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ABSTRACT 
 

We evaluate the effects of state-provided financial incentives for biotech companies, which are 
part of a growing trend of placed-based policies designed to spur innovation clusters. We estimate that the 
adoption of subsidies for biotech employers by a state raises the number of star biotech scientists in that 
state by about 15 percent over a three-year period. A 10 percent decline in the user cost of capital induced 
by an increase in R&D tax incentives raises the number of stars by 22 percent. Most of the gains are due 
to the relocation of star scientists to adopting states, with limited effect on the productivity of incumbent 
scientists already in the state. The gains are concentrated among private sector inventors. We uncover 
little effect of subsidies on academic researchers, consistent with the fact that their incentives are 
unaffected. Our estimates indicate that the effect on overall employment in the biotech sector is of 
comparable magnitude to that of star scientists. Consistent with a model where workers are fairly mobile 
across states, we find limited effects on salaries in the industry. We uncover large effects on employment 
in the nontraded sector due to a sizable multiplier effect, with the largest impact on employment in 
construction and retail. Finally, we find mixed evidence of a displacement effect on states that are 
geographically close, or states that are economically close as measured by migration flows. 
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There is growing empirical evidence that agglomeration of economic activity generates 

significant economies of scale at the local level. This evidence raises both normative questions, 

concerning whether government intervention is socially optimal from a national or global 

perspective, and positive questions about whether such intervention, even if desirable, is 

effective. Can firms’ location decisions be influenced by government incentives and, if so, 

should national or local governments provide incentives to firms to cluster in particular 

locations?  

These questions have led to increased interest among economists in the effect of place-

based economic policies. Place-based economic policies are development strategies intended to 

foster economic activity in a city or a region. These policies are widespread both in the United 

States and in the rest of the world.1 Indeed, it is rare for a large production or research facility to 

open today in the United States without the provision of some form of subsidy from the relevant 

local government (Greenstone, Hornbeck and Moretti 2010; Greenstone and Moretti 2004).  

An increasingly common type of place-based policy is a state-provided subsidy for “high-

tech” and life-science firms designed to spur innovation-based clusters. Urban economists have 

long suspected that innovative industries like high-tech and life-science are characterized by 

significant localized agglomeration economies. For example, the distribution of the 

biotechnology industry is heavily clustered spatially, with a large fraction of the industry 

employment concentrated in Boston/Cambridge, the San Francisco Bay area, San Diego, New 

Jersey, Raleigh-Durham, and the Washington, DC, area. This concentration is consistent with the 

existence of strong localized agglomeration externalities.2 

Because local governments often aim to create and foster self-sustaining clusters of life-

science research, a growing number of them have introduced incentives that specifically target 
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the biotech industry. As of 2010, 11 states provide some type of incentive for biotech firms, and 

their generosity appears to be growing. In addition, over the past two decades, general R&D tax 

credits offered by U.S. states have become increasingly important. These credits are not specific 

to biotech, but given the importance of R&D for the industry they are likely to disproportionally 

benefit the biotech sector. As of 2010, 34 states provide a broad-based tax credit on R&D, and 

the average effective credit rate has grown approximately fourfold over this period to equal half 

the value of the federal effective credit rate. In many states, the state tax credit is considerably 

more generous than the federal credit (Wilson 2009).  

Yet, despite the growing importance of these incentives, their effects are not well 

understood.3  In this paper, we investigate the effects of state-provided biotech incentives on the 

local biotech industry and the broader state economy. We construct a rich state-level panel data 

set combining data on biotech-specific incentives and general R&D tax credits with data on 

various outcomes measuring biotech activity in a given state and year. Our outcome measures 

consist of the number of “star scientists” (defined below), employment, wages, establishments 

and patents—each specific to the biotech sector—for the period 1990–2010. We also estimate 

models where the outcome variables measure employment in the nontraded sector outside 

biotech. Using this data set, we identify the effect of biotech incentives and the R&D user cost 

off of the variation within each state over time.  

We find significant effects both of the biotech-specific subsidies and the general R&D 

tax credits on biotech star scientists, defined as those patenters whose patent count over the 

previous 10 years is in the top 5 percent of patenters nationally.4 The adoption of biotech 

subsidies raises the number of star scientists in a state by 15 percent relative to states’ pre-

adoption baseline. This is important because of the existing evidence on the important role 
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played by the localization of star scientists on the localization and survival of U.S. biotech 

clusters (Zucker, Darby, and Brewer 1998).  

Notably, most of the gains in star scientists are due to the relocation of star scientists to 

adopting states, with limited effect on the prolificacy of incumbent scientists already in the state. 

In addition, we find that the gains are concentrated among private sector inventors, both 

corporate and individual. We uncover little effects of subsidies on academic researchers, 

consistent with the fact that incentives for universities—which are mostly nonprofit—are 

unaffected by the subsidies.  

The effect of incentives on employment is not limited to top scientists, but it extends to 

other parts of the biotech workforce. We uncover significant effects on total employment in the 

Pharmaceutical and Medicine Manufacturing industry (16 percent gain); the Pharmaceutical 

Preparation Manufacturing industry (31 percent gain); and the scientific R&D industry (18 

percent gain). Because the effect for all workers is generally similar to the effect for stars, we 

infer that the incentives do not alter the ratio of stars in the workforce.5   

Consistent with a model where workers are fairly mobile across states, we find limited 

effects on average salaries in these three industries. While we do not have a direct measure of 

start-up creation, we find that the number of biotech-related establishments also increases 

following incentive adoption. On the other hand, we find limited effects on patents following the 

subsidy, possibly because it takes time for biotech research to come to fruition.  

We cannot rule out the possibility that the adoption of subsidies is correlated with 

unobserved trends in the vitality of the local economy in general or the local innovation sector in 

particular. However, we fail to find an effect of biotech subsidies and R&D credits on 
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employment in fields different from biotech. Triple difference models that include other sectors 

largely confirm our estimates for the employment effects.  

Consistent with the presence of a local employment multiplier effect (Moretti 2011), we 

do uncover an indirect effect on the local nontraded sector, including retail, construction, and 

real estate. It appears that by increasing employment in biotech, the incentives indirectly increase 

employment in local services, like construction and retail, whose demand reflect the strength of 

the local economy.  

In additional specifications, we test whether the provision of biotech-specific tax credits 

increases biotech employment at the expense of nearby states. We find mixed evidence of an 

effect on states that are geographically close, or states that are economically close as measured 

by worker migratory flows. If there is displacement, it is likely to be national in scope.  

Finally, we provide some partial, illustrative, and indirect evidence on whether there is a 

first-mover advantage in providing incentives. In the presence of agglomeration economies and 

large fixed costs, the initially positive effect of the subsidy on the biotech industry of an early 

adopting state should be long lasting, as biotech activity keeps agglomerating in the state even 

after other states have matched the subsidy. On the other hand, in the absence of significant 

agglomeration economies and large fixed costs, the initially positive effect experienced by an 

early adopter will not last after competing away any relative advantage. In this case, local 

biotech activity will revert to the long-run equilibrium level that existed before the provision of 

any subsidies. Empirically, we find limited evidence of a first-mover advantage for biotech 

incentives, although data limitations preclude us from drawing definitive conclusions.  

In terms of policy implications, it is important to keep in mind that our finding that 

biotech subsidies are successful at attracting star scientists and at raising local biotech 
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employment do not imply that biotech subsidies are a good use of taxpayer money. Finding that 

the provision of tax incentives by a state results in an increase in biotech R&D activity in that 

state does not necessarily suggests the existence of a market failure, nor does it imply that the 

provision of tax incentives is an efficient use of public funds. In this paper we have little to 

contribute to the question of local efficiency of place based policies. Efficiency of these policies 

from the point of view of the nation as a whole is even harder to address and is outside the scope 

of this paper.6 

The remainder of the paper is organized as follows. In the next section, we describe our 

data and the incentives available for biotech companies. We then discuss the possible 

mechanisms through which incentives can affect a state economy and present the econometric 

models used. The empirical results of the paper are in the following section, and the final section 

concludes.  

DATA  

We investigate the effects of biotech and R&D incentives on a number of different 

measures of economic activity in the biotech sector. The data set used in this paper is obtained 

from combining several separate data sources. In this section we describe the data sources used 

and provide descriptive statistics. 

Incentives  

 We focus our analysis on two types of state-specific incentives for innovation: R&D tax 

credits and biotech-specific subsidies. The former subsidize any form of investment in R&D, not 

just biotech. But given the disproportionate importance that R&D costs have for biotech, it is 

obviously an important cost shifter for firms in the industry. To quantify the magnitude of R&D 

5 



tax incentives offered by states in our sample, we treat R&D as an input into a firm’s production 

function, whose price is the implicit rental rate, or user cost, after taxes. Extending the standard 

Hall-Jorgenson (1969) formula for the user cost of capital to incorporate tax and subsidies—and 

ignoring federal taxes just for the exposition—yields the following formula for the user cost of 

R&D capital (per dollar of investment): 

 

User Cost of R&D = (rt + δ) [ (1 − skst − ztst) / (1 − tst) ] 

 

where rt is the real interest rate in the economy, assumed to be the same for all states in any 

given year; δ is the economic depreciation rate of R&D capital, assumed to be the same for all 

firms; tst and kst are the corporate income tax rate and the R&D tax credit rate in a given state and 

year; s is the share of R&D expenditures that qualify for the credit according to the tax code, set 

equal to 0.5 based on IRS Statistics; and z denotes the present discounted value of tax 

depreciation allowances. The formula provides a comprehensive measure of the tax advantage 

provided by each state in each year that is comparable across jurisdictions and periods. We use 

data from Wilson (2009), updated through 2010, to compute the relevant user cost of capital for 

each state and year in our sample.  

In addition to generic R&D tax credits, states have adopted a variety of specific fiscal 

incentives to attract biotech activity to their jurisdiction. These incentives take various forms, 

including tax credits on investment or job creation, sales and use tax exemptions, low-interest 

start-up loans, and even grants. In total, 11 states have some form of incentive targeted primarily 

at the biotech sector. Appendix Table 1 provides the list of adopting states and details on each 

state’s program.7  
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One major limitation of our data is that, unlike R&D tax credits, it is difficult to devise a 

comparable measure of the generosity of the biotech incentives, due to the heterogeneity in their 

forms. For instance, Massachusetts adopted in 2009 a “Life Sciences Tax Incentive Program” 

consisting of an investment tax credit, special sales tax exemptions, and a refundable research tax 

credit, all applicable only for companies in life sciences. Constructing a single summary measure 

of the value of this program that could be compared with another state, which might have only 

one of these three tax incentives (though it could be especially generous) or might have another 

type of incentive altogether (such as low interest loans as in North Carolina or research grants as 

in California), is next to impossible. In principle, one could construct a proxy for the effective 

credit rate by taking the ratio of the total amount spent by each state for “tax expenditures” and 

grant outlays divided by the biotech sector revenues in the state. However, states do not typically 

report how much they spend on incentives separately from other items in their budget. After a 

comprehensive search, we were unable to find systematic data for a significant number of states. 

Thus, in our empirical analysis, we simply use an indicator for the adoption of biotech 

incentives. The coefficient on this indicator has to be interpreted as the mean effect of adoption, 

averaged across all adopting states. 

Biotech Star Scientists 

We use data on biotech patents to identify the location of prolific biotech scientists and to 

measure biotech innovation in a state. We purchased a proprietary data set on biotech patents 

from IFI Claims Patent Services, a company that provides data services associated with 

biotechnology and related fields. IFI’s specialists, who have expertise in chemistry and biology, 

go through public individual patent records (from U.S. Patent and Trademark Office [USPTO]) 

and identify all patents that involve advances in the biotech field. This identification is necessary 
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because the technology classes that the USPTO assigns to patents (which change only 

infrequently and hence often cannot keep up with emerging technologies) do not map well to 

biotech, which is at the intersection of a number of technological fields. Analyses of the biotech 

sector based on USPTO technology classes, as the previous literature has relied on, are likely to 

have difficulty cleanly identifying effects on biotech patenting given this poor mapping. To our 

knowledge, this paper is the first to use the IFI database or any other data specifically focused on 

identifying biotech patents. 

The IFI’s patent database contains five variables for each (IFI-identified) biotech patent 

from 1976–2010: year, inventor name, inventor city, inventor state, and USPTO patent ID 

number. A single patent may have multiple inventors and hence multiple observations in this 

data set. From these data, we construct three variables at the state-by-year level: 1) patent counts, 

2) number of “star” scientists patenting in the state, and 3) number of star scientists that are new 

to the state in that year. The latter variable, the number of new star scientists, is the sum of an 

extensive margin—star scientists who were patenting in a different state in the previous year—

and an intensive margin—star scientists who were in the previous year in the same state but were 

not “stars” (as defined below). In some specifications, we will analyze the effect of incentives on 

each margin separately.  

For constructing patent counts by state-year, if the patent has multiple inventors from 

multiple states, we assign fractions of the patent to each of its inventors’ states in proportion to 

the number of inventors of that patent in each state. For example, if a patent has four inventors, 

one from California, one from Oregon, and two from Washington, we would give a patent count 

of 0.25 to California, 0.25 to Oregon, and 0.50 to Washington. After constructing patent counts 
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for each inventor*patent-ID observation in this way, we then simply sum biotech patent counts 

by state*year.  

