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ABSTRACT 
 

 This paper estimates future adult earnings effects associated with a 
universal pre-K program in Tulsa, Oklahoma. These informed projections help to 
compensate for the lack of long-term data on universal pre-K programs, while 
using metrics that relate test scores to valued social benefits.  Combining test-
score data from the fall of 2006 and recent findings by Chetty et al. (forthcoming) 
on the relationship between kindergarten test scores and adult earnings, we 
generate plausible projections of adult earnings effects and a partial cost-benefit 
analysis of the Tulsa pre-K program.  We find substantial projected earnings 
benefits for program participants who differ by income and by program dosage.  
The dollar effects and benefit-cost ratios are similar across groups, with benefit-
to-cost ratios of approximately 3 or 4 to 1.  Because we only consider adult 
earnings benefits, actual benefit-cost ratios are likely higher, especially for 
disadvantaged children. 



 
1.  Introduction 

 As state pre-K programs, both targeted and universal, have blossomed throughout the 

United States, public officials have sought hard evidence on the short-term and long-term 

effects of such programs, for program beneficiaries and for society as a whole. We now have 

substantial evidence on the short-term effects of targeted (Reynolds, Temple, Ou, et al. 2011; 

Schweinhart et al. 2005) and universal (Gormley, Phillips, and Gayer 2008; Henry et al. 2003) 

programs and the long-term effects of targeted programs (Heckman, Moon, et al. 2010; 

Reynolds, Temple, Ou, et al. 2011; Reynolds, Temple, White, et al. 2011),, but limited evidence 

on the long-term effects of universal programs (Karoly and Bigelow 2005). Because the first 

universal pre-K program in the United States was not established until 1997, we will need to 

wait a decade or more before we can estimate the consequences of universal pre-K for adults in 

their 20s and beyond. Even when such long-term data are available on universal pre-K 

programs, analysts will face the challenge that universal pre-K programs lack experimental data, 

unlike at least some targeted pre-K programs. 

 It is possible, however, to make some informed projections, using recent data from 

Oklahoma’s universal pre-K program, which serves both disadvantaged and middle-class 

children. Using information from recent work by Raj Chetty, John N. Friedman, Nathaniel Hilger, 

Emmanuel Saez, Diane Whitmore Schanzenbach, and Danny Yagan (forthcoming) on the link 

between early test scores and adult earnings, we estimate future earnings for children who did 

and did not enroll in pre-K, including children who were and were not eligible for a free school 

lunch. These projections, though not without their limitations, enable us to measure some, 
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though not all, of the long-term benefits of a high-quality pre-K experience to children from 

different socioeconomic strata. 

 These projected earnings effects also allow us to more reliably compare the effects of 

high-quality pre-K for children from different socioeconomic groups. Without further 

assumptions, test-score metrics are arbitrary. Therefore, the existing research literature on the 

short-term test-score effects of high-quality pre-K only allows for metric-dependent and hence 

arbitrary comparisons of benefits for disadvantaged versus middle-class children. By making 

additional, informed assumptions about links between test scores and future earnings, we are 

able to project earnings effects for children from different income groups, and thereby 

compare effects across income groups based on an important component of social benefits.   

 Using data collected on children who were just beginning pre-K and kindergarten in 

Tulsa Public Schools in the fall of 2006, we use a regression-discontinuity design to estimate 

treatment effects on average test-score percentiles.  We combine these results with Chetty et 

al.’s findings to generate projected earnings effects and a partial cost-benefit analysis of the 

Tulsa pre-K program. The results of this analysis suggest that the Tulsa pre-K program has 

substantial earnings benefits for each of the income (school lunch) and program-type (full-day 

versus half-day) subgroups examined. Furthermore, in each case the benefit-cost ratio well 

exceeds 1, even though we only consider one particular benefit—adult earnings benefits—in 

this analysis. When earnings effects are considered relative to expected baseline earnings for 

each of the income groups, we also find that the percentage effects on future adult earnings 

are largest for lower-income children. These informed projections allow us to move beyond the 
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metric of test-score gains to provide some idea of the long-term social benefits of the Tulsa pre-

K program.  

 The remainder of this paper is organized as follows. In section 2, we discuss the 

limitations of test scores as a metric for assessing program benefits and making meaningful 

comparisons across income categories. We then describe recent findings by Chetty et al., which 

suggest the shape of the relationship between test-score percentiles and adult earnings, and 

their applicability in the context of the Tulsa pre-K program. In section 3, we describe the Tulsa 

pre-K program and present program effects using average test score percentile as our outcome. 

In section 4, we use these estimated program effects to generate projected adult earnings 

benefits for different income and program-type subgroups. These projected earnings benefits 

serve as the basis for a partial cost-benefit analysis of the Tulsa pre-K program. Finally, in 

section 5 we discuss the limitations of our analysis and offer some concluding remarks.   

 
2.  Measuring the Distribution of Preschool Benefits: The Need for a Test Score Metric That 

Can Be Related to Benefits 
 
 Should preschool be targeted at disadvantaged groups, or made universally available? 

The answer to this depends in part on how the benefits of high-quality preschool vary with a 

child’s family income. Many of these benefits, such as higher adult earnings for former 

preschool participants, only occur in the long term. 

 However, good long-term studies of preschool have been confined to disadvantaged 

groups. For example, the best-known high-quality studies, such as studies of the Perry 

Preschool Program (e.g., Schweinhart et al. 2005), the Abecedarian Project (Campbell and 
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Ramey 2010), or the Chicago Child-Parent Center Program (Reynolds, Temple, Ou, et al. 2011) 

focus on disadvantaged children.  

 Some good short-term studies of preschool do include children from both 

disadvantaged and more advantaged families (Gormley et al. 2005; Gormley, Phillips, and Gayer 

2008; Wong et al. 2008).  The most rigorous short-term studies use a methodology called 

regression discontinuity. This methodology, to be explained further below, allows us to 

estimate the effects of preschool on test scores at kindergarten entrance. This methodology 

yields rigorous estimates without a random assignment experiment, such as that used in recent 

studies of Head Start (Puma et al. 2005, 2010). 

 
Metric Challenges 

 But effects on kindergarten test scores have some serious limitations as a metric. 

Without additional information, it is unclear how kindergarten test-score effects are related to 

program benefits, such as adult earnings.  

The metric issue for kindergarten test-score effects goes even further. Without further 

information or assumptions, kindergarten test-score effects do not allow qualitative statements 

comparing achievement gains at kindergarten entrance across income groups. The problem is 

that without further information, test-score scales are arbitrary. Any monotonic transformation 

of test scores conveys the same information. Unless the individuals or groups who are being 

compared have the same baseline starting point, it is impossible to say who has gained the 

most. 
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 For example, consider the following pattern of test-score effects of preschool: First, 

suppose that children eligible for a free lunch (the lowest income group) go from a test score of 

20 at preschool entrance to a test score of 40 at kindergarten entrance. Second, suppose that 

children eligible for a reduced-price lunch (the next-lowest income group) go from a test score 

of 30 at preschool entrance to a test score of 50 at kindergarten entrance. Finally, suppose that 

children who must pay full price for lunch (the highest income of these three groups) go from a 

test score of 40 at preschool entrance to a test score of 60 at kindergarten entrance.  

 Under these assumptions, who has gained the most in achievement from preschool 

entrance to kindergarten entrance? Without additional information, it is impossible to say. Each 

group has gained the same 20 points on this particular test-score metric. But we have no idea 

whether a gain from 20 to 40 points, versus a gain from 40 to 60 points, has the same social or 

economic benefits, or has the same meaning in terms of achievement gains. In percentage 

terms, the achievement gains are greater for the lower-income groups: a 100 percent gain for 

the free-lunch children, a 67 percent gain for the reduced-price-lunch children, and a 50 

percent gain for the full-price-lunch children. But without further information, comparing these 

percentage gains is meaningless. 

 To put this another way, any monotonic transformation of the test-score metric conveys 

the same information. There is some monotonic transformation of test scores that will yield any 

pattern of absolute and percentage test-score gains across the three income groups. As Kevin 

Lang (2010) has pointed out, the arbitrariness of test-score metrics is a general problem for 
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educational policy. For example, the arbitrariness of test-score metrics causes problems in 

comparing “value added” across teachers, schools, or programs.  

 Comparing the value of test-score gains requires a judgment as to how test-score gains 

are related to something we value. Ideally, we would like to relate test-score gains to some 

comprehensive measure of social benefits. In the real world, we would perhaps settle for 

relating test-score measures to at least one important component of social benefits.  

 
A Possible Solution 

 Fortuitously, recent research by Chetty et al. (forthcoming) suggests the shape of the 

relationship between early test scores and adult earnings. Adult earnings gains are a major 

component of the social benefits of many educational programs, including high-quality 

preschool. For example, in the most recent benefit-cost analyses done of Perry Preschool 

(Heckman, Moon, et al. 2010), adult earnings gains are 51 percent of total social benefits and 

over 100 percent of the benefits for former program participants. (Former program participants 

lose some welfare benefits.)1

                                                           
1 In contrast to Heckman, Moon, et al.’s results, Schweinhart et al. (2005) find that earnings benefits are 

only 23 percent of total social benefits for Perry Preschool. But this is because Schweinhart et al. attach much 
higher valuations per averted crime to the effects of Perry Preschool in reducing crime. The estimated earnings 
benefits in Schweinhart et al. are only 5 percent lower per participant that in Heckman, Moon, et al.’s results (See 
Heckman, Moon, et al. [2010], Table 8). Furthermore, because the crime benefits accrue to the rest of society, not 
program participants, Schweinhart et al.’s results imply that more than 100 percent of the program’s benefits for 
former participants are due to increased earnings. Rolnick and Grunewald (2003) also find that the earnings 
benefits of Perry Preschool are only 28 percent of total social benefits (see Heckman, Moon, et al., Table 8). This is 
in part due to the higher valuation they assign to the program’s effects in reducing crime, but also due to their 
estimate of earnings effects of the program being 44 percent lower per participant than is true in Heckman, Moon, 
et al. However, over 100 percent of the Perry Program’s participant benefits in Rolnick and Grunewald’s 
calculations are due to increased adult earnings. 

