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5
Forecasting Asset Prices
Using Nonlinear Models

Michael D. Bradley
 George Washington University

Dennis W. Jansen
Texas A&M University

Over the past 25 years, a substantial body of research has produced 
evidence indicating the presence of nonlinearities in the behavior of 
both fi nancial and real variables. Nonlinearity can arise for a variety 
of reasons. First, frictions and transaction costs can exceed gains from 
arbitrage when market deviations are small. Thus, the dynamic reaction 
to disequilibria may be dependent upon the size of the price change 
required to restore equilibrium. In other words, transaction costs may 
be large enough to preclude a complete price response to a small shock 
but not to large shocks, making the size of the reaction state-dependent.

Another source of nonlinearity is asymmetric dynamics, in which a 
variable’s generating process following declines in its value may differ 
from the process following increases in its value. For example, the effects 
of positive shocks may be more persistent than the effects of negative 
shocks, which may be more rapidly offset. Similarly, herd behavior may 
cause market participants to overreact during periods of market stress, 
generating movements in asset prices that exceed normal dynamics. This 
is another reason a variable’s dynamics would be state-dependent.

Still another source of nonlinearity is a variable’s volatility. On 
one level, volatility may be a state variable, with a variable’s dynamics 
changing depending on the state of volatility. Alternatively, volatility 
itself may be state-dependent, changing because of changes in a state 
variable such as the state of the economy (expansion, recession) or the 
state of the fi nancial market (bear market, bull market). These exam-
ples show that nonlinearity can arise in the variance or in the mean of 
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66   Bradley and Jansen

the variable. Nonlinearity in the variance typically arises because the 
variance is time-varying, such as in a generalized autoregressive condi-
tional heteroskedasticity (GARCH) model, whereas nonlinearity in the 
mean arises because the equation generating the evolution of the mean 
is nonlinear. 

There are a variety of approaches and specifi c classes of econo-
metric models that have been developed to capture nonlinearities in 
economic relationships. These include the threshold models (e.g., 
threshold autoregressive (TAR) models—see Chan and Tong [1986], 
Tong [1990], and Tsay [1989]); smoothed versions of threshold models 
(e.g., smooth threshold autoregressive (STAR ) models—see Granger 
and Teräsvirta [1993] and Teräsvirta [1994]); linear models with non-
linear appendages (e.g., the current depth of the recession (CDR) 
model—see Beaudry and Koop [1993]); the Markov switching model 
(see Hamilton [1989]); various artifi cial neural network models (see 
Cheng and Titterington [1994]); and various nonparametric models in 
general (see Li and Racine [2007]). These various models have all been 
employed in estimating nonlinear economic relationships, and most 
have seen some success as forecasting models. 

Many of these models have been applied to business cycles. Neftçi 
(1984) and Falk (1986) ask whether business cycle dynamics are asym-
metric. Teräsvirta and Anderson (1992) and Granger, Teräsvirta, and 
Anderson (1993) apply smooth transition models to capture business 
cycle nonlinearities including asymmetries. Van Dijk and Franses 
(1999) add multiple-regime smooth transition models. Beaudry and 
Koop (1993) take a different approach, which Potter (1995), Pesaran 
and Potter (1997), Jansen and Oh (1999), and Bradley and Jansen 
(1997, 2000) follow up on. However, few of these papers look in-depth 
at forecasting issues.

Even though nonlinear models have been successfully applied to 
model a wide variety of fi nancial and macroeconomic variables, the 
results from using those models to forecast has been mixed. Nonlinear 
models generally improve upon linear models in terms of in-sample 
forecasting, but they often show little improvement in terms of out-
of-sample forecasting. This somewhat disappointing performance has 
been ascribed to a number of causes. First, the nonlinearity may not 
occur in the forecast period. The forecasting advantage of a nonlinear 
model could arise from its ability to accurately capture the dynamics of 
a series during periods of time when it exhibits nonlinear behavior. If 
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Forecasting Asset Prices Using Nonlinear Models   67

the out-of-sample forecasting period does not include any such periods, 
there will be no forecasting advantage for the nonlinear model. 