We define “star” biotech inventors, in a given year, as those that are at or above the 95th 

percentile in number of biotech patents over the past 10 years. In other words, stars are 

exceptionally prolific patenters in the biotech field. The 95th cutoff is of course arbitrary, but our 

empirical results are not sensitive to it. We have also estimated our regressions based on star 

measures using the 90th or 99th percentiles and obtained similar results. Stars in a given year are 

assigned to a single state (even if they have listed different states on different patents) 

corresponding to the state in which they have the most patents (in that year).8 

The IFI database includes inventor names and distinguishes between individual and 

institutional (corporations, research institutions, and universities) inventors by listing names for 

the latter in all uppercase. Furthermore, it is possible to separate institutions into universities and 

other institutions (mainly corporations) by classifying patenters with the word “university” or 

“college” in their name as universities. We exploit this information to measure state-year counts 

of patents, stars, and new stars separately for individuals, universities, and other (nonuniversity) 

institutions. 

Employment, Wages, and Establishments  

In addition to these measures of biotech innovation, we look at biotech sector 

employment, wages, and number of establishments. While our patent data allow an exact 

identification of biotech patents, the same is not true for labor market and establishment data. 

First, NAICS does not directly and exactly identify the biotech industry, including both the R&D 

side and the production and sales side. Second, and more importantly, for years before 1998, SIC 

codes were used, and the link with biotech is even more imperfect. In practice, we consider three 
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different NAICS industries as potentially reflecting biotech activity: Pharmaceutical and 

Medicine Manufacturing (NAICS 3254), Pharmaceutical Preparation Manufacturing (NAICS 

325412—a subset of 3254), Research and Development in the Physical, Engineering, and Life 

Sciences (NAICS 54171).9 None of these three sectors perfectly captures the biotech industry, as 

each of them excludes parts of biotech and includes parts of other industries that do not belong to 

biotech. But we hope that taken together, the three sectors may prove informative about the 

industry. We also note that in our analysis, employment, salaries and number of establishments 

are used as dependent variables. Well-behaved measurement error in the dependent variable of 

linear models increases standard errors, but does not introduce any systematic bias in the 

estimates. 

We obtain employment data by month, industry, and state from the Bureau of Labor 

Statistics’ Census of Employment and Wages (CEW) series, and aggregate to a yearly frequency. 

These data are based on administrative records (state Unemployment Insurance payroll reports) 

so they contain minimal measurement error. They cover all employers, with no minimum 

thresholds for employer size. We obtain data on wages and number of establishments by month 

and state from the Census Bureau’s County Business Patterns (CBP) data series, and aggregate 

to a yearly frequency. Both the CEW and CBP data contain missing (nondisclosed) values for 

some state-years when disclosure of such values could potentially be used to identify specific 

employers. For our regressions, we construct balanced panels for each dependent variable by 

dropping states that do not have complete time series for that variable.  

Summary Statistics  

Table 1 shows summary statistics. Panel A shows the means of our variables. Columns 

1–3 and 7–8 show the means in levels (which we use in the regressions) and columns 4–6 show 
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the means in per capita terms. The means are calculated over our total sample. Columns 1–4 

report means across all states; columns 2, 3, 5, and 6 split the sample between states that adopt 

biotech incentives and those that do not. While adoption occurs sometimes in the middle of the 

sample period, the means are computed across all years in the sample. Columns 7 and 8 show the 

means only for adopting states before and after the adoption. 

Columns 2 and 3 indicate that states that adopt biotech incentives appear to have a 

stronger presence of life science industry, though much of that appears to be simply a matter of 

size differences: the adopters are larger states on average. Yet, even after scaling by population, 

the adopters tend to have a higher average level of biotech economic activity (columns 5 and 6). 

The most striking difference is in the number of star biotech scientists—those scientists who are 

major producers of biotech research. The table indicates that adopting states have significantly 

more stars than nonadopting states. There are 7.9 star scientists per million residents in adopting 

states, while the corresponding figure for nonadopting states is 3.5.  

We also look at “new stars”—star scientists that are new to the state, either because they 

were patenting in a different state in the previous year or because they were not stars in the 

previous year. This group of movers and rising stars is particularly interesting, because it 

captures one of the stated goals of state biotech subsidies, namely to attract and grow major 

producers of biotech research. Just under 1 per million residents in adopting states are new stars, 

while new stars in nonadopting states are only 0.4 per million.  

Of course, some of the differences between adopting states and nonadopting states reflect 

preexisting differences among states in the penetration of the life science sector, while other 

differences reflect the effect of subsidies (if there is any). Absolute employment in 

Pharmaceutical and Medicine Manufacturing (3254), Pharmaceutical Preparation Manufacturing 
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(325412), and Research and Development in the Physical, Engineering, and Life Sciences 

(54171) is also higher in adopting states, although the per capita differences are smaller. For 

example, 0.08 percent of residents in states that adopt incentives at some point during the sample 

period work in the Pharmaceutical and Medicine Manufacturing industry, compared with 0.07 

percent in states that do not adopt.10 For Pharmaceutical Preparation Manufacturing, there is no 

discernible difference in per capita employment.  

Salaries and number of establishments also tend to be higher among adopters: the average 

salary in the Pharmaceutical and Medicine Manufacturing industry in states that adopt incentives 

is $52,710, compared with $47,329 in states that do not adopt (2011 dollars); the number of 

establishments is almost double in the former group relative to the latter.  

Columns 7 and 8 of the table show the pre- and postadoption means for adopting states. 

While there is more annual employment in pharmaceutical manufacturing after adoption, there 

are actually lower levels of star scientists, new star scientists, R&D employment, and patents 

after adoption. What this comparison of raw means is missing, and what our regression analysis 

will capture, is the national trends in these variables. As the regression results show, it turns out 

that the postadoption decline in these variables is actually smaller for adopting states compared 

with the pattern over time in nonadopting states.  

In our empirical analysis we use the subset of states for which we have nonmissing 

observations in at least 20 years. Columns 1–3 of Panel B show the number of observations, 

number of states, and number of years in our total sample. Columns 4–6 show the same for the 

estimation sample. The number of states in each dependent variable’s balanced panel is also 

shown at the bottom of each column in the regression results tables.11 
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Lastly, to give a sense of how much of the within-state variation in the R&D user cost is 

driven by variation in the R&D tax credit, we first regress the R&D user cost on state and year 

fixed effects and then regress the residual on the state R&D tax credit rate. The R-squared from 

the latter regression is 0.345. By comparison, the R-squared from regressing the residual on the 

state tax rate is just 0.004. Because the R&D user cost is a nonlinear function of these two state 

tax policies along with federal tax policies, interactions of the state R&D tax credit and these 

other components likely explain much of the remaining variation. We conclude that the key 

(single) driver of within-state changes in the R&D user cost is the R&D credit rate. 

POSSIBLE MECHANISMS AND ECONOMETRIC MODELS  

The adoption of subsidies for the biotech industry can affect the state economy through a 

number of different channels, both direct and indirect. Here we first discuss the most important 

channels, and then describe how we propose to empirically assess their importance.  

Mechanisms  

Direct Effects 
By making biotech R&D more profitable in the state, the adoption of incentives may 

directly affect the state economy by increasing the size of the industry in the state. In practice, 

this direct effect may result in changes in the industry’s employment, wages and number of 

firms.  

Employment. To quantify the employment effect, we will begin by focusing on the 

effect of biotech incentives on the number of star scientists in the state. The presence of star 

scientists is important because they are arguably the most important input in the biotech 

production function.  
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The literature on star scientists has highlighted the role that stars have historically played 

in the birth and growth of the biotech industry since the mid 1970s. Star scientists have been 

shown to play the key role in the development of the biotech scientific discoveries and their 

successful commercialization. Their localization is therefore an important determinant of the 

localization of the biotech industry itself. Zucker and Darby (1998) argue that the importance of 

these individuals, especially the more entrepreneurial among them, “derives from the tacit 

character of new breakthrough discoveries. In this way, knowledge, at least when it is new, is 

embodied in particular individuals; it cannot diffuse rapidly, as might easily-duplicated recipes” 

(p. 7).  

The adoption of incentives can in principle increase the number of star scientists in a state 

through two channels: 1) star scientists can relocate to the adopting state, or 2) states can 

increase their patenting prolificacy of incumbent scientists already present and their movement 

into the top tier of patenters.  

Empirically, we will seek to separate these two margins.  

The effect of subsidies on biotech research is expected to be vastly different for private 

firms and academic institutions. Biotech incentives and R&D tax credits typically target private 

sector research, not academic institutions, which are almost universally nontaxable 

organizations. Thus incentives should have a smaller, possibly zero, direct effect on academic 

researchers than on private sector researchers. While it is still possible that incentives might have 

an indirect feedback effect on academia through displacement (expected negative effect) or 

human capital spillovers and agglomeration economies (expected positive effect), this indirect 

effect should be smaller than the direct effect. Our empirical analysis will differentiate between 

biotech scientists in the private sector and in academia.  
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While scientists are probably the most important input in the biotech industry, they are 

not the only one. Quantitatively, the most important channel through which the adoption of 

incentives might affect the local economy is through increases in the overall employment in the 

industry. We will quantify this channel by assessing changes in overall industry employment 

caused by biotech incentives. Biotech incentives may help established firms to expand, or foster 

the creation of new biotech start-ups. While we do not have direct measures of start-up creation, 

we will investigate the effect of incentives on the total number of biotech firms in the state.   

We note that our estimates capture the overall effect of incentives on industry 

employment. This overall effect is the sum of the direct effect on the size of the industry and any 

localized agglomeration economies, if they exist.  

Wages. Of course, the adjustment to an increase in the demand for biotech workers 

induced by an increase in subsidies need not come entirely in the form of employment gains. If 

the supply of scientists or other workers in the biotech sector is not elastic, the effect of 

incentives on employment could be limited, but there could be an effect on salaries. Indeed, 

Goolsbee (1998) finds that when the federal government increases subsidies for R&D, the 

immediate effect on employment is rather limited because the short-run labor supply of this type 

of worker is quite inelastic at the national level and most of the increased spending translates into 

higher wages. Empirically, this appears particularly true for scientists related to defense R&D 

such as physicists and aeronautical engineers.  

Our setting is different in two respects. First, and most fundamentally, Goolsbee (1998) 

was looking at nationwide changes while we look at state-level policies. The elasticity of labor 

supply at the state level is likely to be quite different from the elasticity of labor supply at the 

national level. While it is difficult to add highly specialized workers in the nation as a whole in 
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the short run, workers are mobile, and highly educated workers are particularly mobile, making 

state-level elasticity of labor supply likely to be significantly larger than the national level 

elasticity. For this reason, we expect that while wage effects may take place, at least some of the 

effect will manifest itself in increased employment.  

Second, within each local labor market, there may be mobility across sectors. This type 

of mobility is rare for biotech engineers, but it is probably common for less specialized 

occupations, like support staff, commercial personnel, and unskilled labor, which arguably 

represent a significant fraction of workers in the three industries we focus on. The degree of 

mobility that exists between the biotech industry and the rest of the labor market does not have to 

be identical to the one that exists between the government-supported research sector and the rest 

of the labor market.  

Indirect Effects  
In addition to the direct effect on the biotech sector, the adoption of incentives may affect 

parts of the state economy outside the biotech sector. First, biotech incentives need to be 

financed implicitly or explicitly through higher taxes on the rest of the state taxpayers. This will 

likely result in economically costly distortions and lower employment in other parts of the state 

economy. Separate from the negative effect of taxation, there might be two additional indirect 

effects on the local traded and non-traded sector:  

1) Employment in the nontraded sector. It is possible that the employment gains in 

biotech indirectly may result in employment changes in the nontraded sector outside biotech 

through a local job multiplier effect. Every time a state economy generates a new biotech job by 

attracting a new biotech company, additional jobs might also be created, mainly through 

increased demand for local goods and services.  
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This multiplier effect is expected to be particularly large for innovative industries like 

biotech. First, workers in innovative industries tend to have higher than average salaries and 

therefore tend to support more local jobs through their personal consumption of local nontraded 

services. Second, firms in innovative industries tend to consume more local services. Third, 

agglomeration economies may also be stronger in these industries, further increasing the local 

multiplier effect. Consistent with this hypothesis, Moretti (2011) finds that for each additional 

job in the manufacturing sector in a given city, 1.6 jobs are created in the local nontraded sector 

in the long run and that this number is significantly larger for high-tech manufacturing industries 

and industries that are more human capital intensive.  

2) Employment in the traded sector outside biotech. In principle, it is possible that an 

increase in biotech activity may affect labor demand not only in the local nontraded sector, but 

also the local traded sector.12 The sign of this relationship is a priori unknown. The increase in 

labor demand in the state caused by an increase in biotech activity could result in higher local 

wages (if local labor supply is not perfectly elastic) and therefore hurt employment in other parts 

of the traded sector. Unlike the case of nontradable goods, the price of tradable goods is set on 

national market and cannot adjust to local economic conditions. Thus, some of the production in 

traded industries may be shifted to different cities. On the other hand, gains in biotech may 

increase the local demand for intermediate goods and services. This effect depends on the 

geography of the industry supply chain. While many industries are geographically clustered, the 

magnitude of this effect is likely to be quantitatively limited if the market for traded industries is 

truly national.13  

In practice, however, we expect the indirect effect of biotech on the rest of the tradable 

sector to be limited. The biotech sector is very small with respect to the rest of all state 
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economies. Thus, it is unlikely to generate strong general equilibrium effects on local wages. 