  In the most recent benefit-cost analyses of the Chicago Child-

Parent Center Program (Reynolds, Temple, White, et al. 2011), adult earnings gains are 31 

percent of total social benefits and 72 percent of the benefits to former program participants. 
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In both of these studies, the benefits of high-quality preschool are mainly adult earnings gains 

and lower crime, of which the former is the main benefit to participants.  

 Chetty et al.’s research is based on data from the Tennessee Class-Size Study, also 

known as the Student/Teacher Achievement Ratio (STAR) experiment. This study was intended 

to examine the effects of variations in class size in grades K–3. Students and teachers were 

randomly assigned to classrooms of different sizes.  

Chetty et al.’s research links STAR participant data to adult earnings data from IRS 

administrative data. Chetty et al. find an intriguingly simple relationship between one particular 

metric for test scores at kindergarten exit and adult earnings. The Chetty et al. metric for test 

scores at kindergarten exit is the average percentile rank of the student on the various tests 

combined. For each test, this involves scoring the test as the student’s percentile rank, using 

the control group sample or a national sample, and then taking the average of these percentile 

ranks. Chetty et al. mention that this particular test-score metric has a precedent in Krueger’s 

(1999) scaling of test scores in his analysis of the STAR study. 

 Chetty et al. relate this percentile metric to adult earnings—specifically, average annual 

earnings from age 25 to 27. Chetty et al. find that this percentile metric is linearly related to 

adult earnings (Chetty et al., forthcoming, Fig. 1). The relationship seems to be highly linear 

even in the tails of the distribution of test scores. In other words, an increase in test scores of 

10 percentiles gives approximately the same dollar increase in adult earnings, regardless of the 

initial percentile rank.  
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 One of the central questions investigated by Chetty et al. is the impact of class quality 

on test scores and adult earnings. Class quality is measured by average test scores of all 

students other than the individual student being considered. For kindergarten entrants, Chetty 

et al. find that an increase in kindergarten class quality that raises an individual student’s test 

scores at the end of kindergarten by 1 percentile increases average annual adult earnings at 

ages 25–27 by $73.01 (Chetty et al., forthcoming, Appendix Table 13, col. 1).2

 

 This measure 

controls for the individual student’s demographic characteristics, and it attempts to isolate the 

impact of an induced change in learning conditions.  We use this approach to estimate the 

effects of Tulsa’s pre-K program on adult earnings. 

Potential Drawbacks 

 Extrapolating Chetty et al.’s impact estimates to studies of preschool raises some 

legitimate questions. First, one might wonder whether any initial effects of pre-K on test scores 

will fade. If fade-out occurs, and persists into lower effects on adult earnings, then 

extrapolating Chetty et al.’s results to preschool is building a house on sand. We know from the 

recent Head Start study that Head Start’s effects on test scores fade considerably over time 

(Puma et al. 2010). Even for other pre-K programs, with larger initial effects on test scores, a 

meta-analysis by Camilli et al. (2010) shows that test-score effects (measured in effect-size 

units) of pre-K tend to fade, compared to effects at age 5, by 62 percent by age 10.  

                                                           
2 Chetty et al. (forthcoming) measure effects in 2009 dollars as $78.71. However, in this paper, we 

measure all dollar effects in fiscal year 2005–06 values, e.g., from July 1, 2005, to June 30, 2006. This is done to 
later be comparable with the cost data in Tulsa, which is for the 2005–06 fiscal year for the school district.  
Conversions are done using the national Consumer Price Index for all urban consumers from the U.S. Bureau of 
Labor Statistics. 
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However, Chetty et al. also show that even when effects of early interventions on test 

scores fade out during the K–12 years, these interventions may still have large effects on adult 

earnings. Specifically, they estimate that improvements in kindergarten class quality, after 

initial strong effects on test scores at the end of kindergarten, by fourth grade no longer have 

effects on test scores that are statistically or substantively significant (Chetty et al., Fig. 6). By 

fourth grade, the test-score effects of kindergarten class quality fade enough so that the 

predicted effects on adult earnings are less than 10 percent of what would be predicted based 

on kindergarten test scores. But despite this test score fade-out, by the time individuals are in 

their mid-20s, the actual, observed effects of kindergarten class quality are similar to what was 

predicted based on kindergarten test-score effects. The K–12 test score fade-out is a misleading 

indicator of adult earnings effects.  

Similar fade-out of test score effects, and reemergence of effects in adulthood, have 

been found in some studies of pre-K programs. For example, Deming (2009) finds that Head 

Start’s test-score effects at ages 5 and 6 faded by more than 60 percent (in effect-size units) by 

ages 11–14 and were no longer statistically significant. However, Head Start’s effects on adult 

outcomes (at age 19 and above) were again statistically significant, and were of similar 

magnitude (in effect-size units) to the initial test-score effects at ages 5 and 6.  

 What is going on here? One hypothesis is that the initial effects of early interventions on 

so-called hard skills, such as literacy and math test scores, proxy for initial effects on both hard 

skills and so-called soft skills. These soft skills include social skills such as ability to get along 

with peers and authority figures such as teachers, as well as character skills such as self-
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confidence and ability to plan and defer gratification. As James Heckman and his colleagues 

have hypothesized, this early development of both hard skills and soft skills may lead to further 

growth in K–12 of hard skills and soft skills (Heckman, Malofeeva, et al. 2010; Heckman, Stixrud, 

and Urzua 2006). However, the persistence of the effects of soft skills development may be 

greater than is manifested in later school test scores. Ultimately, these greater long-run soft 

skills, along with some effects on hard skills, may explain the long-run effects on adult earnings. 

In sum, early success in hard skills may be associated with greater self-confidence and social 

skills, which are reflected in higher adult earnings, even when a considerable portion of the 

initial effects on hard skills fades.              

This discussion raises a second question about extrapolating the Chetty et al. results to 

Tulsa’s pre-K program.  It is not necessarily the case that early test-score impacts generated by 

policy X will yield similar effects on adult earnings to similar test-score impacts generated by 

policy Y. Perhaps the two policies will have different persistence of test-score effects. Perhaps 

the two policies will have different accompanying changes in students that will lead to different 

effects on adult earnings. For example, perhaps the accompanying change in soft skills will 

differ across the two policies. As an extreme example, suppose the test-score impacts are 

generated by very narrow teaching to the test. In that case, one could imagine that this policy 

might have smaller effects on adult earnings than other policies that yield similar effects on test 

scores. As we will discuss in section 3, however, the available evidence indicates that Tulsa’s 

pre-K program is not a narrow program focused only on test-score improvements. The program 

has broad benefits, including benefits in improved social skills.  
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A third issue is that preschool impacts on test scores are not necessarily estimated at 

the end of kindergarten, which is the earliest year for which Chetty et al. link test scores to 

adult earnings.  For example, in this current study, we are measuring preschool impacts on test 

scores as of the start of kindergarten. However, a defense for using other years is that Chetty et 

al. also find that test scores measured in percentile ranks are highly correlated for different 

grade levels. In addition, Chetty et al. find that the estimated effect of test-score percentile on 

adult earnings is similar across grade levels from the end of kindergarten to the end of fourth 

grade (Chetty et al., Appendix Tables 4 and 5). Test-score percentile has somewhat higher dollar 

effects on adult earnings for test scores measured in percentile terms at the end of sixth 

through eighth grades. The similarity across early years in the relationship between test-score 

percentiles and adult earnings makes it plausible that the end of kindergarten/adult earnings 

relationship will be similar to the start of kindergarten/adult earnings relationship or the end of 

preschool/adult earnings relationship.   

A fourth issue with extrapolating Chetty et al.’s results to predict earnings effects of 

preschool is differences in local labor markets. One can imagine that the link between early test 

scores and adult earnings in Tennessee, the source of Chetty et al.’s data, might differ from the 

link in Tulsa or in other local labor markets. (Chetty et al. include adult earnings wherever 

earned, but as the sample went to school in Tennessee, they are obviously more likely to stay 

as adults in Tennessee than is true of individuals who went to school in other states.) The types 

of jobs, and their wage rates and skill requirements, might differ greatly across local labor 

markets. Although this is a legitimate concern, migration of even a minority of workers and 
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employers across local labor markets should result in changes in market wages that limit the 

differentials across local labor markets in the relationship between adult earnings and adult 

skills (Marston 1985). If the cross-labor-market differences in the relationship between adult 

skills and earnings are limited by migration, and if early childhood skills are linked to adult skills, 

then migration also puts some limits on how much the relationship between early childhood 

skills and adult earnings can differ across local labor markets.    

In sum, there are some good reasons to be skeptical that Chetty et al.’s results can 

provide predictions of pre-K’s effects on adult earnings that are precise and certain. However, 

there are also good reasons to think that for a pre-K program that has demonstrated effects on 

both hard skills and soft skills, early effects on test scores might provide rough estimates of 

future earnings effects that can suggest plausible magnitudes of social benefits. The question 

we now turn to briefly is whether early test-score gains actually do predict future earnings 

effects for two pre-K programs for which we have actual measures of both early test-score 

effects and later adult earnings effects.   

