictor in our model.  I think
the relative value is in the 30 percent range.  Why that is, I don’t claim
to know.  

About one-third of the people profiled by our model are being
served, so we are at the national average in that regard.  The service
provided to those referred was uneven across the state, and very depen-
dent on the county of residence.  The most widespread approach was to
bring people in for a one-hour orientation, followed by various one-on-



one services.  These included things that you would normally expect or
encourage in job search-referrals, use of the phone for job prospects,
and things like that.  Some people did get into basic readjustment ad-
justment services in EDWAA, but only a small number of people went
into training as a result.  Last summer we started looking more closely
at profiled client flows.  This was my first opportunity to look at the
data and make some changes, and I want to give some numbers so you
can understand the context.  

We had slightly more than 90,000 new initial UI claims.  About
two-thirds of these were on standby awaiting recall to their prior job,
leaving about 30,000 to be profiled by the WPRS system.  That 30,000
includes everybody from the lowest to the highest probability of UI
benefit exhaustion.  The state was calling in 9,000 to 10,000 people, so
they were serving about one-third of the people, and most who were
called in did come.  Most of the referrals did receive the service.  

Last summer we looked at the distribution of UI exhaustion proba-
bilities.  When I was in Maryland we used 40 percent as the cutoff point
for EDWAA eligibility and service.  I asked our staff in South Carolina
to find out what cutoff probability was being used for referrals.  It
turned out that at the 40 percent and above level, there were about
10,000 UI beneficiaries, which was about what we were serving.  The
way the system worked was that profiled beneficiaries were listed in
rank order, and the office was required to refer people in that order.
They were not allowed to skip people, and I think we had pretty consis-
tent implementation.  In most offices we probably served those with
predicted exhaustion probabilities of 40 percent or higher.  Keep in
mind that with 90,000 first initial claims, and 60,000 on standby,
10,000 of the remaining 30,000 had an exhaustion probability of 40
percent or higher.  

Last summer we changed the profiling list provided to local offices
so that it now only includes the people at or above the 40 percent prob-
ability.  This required offices to bring in 10,000 clients, minus those ex-
cused for good reasons, and refer them to the dislocated worker pro-
gram where they would start receiving additional services.  The
practice has not been as uniform as we would have liked, but we are
moving toward consistent practice.  In South Carolina, we also added a
three-hour workshop.  This is shorter than the 10-hour workshop tested
in Maryland, but it was an expansion of services.  
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As part of the new three-hour workshops, there was also a simple
change in the reemployment work search rule.  In workshops, the
clients were required to complete a brief work search questionnaire to
be used in UI eligibility review (ER).  Normally an ER is done in about
the sixth week; however, under WPRS they report at about the fourth
week so the initial ER is done sooner for WPRS clients.  Before, there
was no connection between WPRS and the UI eligibility review.  I went
out into the local offices, and in some cases the person was called in one
week for profiling and the next week for eligibility review.  Clients
complained, so we tied those two together.  We plan to improve coordi-
nation between these two programs.

We have funded additional positions for local offices to do job
search workshops.  During the first quarter not much happened, but
during the winter quarter that just passed, 40 percent of all clients at-
tended workshops.  There were 3,400 participants instead of around
2,500.  We increased both participation and the quality of our services.
Clients felt like they were getting something more when they came into
the office, something beyond a basic registration, and that was good.
We had some excellent examples of follow-up service and use of new
resource centers; however, we do not yet have the uniformity that we
would like.  

Future plans are to provide services earlier to profiled clients.  I
don’t think we will go to the first day, as Georgia did, but we will prob-
ably do the batch the first night.  We won’t go to the first day because of
the way we take and process UI claims.  We plan to produce the profil-
ing scores on the first night and to get people scheduled in either the
first or the second week of their claim series instead of the fourth or
fifth week.  So we do plan to speed up the process.  