Indeed, given that the salary effects on the biotech sector itself are small, as we will see in the 

next section, it is unlikely that the salary effects outside biotech can be very large.14 In addition, 

the biotech supply chain is quite distinct from that of most other parts of the traded sector.  

Econometric Models 

We now turn to the description of our econometric models. For each of the outcome 

variables that we consider, we estimate a two-way fixed effects regression of the outcome on 

both the biotech incentive indicator variable and the R&D user cost variable, controlling for state 

and year fixed effects. 

(1) it i t it it ity f f B rβ γ ε= + + + +  

where yit is the outcome of interest; fi and ft are state and year fixed effects, respectively; Bit is the 

biotech incentive indicator, and rit is the R&D user cost.15 If incentives are successful at 

increasing biotech activity in a state, we expect β > 0 and γ < 0, since a more generous R&D tax 

credit would result in a lower user cost of R&D investment. We do not control for total 

employment in the state, because employment in the local nontraded sector is likely to be 

endogenous, and vary as a function of employment in biotech (see the section titled 

“Employment in the Local Nontraded Sector”). 

Identification of the effect of biotech incentives and the R&D user cost comes from 

variation over time within a state. We assume that while states may differ in the political 

influence of the local biotech industry, the exact timing of these changes is mostly driven by 

exogenous factors. For example, California adopted specific incentives for biotech companies 

when statewide Proposition 71 in support of state funding for stem cell research was approved by 

voters. While California has had a significant biotech presence since the inception of the industry 
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in the mid-1970s, the timing of the stem cell proposition was largely a reflection of idiosyncratic 

political factors, especially the imposition of constraints on the use of federal funds for stem cell 

research by the G. W. Bush administration.  

As far as the R&D user cost is considered, we expect its variation to be largely 

exogenous as well. First, because these credits apply to all R&D-performing industries, 

idiosyncratic movements in the relative size and relative political influence of the biotech sector 

should have a limited, if any, effect on R&D credit adoption. Second, as with biotech incentives, 

the exact timing of R&D credit adoption likely owes more to idiosyncratic political and budget 

conditions than to recent R&D activity.  

However, we cannot rule out that the adoption of incentives reflects unobserved 

differences across states in the prospects of the local biotech industry. While permanent 

differences across states are fully accounted for, time-varying differences are not. The sign of the 

potential bias is not known a priori. If the probability of adoption is correlated with unobserved 

factors that favor the biotech industry—as in the case where states with strengthening innovation 

clusters tend to adopt incentives for biotech and R&D—then our model will overestimate the 

true effect of the subsidies. On the other hand, if the probability of adoption is correlated with 

factors that impede growth of the biotech industry—as in the case where states that historically 

lack innovation clusters tend to adopt incentives for biotech or R&D—then our models 

underestimate the true effect of the subsidies. 

To get a sense of the magnitude of this problem, we investigate what happens to 

industries other than biotech. First, we perform a series of placebo tests, where we test for 

whether the incentives are correlated with employment changes in high-tech industries other than 

biotech.  
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If states that have a growing local innovation sector are more likely to adopt incentives, 

we might find that biotech incentives are positively correlated with employment in the computer 

or chemical industry. We also test for whether the incentives are correlated with changes in 

employment in non–high tech industries, like food manufacturing.  

In addition, to formalize this intuition, for employment outcomes we estimate triple 

difference models that estimate the differential effect of incentives on the biotech industry above 

and beyond any effect on nonbiotech industries. Specifically, we estimate the following model: 

(2)    ( ) ( ) ( ) ( )0 0β γ β γ ε= + + ⋅ + ⋅ + + +jit ji jt BIO it jit BIO it jit it it jity f f B BIO r BIO B r , 

where the subscript j indicates whether an observation is for the biotech sector or the nonbiotech 

sector; fji and fjt are state*sector and year*sector fixed effects, respectively; BIOjit is an indicator 

variable that takes the value of 1 if the observation is for the biotech sector and 0 if the 

observation is for the nonbiotech sector. Unfortunately, data limitations prevent us from 

extending the triple difference models to the analysis of star scientists and patents.16  

Equations (1) and (2) measure short-run effects. To allow for the biotech incentives or the 

R&D user cost to have delayed effects, we estimate a variant of Equation (1) with current plus 

two lags of each variable: 

(3) 
2 2

0 0
it i t s it s s it s it

s s
y f f B rβ γ ε− −

= =

= + + + +∑ ∑  

In this case we report the cumulative effects over the three years (i.e., the sum of the coefficients 

on the current and two lags of the biotech incentive or R&D user cost).17 This extension is more 

useful for identifying the treatment effect of changes in the R&D user cost than it is for 

identifying that of biotech incentives. This is because the R&D user cost varies from year to 

year, whereas the biotech incentive dummy variable is a step function because a change in this 
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variable from 0 to 1 tends to be permanent. Including lags in the R&D user cost allows for the 

possibility that the effect of a temporary change in the R&D user cost may not occur for one or 

two years after the change. Delayed effects from the enactment of a biotech incentive will be 

picked up even without including lags because the value of the incentive dummy will remain 1 

for years beyond the enactment. Nonetheless, it is useful to include lags of this dummy when 

including lags of the R&D user cost to control for any contemporaneous correlation between 

adoption of the two types of subsidies. Moreover, including lags of this dummy tests for whether 

the effect gets larger over time by seeing whether the postadoption outcome is even larger in 

periods more than one (or two) years beyond the adoption year (compared with the postadoption 

outcome including the adoption year).   

Residuals in our models are likely to be serially correlated. Two factors make serial 

correlation an especially important concern in our setting. First, the unexplained component of 

our outcome variables is likely to be positively serially correlated. This happens because 

unobserved state-specific shocks to a number of biotech stars and employment in biotech are 

likely to be fairly persistent over time, although not completely permanent. After all, the actual 

number of biotech stars or employment in biotech in a state does not vary much from year to 

year, but it is not fixed either. Second, the key independent variables are also highly serially 

correlated within each state over time. The indicator for biotech subsidies takes the value of 0 in 

all the years before adoption and the value of 1 in all the years after adoption. The measure of 

R&D user cost is also highly serially correlated. These two factors reinforce each other to create 

potentially large mismeasurement in the OLS standard errors (Bertrand, Duflo, Mullainathan 

2004). Throughout the paper, all models estimate Newey-West standard errors allowing for 

AR(2) serial correlation.18  
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 To estimate the effect of a state’s incentives on other states’ outcomes we estimate 

models with spatial lags:  

(4) out out out out
it i t it it it it ity f f B r B rβ γ β γ ε= + + + + + + , 

where 
out
itX is a spatial lag of a given variable X = {B, r}, defined as 

 , , , ;       1
J J

out
it i j j t i j

j i j i
X Xω ω

≠ ≠

= =∑ ∑  . 

A spatial lag is simply a weighted average of Xit from other states. The weights, ωit, are 

the elements of a spatial weighting matrix meant to capture the relevant “relatedness” between 

pairs of states. We present results below based on two complementary definition of distance: 1) 

geographical proximity (inverse distance) between states’ population centroids (provided by the 

Census Bureau); and 2) economic distance as measured by population flows (from Census 

Bureau data on interstate migration). 

Finally, we estimate models that test whether the effect of adoption of incentives depends 

on the order of adoption. To do this, we generate a dummy variable, B4it, that is one for the first 

four adopters of biotech incentives and zero otherwise. (We set out to use the first three adopters, 

but Colorado and Missouri—both 1999 adopters—tied for third place). Similarly, we generate a 

dummy, R4it, that is one for the first four R&D credit adopters and zero otherwise. We then 

expand Equation (1) above to include these dummies and their interactions with their 

corresponding incentive variable: 

(5) it i t it it it it it it it it ity f f B r B4 R4 B4 B R4 rβ γ λ σ η ε= + + + + ∂ + + ∗ + ∗ +   

In the presence of strong agglomeration economies and large fixed costs, states that adopt 

earlier should enjoy a stronger effect (σ > 0 and/or η < 0) than states that adopt later. On the 

other hand, in the absence of significant agglomeration economies and large fixed costs, the 
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initially positive effect of the subsidy may decline when other states also adopt and the relative 

attractiveness of the state declines.  

EMPIRICAL RESULTS 

Number of Star Scientists  

We begin by estimating the effect of incentives on the most skilled part of biotech labor 

force, the star scientists.19 Panel A in Table 2 reports estimates of Equation (1) via OLS where 

the dependent variable is either the number of stars (columns 1—3) or new stars (column 4—6). 

The two preadoption means provided at the bottom of the panel are the baseline number of star 

scientists in adopting states in the year before adoption of the biotech incentive and in the year 

before adoption of the R&D subsidies, respectively. For biotech incentives, the percent effect is 

defined as the ratio of the coefficient over the preadoption mean, holding constant R&D tax 

credits. For R&D user cost, the percent effect is the effect of an increase in R&D tax credits large 

enough to lower the R&D user cost by 10 percent evaluated at the precredit adoption sample 

mean, holding constant biotech incentives.20 

Entries in column 1 indicate that the adoption of biotech incentives is associated with an 

average increase in the number of star scientists equal to 14.7. Compared with the baseline 

number of 100.7 star scientists on average in adopting states in the year before adoption, this 

effect represents a 14.6 percent increase. As expected, the coefficient on the R&D user cost is 

negative: a higher user cost implies less R&D investment and therefore fewer star scientists. The 

point estimate indicates that an increase in R&D tax credits large enough to lower the R&D user 

cost by 0.1 (about 8 percent of its precredit adoption sample mean) would raise the number of 

star scientists in the state by 7.8 scientists. Evaluated at the precredit adoption sample means for 
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both the dependent variable and the R&D user cost, the implied percentage increase in star 

scientists from a 10 percent reduction in the R&D user cost is 22.3 percent. We regard both of 

these effects as economically important.21  

The variable “new stars” captures positive changes over time in the number of star 

scientists in a state. While “stars” is a stock, “new stars” is a flow. When the number of new stars 

is the dependent variable, the coefficients on the incentives in the two-way fixed effects models 

such as Equation (1) represent the effects of the incentives on the rate of change in star scientists. 

Estimates in columns 3 and 4 indicate that biotech incentives and reductions in the R&D user 

cost are associated with an acceleration in the growth of star scientists. Quantitatively, the effect 

appears strong. Entries in column 3, for example, indicate that the adoption of biotech incentives 

is associated with an average increase in the number of new stars of 1.9, a 7.2 percent increase 

relative to the preadoption mean, though the point estimate is not statistically significant. An 

increase in R&D tax credits that lowers the R&D user cost by 10 percent would raise the number 

of new star scientists in the state by 17.3 percent relative to the baseline.  

In columns 2 and 4 we report the medium-run effect, as measured by the cumulative 

effect for the first three years. This medium-run effect is statistically indistinguishable from the 

immediate effect.22 The percent effects of biotech incentives for stars and new stars are, 

respectively, 11.3 percent and 5.5 percent. The percent effects of a 10 percent lower R&D user 

cost for stars and new stars are, respectively, 24.1 percent and 15.3 percent.  

We are also interested in uncovering possible interaction effects of biotech subsidies and 

R&D tax credits. Columns 3 and 6 show the results of including an interaction between the 

biotech incentive dummy and the R&D user cost. Here, we aim to assess whether biotech and 

R&D incentives have extra benefits if a state employs both of them, over and above their direct 
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effect. We find that the interaction term is statistically different from zero, indicating that the 

adoption of both biotech incentives and more generous R&D tax credits results in an additional 

positive effect on stars above and beyond their individual effects. (Recall that a negative 

coefficient on the interaction implies higher employment from having both a biotech incentive 

and a lower R&D user cost since the expected sign on the R&D user cost is negative.)23  

Difference-in-difference estimates in Table 2 are biased if states adopting incentives 

experience different trends in the number of biotech stars.  In Appendix Table 2 we investigate 

the robustness of our estimates to the inclusion of four region-specific time trends (columns 1 

and 2) and 9 division-specific time trends (columns 3 and 4). The models here are similar to the 

baseline models in panel A of Table 2. Estimates that condition on region or division trends are 

qualitatively consistent with the corresponding estimates in Table 2.24 

Intensive vs. Extensive Margin 
Overall, Panel A indicates that when a state adopts more generous incentives, it results in 

a significant increase in the number of biotech star scientists. The number of star scientists in a 

state can change because star scientists relocate to the adopting state or because incumbent 

scientists already present in the state increase their patenting prolificacy and move into the top 

tier of patenters. Separating these two sources of variation is useful because it provides some 

information on the possible mechanism(s) underlying the incentives’ effects. 

In panel B of Table 2 we address this question by separately analyzing these extensive 

and intensive margins. We define the extensive margin of “new stars” in a given state in year t as 

the flow of star patenters who were in a different state in the year t − 1, based on year t − 1 

patent(s). (Patenters with patents in multiple states in a given year are assigned to the state where 

they have the most patents.) We define the intensive margin of “new stars” in a given state in 
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year t as the flow of star patenters who were in the same state in year t − 1 based on year t − 1 

patent(s) and did not qualify as “stars” because their 10-year trailing biotech patent count 

(measured in t − 1) was not in the top 5 percent of all biotech patenters. By construction, the sum 

of the intensive and extensive margins equals the variable “new star” used in Panel A.  