 
Evidence from Ypsilanti and Chicago 

 To see whether Chetty et al.’s approach might provide reasonable estimates for adult 

earnings gains from pre-K, we will now consider evidence from the Perry Preschool Program 

and the Chicago Child-Parent Center Program. These two programs were chosen because they 

are the only two high-quality preschool programs with good evidence on adult earnings in the 
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mid-20s or later.3

 For each program, we consider reported data for how the program affected test scores 

soon after program completion. These test-score effects are translated into an average 

program effect on test scores measured in percentiles. Based on Chetty et al.’s data on dollar 

earnings effects per percentile, and the mean annual earnings at ages 25 to 27 in Chetty et al.’s 

sample, we calculate a percentage effect on adult earnings. Percentage effects on earnings are 

used rather than dollar effects because the preschool programs’ estimated effects on adult 

earnings are at a wide variety of ages, not ages 25 to 27. It seems reasonable that over the life 

cycle, earnings effects will tend to go up or down with baseline earnings.

  These two preschool programs also have good evidence on these programs’ 

near-term effects on test scores. 

4  In addition, the 

earnings metrics used in the various studies differ, which suggests that percentage comparisons 

are more appropriate.5

 As Table 2.1 shows, the test-score-predicted adult earnings effects based on Chetty et 

al.’s results are reasonably close to the adult-outcome-predicted adult earnings effects. These 

 These test-score-predicted percentage effects on adult earnings are 

compared with more direct estimates of these programs’ effects on adult earnings, based on 

adult outcomes.  

                                                           
3 The Abecedarian program as of now has research that uses data on adult outcomes through age 21. 

However, at this age, many former child participants are still involved in postsecondary education. This is 
particularly true for participants most favorably affected by the Abecedarian program. Therefore, the available 
Abecedarian data do not provide as complete a view of effects on adult earnings as are provided by the CPC 
program and the Perry program.   

4 Heckman, Moon, et al.’s (2010) analysis finds that over the life cycle, the percentage effects of Perry 
Preschool grow from the early 20s to the prime earning years. This is discussed further later in our paper. Thus, 
assuming that percentage effects will be constant is likely to be a conservative assumption about earnings gains 
predicted by test score percentile effects in preschool or kindergarten. However, assuming constant percentage 
effects is better than assuming constant dollar effects.    

5 Chetty et al. (forthcoming) use earnings data from IRS Form 1040 and Form W-2. Heckman, Moon, et al. 
(2010) use a comprehensive measure of compensation that includes benefits, which we would expect to lead to 
larger dollar effects. Reynolds, Temple, Ou, et al. (2011) use a measure of median earnings within particular 
income groups, which seems likely to lead to lower dollar effects, as the median value for the lowest income group 
is zero and the median value for the highest income group is $30,000 (Reynolds, Temple, Ou et al. 2011, appendix).   
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findings suggest that short-term test-score effects can be used to provide ballpark estimates of 

adult earnings effects.6

 Of course, it would be preferable to actually have random assignment evidence on test-

score effects from preschool for a wide variety of income groups, together with random 

assignment evidence on adult earnings effects for a wide variety of income groups. But 

acquiring such information would be expensive. The issue is not just monetary costs, but also 

social opportunity costs. Waiting around for another 25 years for experimental evidence on the 

adult earnings effects, and other adult outcome effects, of universal preschool for different 

income groups has a large opportunity cost. This opportunity cost is the possible foregone 

benefits from not implementing such programs now, compared to waiting 25 or more years for 

more data. These costs justify making great efforts to see what we can estimate from the 

available data on different income groups’ short-term test-score effects.   

 

 Finally, we note that, in addition to Chetty et al.’s paper, there is a precedent for our use 

of test scores to predict future earnings effects and social benefits of early interventions. In 

Krueger’s (2003) early analysis of the cost and benefits of Tennessee’s class size reduction 

experiment, he heavily relied on estimates of how early elementary test-score improvements 

would be reflected in adult earnings effects. Krueger’s benefit-cost analysis used estimates 

from Currie and Thomas (1999) of how reading and mathematics test scores at age 7 are 

                                                           
6 Early test scores and later earnings results also give similar results if we assume, less realistically, that 

preschool interventions or test-score improvements give the same dollar increase in earnings at all ages, and 
regardless of exactly how earnings are measured in the particular study. The Perry test-score percentile effects at 
the end of preschool predict annual adult earnings gains of $2,359, measured in fiscal year 2005–06 dollars. 
Heckman, Moon, et al.’s (2010) numbers imply average annual total compensation gains of $3,322, in 2005–06 
dollars, averaged across ages 19 to 40.  This figure is based on direct observations from the Perry data, not 
extrapolation. The CPC test-score percentile effects in kindergarten predict average annual adult earnings gains of 
$1,155, measured in fiscal year 2005–06 dollars. Reynolds, Temple, Ou, et al.’s (2011) measure of effects on 
median earnings within income groups implies effects of $754 in year 2005–06 dollars.        
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related to adult earnings at age 33, using British data. The Currie and Thomas estimates of the 

effects of early test scores on later earnings are similar in magnitude to the Chetty et al. 

estimates.7

 

 

3.  Estimating the Percentile Test-Score Effects of Tulsa’s Pre-K Program 

 Suppose we want to use Chetty et al.’s results to predict the adult earnings effects of a 

pre-K program on different income groups. To do so, what we need is a pre-K program that is 

truly broad in scope, with data allowing for a reliable estimate of kindergarten test-score effects 

for different income groups, and with the ability to measure test-score effects with a percentile 

metric. Fortuitously, we have all of these elements in the Tulsa Public Schools pre-K program. 

This section of the paper uses this program to estimate percentile effects on entering 

kindergarten test scores.       

 
Tulsa Pre-K Program 

 The Tulsa Public Schools pre-K program is a school-based, state-funded pre-K program 

for four-year-old children. Since 1998, Oklahoma’s school districts have had the option of 

providing pre-K to all four-year-olds who wish to enroll.  Most school districts have chosen to 

participate, including Tulsa, the largest school district in the state. Although enrollment is 

voluntary, the overwhelming majority of parents have chosen to enroll their four-year-olds. 

Oklahoma now leads the nation in preschool access, with over 70 percent of four-year-olds 

enrolled (Barnett et al. 2010). 

                                                           
7 A discussion and comparison of the Currie and Thomas versus the Chetty et al. estimates is provided in 

Bartik (2011), endnote 3, starting on p. 349.  
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 The Tulsa pre-K program is a high-quality program. Every teacher has a B.A. degree, is 

early-childhood-certified, and earns the same salary as other public school teachers, as required 

by state law.  A 10-to-1 child/staff ratio is maintained. A systematic comparison of Tulsa Public 

Schools’ pre-K classrooms with school-based pre-K classrooms in 11 other states reveals that 

Tulsa pre-K teachers spend more time on task than their counterparts elsewhere. Based on the 

CLASS measure, instructional quality (as measured by productivity, instructional learning 

formats, concept development, and quality of feedback) is also higher in Tulsa than elsewhere 

(Phillips, Gormley, and Lowenstein 2009). 

 The Tulsa pre-K program is clearly not simply focusing narrowly on improving test scores 

on reading and math tests. For example, previous analyses of the Tulsa pre-K program have 

found some statistically significant but modest positive effects on social-emotional 

development (Gormley et al., forthcoming). Suppose, as some researchers have hypothesized, 

that effects of preschool on soft skills are an important mechanism for these programs’ long-

run effects (Heckman, Malofeeva, et al. 2010). Then the broad estimated effects of the Tulsa 

pre-K program reduce the possibility that measured effects on reading and math skills will 

understate later effects on earnings.    

 In short, the Tulsa pre-K program is a better-than-average pre-K program that reaches 

large numbers of students. In this sense, it differs from the justly celebrated Perry Preschool 

and Abecedarian Project programs, which reached very small numbers of students. It also 

differs from these programs in its relatively low cost. Whereas the Tulsa pre-K program cost an 

average of $4,403 in its half-day version, and $8,806 for its full-day version (see section 4), the 
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Perry Preschool Program cost $17,526 per child, and the Abecedarian Project cost $39,672 per 

child in fiscal year 2005–06 dollars (Masse and Barnett 2002, Table 8.2, p. 45; Schweinhart et al. 

2005, Table 7.8, p. 148).8  On the other hand, the Tulsa pre-K program is similar in costs to the 

Chicago CPC program, which cost $5,372 per year for a half-day program that included not only 

school-year services, but also some summer services.9

 

 The Chicago CPC is also a larger-scale 

program than the Perry or Abecedarian programs, though not of the size and scope of the 

Oklahoma program.  

Tulsa Data 

 The data available to us are derived from student testing conducted in August 2006.  

Just prior to the commencement of classes, teachers were instructed to administer three 

subtests of the Woodcock-Johnson Achievement Test to incoming kindergarten students and to 

incoming pre-K students. The three subtests, appropriate to relatively young children, were  1) 

Letter-Word Identification (a measure of prereading skills), 2) Spelling (a measure of prewriting 

skills), and 3) Applied Problems (a measure of premath skills). These tests were successfully 

administered to 73 percent of incoming kindergarten students and 78 percent of incoming pre-

K students. 

 We also obtained data from administrative records and from a parent survey, 

conducted at the same time as the testing. Administrative records specified each child’s gender, 
                                                           

8 The Perry Preschool program was a two-year program for most participants, so the cost for a one-year 
program would be lower. However, there is insufficient sample size to estimate the effects of the Perry program 
for one-year participants, so published findings are all based on combining participants for both one year and two 
years.  