This characteristic of nonlinear models to capture periods of time 
with “normal” dynamics as well as with exceptional dynamics can lead 
to other forecasting issues. One such issue is the need to forecast the 
regime switch or structural break in which the dynamics change. In an 
out-of-sample forecast, the moment of switch is unknown and may in 
itself be diffi cult to forecast, thus reducing the utility of the nonlinear 
model. Similarly, nonlinear forecasts may be state-dependent, meaning 
that an accurate out-of-sample forecast will require accurate forecasts 
of the state of nature over the period of the forecast. For linear models 
the impact of a shock is the same regardless of the state of the world in 
which the shock occurs. For nonlinear models this is not true—a dis-
turbance or shock will have different impacts depending on the state of 
the world in which the shock occurs. Finally, if periods with exceptional 
dynamics are relatively rare but empirically signifi cant, there may be 
a tendency for nonlinear models to overfi t the sample, reducing their 
value in an out-of-sample forecast.

A last challenge for out-of-sample forecasting comes from the diffi -
culties in using nonlinear models in multistep forecasts. Linear models 
can be solved recursively, making the calculation of multistep forecasts 
relatively straightforward. This is not true for nonlinear models. The 
nonlinearity makes multiple-step-ahead forecasting intrinsically more 
diffi cult. We will outline some of the diffi culties with multiple-step-
ahead forecasts later in this paper. 

These problems notwithstanding, we believe it is important to con-
tinue the research into nonlinear forecasts so we can make better use of 
our ability to model the nonlinear aspects of the economy. We fi nd the 
problems not to be drawbacks of nonlinear models so much as chal-
lenges that must be overcome to improve the accuracy of forecasts. The 
problems lead to inaccuracy in both linear and nonlinear forecasts, and 
the task is to better understand nonlinear forecasting in order to over-
come these obstacles.

We thus examine an ongoing research question as to whether 
fi nancial-sector variables help forecast real-sector variables, or real-
sector variables help forecast fi nancial sector variables—or both. We 
use nonlinear models to investigate this question. We do so because this 
allows us to investigate the out-of-sample forecasting ability of these 
nonlinear models in a multivariate context. 
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68   Bradley and Jansen

THEORETICAL PRELIMINARIES

The specifi c relationship that we investigate is between a key 
cyclical real-sector variable (industrial production) and two fi nancial-
sector variables, the 10-year Treasury bond rate and excess returns for 
Standard and Poor’s 500. We model that relationship using nonlinear 
approaches and then examine the out-of-sample forecasting properties 
of those models. Before estimating the models and evaluating the fore-
casts we present three important defi nitions and a description of the 
data we use. What follows here is just the briefest of introductions to 
ideas of fi nancial economics that provide the backdrop to any fi nancial 
forecasting exercise.

The fi rst defi nition is the asset pricing equation. A typical fi rst-order 
condition from an asset allocation problem (i.e., a typical Euler equa-
tion for an asset pricing problem) is found in Equation (5.1):

(5.1)  1 1'( ) '( )t t t tu c E u c R    ,
 

where u(ct) is a utility function, u '(ct) indicates the derivative of the util-
ity function, Rt+1 is real gross return on stocks purchased at time t and 
held until time t + 1, and ct is real consumption at time t. Typically, op-
timization requires equating the marginal utility of current consumption 
(the left-hand side of Equation [5.1]) to the marginal utility of deferring 
consumption to the next period (the right-hand side of Equation [5.1]). 
The marginal utility of current consumption is straightforward and is 
written as u '(ct). The marginal utility of deferring consumption to the 
next period is calculated as the product of three terms: 1) the rate of 
return on a unit of deferred consumption, Rt+1; 2) the marginal utility 
of consumption that is deferred to the next period, u ' (ct+1); and 3) the 
discount factor β (used to calculate the present value of this additional 
future marginal utility). 

Equation (5.1) is potentially highly nonlinear, and any variable af-
fecting consumption can potentially affect forecasts of stock returns. 
This asset pricing condition provides a theoretical basis for nonlinear 
econometric modeling.