Estimates indicate that biotech incentives are quite effective on the extensive margin but 

have no discernible effect on the intensive margin, at least within three years from adoption. In 

fact, the estimated effect of biotech incentives on the extensive margin more than accounts for 

the total effect on new stars, with the effect on the intensive margin being negative but 

statistically insignificant. (The coefficient on total new stars is of course equal to the sum of the 

coefficients on each of the two margins.)  

We find that R&D incentives appear to stimulate both margins. The point estimate on the 

extensive margin is much larger, but percentage effect relative to the baseline is only slightly 

larger for the extensive margin. The percent effects of a 10 percent reduction in the R&D user 

cost on the extensive and intensive margin are, respectively, 18.0 percent and 15.3 percent. 

Overall, it seems that it is easier to incentivize existing star scientists to move to a state than it is 

to turn less prolific inventors already in your state into stars. We caution, however, that patenting 

takes time. It is possible that three years is a time horizon not long enough to allow for a 

complete estimation of the intensive margin effect.  

Private Sector Stars vs. Academic Stars  
Biotech incentives and R&D tax credits typically target private sector research, not 

academic institutions, which are almost universally nontaxable organizations. As argued above, 

the incentives should have a smaller, possibly zero, direct effect on academic researchers than on 

private sector researchers.  
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In Table 3, we separately identify the effect of subsidies on stars, depending on whether 

they are individual patenters, patenters working for academic institutions, or patenters working 

for corporations and other nonacademic institutions. For both biotech incentives and R&D tax 

credits, we uncover a larger percent effect on individual star patenters and corporate and other 

nonacademic star patenters than on academic stars. In particular, the percentage effects of 

biotech incentives are 16.5 percent for individual stars, 7.2 percent for corporate and other 

nonacademic stars, and 0.1 percent for academic stars. For the R&D user cost, we find an effect 

for all three categories. The point estimates are larger for individual stars and corporate and 

nonacademic stars than they are for university patenters, yet the estimate percentage effects are 

largest for university patenters. However, it must be noted that the percentage effects for 

university patenters are particularly difficult to measure given that the baseline (pre-credit-

adoption) level of university new stars is very close to zero.   

Overall, the results indicate that the incentives have a larger effect on individuals and 

corporations than they are on universities. This is consistent with the hypothesis that academic 

institutions may not benefit from tax incentives as much as private sector researchers. 

Overall Industry Employment  

The findings on star scientists are important not just in itself, but especially because of 

the role that stars play in the birth and growth of the biotech industry. But of course, the vast 

majority of workers in the biotech industry are not star scientists. Table 4 assesses the effect of 

subsidies on total industry employment (measured in thousands of jobs) for the three industries 

that are closest to biotech: 1) the Pharmaceutical and Medicine Manufacturing sector (columns 1, 

2, and 3); 2) the Pharmaceutical Preparation Manufacturing sector (columns 4, 5, and 6), which 
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is a subset of Pharmaceutical and Medicine Manufacturing; and 3) the Scientific R&D sector  

(columns 7, 8, and 9).25  

Estimates indicate that adoption of biotech incentives is associated with a significant 

increase in the number of jobs in all three industries. The estimated employment effects are 

economically sizable. For example, the entry in column 1 suggests that the adoption of biotech 

incentives by a state is associated with 1,324 additional Pharmaceutical and Medicine 

Manufacturing jobs in the state. Compared with the average baseline industry employment level 

in adopting states in the year before adoption (8,043), this amounts to a 16.5 percent increase in 

employment. The medium-run effect in column 2 is slightly smaller, but not statistically 

different. The percentage effect is similar for employment in the R&D industry (columns 7 and 

8). Not surprisingly, the percentage effects are largest for the Pharmaceutical Preparation 

Manufacturing sector—a subset of Pharmaceutical and Medicine Manufacturing and arguably a 

closer approximation of biotech employment—at about 30 percent (columns 4 and 5).  

More generous R&D tax credits are also associated with more employment in the three 

industries. An increase in R&D tax credits large enough to lower the R&D user cost by 10 

percent would raise industry employment by between 6 percent and 18 percent. As with biotech 

incentives, the percentage effects of a 10 percent reduction in the R&D user cost are largest for 

the Pharmaceutical Preparation Manufacturing sector at 15.6 percent. Surprisingly, the 

percentage employment effect of a 10 percent reduction in the R&D user cost is small and 

insignificant in the R&D industry. However, the effect becomes significant if one allows for a 

delayed effect by including two lags of the R&D user cost. In this case, the cumulative effect of a 

10 percent reduction in the user cost is 10.3 percent.  
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Columns 3, 6, and 9 investigate the possible interactions of biotech subsidies and R&D 

tax credits. Point estimates and percent effects suggest that having both a biotech incentive and a 

low R&D user cost leads to higher employment in these sectors. This is consistent with the 

presence of an interaction effect uncovered above for star scientists.  

The estimated effects of the subsidies for total employment in Table 4 are generally 

similar to the estimated effects for stars in Table 2 in percent terms. This implies that the 

provision of incentives does not alter the ratio of stars in the workforce. In retrospect, this is not 

too surprising. The share of stars is largely determined by the production function, and there is 

no reason to expect that the provision of subsidies alters the technology used by biotech 

companies.  The exception seems to be the Pharmaceutical Preparation Manufacturing sector, 

where the percent effect is significantly larger for overall employment than star scientists.  

Our estimates of the effect of R&D tax credits are consistent with some of the key 

estimates in the literature. Consider for example an increase in R&D tax credits resulting in a 10 

percent reduction in R&D user costs. Assuming that R&D costs are one-quarter of overall costs 

in biotech firms, a 10 percent reduction in R&D user costs cause a 2.5 percent reduction in 

overall costs. Our estimates indicate that such a reduction would result in an increase in 

employment of 2 percent to 4 percent. This range is consistent with estimates by Bartik and 

Erickcek (2010). In their analysis of Michigan’s MEGA program, they find an elasticity of −0.2 

of state business activity with respect to overall state and local business taxes, corresponding 

roughly to an elasticity of −4 with respect to a change in overall business costs, as state and local 

business taxes tend to be somewhere around 5 percent of overall business value-added. 

Bartik and Hollenbeck (2012) also address a similar question to our analysis here.. They 

study the effects of an R&D tax credit in the state of Washington on job creation. They find that 
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this tax credit created jobs: employment grew by between 0.5 and 0.6 percent at the firms that 

claimed credits because of the tax credit. Once scaled by the size of the R&D credit, this estimate 

is not inconsistent with our estimates, although somewhat smaller. 

Placebos and Triple-Difference Estimates  
Identification of coefficients in Table 4 comes from within-state changes over time in 

incentives. State fixed effects fully account for any permanent difference between states that 

adopt incentives and those that do not. But estimates in these difference-in-difference models 

may be biased if the timing of incentive adoption is correlated with unobserved shocks to a state 

local economy. For example, it is possible in principle that states tend to adopt biotech incentives 

when the local biotech sector is stronger than in the rest of the nation. This would be the case if 

economic strength of the local biotech industry translates into lobbying clout. If adoption is 

positively correlated with industry strength, our estimate of the adoption effect would be upward 

biased. The reverse could also be true if states tend to adopt biotech incentives in a 

countercyclical/stimulate way, i.e., when the local biotech sector is weak. In this case our 

estimate of the adoption effect would be downward biased.  

An examination of the media reporting around the time of adoption in four states did not 

reveal any particular pattern in the motivations used by legislators for adoption. To obtain some 

more systematic evidence on the validity of our identification assumption, we provide three 

additional pieces of information. First, as mentioned above, we include results where we 

condition on four region-specific trends and nine division-specific trends. Our point estimates 

appear robust to the inclusion of these controls (see Appendix Table 2). 

Second, we test for whether the incentives are correlated with changes in employment in 

tradable industries other than biotech. We look only at tradable industries because increased 
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activity in the biotech industry resulting from subsidies may well cause increased demand for 

local nontradable services such as construction, retail, and real estate.26 Thus, for the purpose of a 

placebo test, we focus on other tradable industries which should not materially be affected by 

biotech-specific incentives, though they could be affected by more general incentives, such as 

R&D credits. We consider overall Manufacturing excluding Chemicals; Machinery 

Manufacturing; Computer and Electronic Product Manufacturing; and Food Manufacturing. 

Other nonchemical manufacturing industries did not have sufficient state-level data coverage. 

The results are shown in Table 5. The coefficient on the biotech incentive is either 

insignificantly different from zero or negative in all cases, suggesting no stimulative effect from 

the incentive. Perhaps surprisingly, the R&D user cost is also found to have no effect on 

employment in these industries. Possible reasons for this are that R&D scientists are a smaller 

share of total employment in these industries compared with the biotech industry and/or that 

labor supply of R&D workers in these industries is more inelastic. 

 We explore more systematically the idea of using other tradable industries as a control 

group by providing triple-difference estimates. Specifically, we report estimates of Equation (2), 

using our baseline specification where outcomes now vary by state, year, and sector (where 

sector is “biotech” or “nonbiotech”) and interacting all right-hand-side variables, including year 

and state fixed effects, by a biotech sector indicator. The triple-difference estimates of the 

incentive is identified from the difference between the biotech sector and the nonbiotech sector 

in the preadoption to postadoption change in the outcome for adopting states relative to the 

change over the same period for nonadopting states. Unlike Table 5, here we include all 

nonbiotech industries in the tradable sector in the analysis, in order to use all available 

information on control industries.27 We do not include nontradable industries because 
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employment changes there are endogenous to biotech subsidies due to employment multiplier 

effects (see the following section).  

The results are shown in Table 6. The focus in the triple-difference models is on the 

coefficients on biotech incentives. The coefficients on R&D user cost are reported for 

completeness but are not particularly informative on the validity of our identifying assumption: 

unlike biotech-specific incentives, R&D tax credits affect both the treatment and the control 

group. The triple-difference coefficient in the table measures whether R&D tax credits 

differentially affect biotech relative to other traded industries.  

We find estimates for the effects of biotech-specific incentives that are similar to those 

from difference-in-difference models. Notably, the percent effects of the biotech-specific 

incentives are very close to those in Table 4. We find that reductions in the R&D user cost 

increase employment in pharmaceutical manufacturing more so than in other tradable industries 

(as a whole), but surprisingly we find the opposite for employment in the R&D industry. 

Overall, the evidence in Tables 5 and 6 is reassuring. While we cannot rule out the 

possibility that that the adoption of incentives reflects unobserved time-varying differences 

across states in the prospects of the local biotech industry, this evidence lends some credibility to 

our identification assumptions. 

Employment in the Local Nontraded Sector 

We have found that biotech-specific incentives and tax credits for R&D result in 

increases in biotech employment. A related question is whether this direct effect on employment 

is limited to the biotech sector or it extends to other parts of the labor force through the type of 

multiplier effects discussed earlier in the section titled “Mechanisms.”  
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Consistent with the notion of a strong local multiplier effect, Table 7 indicates that the 

adoption of biotech incentives results in significant employment gains in the construction 

industry (37,000 additional jobs, 16 percent of preadoption baseline), retail industry (31,000 

additional jobs, 6.7 percent of the baseline) and real estate industry (6,000 additional jobs, 8.0 

percent of the baseline). States adopting tax credits for R&D experience significant employment 

gains in construction but not in retail or real estate. The percent effect for construction is 7.6 

percent. 

These indirect effects are quantitatively very large, especially the ones for biotech 

incentives. Taken at face value, these effects imply significantly larger multiplier effects than the 

one found by Moretti (2011) for high-tech, human capital–intensive industries. We note that the 

magnitude of these effects could in principle reflect the possibility that other policies are enacted 

simultaneously with the changes in biotech incentives or with changes in the generosity of R&D 

tax credits that might affect the nontraded sector.  It could also reflect the presence of 

unobserved shocks to the local economy that are positively correlated with adoption.28  

Salaries in the Biotech Industry  

Our main focus is on employment, measured by both the number of jobs and the number 

of star scientists. In additional models, we also look at salaries. Table 8 focuses on salaries. 

Following the standard in the literature estimating wage equations, we measure the dependent 

variable in log values. The coefficients on the biotech incentives thus represent elasticities; 

percentage effects are simply the elasticities times 100. The coefficients on the R&D user cost 

represent the percent effect of a one-unit change in the R&D user cost. We compute the percent 

effects of a 10 percent reduction in the R&D user cost, shown in the table, by multiplying the 

coefficient by 10 percent of the mean R&D user cost in the year prior to credit adoption for 
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adopting states. Consistent with a model where labor supply of biotech workers at the state level 

is fairly elastic, we find the effect of subsidies on salaries to be limited. Biotech incentives are 

not associated with wage increases in the Pharmaceutical and Medicine Manufacturing (columns 

1 and 2) and in the Pharmaceutical Preparation Manufacturing sectors. There is a positive 

although small effect of adoption for the Scientific R&D sector: adoption is associated with 0.5 

percent increase in the sector’s salaries (column 5), but over a three-year period the effect 

disappears. Turning to R&D user costs, we find that changes in the user cost get capitalized to 

some extent into salaries in the pharmaceutical industries but not in the R&D industry. However, 

the effect is quite small: a 10 percent reduction in the R&D user cost results in a 0.4 percent 

increase in the average salary in Pharmaceutical and Medicine Manufacturing as well as in the 

subsector of Pharmaceutical Preparation Manufacturing.  