9 Data are taken from Reynolds, Temple, White, et al. (2011) but are adjusted to 2005–06 prices. The CPC 
program provided services for two years. However, only 55 percent of program participants participated for two 
years. The available benefit-cost analyses indicate that the one-year program had a higher benefit-cost ratio than 
the two-year program (Reynolds, Temple, White, et al. 2011, Table 5). 
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date of birth, race/ethnicity, and school lunch status, a surrogate for income. The parent 

survey, which we received from 86 percent of tested students, yielded valuable information on 

the mother’s education, the presence of the biological father at home, Internet access, and 

other variables. 

 In the analyses that follow, we handle missing data using multiple imputation (Little and 

Rubin 2002; Rubin 1987).10

 

 This method involves creating multiple complete data sets 

containing plausible values for missing data based on observed values. The complete data sets 

are analyzed separately and combined to produce the final results, which incorporate the 

uncertainty associated with imputation. Parameter estimates are averages of estimates across 

the imputed data sets, and standard errors are calculated according to Rubin’s (1987) method, 

which accounts for both within- and between-imputation variance. Multiple imputation has 

been shown to outperform other common missing data techniques (e.g., Croy and Novins 2005; 

Rubin 1996; Sinharay, Stern, and Russell 2001).  

Estimating Technique 

 As with previous studies of the Tulsa pre-K program (Gormley and Gayer 2005; Gormley 

et al. 2005; Gormley, Phillips, and Gayer 2008), we used a regression-discontinuity design to 

guard against selection bias.  We compared incoming kindergarten students who had 

participated in pre-K the previous year (the treatment group) with incoming pre-K students (the 

control group). This research design addresses the crucial concern that certain families are 

                                                           
10 We implemented multiple imputation with five imputes using the Stata ICE program (Royston, Carlin, 

and White 2009), which generates plausible values using imputation by chained equations (van Buuren, Boshuizen, 
and Knook 1999). For our analytic sample, the prevalence of missing data was less than 1 percent for race, 20 
percent for whether the child lived with his/her biological father, and 27 percent for mother’s education.  
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more likely to select into the pre-K program, and these families may have unobservable 

characteristics that are also related to test scores.  

 Obviously, the students differ, by one year, in their average age, which is positively 

related to test outcomes. However, we controlled for the students’ date of birth and other 

covariates. The big advantage of our approach, as opposed to other nonexperimental 

alternatives, is that both sets of students participated in the program, albeit a year apart on 

average. This means that both sets of parents affirmatively chose to enroll their students in the 

program, which should, in principle, eliminate differences in unobservable characteristics 

associated with program participation, such as parent or student motivation.   

 Whether a child is in the treatment or comparison group is dependent on his or her date 

of birth. The state of Oklahoma enforces a strict birthday cutoff for program eligibility in a given 

year. Thus, for the 2005–06 academic year, children were only qualified to attend the TPS pre-K 

program if they were born on or before September 1, 2001. Because of this strict birthday 

cutoff (the discontinuity), we are able to compare pre-K entrants who just missed the birthday 

cutoff with pre-K alumni who just made it. 

 If the regression discontinuity research design works, then students in the treatment 

and control groups should have similar demographic characteristics, particularly for 

observations closest to the cutoff.  As Table 3.1 indicates, this was the case. The results in Table 

3.1 show the differences in test scores and observable characteristics around the birthday 

cutoff. These parametric fits reflect predicted differences at the cutoff and are equivalent to 

testing for a “jump” at the regression discontinuity. With the exception of the proportion 
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receiving reduced-price lunch (p < 0.10), all of the differences between pre-K entrants and 

alumni are nonsignificant.  

 With a regression discontinuity design, one can use different “windows,” or ranges, 

around the cutoff—e.g., a 12-month window, a 6-month window, a 3-month window, or even a 

1-month window.  We have chosen to use a 12-month window, to maximize our sample size.  

Though restricting the analysis to observations closest to the cutoff reduces any potential bias, 

this also greatly reduces the precision of the estimates. In previous studies, the choice of a 

window yielded somewhat different effect sizes but did not yield fundamentally different 

results. 

 
Average Test Percentile Dependent Variable 

 In contrast to previous studies using the Tulsa data, we have created a different 

dependent variable, to mirror as closely as possible the approach taken by Chetty et al. 

(forthcoming).  Previous Tulsa studies have utilized raw test scores and have reported results 

for the three Woodcock-Johnson subtests separately. In this study, we utilize percentile ranks, 

and we combine the three subtests into one measure. Specifically, we scaled scores for each of 

the subtests into percentile ranks based on the distribution of test scores in the universe of 

tested kindergarten students, regardless of treatment status. We then assigned percentile 

ranks for each subtest to both pre-K entrants and pre-K alumni and took the average across the 

three subtests. In section 4, we will combine these percentile estimates with Chetty et al.’s 

results to predict future earnings effects and compare these earnings effects to program costs.  
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Preliminary Results for Comparison with Previous Studies  

 Returning to Table 3.1, we observe (as expected) a substantial and highly significant (p < 

0.001) difference in average test percentile at the cutoff. These results suggest that program 

participation is associated with a 14.9-percentile-point increase in test scores. Another way to 

estimate this effect is to use a single equation model in which test scores are regressed on 

precise date of birth (number of days born before or after the birthday cutoff), an indicator for 

whether the person was born before the birthday cutoff, and an interaction term between 

these two variables to allow for different slopes on either side of the cutoff. Table 3.2 presents 

the results of such a model, including a number of covariates, for the full sample in the 12-

month window. Columns 2–4 present similar results for three lunch status subgroups: free 

lunch, reduced-price lunch, and full-price lunch. 

 Similar to the results in Table 3.2, for the overall sample, program participation 

increases test scores by 15.5 percentile points on average, an effect size of 0.89.  This effect 

size, using percentile ranks and combining all three tests, appears somewhat higher than the 

average effect size for the three tests separately, using raw test scores: 0.98 for Letter-Word 

Identification, 0.74 for Spelling, and 0.36 for Applied Problems (Gormley et al. 2010), with an 

overall average effect size across these three tests of 0.69. The reason for the slightly higher 

effect sizes with this different dependent variable is unclear. Perhaps the averaging involved in 

creating the percentile variable lowers somewhat the natural population variation or standard 

deviation, which will tend to raise effect sizes.    
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 As Table 3.2 indicates, effect sizes for pre-K participation are impressive generally, but 

especially for free-lunch and reduced-price-lunch students.  As one shifts along the income 

spectrum from full-price-lunch to reduced-price-lunch to free-lunch students, effect sizes shift 

steadily upward, from 0.57 to 0.98 to 1.21. These higher effect sizes occur in part because the 

estimated effect on the dependent variable is somewhat higher for free-lunch and reduced-

price-lunch students. But the higher effect sizes for low-income groups also occur because the 

standard deviation of the dependent variable is lower among pre-K entrants in low-income 

groups—that is, the “natural variation” in the dependent variable is somewhat lower in the 

lower-income groups. The effect-size methodology can be interpreted as saying that effects 

that are larger relative to natural variation are in some sense “more important” or at least more 

difficult to obtain. 

 These “effect size” variations across income groups are qualitatively similar although 

quantitatively somewhat larger than previous results for the Tulsa pre-K program (Gormley et 

al. 2005). These previous results are from the fall of 2003 and are for three different tests. In 

this previous study, for example, average effect sizes across the three tests were 0.49 for the 

full-price-lunch group, compared to 0.64 for the free-lunch group. In the current study, effect 

sizes go up from 0.57 for the full-price-lunch group to 1.21 for the free-lunch group.  

 Another metric for comparing different income groups is to examine percentage effects 

on test scores. Compared to where the children start out at entrance to pre-K, by what 

percentage is pre-K estimated to improve their test-score performance? In other words, this 

approach divides the estimated test-score effects by the control group means for that particular 
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income group. By this metric, the percentage test-score effects vary even more by income 

group. As shown in Table 3.2, percentage effects are 44.1 percent for the full-price-lunch group, 

increasing to 82.5 percent for the reduced-price-lunch group, and then up to 112.8 percent for 

the free-lunch group. Much of this variation is due to the unsurprising fact that low-income 

children at pre-K entrance tend to have much lower test scores on average. If what we view as 

important is percentage effects on a child’s test-score gains, then clearly pre-K programs in 

Tulsa have “more important” effects on low-income children. 

 These percentage variations across different income groups are qualitatively similar to 

previous years’ results for Tulsa, but even more pronounced quantitatively. For example, 

consider some percentage results from the fall of 2003 in Tulsa (Gormley 2010). Across the 

three tests considered, average percentage effects increased from 22 percent for the full-price-

lunch group to 38 percent for the free-lunch group. The jump in percentage effects in the 

current study is far greater, from 44 percent for the full-price-lunch group to 113 percent for 

the free lunch group.   

 However, neither “effect sizes” nor “percentage effects” on test scores are obviously 

and necessarily tied to the social benefits of pre-K programs.  Based on Chetty et al., we should 

instead be focusing directly on the gain in test scores measured in percentile terms, which is 

linearly tied to the program-induced gain in adult earnings. 

 
Percentile Test Score Effects Disaggregated by Lunch Status and Half-Day vs. Full-Day Program 

 We focus more attention in this subsection on the percentile effects. We will use 

percentile effects in section 4 to calculate adult earnings effects. These adult earnings effects 
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will then be compared with program costs to obtain a partial estimate of program benefits 

versus costs.  

 To allow for a proper comparison with program costs, we need to also disaggregate the 

Tulsa data by whether students were in a half-day or full-day program. Obviously, the full-day 

program costs more. This further disaggregation is particularly important because there are 

differences across income groups in relative enrollment in full-day versus half-day pre-K. 