We also need to smooth the procedures for quickly excusing some
clients from the workshop.  We plan a standard script for the workshop
staff.  Things go more smoothly when they understand exactly the or-
der to proceed over material.  We didn’t want to be overly proscriptive
to start with, but we are rethinking our strategy.  We will permit reason-
able exceptions to our script, but we expect general compliance.  In
particular, I would like a more objective process from the sixth week
on.  

Currently, we get a good start with the three-hour workshop, but as
clients move along in the claim series, treatment is not consistent.  We



want to have a plan for staff actions to take place starting after the sixth
week, the twelfth week, and so on.  We need tracking.  Someone made
the point that if the frontline people knew exactly what the results are,
and what outcomes were being measured on a weekly or monthly basis,
they will perform better.  We don’t have such a system in place, but we
want one.  We also want more training for the local office staff so they
understand objectives of the reemployment effort.  Sometimes proce-
dures don’t make sense to staff, because they don’t know the underly-
ing policies.  Staff often regard required procedures as management’s
effort to complicate their duties.  Performance monitoring with well-
specified outcomes can improve appreciation for the value of well-de-
signed staff procedures.  Certainly we need to do more evaluation.  

As an administrator who is always forced to think about program
financing, I would like to say a few things about cost models.  In South
Carolina we serve 10,000 people on an annual basis.  An important
question is, “How do we pay for these services?”  Does that mean $100
a head, or a million dollars that should be budgeted for special services
above the normal?  Or is the cost $150 or $200 per customer?  We need
some reliable cost models.  

We expect lots of competition for intensive services.  UI claimants
will be competing in the same way as welfare recipients or anyone else.
We estimated services costs in the neighborhood of $100 to $200 for
the Maryland evaluation.  We had enrollment of about 250 people and
the cost turned out to be a little less than $200 per person.  We could
provide more up-front services, we could do the workshops sooner, and
get people through services more quickly.  However, if we are also go-
ing to review eligibility at 13, 16, and 18 weeks, the caseload will build
up.  These tensions should be balanced in the case management model.  

Jack Weidenbach

In Minnesota, our approach has been somewhat like Utah’s.  We
too have become true believers in the Vollman wedge client flow mod-
el, and we have worked very hard to coordinate our services with that
model.  In Minnesota, much of what we do is determined by the fact
that we have a serious labor shortage.  Minnesota is a geographically
large state with a population of only about 4.4 million.  Of those peo-
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ple, 2.7 million are in the workforce, and we have the highest women’s
labor force participation rate in the nation and the second highest rate
for males.  This maximization of the workforce means there is pressure
on us to get people back to work quickly.

Several years ago we changed the program name from “unemploy-
ment insurance” to “reemployment insurance.”  We are the odd state
out, in terms of the name for the program, but the new name suggests
our emphasis.  We have seen real pressures on the WPRS system that
lead us, at the local level, to lean more toward bringing everybody in
for workshops instead of restricting services just to the high-quotient
profiled.  The reason is that the demand for the unemployed workers,
who will be eligible for dislocated worker services in many cases, is
high in most areas of the state.  In many local areas, the WPRS system
is almost certain to call in every person who is not job-attached for spe-
cial job search services.  That doesn’t mean that we don’t operate a
WPRS system, but our model doesn’t distinguish between claimants in
a significant way, meaning that many people get similar services.

Our profiling system is built into the reemployment insurance sys-
tem.  It is a mainframe-based system that runs on the DB 2 database,
and we have eight screens that staff can use to record the profiling ac-
tivity.  One computer screen allows on-the-spot profiling.  That func-
tionality is rarely used because we don’t accept in-person UI claims
anymore.  It’s something that staff would have to see the value in be-
fore they would want to go through that extra step.  Getting staff to be-
lieve in the merits of the WPRS system has been kind of a struggle for
us.  