The small wage effects in Table 8 stand in contrast with Goolsbee’s (1998) findings of 

large wage effects following labor demand increases due to policy changes. The difference is 

likely to be explained by the differences in the geographical scope of the analysis, as discussed in 

the section titled “Mechanisms.” In our analysis policy variation occurs at the state level—thus 

allowing for inter-state mobility to induce significant shifts in local labor supply—while in 

Goolsbee’s analysis the policy variation is national.  

In addition, workers in the three industries under consideration are unlikely to be all 

specialized. A significant fraction of workers employed in biotech have skills that are not 

specific only to that industry. Thus, there is likely to be significant within-state, cross-sector 

reallocation, at least for workers in nonscientific occupations. For example, when demand for 

administrative staff increases in biotech in response to an increase in state subsidies, some 

administrative staff might leave other sectors to move to biotech. Unfortunately, we do not have 
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salary data for scientists. In theory we would expect their salaries to be more sensitive to demand 

shifts than the salary of the general population, as movements across industries are less likely.  

Biotech Establishments and Biotech Patents  

One important question is whether state subsidies for innovation help the formation of 

start-ups. We do not have direct measures of start-up creation, but we report the effect on number 

of establishments. Increases in the number of establishments may arise either because state 

incentives foster more start-up creation, or because established companies open new facilities in 

a state.  

In Table 9 we report the effect on number of establishments. Increases in the number of 

establishments may arise either because state incentives foster more start-up creation, or because 

established companies open new facilities in a state.  

We find a significant effect of biotech incentives on the number of establishments in both 

Pharmaceutical Manufacturing and the R&D industry. The percent effects are between 10 

percent and 18 percent. By contrast, we find no significant effect of declines in the user cost of 

R&D on number of establishments in Pharmaceutical Manufacturing, but we find a significant 

increase in Scientific R&D establishments. We find that a 10 percent reduction in the user cost of 

R&D is associated with about a 14 percent increase in R&D establishments, and the effect 

appears to grow slightly over time.  

The analysis so far has focused on the inputs used by biotech firms. We now examine one 

measure of output: biotech patents. Given that we find an increase in employment and in star 

scientists—arguably important inputs in the production of innovation—one might expect a 

significant increase in number of patents filed—arguably a good proxy for output in the process 

of innovation. The findings, shown in Table 10, are mixed. On the one hand, we fail to find a 
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statistically significant effect of biotech incentives on biotech patents, though the point estimate 

implies a fairly large percentage effect (about 14 percent). On the other hand, we find a 

significant effect of R&D user costs, indicating that variation in R&D user costs has a more 

immediate effect on patent filings. The percentage effect of a 10 percent reduction in the R&D 

user cost is found to be 27.8 percent. In Appendix Table 2 we include four region-specific trends 

and nine division-specific trends. Our point estimates appear robust to the inclusion of these 

controls.  

We also look at biotech patent counts broken out by those patented by individuals versus 

universities versus corporations and other nonacademic institutions. The estimated percentage 

effects are similar across the three categories. As with total patents, the biotech incentives have 

no statistically significant effect while reductions in the R&D user cost increase patents for each 

category by roughly 25 percent. 

Models with Spatial Lags  

We now turn to the question of whether the provision of local incentives is a zero-sum 

game across jurisdictions, or whether it increases aggregate biotech activity. Previous work on 

state tax incentives (not specific to biotech) has tended to find negative, or “beggar thy 

neighbor,” effects of own-state incentives on other states and a zero-sum game nationally 

(Chirinko and Wilson 2008; Goolsbee and Maydew 2000; Wilson 2009). We cannot directly 

evaluate this question, but we provide some indirect evidence by testing whether the provision of 

incentives results in a decline (or increase) in star scientists and employment in nearby states (see 

Equation [4]). 29   

We measure proximity using either a geographical definition or an economic one. In 

panel A of Table 11 we measure distance using a spatial weighting matrix based on population 
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flows between states. In particular, population flows between state i and state j is defined as the 

average between the annual percent of population moving from state i to state j, and the annual 

percent of population moving from state j to state i, based on Census Bureau data. For the 

biotech incentive, which is expected to have a positive in-state effect on star scientists, a positive 

coefficient on the spatial lag would imply a positive spillover of one state’s incentives to star 

scientist employment in “nearby” states while a negative coefficient implies a negative or 

“beggar thy neighbor” effect. For the R&D user cost—which, when higher, results in fewer star 

scientists—a negative coefficient implies a positive spillover while a positive coefficient implies 

a “beggar thy neighbor” effect. 

The table indicates that for the total stock of stars, there is a significant negative effect of 

one state’s incentives on neighboring states. The magnitude of the out-of-state effect is roughly 

similar to that of the own state effect, suggesting a zero-sum game nationally. However, we 

should note that the point estimates on the spatial lags are imprecisely estimated. Hence, we are 

hesitant to make definitive statements about the net effect of the incentives nationally. In contrast 

to this finding for the stock of star scientists, we find no evidence of spatial spillovers for entry 

of new stars or total employment in biotech industries. For the R&D user cost, we find no 

evidence of statistically significant spatial spillovers except for the flow of new star scientist for 

which we find a positive spillover.30 That is, a reduction in the R&D user cost in one state 

appears to increase the flow of new star scientists to both that state and its neighbors. This 

positive spillover could reflect regional agglomeration forming as a result of one state reducing 

R&D costs.  

The results are quite similar if we use a spatial weighting matrix based on geographical 

proximity. Panel B shows estimates from models that use a distance-based weighting matrix 
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based on the inverse of the distance between each pair of states. It includes only those states with 

nonmissing data for the particular dependent variable in that particular regression.31 

The point estimates using a distance-based spatial lag are very similar to estimates in 

panel B, although the standard errors are higher. The two statistically significant cells in panel A 

are no longer significant. Overall, the findings of panel A and B point to some displacement but 

are not precise enough to draw firm conclusions.  

The Effect of Early Adoption 

Finally, we test whether the effect of adopting biotech incentives is stronger for earlier 

adopters, as one would expect in the presence of strong agglomeration forces. To do so, we add 

an interaction between the biotech incentive dummy and an indicator for whether the state is one 

of the first four adopters of biotech incentives (see Equation [5]).32 Similarly, we include an 

interaction between the R&D user cost and an indicator for whether the state is one of the first 

four adopters of an R&D tax credit. We focus on the effects on stars, new stars, and employment 

in each of the three biotech-related industries.  

Our estimates in Appendix Table 4 point to a generally small effect of biotech incentives 

for earlier adopters. For each of the five outcomes, it appears that the effect for earlier adopters is 

virtually zero (as the interaction effects roughly cancel out the total effects), while the effect for 

later adopters is stronger. For R&D tax credits, we find that early credit adopters experienced 

larger pharmaceutical employment gains from the resulting drops in the R&D user cost than did 

later adopters. However, for star scientists and R&D employment, we find no significant 

difference in the R&D user cost effect between early and later adopters.33   

Overall, there is little evidence that early adopters enjoy larger benefits from adoption. 

We caution, however, that we cannot draw strong conclusions from this test, as the magnitude of 
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the biotech incentives is unknown and may have been set endogenously by states. In the presence 

of agglomeration economies, for example, late adopters face stronger incentives to overcome the 

early adopters’ advantage and may provide more generous subsidies.  

CONCLUSIONS 

States spend billions of dollars to attract R&D activity to their jurisdictions. We shed 

light on how effective these policies are at attracting jobs in biotech. We find significant 

increases in the number of star scientists, the number of biotech workers, and the number of 

establishments, but limited effects on salaries and patents. While we think that the timing of the 

variation in the incentive levels is largely driven by idiosyncratic political factors, we cannot rule 

out the possibility that it may be endogenous.   

Although we find that subsidies to biotech R&D raise biotech employment in a state, we 

stress that this finding does not tell us whether those subsidies are economically justified. 

Knowledge of the magnitude, the geographical scope, and the direction of localized spillovers is 

a prerequisite for an appropriate design of an efficient innovation policy. 

 
NOTES 

1. Bartik’s (1991) seminal book on place-based economic policies provides a comprehensive taxonomy and 
discussion of the different types of policies. In the United States, state and local governments spend $80 billion per 
year on these policies (Story 2012), while the federal government spends $15 billion (GAO 2012). Examples of 
location-based policies typically adopted by local and state governments include direct subsidies and/or tax 
incentives for local firms, subsidized loans, industrial parks, technology transfer programs, export assistance and 
export financing, the provision of infrastructure, and workforce training. 
2. The hypothesis of agglomeration economies dates back at least to Marshall (1920), who discussed how they could 
be generated by a variety of mechanisms, including localized knowledge spillovers, thick labor markets for 
specialized workers, and localized supply chains. 
3. Economists have long cautioned that due to the complex nature of the market failures at work it is unclear what 
cluster policies should do in practice and how they should do it (Duranton 2011). A number of recent empirical 
studies have sought to assess the effectiveness of statewide incentives. Examples include, but are not limited to, 
Faulk (2002); Bartik and Erickcek (2010); Bartik and Eberts (2012); Chirinko and Wilson (2008); Chirinko and 
Wilson (2010); Wilson (2009); Head et al. (1999); and Duranton, Gobillon, and Overman (2011). Overall, the 
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empirical evidence on the effect of tax incentives on local labor markets is still limited and more work is needed to 
understand how in practice these subsidies contribute to economic development. 
4. We follow the literature in using the term star scientists, though it should be noted that patenters include 
institutions such as universities and corporations in addition to individuals. Specifically, in our biotech patent 
database, individuals account for 70.9 percent of patents, universities account for 5.6 percent, and other institutions 
(mostly corporations) account for 23.5 percent of patents. 
5. The Pharmaceutical Preparation Manufacturing industry is an exception. 
6. See Kline and Moretti (2013) for a discussion.  
7. North Carolina is the earliest adopter. Because the state adopted a biotech incentive in 1984, and our data begin in 
1990, North Carolina does not contribute to identification of the coefficients in our regression models.  
8. The city and state of the patenter may be measured with error, especially when there is a difference between the 
location of the inventor and the location of her employer. It is also possible that there are two or more inventors with 
the same name within the same city, state, and year, although such instances should be quite rare because the 
number of biotech patents within a city-state-year cell is rarely large and hence the probability of two inventors 
within that cell having the exact same name should be very small. Both of these cases would induce classical 
measurement error in the dependent variable, and so not a cause of bias. 
9. In principle, restricting the third group to R&D in Life Science would be better, but too many states have their 
values set to missing to protect confidentiality. There also is a NAICS industry for “Research and Development in 
Biotechnology” (541711), however, employment, wage, and establishments data for this industry is only available 
from 2007 onward. 
10. The states that have the most jobs per capita in the industry are Indiana (2.71 percent), North Carolina (2.13 
percent), and Connecticut (2.05 percent). 
11. We do this because we need to have a sufficiently long time dimension in our panel to be able to identify (with 
reasonable precision) state fixed effects as well as the medium-run (over three years) effects of the incentives. This 
leads to there being a different number of states across outcomes (dependent variables) in the tables and makes the 
results less comparable from outcome to outcome. As a robustness check we have repeated all of the regressions 
with the same sample of 28 states that have non-missing data for all of the outcomes that we look at. The results are 
quite similar, though the standard errors are larger. (Results available on request.) Limiting the sample in this way 
involves a considerable loss of information for most of the outcomes, many of which have data for all 50 states.  
12. This would make the placebo tests and the triple difference models discussed above invalid.  
13. In addition, if agglomeration economies are important, the increase in biotech may result in more local 
agglomeration outside biotech.  
14. Moretti (2010) finds limited effect of shocks to one part of the traded sector on other parts of the traded sector.  
15. We jointly estimate the separate effects of the biotech incentives and the R&D user cost rather than estimating 
their effects in separate regressions to avoid any possible bias due to correlation between biotech incentives and 
R&D credits. Estimating the effects in separate regressions yields similar results. 
16. Individual-level patent data with the relevant geocoding information are available from the NBER Patent 
Database only until 2006. Given that several of the biotech incentives in our data set were adopted shortly before 
and after 2006, using these data to construct nonbiotech measures of star scientists and patents provides too few 
years to estimate the effect of incentive adoption with any reasonable degree of precision.  
17. We also experimented with additional lags, which resulted in similar cumulative effects though with larger 
standard errors. 
18. See Bertrand, Duflo, Mullainathan (2004) for alternative solutions to this problem. 
19. As noted earlier, we use the term “scientists” loosely here, as about 30 percent of the patenters in our biotech 
patent database are not individuals but rather universities, corporations, and other institutions. Below, we look at the 
effect of incentives on stars defined separately for individual, universities, and corporations and other institutions. 
20. Specifically, we calculate this elasticity as ( ) ( )/ 10y r r y− ∂ ∂ ⋅ , where the upper bars denote the pre-credit-
adoption sample means and ( )y r∂ ∂  is the coefficient on the R&D user cost (r). 
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21. We note that comparing the magnitude of the effect of biotech subsidies to the effect of R&D tax credits is not 
feasible, due to the lack of data on the generosity of biotech subsidies: We do not know whether biotech subsidies 
are cheap or expensive for states, compared to R&D tax credits. 
22. Recall that because the R&D user cost varies from year to year whereas the biotech incentive dummy variable is 
a step function, this model is more useful for R&D user cost than it is for biotech incentives. 
23 In these models we do not report the percent effect because it is unclear how to define the pre-adoption means.  
24. We have performed numerous additional robustness checks that are available on request. Our baseline models 
are based only on states for which we have non-missing observation for at least 20 consecutive years. We do this 
because we need to have a sufficiently long time dimension in our panel to be able to identify (with reasonable 
precision) state fixed effects as well as the medium-run (over three years) effects of the incentives. However, 
shortening the length of the panel gives qualitatively similar results, but larger standard errors. In addition, we have 
reestimated all of models with the same sample of 28 states that have nonmissing data for all of the outcomes to 
increase comparability. The results are quite similar, though as one would expect the standard errors are larger. We 
have also reestimated our main models replacing the R&D user cost variable with the R&D credit rate. The results 
are shown in Appendix Table 3. We find that the R&D credit rate generally has positive and significant effects on 
economic outcomes in the biotech sector, consistent with the negative and significant effects of the R&D user cost 
we found in our baseline specifications (given that the user cost is inversely related to the credit rate). We also 
attempted to estimate models that include state specific trends, but standard errors were so large to make these 
estimates uninformative. 
25. Note that the definition of the last industry group is not ideal, because it is rather expansive: not only does it 
include all life science R&D, but also other types of R&D outside the life science sector. A narrower definition is 
not feasible. While R&D biotech is identified in the County Business Patterns in recent years, it is not identified 
before 1998.  
26. We investigate this possibility below. 
27. Data limitations preclude triple-difference estimates of the models for biotech stars in Tables 2 and 3.   
28. This would cast doubt on our identification strategy. However, we are not aware of any specific examples of 
state-sponsored subsidies to the nontraded sector that tend to be systematically associated with biotech incentives. 
29. Kline and Moretti (2013) provide a model-based approach to estimating the aggregate effects of place based 
policies.  
30. The lack of significant negative spillovers from R&D tax incentives on biotech stars and employment contrasts 
with the negative spillovers of such incentives on R&D spending found in Wilson (2009). It is possible that 
spillovers are more negative outside of the biotech sector where positive agglomeration-related spillovers could be 
more prevalent. Another possible explanation is that R&D spending is much more geographically mobile than is 
employment. Part of the spending mobility may reflect increases in salaries of R&D workers in tax-advantaged 
states. Part of it could also reflect corporations relabeling R&D spending from one location to another in response to 
differentials in R&D tax incentives. 
31. One obvious alternative measure of distance would be an indicator for contiguity.  A contiguity-based spatial 
weighting matrix is appealing in theory, but it is unfeasible in our setting. For employment, salaries, and 
establishments, there are states with missing data. This makes the contiguity weighting matrix unmeasurable for 
many states.  
32. We originally intended to use an indicator for whether the state is one of the first three adopters, but the place of 
third adopter is a tie between Colorado and Missouri.  
33. Findings are robust to the controlling for the state share of national biotech employment. 
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Table 1  Summary Statistics 
Panel A. Means 