Specifically, in our sample, 78 percent of the free-lunch pre-K entrants enrolled in full-day pre-

K, and 22 percent in half-day pre-K. In contrast, only 45 percent of the full-price-lunch pre-K 

entrants enrolled in full-day pre-K, versus 55 percent in half-day pre-K. (The reduced-price-

lunch pre-K entrant group was in-between, with 66 percent enrolling in full-day pre-K, 34 

percent in half-day pre-K.)  

These different enrollment patterns are in part related to differences in what programs 

are offered in different neighborhood schools.  The state of Oklahoma provides a greater state 

subsidy for full-day pre-K than for half-day pre-K, and also a greater subsidy for pre-K provided 

to students eligible for a free lunch. In addition, local school districts can use federal Title I 

funds to help support pre-K for students eligible for a free or reduced-price lunch. Finally, one 

could argue that low-income families will be more in need of full-day programs, both to help 

their children and to provide free child care, which these families will have more need of, both 

because of their lower disposable income and because of the likely greater proportion of single 

mothers among low-income families. Therefore, Tulsa, like many other school districts in 
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Oklahoma, chooses to concentrate more of its full-day pre-K programs in neighborhood schools 

that serve a higher proportion of disadvantaged children. 

In addition, the different enrollment patterns may be related to differences in parent 

preferences or needs. Parents are not allowed to select a full-day versus a half-day program at a 

particular neighborhood school, as each school only offers a particular type of program. 

However, parents choose whether to participate in the program at all, because although 

Oklahoma’s pre-K program is “universal,” it is also voluntary. In addition, there were two Tulsa 

public schools in 2005–06 that offered some full-day slots to nonneighborhood children, with 

free transportation. It is certainly plausible that low-income parents may find full-day pre-K 

programs more appealing, relative to half-day programs, while middle-class parents may be 

more attracted to half-day programs.11

Regardless of what causes these enrollment differences across income groups, we need 

to control for these differences to properly compare the benefits and costs of pre-K across 

income groups. We don’t want to conclude that pre-K is more effective for low-income groups 

simply because a higher percentage of the low-income group enrolls in full-day pre-K programs.    

   

 Table 3.3 presents the percentile test-score effect of Tulsa pre-K, disaggregated both by 

full- versus half-day status and by lunch status. We only present the estimated effects of pre-K, 

but the full regression includes all of the control variables included in Table 3.2. As the first row 

of numbers in Table 3.3 makes clear, for a given type of program (full-day versus half-day), 

                                                           
11 On the whole, conversations with Tulsa school officials suggest that most parents prefer full-day pre-K 

programs. In response to this demand, as of the 2010–11 school year, virtually every Tulsa school now offers only a 
full-day program. However, this was not the case in the 2005–06 school year, from which our data come, in which 
about one-third of the students (more precisely, in our data, 31.7 percent) are in half-day programs. 
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there are no large differences in percentile test effects across the three different income 

groups. The differences across different income groups are not only statistically insignificant but 

also substantively insignificant.  

 However, this is not the case when we look at effect size or percentage effects. Relative 

to the natural variation in test scores in the control group of pre-K entrants, effect sizes of Tulsa 

pre-K tend to be considerably greater for the free-lunch group than for the full-price-lunch 

group. Relative to the average starting scores in the control group of pre-K entrants, the 

advantage for the free-lunch group over the full-price-lunch group is even greater. Therefore, if 

we were to rely on effect-size measures or percentage measures, we would conclude that Tulsa 

pre-K has effects on test scores for free-lunch children, versus full-price-lunch children, that are 

in some sense larger or more important or more difficult to achieve.  

 However, based on Chetty et al.’s results, the effects on test-score percentiles may be 

more directly related to one of the main social benefits of pre-K programs, the effects on adult 

earnings. Section 4 will consider the implications of the Table 3.3 results for the adult earnings 

effects, as well as the benefits versus the costs of the Tulsa pre-K program for different income 

groups.    

 
4.  Predicting the Future Earnings Benefits of the Tulsa Pre-K Program 

This section uses the estimated effects of Tulsa pre-K on the average test-score 

percentile for different income groups, combined with Chetty et al.’s estimates, to predict 

future effects of Tulsa pre-K on adult earnings. These estimated earnings effects are then 
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compared with predicted future earnings effects of the various income groups and with 

program costs.  

 
Predicted Future Earnings Benefits  

 Even without much number-crunching, it can easily be seen that the Chetty et al. 

percentile effects on adult earnings, and our results on Tulsa percentile effects, imply large 

effects on the present value of adult earnings. This can immediately be seen because the Chetty 

et al. results imply an annual earnings effect at ages 25 to 27 of around $73 per a 1-percentile 

boost. Given that this would probably go up as this cohort ages and achieves higher earnings, 

and given that this earnings boost would accrue over a 40-year career, even a 1-percentile 

boost to test scores would have a large present value at reasonable interest rates. Given that 

the Tulsa pre-K program boosted the percentile test scores by 8 to 20 percent, the implied 

effects are quite large. 

 To predict adult earnings effects in Tulsa, we first downloaded microdata from the 

American Community Survey (ACS) for the years 2005 through 2007 for the Public Use 

Microsample Areas (PUMAs) that correspond most closely to the Tulsa metro area. We 

calculated annual earnings by age level from ages 22 to 66. (These ages are as of the survey 

administration date, which ranges through the year; the earnings data is over the 12 months 

preceding the survey date.) We started with age 22 to minimize complications due to possible 

effects of pre-K on educational attainment. We ended with age 66 to minimize complications 

due to mortality. We adjusted these earnings data to fiscal year 2005–06 prices.   
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 We then calculated the effect of a 1-percentile early test-score boost at each age. We 

assumed that the dollar effect of a 1-percentile boost would vary at different ages with the 

average earnings level at each age. We scaled the average earnings effects of a 1-percentile 

boost so that the mean earnings effects for ages 25–27, the years considered by Chetty et al., 

would exactly match Chetty et al.’s estimate of a $73.01 boost for each increase in test scores 

by 1 percentile.  

 This assumption of a constant percentage effect at different ages is likely to be 

conservative. Heckman, Moon, et al.’s (2010) analysis of the Perry Preschool results suggests 

that the percentage effects of preschool on former participants’ adult earnings tend to increase 

at later ages, compared to percentage effects for former participants in their mid-20s. Heckman 

et al.’s results imply that Perry Preschool’s effects on adult earnings average 8 percent from 

ages 19 to 27, 26 percent from ages 28 to 40, and 21 percent from ages 41 to 65. The average 

annual dollar earnings effects of Perry Preschool varies even more with age: In 2005–06 dollars, 

these average annual dollar earnings effects are $1,439 at ages 19–27, $5,621 at ages 28–40, 

and $3,596 at ages 41–65. Therefore, assuming a constant percentage effect at later ages than 

the mid-20s is better than assuming a constant dollar effect. But the true percentage effect 

does probably grow some over time compared to the mid-20s.  

 We then discounted these earnings gains to age 4. This discounting is done so that these 

earnings benefits can later be compared with Tulsa pre-K program costs, which would be 

incurred when participants are age 4. We used a real discount rate of 3 percent, which is a fairly 

typical social discount rate. However, we note that since we did not include any appreciation in 
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real wages in these calculations, the true discount rate is really 3 percent plus whatever annual 

real earnings increase ends up occurring between age 4 and the relevant age. So, for example, 

the Social Security Trustees assume long-run average real earnings growth of 1.2 percent per 

year (Board of Trustees 2011, Table II.C1, p. 7). If this occurs, then the real earnings numbers 

here should be increased by the real earnings increase between 2005–06 and the future year in 

which these earnings increases occur. An equal-sized increase in the discount rate would offset 

this secular increase in real earnings.    

 We end up with a discounted present value of an increase of $1,502 in adult earnings 

for a 1-percentile increase in test scores. Multiplying this $1,502 figure by the estimates in 

Table 3.3, for the percentile effects across the six groups (full-day versus half-day times the 

three income groups) yields the present value for each group of these earnings increases. These 

make up the first row of numbers for Table 4.1.  

As expected, these estimated earnings benefits of Tulsa pre-K are large. These earnings 

benefits would justify quite high program costs to achieve these benefits, or many times what 

Tulsa pre-K actually costs. (We consider costs further a little later.) Furthermore, based on the 

similar effects on average test percentile for the different income groups, the predicted adult 

earnings effects in absolute terms do not differ much across income groups.  

 
Predicting Earnings Effects for Different Income Groups in Percentage Terms  

 Although from an economic efficiency perspective the earnings benefits for the different 

income groups are similar, society may put a greater weight on the earnings gains to lower-
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income groups.12

Because the estimated dollar effects are similar across different income groups, a pure 

efficiency-based benefit-cost analysis would be similar across the three income groups. In other 

words, for a benefit-cost analysis that simply counts dollar gains and losses, regardless of who 

receives these gains and losses, Tulsa pre-K would be judged as having similar social benefits for 

all three income groups. However, the three income groups of children differ in their likely 

baseline earnings prospects as adults. For example, we would expect the children from families 

eligible for a free lunch to have lesser baseline earnings prospects as adults than the children 

from families eligible for a full-price lunch. Even with similar dollar effects across income 

groups, the different baseline earnings levels imply different percentage earnings impacts. The 

percentage effects on future adult earnings will be greater for free- and reduced-price-lunch 

children compared to full-price-lunch children.  

 To get some sense about how these earnings gains compare with the income 

status of the different income groups, we estimate the baseline future earnings for children in 

each of the three income groups. 