We decided around the middle of last year that we had to beef up
our efforts in worker profiling for a number of reasons.  The strongest
was that we were centralizing our reemployment functions and we
were worried about losing the connection between claimants and the
one-stop services, so we really got serious about the processes.  We re-
visited workflows, began training staff again, and reintroduced the
screens as ways to let people see the value of the process.  The result
was that we provided services to about twice as many people in 1998 as
we had in 1996–1997.

At first we had problems with the staff understanding the value of
WPRS and why they should go through the extra steps of collecting



and entering data.  We have improved on that with employment service
staff over the last three years. We have, over the same period, become
more closely integrated with our Title III partners.  We are pushing a lot
of “profiled” claimants into the Title III programs, but in that area, we
still are unsuccessful in having them report activity in the computerized
information system.  

I would attribute a lack of success in this area to a couple of factors.
One is somewhat cultural.  UI tends to be viewed as a hard process.
When you say we have this great program to profile claimants, the re-
action in the service delivery area (SDA) world is that it’s simply an-
other way to avoid paying UI to people.  I think this was the basis for an
original reluctance to collaborate.  The second factor is that SDAs are
not familiar with UI automated systems and that staff must exit their
normal systems to access the UI system. 

We found that in order to change our approach to profiling, we had
to change the budget structure.  Last summer we took our ES and reem-
ployment budgets for workforce centers (our one-stops), and tied fund-
ing to the number of unattached claimants in the area and to the level of
services delivered in the area.  We are trying to refine the process and
expand the number of services for which we track outputs.  It appears
to have given our middle managers a reason to pay attention.  When
you tie service funding to positive results, it makes a big difference.  

I conclude by saying that Randy Eberts’s presentation on FDSS
this morning provided a direction where we ought to be going.  We re-
ally need a common computer operating system for one-stops, and ac-
tually, a system that can be expanded outside of the one-stops to our af-
filiated service providers.  That’s ambitious, but it’s extremely
important if we are going to tie this whole effort together, and if we
want to do it well.  

We have been involved with New Jersey and Utah in developing
the first phase of the Workforce Investment System (WINS).  We see it
as the first part of our one-stop operating system.  It is a replacement for
the old employment service computer system that will be fully integrat-
ed with America’s Job Bank.  It runs on the same Oracle database and
has the same look and feel for customers.  We would now like to move
the profiling screens into the WINS system.  This would provide a first
step toward our one-stop operating system.  It would be available for
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everybody in the workforce center to do their business and to get used
to starting people through the system at the big end of the Vollman
wedge.  

I really want to emphasize that the comments made earlier about
FDSS are extremely important, and I appeal for a strong self-service
component to that since we are moving so many services to self-ser-
vice.  The management role of FDSS should also be appreciated, it will
permit us to properly serve the person who is walking in the door, and
to treat customers in a consistent way. 





Postscript

WIA operations officially began in all states during July 2000.  As
we go to press with this conference volume in early 2002, we are
pleased that the chapters remain timely and relevant.  The conference
held in spring of 1999 anticipated many of the challenges of WIA im-
plementation.  Many states are still grappling with practical implemen-
tation issues.  Few have completely achieved unified computer operat-
ing systems for one-stop centers, and most states are still searching for
ways to properly blend various administrative funding streams and co-
ordinate staff responsibilities across programs. 

Starting in late 2000, several areas of the country began to experi-
ence a deterioration in labor market conditions.  This has placed addi-
tional unanticipated burdens on staff in one-stop centers during the
transition to full WIA operations.  The ideas presented in this book for
targeting services and improving tools for frontline staff offer a means
to achieve and maintain a high level of program effectiveness during
periods of high demand for employment services.

The W.E. Upjohn Institute for Employment Research is working
closely with the U.S. Department of Labor and the states of Georgia
and Washington to pilot test FDSS tools in selected one-stop centers.
To help other states develop FDSS features we plan to provide docu-
mentation of the pilot(s) and, possibly, a technical assistance guide.
With sufficient interest from states, a technical assistance training ses-
sion on the experience of the pilot activities will also be provided.  
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