  
 

Mean (in levels) Mean (per 100,000 residents) Mean (in levels) -- Adopting States Only 

Variable Name All States 

Biotech 
Incentive 
Adopters 

Non-
adopters All States 

Biotech 
Incentive 
Adopters 

Non-
adopters 

Pre-adoption 
mean 

Post-adoption 
mean 

Star Scientists 28.04 80.19 15.32 0.436 0.790 0.349 90.78 63.30 
New Star Scientists 9.17 24.37 5.46 0.053 0.096 0.043 26.37 18.13 
Employment in Pharmaceutical and Medicine Manuf. 5,529 8,058 4,853 74.145 83.348 71.687 7,211 9,257 
Employment in Pharmaceutical Prep. Manuf. 4,563 5,958 4,191 52.809 52.136 52.990 4,742 7,920 
Employment in Scientific R&D  9,026 18,465 6,655 175.131 199.365 169.043 20,115 16,132 
Salaries in Pharmaceutical and Medicine Manuf. 48,656 52,710 47,329 -- -- -- 50,264 56,904 
Salaries in Pharmaceutical Preparation Manuf. 50,294 51,960 49,631 -- -- -- 51,494 52,742 
Salaries in Scientific R&D  46,420 51,869 44,943 -- -- -- 42,574 67,360 
Establishments in Pharmaceutical & Medicine Manuf. 35.20 67.01 27.02 0.599 0.781 0.552 70.55 61.46 
Establishments in Pharmaceutical Prep. Manuf. 17.89 29.84 14.72 0.298 0.319 0.292 30.56 28.72 
Establishments in Scientific R&D  226.81 513.70 156.84 4.465 5.336 4.252 546.68 462.12 
Number of Patents 78.33 211.78 45.78 1.288 2.090 1.093 239.12 169.62 
Biotech Incentive Dummy 0.081 0.414 0 0.002 0.011 0.000 0.000 1.000 
R&D User Cost 1.175 1.171 1.176 0.059 0.027 0.066 1.171 1.171 

Panel B.  Observation Counts 
  

 
Total Sample Regression Sample 

  Variable Name N # of states* # of years* N # of states # of years 
  Star Scientists 1071 51 21 1071 51 21 
  New Star Scientists 1071 51 21 1071 51 21 
  Employment in Pharmaceutical and Medicine Manuf. 996 47 21 798 38 21 
  Employment in Pharmaceutical Preparation Manuf. 929 44 21 588 28 21 
  Employment in Scientific R&D  1046 49 21 987 47 21 
  Salaries in Pharmaceutical and Medicine Manuf. 693 47 20 618 43 18 
  Salaries in Pharmaceutical Preparation Manuf. 499 28 20 438 37 18 
  Salaries in Scientific R&D  900 45 20 670 40 18 
  Establishments in Pharmaceutical & Medicine Manuf. 1020 51 20 1020 51 20 
  Establishments in Pharmaceutical Prep. Manuf. 1000 50 20 1000 50 20 
  Establishments in Scientific R&D  1020 51 20 1020 51 20 
  Number of Patents 1071 51 21 1071 51 21 
  Biotech Incentive Dummy 1071 51 21 1071 51 21 
  R&D User Cost 1071 51 21 1071 51 21 
  NOTE: * With at least one non-missing observation 

         



Table 2  The Effect of Incentives on the Number of Star Scientists 
 1 2 3 4 5 6 

Panel A – Stars & New Stars Stars New Stars 
A1 Contemporaneous Effects       
  Biotech Incentive 14.680* 

(8.527) 
 632.270* 

(356.313) 
1.905 

(1.987) 
 104.468 

(81.742) 
  R&D User Cost −77.786*** 

(28.908) 
 −62.186** 

(25.595) 
−18.402** 

(7.864) 
 −15.812** 

(7.403) 
Biotech Incentive * R&D User Cost   −531.288* 

(301.021) 
  −88.230 

(68.852) 
A2 Cumulative Effects (0-2 years)       
  Biotech Incentive  11.421 

(8.072) 
  1.451 

(1.926) 
 

  R&D User Cost  −84.113** 
(33.011) 

  −16.290* 
(8.583) 

 

Pre-Biotech-Incentive-Adoption Mean 100.667 26.556 
Pre-Credit-Adoption Mean 40.158 12.248 
Percent Effect  of Biotech Incentives 14.582 11.345  7.175 5.466  
Percent Effect of R&D User Cost 22.303 24.118  17.300 15.314  
Panel B – New Stars  New Stars, Extensive Margin New Stars, Intensive Margin 
B1 Contemporaneous Effects       
  Biotech Incentive 3.037* 

(1.758) 
 141.826** 

(70.035) 
−1.132 
(0.847) 

 −37.358 
(36.058) 

  R&D User Cost −14.027** 
(6.474) 

 −10.522* 
(6.053) 

−4.375* 
(2.531) 

 −5.290** 
(2.475) 

Biotech Incentive * R&D User Cost   −119.394** 
(59.183) 

  31.164 
(30.418) 

B2 Cumulative Effects (0-2 years)       
  Biotech Incentive  2.674 

(1.843) 
  −1.223 

(0.974) 
 

  R&D User Cost  −13.455* 
(7.097) 

  −2.835 
(3.259) 

 

Pre-Biotech-Incentive-Adoption Mean 20.778 5.778 
Pre-Credit-Adoption Mean 8.959 3.289 
Percent Effect of Biotech Incentives 14.617  12.870   −19.585 −21.161  
Percent Effect of R&D User Cost 18.029 17.294  15.315 9.924  
Sample Period 1990-2010 1992-2011 1990-2010 1990-2010 1992-2010 1990-2010 
Number of Observations 1071 969 1071 1071 969 1071 
NOTE: * significant at the 0.10 level (two-tailed test); ** significant at the 0.05 level (two-tailed test); *** significant at the 
0.01 level (two-tailed test).  Regressions estimated via OLS.  Standard errors based on Newey-West VC estimator with 
within-state AR(2) errors. Pre-adoption means are the baseline numbers of star scientist in adopting states in the year before 
adoption of incentive or credit. For biotech incentives, the percent effect is defined as the ratio  of the coefficient over the 
pre-adoption mean, holding constant R&D tax credits. For R&D user cost, is the effect of an increase in R&D tax credits 
large enough to lower the R&D user cost by 10 percent (relative to its average among adopting states), holding constant 
biotech incentives. Panel A includes all patenters. In Panel B, we define the extensive margin of “new stars” in a given state 
in year t as the flow of star patenters who were in a different state in the year t-1, based on year’s t-1 patent(s).  Patenters 
with patents in multiple states in year t-1 are assigned to a single state based on their modal state. We define the intensive 
margin of “new stars” in a given state in year t as the flow of star patenters who were in the same state in year t-1 based on 
year’s t-1 patent(s) and did not qualify as “stars” because their 10-year trailing biotech patent count measured in t-1 was not 
in the top 5% of all biotech patenters. Sample includes data for 51 states. All models include state fixed effects and year 
fixed effects. 
 
 



Table 3  The Effect of Incentives on the Number of Star Scientists, by Type of Patenter 
 Stars  New Stars  
 (1) (2) (3) (4) (5) (6) 
Panel A – Individual       
A1 Contemporaneous Effects       
  Biotech Incentive 13.171* 

(7.325) 
 565.095 

(305.030)* 
2.249 

(1.888) 
 119.119 

(77.656) 
  R&D User Cost −61.609** 

(23.957) 
 −47.669** 

(20.883) 
−15.982** 

(7.345) 
 −13.030* 

(6.825) 
Biotech Incentive * R&D User Cost   −474.798* 

(257.737) 
  −100.539 

(65.490) 
A2 Cumulative Effects (0-2 years)       
  Biotech Incentive  10.806 

(6.974) 
  1.830 

(1.826) 
 

  R&D User Cost  −66.265** 
(27.325) 

  −14.642* 
(8.159) 

 

Pre-Biotech-Incentive-Adoption Mean 79.778 24.556 
Pre-Credit-Adoption Mean 31.930 11.506 
Percent Effect  of Biotech Incentives 16.509 13.545  9.161 7.454  
Percent Effect of R&D User Cost 22.217 23.896  15.994 14.653  
Panel B – Corporate       
B1 Contemporaneous Effects       
  Biotech Incentive 1.263 

(1.309) 
 62.425 

(56.429) 
−0.434 
(0.293) 

 −14.668 
(11.781) 

  R&D User Cost −14.800*** 
(4.770) 

 −13.255*** 
(4.422) 

−2.137** 
(0.975) 

 −2.497*** 
(0.968) 

Biotech Incentive * R&D User Cost   −52.615 
(47.642) 

  12.245 
(9.957) 

B2 Cumulative Effects (0-2 years)       
  Biotech Incentive  0.431 

(1.238) 
  −0.441 

(0.322) 
 

  R&D User Cost  −16.334*** 
(5.524) 

  −1.500 
(1.030) 

 

Pre-Biotech-Incentive-Adoption Mean 17.667 2.000 
Pre-Credit-Adoption Mean 7.316 1.064 
Percent Effect of Biotech Incentives 7.150 2.438 353.347 −21.676 −22.068 −733.379 
Percent Effect of R&D User Cost 23.293 25.709 20.862 23.131 16.237 27.023 
Panel C – University       
C1 Contemporaneous Effects       
  Biotech Incentive 0.004 

(.191) 
 0.644 

(6.226) 
−0.029 
(0.057) 

 −1.750 
(1.746) 

  R&D User Cost −2.027* 
(1.221) 

 −2.011* 
(1.213) 

−0.624* 
(0.368) 

 −0.667* 
(0.368) 

Biotech Incentive * R&D User Cost   −0.550 
(5.299) 

  1.481 
(1.494) 

C2 Cumulative Effects (0-2 years)       
  Biotech Incentive  −0.083 

(0.200) 
  −0.054 

(0.063) 
 

  R&D User Cost  −2.277* 
(1.340) 

  −0.819** 
(0.412) 

 

Pre-Biotech-Incentive-Adoption Mean 3.333 0.222 
Pre-Credit-Adoption Mean 2.056 0.120 
Percent Effect  of Biotech Incentives 0.119 −2.502  −13.121 −24.386  
Percent Effect of R&D User Cost 11.352 12.747  59.720 78.404  
Sample Period 1990-2010 1992-2010 1990-2010 1990-2010 1992-2010 1990-2010 
Number of Observations 1071 969 1071 1071 969 1071 
NOTE: * significant at the 0.10 level (two-tailed test); ** significant at the 0.05 level (two-tailed test); *** significant at the 
0.01 level (two-tailed test).  Regressions estimated via OLS.  Standard errors based on Newey-West VC estimator with 
within-state AR(2) errors. Pre-adoption means are the baseline numbers of star scientist in adopting states in the year before 
adoption of incentive or credit. For biotech incentives, the percent effect is defined as the ratio  of the coefficient over the 
pre-adoption mean, holding constant R&D tax credits. For R&D user cost, is the effect of an increase in R&D tax credits 
large enough to lower the R&D user cost by 10 percent (relative to its average among adopting states), holding constant 
biotech incentives. Panel A includes individual patenters. Panel B includes corporate patenters. Panel C includes acdemic 
patenters. Sample includes data for 51 states. All models include state fixed effects and year fixed effects. 
 