Because the baseline earnings levels are lower for children from free lunch–eligible 

families, a dollar gain from pre-K for this group would be judged by many policy analysts as 

being worth more socially than a similar dollar gain to someone whose baseline earnings 

                                                           
12 This can be done directly, although somewhat mechanically, by applying distributional weights that 

place a greater value on a dollar gain to someone of low income than to someone of high income. There is an 
extensive literature in benefit-cost analysis discussing the pros and cons of distributional weights (e.g., Johansson-
Stenman 2005).   
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prospects are higher. 13

Percentage earnings effects may not be the exactly right social weighting of benefits. 

Percentage earnings effects would only be the exactly right criteria for comparing social 

benefits if the social weight on a gain to income for a particular income group is proportional to 

one over the group’s baseline expected earnings level. However, even for other social 

weightings of the earnings gains of different income groups, these percentage earnings gains 

calculations give some idea of the distributional effects of the Tulsa pre-K program. 

Furthermore, with baseline earnings levels estimated, policymakers can apply their own social 

weights to the dollar earnings gains of each income group. Even if policymakers don’t want to 

explicitly use distributional weights, the pattern of percentage earnings gains across income 

groups give some guidance as to how qualitatively important the pre-K program’s effects are to 

different income groups.  

 The extent to which this is true depends upon how much baseline 

earnings levels vary, which will affect percentage earnings effects.  

We obviously do not know for certain the baseline future earnings levels of these Tulsa 

children who participated in pre-K in 2005–06. Among other things, these future earnings have 

not had a chance to occur yet. Therefore, we will have to make some assumptions to predict 

those likely future earnings.  

To predict future earnings, we isolated records from the American Community Survey of 

all children ages 4 to 18 who lived in the city of Tulsa and who attended public schools. 

                                                           
13 This can be justified from a utilitarian perspective based on diminishing marginal utility of income 

(Drèze and Stern 1987; Little and Mirrlees 1974; Marshall 1885). Alternatively, we can argue that society ought to 
be maximizing the prospects for the least-well-off (Rawls 1971). Finally, we can argue that society ought to be 
emphasizing enhancing basic capabilities for all persons (Nussbaum 2011; Sen 1992), and that this is more likely to 
be done with greater assistance to low-income groups. 
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(Restricting the sample to children age 4 would create too small a sample size.) We separated 

the children into three groups: those with family income less than or equal to 130 percent of 

the poverty line, who should be eligible for a free-lunch subsidy; those with family income 

greater than 130 percent but less than or equal to 185 percent of the poverty line, who should 

be eligible for a reduced-price lunch; and those with family income greater than 185 percent of 

the poverty line, who will have to pay a full-price lunch.   

For each of these three groups of children, we looked at the earnings of parents. We 

calculated for each group of parents the mean earnings, broken down by gender and age. These 

mean earnings calculations used the child weights in the ACS. Because of the large sample size 

of the ACS, we ended up with a somewhat surprisingly large sample size: for free-lunch 

children, 349 mothers and 152 fathers; for reduced-price-lunch children, 158 mothers and 114 

fathers; and for full-price-lunch children, 494 mothers and 457 fathers.  

These earnings for each of these six groups of adults, broken down by income group, 

gender, and age, were compared with the earnings of all adults in the Tulsa metro area broken 

down by gender and age. For each of the income-group/gender/age combinations, we 

calculated mean earnings of that combination as a percentage of mean earnings for all adults in 

the Tulsa metro area broken down by gender and age. We then calculated for each of the six 

groups the average percentage that parents’ earnings are of Tulsa metro-area earnings, using 

the number of parents in each of the ages as weights. Finally, we took a simple average across 

mothers and fathers for each income group to get an average percentage that that income 

group represents of overall metro-area earnings.  
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For the parents of children in Tulsa public school free-lunch families, average earnings 

were 34.1 percent of overall Tulsa metro-area earnings. For the parents of children in Tulsa 

public school reduced-price-lunch families, average earnings were 67.3 percent of overall Tulsa 

metro-area earnings. For the parents of children in Tulsa public school full-price-lunch families, 

average earnings were 135.3 percent of overall Tulsa metro-area earnings. These percentages 

seem plausible.  

However, these are typical earnings for the parents. We would expect some regression 

to the mean in the child’s future earnings as an adult. Specifically, we would expect the child’s 

earnings to on average be between his parents’ earnings and overall Tulsa metro-area earnings.  

The research literature suggests that a plausible value for the coefficient on ln(parent 

earnings), in a regression explaining the natural log of the child’s earnings as an adult, might be 

0.4 (Chadwick and Solon 2002; Solon 2002). That is, we would expect the natural log of the 

child’s average earnings to be a weighted average of the natural log of the parents’ earnings 

and the natural log of overall average earnings, with a 0.4 weight on the parents’ earnings.  

If we do this calculation, we would expect the children of Tulsa free-lunch families to 

have average earnings as adults that are 65.0 percent of the overall Tulsa metro-area average 

(65.0 = exp[(0.4)*ln(34.1) + (1-0.4)*ln(100.0)]). The children of Tulsa reduced-price-lunch 

families would be predicted to have average adult earnings of 85.4 percent of the overall Tulsa 

average. The children of Tulsa full-price-lunch families would be predicted to have average 

adult earnings of 112.8 percent of the overall Tulsa metro-area average.  
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The discounted present value as of age 4 of Tulsa metro-area average earnings from 

ages 22 to 66, discounted at 3 percent, and not allowing for any real earnings growth over time 

(or, alternatively, assuming a discount rate equal to 3 percent plus the average annual growth 

rate of real earnings), is $401,833. Using the above percentages, the average earnings of the 

children from the three income groups can be calculated as adults: free-lunch children, 

$261,308 (= 65.0 percent x $401,833); reduced-price-lunch children, $343,038; and full-price-

lunch children, $453,430.  These baseline earnings figures can then be compared with the 

estimated dollar effects of Tulsa pre-K to get percentage effects.  

These percentage effects are reported in the fifth row of numbers in Table 4.1. These 

percentage effects do differ considerably across income groups. For example, for a half-day pre-

K program, the percentage effects on earnings are almost twice as great for the free-lunch 

group as for the full-price-lunch group (6.8 percent versus 3.6 percent). For full-day pre-K, the 

differential in percentage effects between the free-lunch group and the full-price-lunch group is 

even greater (10.4 percent versus 5.4 percent). These differences are sufficient that it would 

certainly be reasonable for a policymaker concerned with income inequity, and who therefore 

valued gains to lower-income groups as more important, to conclude that the social benefits of 

pre-K are considerably greater for children from free-lunch families than for children from full-

price-lunch families.  

However, these percentage differentials are not as great as some might have guessed. 

This is in large part because of the “regression to the mean” assumptions made about the 

child’s future adult earnings. The free-lunch-eligible group’s parents have quite low earnings, at 
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only about one-third of the metro-area average (more precisely, 34.1 percent). Furthermore, 

these parents’ earnings are only about one-fourth of those of the parents of the full-price-lunch 

children (34.1 percent of the metro-area average versus 135.3 percent). However, these 

baseline earnings differentials narrow considerably for the child’s future earnings. While the 

parents of the free-lunch children have earnings that are only one-fourth of those of the 

parents of the full-price-lunch children, the expected future earnings of the free-lunch children 

are 58 percent of the expected future earnings of full-price-lunch children (65.0 percent of the 

metro-area average versus 112.8 percent of the metro-area average). 

What this illustrates is the difficulty of targeting based on the child’s future earnings. We 

can easily target pre-K and other interventions based on parental earnings. However, some 

children of the low-income parents will do considerably better as adults than their parents, 

even without any program intervention, and some children of the above-average income 

parents will do considerably worse as adults than their parents. Obviously a pre-K program 

cannot know a child’s baseline future earnings with any precision, so it is hard to determine 

perfectly which children will be most in need of this program. While there is considerable 

economic persistence across generations, there is also considerable upward and downward 

mobility, as noted by other researchers (Isaacs 2007).  

The long-term nature of early childhood interventions creates difficulties in targeting 

precisely based on the future-needs status when the benefits of these interventions will be 

realized. Nevertheless, the preceding analysis gives us an idea of the extent to which the Tulsa 

pre-K program may be expected to yield earnings benefits for participants in adulthood, and it 
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suggests that these benefits may be disproportionately larger for participants from more 

disadvantaged families.  

 
A Partial Benefit-Cost Analysis 

 These predicted future earnings effects of Tulsa pre-K can also be used to do a partial 

benefit-cost analysis of Tulsa pre-K. The benefit cost analysis is partial because it does not 

include all the benefits of Tulsa pre-K. Among the most important benefits that are not included 

are the social value of whatever reduction in crime might be caused by the program and the 

cost savings from reduced special-education costs or other remedial education costs in K–12.   

 To do such a benefit-cost analysis requires a reasonable estimate of Tulsa pre-K program 

costs.  We estimated state aid to Tulsa pre-K by applying the state aid formula to the number of 

pre-K children enrolled and to those demographic characteristics of the student body that 

triggered additional increments of state aid, such as school lunch eligibility and English language 

learner status. We then added in federal Title I funds used for Tulsa pre-K. From conversations 

with Tulsa Public Schools officials, a rough estimate of the local funds used in Tulsa Public 

Schools in 2005–06 is 87 cents in local funds for every dollar of state aid. This estimate is for all 

of Tulsa Public Schools; school officials were unable to provide a disaggregation that specified 

the local share for pre-K.   

 This local share exceeds the estimated local share for all of Oklahoma for 2005–06 that 

is provided in the annual reports of the National Institute for Early Education Research (NIEER). 

NIEER estimates that for each dollar of state aid for pre-K in Oklahoma, local school districts 

provide 57 cents (Barnett et al. 2006). We chose the larger local-share number for two reasons. 
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First, we wanted to be conservative in our cost estimates and err on the side of overestimating 

program costs. Second, we felt that it was plausible that a large urban school district such as 

Tulsa, with a large property tax base, might provide a larger local share for pre-K than is typical 

in Oklahoma.  