Table 4  The Effect of Incentives on Employment in Biotech Related Industries 
 Pharmaceutical and Medicine Manufacturing 

(3254) 
Pharmaceutical Preparation Manufacturing 

(325412) 
Research & Development in the Physical, 
Engineering, and Life Sciences (54171) 

 (1)  (3) (4) (5) (6) (7) (8) (9) 
Contemporaneous Effects          
  Biotech Incentive 1.324** 

(0.658) 
 64.682** 

(29.513) 
1.796** 

(0.740) 
 47.858* 

(27.334) 
3.951*** 

(1.482) 
 157.398*** 

(59.433) 
  R&D User Cost −8.355** 

(3.476) 
 −6.115* 

(3.167) 
−8.793** 
(4.402) 

 −6.327 
(3.943) 

−5.844 
(4.150) 

 −1.801 
(3.579) 

Biotech Incentive * R&D User Cost   −54.761** 
(25.317) 

  −39.848* 
(23.416) 

  −132.002*** 
(50.520) 

Cumulative Effects (0-2 years)          
  Biotech Incentive  1.190* 

(0.700) 
  1.741** 

(0.784) 
  4.037** 

(1.980) 
 

  R&D User Cost  −10.030** 
(3.953) 

  −9.819* 
(5.329) 

  −9.517* 
(5.593) 

 

Pre-Biotech-Incentive-Adoption Mean 8.043 5.792 21.701 
Pre-Credit-Adoption Mean 7.698 6.495 10.611 
Percent Effect  of Biotech Incentives 16.456 14.791  31.016 30.062  18.206 18.601  
Percent Effect of R&D User Cost 12.496 15.003  15.589 17.409  6.341 10.327  
Sample Period 1990-2009 1990-2009 1990-2009 1990-2009 1990-2009 1990-2009 1990-2009 1990-2009 1990-2009 
Number of States 38 38 38 28 28 28 47 47 47 
Number of Observations 798 722 798 588 532 588 987 893 987 
NOTE: * significant at the 0.10 level (two-tailed test); ** significant at the 0.05 level (two-tailed test); *** significant at the 0.01 level (two-tailed test).  Employment is measured in thousands. 
Regressions estimated via OLS.  Standard errors based on Newey-West VC estimator with within-state AR(2) errors. For biotech incentives, the percent effect is defined as the ratio of the 
coefficient over the pre-adoption mean, holding constant R&D tax credits. For R&D user cost, is the effect of an increase in R&D tax credits large enough to lower the R&D user cost by 10 
percent (relative to its average among adopting states), holding constant biotech incentives.  All models include state fixed effects and year fixed effects.  
 



Table 5  The Effect of Biotech Incentives on Employment in Other Industries in the Traded Sector 
 Chemical Machinery Manufacturing Computer and Electronic Products  Food Manufacturing 
 (1) (2) (3) (4) (5) (6) (7) (8) 
Contemporaneous Effects         
  Biotech Incentive −22.240 

(18.917) 
 −0.098 

(1.273) 
 −12.825** 

(5.386) 
 −2.158*** 

(0.748) 
 

  R&D User Cost 56.965 
(83.436) 

 −1.383 
(9.663) 

 22.497 
(15.182) 

 4.376 
(4.085) 

 

Cumulative Effects (0-2 years)         
  Biotech Incentive  −17.571 

(22.833) 
 0.487 

(1.556) 
 −12.836** 

(6.291) 
 −2.410*** 

(0.659) 
  R&D User Cost  31.212 

(101.754) 
 −1.097 

(11.653) 
 23.770 

(18.456) 
 3.167 

(4.508) 
Pre-Biotech-Incentive-Adoption Mean 368.308 23.735 63.676 42.436 
Pre-Credit-Adoption Mean 322.756 29.093 40.551 34.513 
Percent Effect  of Biotech Incentives −6.038 −4.771 −0.415 2.053 −20.141 −20.158 −5.084 −5.679 
Percent Effect of R&D User Cost −2.032 −1.113 0.547 0.434 −6.388 −6.749 −1.460 −1.057 
Sample Period 1990-2009 1990-2009 1990-2009 1990-2009 1990-2009 1990-2009 1990-2009 1990-2009 
Number of States 48 48 49 49 49 49 51 51 
Number of Observations 1008 912 1029 931 1029 931 1071 969 
NOTE:  * significant at the 0.10 level (two-tailed test); ** significant at the 0.05 level (two-tailed test); *** significant at the 0.01 level (two-tailed test).  Regressions estimated via OLS.  
Standard errors based on Newey-West VC estimator with within-state AR(2) errors. Employment is measured in thousands. For biotech incentives, the percent effect is defined as the ratio of the 
coefficient over the pre-adoption mean, holding constant R&D tax credits. For R&D user cost, is the effect of an increase in R&D tax credits large enough to lower the R&D user cost by 10 
percent (relative to its average among adopting states), holding constant biotech incentives.  Sample includes data for 51 states. All models include state fixed effects and year fixed effects.  
 



Table 6  Triple Difference Estimates 
 Employment (3254) Employment (325412) Employment (54171) 
 (1) (2) (3) 
Contemporaneous Effects    
Biotech Incentive - Biotech Industry 1.290** 

(0.658) 
1.801** 

(0.741) 
3.862*** 

(1.470) 
R&D User Cost - Biotech Industry −1.165*** 

(0.324) 
−8.996** 
(4.406) 

4.447*** 
(0.837) 

Pre-Biotech-Incentive-Adoption Mean 8.043 5.792 21.701 
Pre-Credit-Adoption Mean 7.698 6.495 10.611 
Percent Effect of Biotech Incentives 16.042 31.098 17.795 
Percent Effect of R&D User Cost 1.742 15.950 −4.826 
Sample Period 1990-2009 1990-2009 1990-2009 
Number of Observations 1595 1176 1973 
NOTE:  * significant at the 0.10 level (two-tailed test); ** significant at the 0.05 level (two-tailed test); *** significant at the 0.01 level (two-tailed test).  Regressions estimated via OLS.  
Standard errors based on Newey-West VC estimator with within-state AR(2) errors. Pre-adoption means are the baseline numbers of star scientists in adopting states in the year before adoption 
of incentive or credit. For biotech incentives, the percent effect is defined as the ratio of the coefficient over the pre-adoption mean, holding constant R&D tax credits.  Sample includes data for 
51 states. All models include indicators for state, year, biotech sector, as well as the interaction of state and biotech, and year and biotech. 
 
 



Table 7  The Effect of Incentives on Employment in the Non-Traded Sector 
 Constr Retail Real Estate 
 (1) (2) (3) (4) (5) (6) 
Contemporaneous Effects       
  Biotech Incentive 36.819** 

(14.623) 
 31.349*** 

(10.867) 
 5.814*** 

(2.034) 
 

  R&D User Cost −87.570* 
(49.198) 

 −18.286 
(40.324) 

 −5.021 
(6.680) 

 

Cumulative Effects (0-2 years)       
  Biotech Incentive  35.121** 

(16.028) 
 32.185*** 

(11.447) 
 6.098*** 

(2.324) 
  R&D User Cost  −133.096** 

(57.853) 
 −43.734 

(46.676) 
 −10.560 

(7.712) 
Pre-Biotech-Incentive-Adoption Mean 229.83 470.79 73.12 
Pre-Credit-Adoption Mean 131.86 312.45 40.68 
Percent Effect  of Biotech Incentives 16.02 15.28 6.66 6.84 7.95 8.34 
Percent Effect of R&D User Cost 7.647 11.623 0.674 1.612 1.421 2.989 
Sample Period 1990-2009 1990-2009 1990-2009 1990-2009 1990-2009 1990-2009 
Number of States 50 50 51 51 51 51 
Number of Observations 1050 950 1071 969 1071 969 
NOTE:  * significant at the 0.10 level (two-tailed test); ** significant at the 0.05 level (two-tailed test); *** significant at the 0.01 level (two-tailed test).  Regressions estimated via OLS.  
Standard errors based on Newey-West VC estimator with within-state AR(2) errors. Employment is measured in thousands.  For biotech incentives, the percent effect is defined as the 
ratio  of the coefficient over the pre-adoption mean, holding constant R&D tax credits. For R&D user cost, is the effect of an increase in R&D tax credits large enough to lower the R&D 
user cost by 10 percent (relative to its average among adopting states), holding constant biotech incentives.  All models include state fixed effects and year fixed effects.  
 
 



Table 8  The Effect of Incentives on Salaries 
 Pharmaceutical and Medicine 

Manufacturing (3254) 
Pharmaceutical Preparation Manufacturing 

(325412) 
Research & Development in the Physical, 
Engineering, and Life Sciences (54171) 

 (1) (2) (3) (4) (5) (6) 
Contemporaneous Effects       
  Biotech Incentive 0.001 

(0.003) 
 0.000 

(0.004) 
 0.005* 

(0.003) 
 

  R&D User Cost −0.033** 
(0.016) 

 −0.034* 
(0.020) 

 −0.006 
(0.020) 

 

Cumulative Effects (0-2 years)       
  Biotech Incentive  −0.001 

(0.002) 
 −0.003 

(0.003) 
 0.003 

(0.003) 
  R&D User Cost  −0.035** 

(0.018) 
 −0.033 

(0.027) 
 −0.008 

(0.025) 
Percent Effect of Biotech Incentives 0.077  −0.076 0.047  −0.265 0.513  0.341 
Percent Effect of R&D User Cost 0.374 0.401 0.392 0.377 0.069 0.089 
Sample Period 1990-2007 1990-2007 1990-2007 1990-2007 1990-2007 1990-2007 
Number of States 43 43 37 37 40 40 
Number of Observations 618 555 438 395 670 590 
NOTE:  * significant at the 0.10 level (two-tailed test); ** significant at the 0.05 level (two-tailed test); *** significant at the 0.01 level (two-tailed test).  Regressions estimated via OLS.  
Standard errors based on Newey-West VC estimator with within-state AR(2) errors. For biotech incentives, the percent effect is defined as the ratio of the coefficient over the pre-adoption 
mean, holding constant R&D tax credits. For R&D user cost, is the effect of an increase in R&D tax credits large enough to lower the R&D user cost by 10 percent (relative to its average among 
adopting states), holding constant biotech incentives.  All models include state fixed effects and year fixed effects.  
 
 



Table 9  The Effect of Incentives on Number of Establishments 
 Pharmaceutical and Medicine 

Manufacturing (3254) 
Pharmaceutical Preparation 

Manufacturing (325412) 
Research & Development in the Physical, 
Engineering, and Life Sciences (54171) 

 (1) (2) (3) (4) (5) (6) 
Contemporaneous Effects       
  Biotech Incentive 9.102*** 

(3.319) 
 5.541** 

(2.425) 
 113.541** 

(45.636) 
 

  R&D User Cost −9.812 
(10.920) 

 −8.827 
(8.961) 

 −333.870*** 
(120.078) 

 

Cumulative Effects (0-2 years)       
  Biotech Incentive  7.840** 

(3.144) 
 4.775* 

(2.574) 
 105.524** 

(47.431) 
  R&D User Cost  −9.663 

(11.918) 
 −13.035 

(12.964) 
 −405.360*** 

(142.180) 
Pre-Biotech-Incentive-Adoption Mean 76.78 35.556 621.222 
Pre-Credit-Adoption Mean 47.08 23.260 281.929 
Percent Effect  of Biotech Incentives 11.86 10.21 15.58 13.43 18.28 16.99 
Percent Effect of R&D User Cost 2.400 2.363 4.370 6.453 13.636 16.556 
Sample Period 1990-2007 1990-2007 1990-2007 1990-2007 1990-2007 1990-2007 
Number of States 51 50 50 49 51 51 
Number of Observations 977 880 955 863 1020 918 
NOTE:  * significant at the 0.10 level (two-tailed test); ** significant at the 0.05 level (two-tailed test); *** significant at the 0.01 level (two-tailed test).  Regressions estimated via OLS.  
Standard errors based on Newey-West VC estimator with within-state AR(2) errors. For biotech incentives, the percent effect is defined as the ratio of the coefficient over the pre-adoption 
mean, holding constant R&D tax credits. For R&D user cost, is the effect of an increase in R&D tax credits large enough to lower the R&D user cost by 10 percent (relative to its average 
among adopting states), holding constant biotech incentives.  All models include state fixed effects and year fixed effects. 
 
 



Table 10  The Effect of Incentives on Patents 
 Patents Patents (Individual) Patents (Corporate) Patents (University) 

 (1) (2) (3) (4) (5) (6) (7) (8) 
Contemporaneous Effects         
  Biotech Incentive 36.469 

(30.836) 
 29.276 

(21.616) 
 5.607 

(8.388) 
 1.463 

(1.254) 
 

  R&D User Cost −275.933** 
(114.246) 

 −192.160** 
(79.066) 

 −67.667** 
(30.795) 

 −15.152** 
(5.970) 

 

Cumulative Effects (0-2 years)         
  Biotech Incentive  27.020 

(29.990) 
 24.577 

(20.999) 
 1.400 

(8.503) 
 1.030 

(1.265) 
  R&D User Cost  −269.134** 

(131.251) 
 −185.172** 

(90.765) 
 −70.328** 

(35.660) 
 −13.045** 

(6.589) 
Pre-Biotech-Incentive-Adoption Mean 262.94 183.95 66.05 13.31 
Pre-Credit-Adoption Mean 114.11 79.53 31.67 6.42 
Percent Effect  of Biotech Incentives 13.870 10.276 15.915 13.361 8.488 2.120 10.993 7.741 
Percent Effect of R&D User Cost 27.844 27.158 27.821 26.809 24.603 25.570 27.181 23.402 
Sample Period 1990-2010 1992-2010 1990-2010 1992-2010 1990-2010 1992-2010 1990-2010 1992-2010 
Number of Observations 1071 969 1071 969 1071 969 1071 969 
NOTE: * significant at the 0.10 level (two-tailed test); ** significant at the 0.05 level (two-tailed test); *** significant at the 0.01 level (two-tailed test).  Regressions estimated via OLS.  
Standard errors based on Newey-West VC estimator with within-state AR(2) errors.  For biotech incentives, the percent effect is defined as the ratio of the coefficient over the pre-adoption 
mean, holding constant R&D tax credits. For R&D user cost, is the effect of an increase in R&D tax credits large enough to lower the R&D user cost by 10 percent (relative to its average among 
adopting states), holding constant biotech incentives.  All models include state fixed effects and year fixed effects. 
 
 



Table 11  Spatial Lag Specifications 
 

Stars (95th percentile) 
New Stars (95th 

percentile) 

Pharmaceutical and 
Medicine Manufacturing 

(3254) 
Pharmaceutical Preparation 

Manufacturing (325412) 

Research & Development in the 
Physical, Engineering, and Life 

Sciences (54171) 
 (1) (2) (3) (4) (5) 
PANEL A:  Spatial Weighting Matrix based on interstate population flows.  
Contemporaneous Effects      
  Biotech Incentive 13.583 

(8.326) 
1.712 

(1.940) 
1.235* 

(0.631) 
1.769** 

(0.711) 
3.990*** 

(1.439) 
  R&D User Cost −76.110*** 

(28.760) 
−17.774** 

(7.821) 
−7.538** 
(3.606) 

−7.959* 
(4.471) 

−5.214 
(4.059) 

Spatial Lag      
  Biotech Incentive −19.147* 

(10.079) 
−3.717 
(3.034) 

−1.027 
(0.900) 

−0.459 
(0.918) 

1.798 
(2.346) 

  R&D User Cost −244.358 
(215.649) 

−111.325* 
(62.434) 

18.356 
(19.819) 

30.271 
(22.716) 

−3.494 
(33.226) 

Pre-Biotech-Incentive-Adoption Mean 100.667 26.556 8.043 5.792 21.701 
Pre-Credit-Adoption Mean 40.158 12.248 7.698 6.495 10.611 
Percent Effect  of Biotech Incentives 13.493 6.446 15.352 30.549 18.387 
Percent Effect of R&D User Cost 21.823 16.709 11.275 14.111 5.657 
Sample Period 1990-2010 1990-2010 1990-2010 1990-2010 1990-2010 
Number of States 50 50 37 28 46 
Number of Observations 1050 1050 777 588 966 
PANEL B:  Spatial Weighting Matrix based on inverse-distance between each pair of states.   
Contemporaneous Effects      
  Biotech Incentive 14.264 

(8.948) 
1.721 

(2.100) 
1.245* 

(0.669) 
1.822** 

(0.740) 
3.843 

(1.511) 
  R&D User Cost −76.448*** 

(28.542) 
−18.017** 

(7.651) 
−7.959** 
(3.529) 

−8.945* 
(4.599) 

−5.946 
(4.068) 

Spatial Lag      
  Biotech Incentive −12.415 

(20.250) 
−6.709 
(6.294) 

−2.006 
(1.527) 

0.996 
(1.412) 

−1.905 
(4.544) 

  R&D User Cost −252.065 
(238.878) 

−152.247** 
(66.725) 

−3.416 
(17.642) 

0.517 
(25.051) 

−57.970 
(47.213) 

Pre-Biotech-Incentive-Adoption Mean 100.667 26.556 8.043 5.792 21.701 
Pre-Credit-Adoption Mean 40.158 12.248 7.698 6.495 10.611 
Percent Effect  of Biotech Incentives 14.169 6.482 15.483 31.462 17.707 
Percent Effect of R&D User Cost 21.920 16.938 11.905 15.858 6.452 
Sample Period 1990-2010 1990-2010 1990-2010 1990-2010 1990-2010 
Number of States 50 50 37 28 46 
Number of Observations 1050 1050 777 588 966 
NOTE: * significant at the 0.10 level (two-tailed test); ** significant at the 0.05 level (two-tailed test); *** significant at the 0.01 level (two-tailed test).  In Panel A, the Spatial Weighting 
Matrix is based on interstate population flows. In Panel B, the spatial Weighting Matrix based on inverse-distance between each pair of states. 
 



Appendix Table 1  Description of State Biotech Incentives 
State Year Credit Type 
Maryland 2008 - present Income Tax Credit for early-stage biotech companies 
Massachusettes 2009 - present “Life Sciences Tax Incentive Program”:  Investment tax credit, special sales tax exemptions, refundable 

research tax credit 
New Jersey 1996 - present “Business Employment Incentive Program” (BEIP).  Broad-based grant for job creation, with a lower job-

creation qualifying threshold for biotech and “emerging high technology.” Also provides financial assistance 
for companies in these sectors. 

Arkansas 2003 - present JCTC, Sales tax refunds, and R&D Tax credits with higher subsidies for “targetted businesses,” which 
consists of:  (i) Advanced materials and manufacturing systems; (ii) Agriculture, food and environmental 
sciences; (iii) Biotechnology, bioengineering and life sciences; (iv) Information technology; (v) 
Transportation logistics; and (vi) Bio-based products. 

Colorado 1999 - present Biotech Sales and Use Tax Refund 
Washington 2004 - present High Tech Business & Organization Credit for R&D Spending, Includes the “Biotechnology & Medical 

Device Manufacturing Sales & Use Tax Deferral/Waiver” 
Maine 1997 - present Sales tax exemption on machinery, equipment, instruments, and supplies for biotech research 
Missouri 1999 - 2003 State & local sales or use tax exemption for life sciences companies (which is just slightly broader than the 

sales and use tax exemptions available to most manufacturers) 
Florida 2002 - present Specialized incentives and tax credits, (more technically, the biomedical industry was re-classified as “high-

impact”, so that qualified companies could be eligible for the state’s preexisting capital investment tax credits 
and the High Impact Performance Incentive (a JCTC-type program) 

North Carolina 1984 - present Has the North Carolina Biotechnology Center which make low interest loans to biotech start-ups. 
California 2004 - present California Stem Cell Research and Cures Act, which provides biotech research grants 
 
 



Appendix Table 2  Estimates Conditional on Region and Division Trends 
 Region Trends Division Trends 
 Biotech 

Incentive 
R&D User 

Cost 
Biotech 

Incentive 
R&D User 

Cost 
Contemporaneous Effects     
Stars 13.174 −73.117 9.043 −50.335 
 (7.663) (30.817) (6.524) (29.934) 
New Stars 1.428 −4.673 1.025 −2.238 
 (.886) (3.498) (.753) (3.547) 
Employment - Pharmaceutical and Medicine 

Manufacturing (3254) 
1075.857 -9435.284 432.613 −8904.278 
(565.127) (3754.774) (455.727) (3352.449) 

Employment - Pharmaceutical Preparation 
Manufacturing (325412) 

1353.251 −9473.389 739.146 −10285.490 
(645.549) (4637.265) (544.011) (4262.766) 

Employment - Research & Development in the 
Physical, Engineering, and Life Sciences (54171) 

3672.225 −3510.039 3252.809 −303.420 
(1363.094) (4290.760) (1219.043) (4326.328) 

Wages - Pharmaceutical and Medicine Manufacturing 
(3254) 

0.001 −0.030 0.001 −0.032 
(0.003) (0.016) (0.003) (0.016) 

Wages - Pharmaceutical Preparation Manufacturing 
(325412) 

0.002 −0.031 0.001 −0.033 
(0.004) (0.019) (0.004) (0.020) 

Wages - Research & Development in the Physical, 
Engineering, and Life Sciences (54171) 

0.006 −0.001 0.006 −0.004 
(0.003) (0.020) (0.003) (0.020) 

Establishments - Pharmaceutical and Medicine 
Manufacturing (3254) 

7.706 −7.425 5.872 6.548 
(2.825) (11.111) (2.220) (12.109) 

Establishments - Pharmaceutical Preparation 
Manufacturing (325412) 

4.385 −10.182 3.011 −11.234 
(2.122) (9.242) (1.624) (8.968) 

Establishments - Research & Development in the 
Physical, Engineering, and Life Sciences (54171) 

104.825 −319.254 96.439 −231.389 
(42.757) (123.663) (36.592) (119.521) 

Patents 32.862 −256.727 20.083 −178.617 
 (28.534) (120.816) (24.622) (115.070) 
NOTE: Regressions estimated via OLS.  Standard errors based on Newey-West VC estimator with within-state AR(2) errors. 
There are 4 Census regions and 9 Census divisions.  
 
 



Appendix Table 3  R&D Tax Credit Rate Replacing R&D User Cost 
 Stars  

(95th percentile) 
New Stars  

(95th percentile) 
Pharmaceutical and 

Medicine Manufacturing 
(3254) 

Pharmaceutical 
Preparation 

Manufacturing 
(325412) 

Research & Development 
in the Physical, 

Engineering, and Life 
Sciences (54171) 

 (1) (2) (3) (4) (5) 
Contemporaneous Effects 
  Biotech Incentive 14.759* 

(8.405) 
1.662* 

(0.967) 
1.301** 

(0.656) 
1.758** 

(0.738) 
3.928*** 

(1.479) 
  R&D User Cost 65.072** 

(25.572) 
4.450 

(2.927) 
5.993** 

(2.997) 
6.025 

(3.842) 
3.572 

(3.467) 
Sample Period 1990-2010 1990-2010 1990-2009 1990-2009 1990-2009 
Number of States 51 51 38 28 47 
Number of Observations 1071 1071 798 588 987 
NOTE: * significant at the 0.10 level (two-tailed test); ** significant at the 0.05 level (two-tailed test); *** significant at the 0.01 level (two-tailed test).  Employment in columns 
3-5 is measured in thousands. Regressions estimated via OLS.  Standard errors based on Newey-West VC estimator with within-state AR(2) errors. 
 
 



Appendix Table 4  Effect of Early Adoption on Star Scientists and Employment 
 

Stars 
(95th percentile) 

New Stars 
(95th percentile) 

Pharmaceutical and 
Medicine Manufacturing 

(3254) 

Pharmaceutical 
Preparation 

Manufacturing (325412) 

Research & Development in 
the Physical, Engineering, 
and Life Sciences (54171) 

 (1) (2) (3) (4) (5) 
Contemporaneous Effects      
  Biotech Incentive 23.987* 

(13.285) 
3.577 

(3.080) 
3.036*** 

(1.004) 
3.110*** 

(1.019) 
6.460*** 

(2.180) 
  R&D User Cost −82.554*** 

(29.979) 
−19.567** 

(8.125) 
−8.621** 
(3.450) 

−8.690** 
(4.274) 

−6.882 
(4.245) 

First4adopters*Incentive      
  Biotech Incentive −24.761* 

(14.040) 
−4.449 
(3.319) 

−3.927*** 
(1.049) 

−3.484*** 
(1.054) 

−6.660*** 
(2.262) 

  R&D Tax Credit 46.141 
(40.038) 

17.031 
(12.525) 

−10.295* 
(5.360) 

−11.753* 
(6.180) 

3.899 
(4.154) 

Pre-Biotech-Incentive-Adoption Mean 100.667 26.556 8.043 5.792 21.701 
Pre-Credit-Adoption Mean 40.158 12.248 7.698 6.495 10.611 
Percent Effect  of Biotech Incentives 23.828 13.469 37.743 53.698 29.771 
Percent Effect of R&D User Cost 23.671 18.395 12.894 15.406 7.468 
Sample Period 1990-2010 1990-2010 1990-2009 1990-2009 1990-2009 
Number of States 51 51 38 28 47 
Number of Observations 1071 1071 798 588 987 
NOTE:  * significant at the 0.10 level (two-tailed test); ** significant at the 0.05 level (two-tailed test); *** significant at the 0.01 level (two-tailed test).  Employment in columns 3-5 is 
measured in thousands. Regressions estimated via OLS.  Standard errors based on Newey-West VC estimator with within-state AR(2) errors. 
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