 Conversations with Tulsa Public Schools officials also suggested that there were no 

differences in pre-K spending for children from different income groups. More low-income 

children were in full-day pre-K, as indicated previously, but for a given type of program, there 

are believed to be no systematic differences in spending across different income groups. 

Furthermore, Tulsa Public Schools officials felt strongly that the costs of full-day pre-K were 

simply twice the costs of half-day pre-K, so that there were no economies or diseconomies of 

scale from doubling the length of the pre-K day.  

 Based on these data and these conversations, we concluded that in 2005–06, a half day 

of Tulsa pre-K cost $4,403, and a full day of Tulsa pre-K cost twice as much, at $8,806. This cost 

estimate includes all program costs, whether from federal, state, or local dollars.  

Combining these cost estimates with the estimated earnings benefits, we can come up 

with a partial benefit-cost ratio for the Tulsa pre-K program for different income groups and 

full-day versus half-day programs. These benefit-cost numbers are provided in the seventh row 

of numbers in Table 4.1. 

As can be seen by these benefit-cost ratios, for all income groups and all program-day 

lengths, the ratio of earnings benefits to costs is much greater than one. That is, even 

considering only adult earnings benefits, either program length for each of the three income 
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groups would pass a benefit-cost test and have net economic efficiency benefits. These 

conclusions would only be strengthened if other benefits were added in, such as possible 

reductions in crime or special education costs.  

Within each program type, full-day versus half-day, benefit-cost ratios do not differ 

much between the free-lunch group and the full-price-lunch group. The benefit-cost ratios 

differ somewhat for the reduced-price-lunch group, but these estimates are based on much less 

precise test-score effects, because of the much smaller sample sizes for the reduced-price-

lunch group (see Table 3.3). Therefore, from a pure efficiency perspective, as noted before, and 

including only predicted adult earnings benefits, there is not much reason to prefer additional 

pre-K services to low-income children over additional services to middle-class children. From an 

equity perspective, of course, there is a reason to prefer expanding services to low-income 

children. In addition, if the benefits of reduced crime or reduced special education costs, which 

are not measured here, were added, such benefits might differ across different income groups, 

which would change the analysis even from an efficiency perspective.  

It is tempting to use the benefit-cost figures contained in Table 4.1 to calculate the 

incremental benefits versus costs of a child in a given income group moving from a half-day 

program to a full-day program or from a full-day program to a half-day program. The last row in 

Table 4.1 presents the incremental benefit-cost ratios of moving a child in each lunch-status 

(income) group from a half-day program to a full-day program, calculated as the difference in 

earnings benefits, based on average earnings benefits in each category of program for that 

income group, divided by the average differences in costs. These results would seem to suggest 
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that for the free-lunch and full-price-lunch groups, the incremental benefits of switching from a 

half-day to a full-day program are less than the benefit-to-cost ratio for a half-day program. This 

is not the case for the reduced-price-lunch group, but, again, these numbers are based on a 

smaller sample. 

 It is important to be cautious in interpreting such comparisons. First, these calculations 

require the assumption that the incremental child switched from one program to the other 

would experience the same test-score effects and earnings benefits as the average child 

observed in that income group and program option. However, there are reasons to think that 

this may not be the case. Families participate in full-day versus half-day program types based 

partly on their own selection into a desired program and partly on decisions by Tulsa Public 

Schools about whether to place each type of program in a given school. The calculated 

incremental benefits versus costs of switching programs do not have the “selection correction” 

advantages of the regression-discontinuity method, which addresses selection bias by 

comparing treatment and comparison groups who were similarly selected into the program. In 

addition, a second important caveat is that full-day versus half-day programs may have 

additional benefits and costs. For example, offering full-day pre-K may make it easier for some 

families, particularly low-income families, to participate in the pre-K program. Any net benefits 

from additional participation from offering full-day pre-K need to be considered. 

 
5.  Conclusion 

 Because we are estimating future benefits that have not yet occurred, and because we 

are linking data from two research sites (Tulsa, Okla., and Tennessee), it is important to stress 
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the limitations of our findings. First, we cannot be sure that kindergarten test scores in 

Oklahoma will translate into adult earnings in Oklahoma in precisely the same way that 

kindergarten test scores in Tennessee have translated into adult earnings in Tennessee. One 

obvious difference is that different job markets could have different returns to different skills. 

Another difference is that the long-term effects of better kindergarten class quality in 

Tennessee could be more or less durable than the long-term effects of a pre-K program in 

Tulsa. If so, we could be underestimating or overestimating long-term effects. 

 Second, we have focused exclusively on earnings, while ignoring possible effects on 

remedial education and crime. Other studies of the long-term effects of pre-K have found 

criminal justice effects to be particularly important (Heckman, Moon, et al. 2010; Reynolds, 

Temple, Ou, et al. 2011; Rolnick and Grunewald 2003; Schweinhart et al. 2005). On the other 

hand, these other studies have focused exclusively on disadvantaged children. One might 

expect to see less dramatic effects on crime for the more heterogeneous population served by 

Oklahoma’s universal pre-K program. The same could also be true of remedial education, 

which, like crime, afflicts more disadvantaged children more grievously. In any event, this 

omission probably means that we are significantly underestimating long-term benefits. 

Furthermore, we are likely to be understating long-term benefits associated with pre-K for 

lower-income children relative to the long-term benefits for middle-income children. 

 Third, we have assumed that the long-term effects of pre-K can be predicted by short-

term effects on literacy and math skills without including explicit recognition of the possible 

long-term influence of short-term effects on social-emotional development. This could be seen 
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as assuming that long-term effects of pre-K are largely due to effects on literacy and math skills 

rather than effects on social-emotional development, which seems a strong assumption.  

 More plausibly, our focus on short-term “hard skills” can be defended as assuming that 

short-term effects on hard skills can proxy for the overall short-term effects of the program, as 

clearly these effects will be linked. For example, better hard skills will lead a child to have more 

self-confidence, one of the soft skills. We do know, from Chetty et al.’s results and other results 

(e.g., Currie and Thomas 1999) that short-term effects on hard skills can be used to predict 

adult earnings, although the mechanism for transmitting these effects may not be solely 

through effects on hard skills. In Tulsa, we have witnessed both enormous cognitive gains and 

modest social-emotional gains in the short run. It is possible, however, that short-term 

improvements in attentiveness and short-term reductions in timidity have more profound long-

term consequences than short-term gains in prereading, prewriting, and premath skills. It is 

possible that a fuller understanding of the links between all these short-term effects and long-

run earnings could lead to somewhat different and improved estimates of long-run earnings 

effects.   

 These reservations aside, our analysis offers some plausible estimates of future earnings 

effects for a high-quality pre-K program that reaches children from both more- and less-

advantaged households.  It also illuminates benefit and cost differentials for programs that vary 

in their dosage (half-day versus full-day) and for programs that vary in their beneficiaries (free 

versus reduced versus no subsidized school lunch).  What is most striking about these benefit-

cost comparisons is not the modest variations by dosage and child poverty but rather the 
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striking similarities. For all children, irrespective of income and irrespective of program 

duration, the earnings-related benefits alone of a high-quality pre-K program outweigh the 

costs by 3 to 1 or 4 to 1. This is an impressive accomplishment and one that should generate 

continued interest in the Tulsa pre-K model. 

 In addition to this evidence of substantial returns across income and program-type 

subgroup, our results also suggest that children from more-disadvantaged families are likely to 

see the largest relative adult earnings benefits. Although the absolute earnings benefits and 

benefit-cost ratios are similar across income, when adult earnings benefits are considered in 

percentage terms in relation to adult earnings prospects for each income group, sizable 

differences emerge. Free-lunch children are expected to experience percentage gains that are 

nearly twice as large as full-price-lunch children in half-day programs, a differential that is even 

larger for children in full-day programs. Furthermore, the similarity of cost-benefit ratios across 

groups must be considered in light of the fact that, as noted above, this analysis has been 

limited to adult earnings benefits. In contrast, we have made every effort to account for all of 

the program costs. Thus, the actual social benefits of the pre-K program in relation to program 

costs are likely to be even higher, particularly for disadvantaged children.  

 The results of this study speak to the potential for early childhood interventions to yield 

substantial benefits for children across socioeconomic strata. Although we recognize its 

limitations, we also believe that we have produced plausible estimates of the adult earnings 

benefits associated with the Tulsa pre-K program. Additionally, we have emphasized the 

importance of metrics for assessing program benefits that allow for meaningful comparisons 
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across income groups by relating outcomes such as test-score gains to valued social benefits. In 

the case of the Tulsa pre-K program, the evidence suggests that with respect to at least one of 

these benefits—adult earnings—the results may be quite impressive.  
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Table 2.1  Comparison of Percentage Effects of Preschool on Adult Earnings  

Program 
% earnings effects predicted from 
end of preschool test-score effects 

% earnings effects predicted from 
adult outcomes 

Perry Preschool  16.0 19.4 

Child-Parent Center  7.8 7.3 

NOTE: Perry Preschool test-score effects come from Schweinhart et al. (2005), Table 3, p. 61. We calculated 
average effect size at the end of the second preschool year for the following tests: the Stanford-Binet IQ Test, the 
Leiter International Performance Test (nonverbal intellectual performance test), the Peabody Picture Vocabulary 
Test, and the Psycholinguistic Abilities Test. Average effect size was then translated into change in percentiles. 
Change in percentiles was multiplied by the Chetty et al. (forthcoming) estimate that a 1-percentile change in test 
scores increases annual earnings for ages 25–27 by $73.01. The dollar earnings effect was then divided by Chetty 
et al.’s estimates of average annual earnings at ages 25–27 to get percentage effects. Perry Preschool percentage 
effects on adult earnings from adult outcomes come from Heckman, Moon, et al. (2010), Table 3, p. 119. We 
simply added up gross earnings effects, undiscounted, for all ages up to age 65, for both males and females, and 
computed percentage gain for treatment group versus controls. Heckman et al. interpolate earnings effects up to 
age 40, and extrapolate from observed earnings after age 40. Chicago Child-Parent Center Program test scores 
come from Reynolds (1995), Table 3, p. 15. We calculated average effect size for the following kindergarten tests: 
cognitive readiness at kindergarten entry from the Iowa Tests of Basic Skills (ITBS), end of kindergarten reading 
readiness (ITBS), end of kindergarten math achievement (ITBS), and end of kindergarten teacher ratings of 
student’s school adjustment.  CPC percentage effects on adult earnings were calculated from Reynolds, Temple, 
Ou, et al. (2011), Table 2.  
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Table 3.1  Comparison of Average Test Percentile and Covariates for TPS Pre-K Entrants and 
Alumni 

Variable 

Pre-k entrants  Pre-k alumni 

Diff. p M SE N M SE N 

Average test percentile 27.031 0.859 1,418  41.897 1.327 1,256 -14.866 0.000 

Female 0.499 0.026 1,418  0.482 0.029 1,256 0.017 0.660 

Race          

Black 0.325 0.025 1,393  0.345 0.027 1,252 -0.021 0.566 

White 0.349 0.025 1,393  0.340 0.027 1,252 0.009 0.810 

Hispanic 0.210 0.021 1,393  0.220 0.023 1,252 -0.010 0.752 

Native American 0.102 0.016 1,393  0.082 0.017 1,252 0.020 0.388 

Asian 0.014 0.006 1,393  0.012 0.007 1,252 0.002 0.862 

Lunch status          

Free 0.628 0.025 1,403  0.677 0.028 1,254 -0.049 0.187 

Reduced-price  0.146 0.018 1,403  0.102 0.019 1,254 0.045 0.085 

Full-price  0.226 0.023 1,403  0.221 0.025 1,254 0.005 0.884 

Mother's education         

No high school 0.189 0.023 1,070  0.223 0.027 887 -0.034 0.333 

High school 0.262 0.027 1,070  0.263 0.030 887 -0.001 0.986 

Some college 0.397 0.029 1,070  0.370 0.034 887 0.027 0.545 

College degree 0.152 0.020 1,070  0.144 0.024 887 0.008 0.795 

Lives with father 0.622 0.028 1,152  0.589 0.031 994 0.033 0.433 

Internet access 0.469 0.028 1,164  0.491 0.032 1,002 -0.021 0.619 

NOTE: This table compares regression-based estimates of the values of different variables at the birthday cutoff for 
TPS program participation in the 2006–07 academic year (September 1, 2001). Thus, we compare pre-K entrants 
who just missed being in pre-K the previous year and pre-K alumni who just made being in pre-K the previous year, 
based on the child’s age.  
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Table 3.2  Effect of TPS Pre-K Participation on Average Test Score Percentile 
 Full sample Free lunch Reduced-price lunch Full-price lunch 

Born before cutoff (treated) 15.467*** 
(1.465) 

16.258*** 
(1.753) 

15.723*** 
(4.416) 

12.527*** 
(3.318) 

Age (days) 0.048*** 
(0.004) 

0.039*** 
(0.004) 

0.050*** 
(0.010) 

0.073*** 
(0.010) 

Age*Born before cutoff 0.004 
(0.007) 

0.015* 
(0.008) 

0.003 
(0.019) 

-0.027* 
(0.015) 

Black -5.259*** 
(0.937) 

-4.875*** 
(1.151) 

-6.144** 
(2.671) 

-6.578*** 
(2.102) 

Hispanic -6.916*** 
(1.107) 

-7.902*** 
(1.290) 

-7.875** 
(3.045) 

0.020 
(3.116) 

Native American -0.847 
(1.221) 

-1.244 
(1.583) 

-2.047 
(2.823) 

0.484 
(2.623) 

Asian -0.612 
(2.706) 

-3.234 
(3.898) 

-1.032 
(7.567) 

1.458 
(4.033) 

Female 5.989*** 
(0.700) 

5.525*** 
(0.833) 

5.903*** 
(1.998) 

6.873*** 
(1.600) 

High school 2.789*** 
(1.060) 

2.271** 
(1.147) 

3.837 
(3.343) 

8.797* 
(4.584) 

Some college 6.489*** 
(1.186) 

6.307*** 
(1.389) 

6.549** 
(3.208) 

12.400*** 
(4.188) 

College or higher  14.169*** 
(1.780) 

9.475*** 
(3.221) 

9.488** 
(4.503) 

22.420*** 
(4.438) 

Lives with father 1.317 
(0.829) 

0.644 
(0.965) 

0.685 
(2.636) 

4.393** 
(1.803) 

Internet access 4.885*** 
(0.794) 

3.855*** 
(0.965) 

4.965** 
(2.155) 

8.297*** 
(2.048) 

Free lunch -6.379*** 
(1.049) 

   

Reduced-price lunch -5.378*** 
(1.287) 

   

Constant 23.592*** 
(1.780) 

17.354*** 
(1.724) 

19.362*** 
(4.458) 

15.149*** 
(4.651) 

Observations 2,657 1,650 343 664 

R-squared 0.56 0.54 0.54 0.55 

Effect sizea 0.89 1.21 0.98 0.57 

Percentage effectb 83.3 112.8 82.5 44.1 

NOTE: Outcome variable is the average test-score percentile across three Woodcock-Johnson achievement tests: 
Letter-Word ID, Spelling, and Applied Problems. Percentiles for each test are based on the distribution of test 
scores in the full, age-appropriate kindergarten sample. Robust standard errors are in parentheses. * p < 0.10; ** p 
< 0.05; *** p < 0.01.  
a  Effect size is the treatment effect divided by the standard deviation of the outcome for the comparison group 

(pre-K entrants) in the relevant sample.  
b  Percentage effect is the treatment effect divided by the mean of the outcome for the comparison group (pre-K 

entrants) in the relevant sample.   



52 
 

 

Table 3.3  Effects of TPS Pre-K Participation on Average Test Score Percentile, by Lunch and 
Full-Day Status 

 

Full-day pre-K program 

 

Half-day pre-K program 

Free lunch 
Reduced-price 

lunch 
Full-price 

lunch Free lunch 
Reduced-price 

lunch 
Full-price 

lunch 

Treatment effect 
18.090*** 
(2.000) 

20.332*** 
(5.542) 

16.380*** 
(5.182)  

11.743*** 
(3.664) 

8.000 
(7.912) 

11.008** 
(4.494) 

Effect sizea 1.37 1.33 0.71  0.82 0.44 0.54 

Percentage effectsb 130.24 112.34 53.72  70.82 36.78 41.76 

Observations 1,292 227 297  358 116 367 

R-squared 0.56 0.62 0.48  0.51 0.44 0.60 

NOTE: Outcome variable is average test score percentile across three Woodcock-Johnson achievement tests: 
Letter-Word ID, Spelling, and Applied Problems. Percentiles for each test are based on the distribution of test 
scores in the full, age-appropriate kindergarten sample. Robust standard errors are in parentheses. All regressions 
include the full set of control variables reported in Table 3.2; full results are available on request.  * p < 0.10; ** p < 
0.05; *** p < 0.01. 
a  Effect size is the treatment effect divided by the standard deviation of the outcome for the comparison group 

(pre-K entrants) in the relevant sample.  
b  Percentage effect is the treatment effect divided by the mean of the outcome for the comparison group (pre-K 

entrants) in the relevant sample.  
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Table 4.1  Predicted Effects of Tulsa Pre-K on Future Adult Earnings and Ratios to Costs, by 
Lunch and Full-Day Status  

 

Full-day pre-K program 

 

Half-day pre-K program 

Free lunch 
Reduced-

price lunch 
Full-price 

lunch Free lunch 
Reduced-

price lunch 
Full-price 

lunch 

Present value of adult 
earnings increase $27,179 $30,548 $24,610  $17,643 $12,020 $16,539 

Estimated present value of 
child’s parents’ earnings, 
as % of Tulsa metro 
average 34.1 67.3 135.3  34.1 67.3 135.3 

Extrapolated present value 
of child’s baseline future 
earnings, as % of Tulsa 
metro average 65.0 85.4 112.8  65.0 85.4 112.8 

Baseline present value of 
child’s future earnings, 
discounted back to age 4 $261,308 $343,038 $453,430  $261,308 $343,038 $453,430 

Predicted percentage effect 
on child’s present value of 
future earnings 10.4 8.9 5.4  6.8 3.5 3.6 

Program costs $8,806 $8,806 $8,806  $4,403 $4,403 $4,403 

Ratio of program earnings 
benefits to costs 3.09 3.47 2.79  4.01 2.73 3.76 

Ratio of incremental 
earnings benefits from 
full-day over half-day, 
compared to incremental 
costs 2.17 4.21 1.83     

NOTE: The present value of adult earnings increases are derived, using techniques discussed in the text, from the 
treatment effects on kindergarten test scores reported in Table 3.3. See text for derivation of baseline predicted 
future earnings figures and program cost figures. Predicted percentage effects are calculated from previous table 
entries, dividing the present value of the predicted earnings increase by the present value of predicted future 
earnings. Ratios of program earnings benefits to costs are calculated from previous table entries on these items.  
The incremental earnings benefits-to-costs ratios for full-day versus half-day is the difference in earnings benefits 
divided by the differences in costs.     
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