The second defi nition is of excess returns. Common models of eq-
uity returns focus on modeling excess returns, which are returns over 
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Forecasting Asset Prices Using Nonlinear Models   69

and above a risk premium. Often the risk premium is a government 
bond yield, in which case excess returns are returns on equity over and 
above returns on the government bond. We thus defi ne excess returns as

(5.2) 1 1
1 1

t t
t t t t

t

S DER I R I
S

 
 


     .

  
Here, ERt+1 is the excess return on stocks purchased at time t and 

held until time t + 1, and Rt+1 is the gross return on stocks purchased at 
time t and held until time t + 1. The gross return on bonds purchased at 
time t and held until time t + 1 is It .

The third and last defi nition is that of the information set used for 
forecasting. It is important to think carefully about what should be 
included in the information set when investigating the forecasting per-
formance of various models. The excess return formula indicates that, 
at time t, an investor knows the nominal return on bonds between t and 
t + 1. If one were to buy a bond at time t, one would know what its 
interest payments were between t and t + 1. But when one buys equity, 
one won’t know the equity’s return between t and t + 1 until time t + 1 
occurs and one can observe the price of stock at time t + 1. With this 
defi nition of the information set, Ω, we can defi ne the forecast for an 
excess return as

(5.3) 1 1
1( | ) |t t

t t t t
t

S DE ER E I
S

  


 
  

 
 .

DATA DESCRIPTION

We estimate models of excess returns on equities and bond interest 
rates using monthly data for the United States. The two sources for our 
data are 1) Shiller’s monthly data set on stocks and associated variables 
and 2) Federal Reserve System data on industrial production. We also 
employ a measure of the general price level, the Consumer Price Index 
calculated by the Bureau of Labor Statistics. 

Our data include the value of the Standard and Poor’s (S&P) 500 
index at the end of each month, calculated as the monthly average of 
daily closing prices. We represent this variable as the stock index value 
St . Dividends are represented by the symbol Dt , and according to Shiller 
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70   Bradley and Jansen

(2011) are “computed from the S&P four-quarter tools for the quarter 
since 1926, with linear interpolation to monthly fi gures.” The price in-
dex, Pt , is the CPI-U series. Industrial production is yt . Finally, we use 
Shiller’s 10-year government security rate (GS10) as our measure of the 
gross long-term nominal interest rate, It .

Below are plots of the key variables. Figure 5.1 graphs the log 
of industrial production (left scale) and the growth rate, calculated as 
changes in the log of industrial production (right scale). The general 
upward trend in industrial production is clearly visible, as are various 
periods when industrial production was declining. These periods are 
typically recessions, such as the period around 1975 and the period at 
the end of our sample, 2009. The plot of the growth rate indicates pe-
riods of greater volatility, especially at the beginning of our sample, 
1955–1960, and again at the end of our sample. The impact of the reces-
sion in 1974–1975 is clear. The long period of relatively low volatility 
in the growth rate of industrial production from the mid-1980s until 
2005 is also apparent.

Figure 5.1  U.S. Industrial Production, January 1955–December 2009

SOURCE: Authors’ calculations.
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Forecasting Asset Prices Using Nonlinear Models   71

Figure 5.2 graphs the log of the stock price index, both its level 
(left-hand scale) and its growth rate (right-hand scale). Again the gen-
eral upward trend in the stock price index is clear, as are periods of 
declining stock prices after 2000 and again at the end of our sample. 
The growth rate of stock prices shows considerably more volatility 
than the growth rate of industrial production. For stock prices, monthly 
changes of plus or minus 0.1 (10 percent) occur at times, whereas we do 
not see such large movements in industrial production.

Figure 5.3 graphs our interest rate data, where we have converted 
this series to monthly net interest rates. Interest rate levels are shown on 
the left-hand scale, while changes in the interest rate levels, calculated 
as simple differences, are shown on the right-hand scale. Most apparent 
is the secular increase in interest rates from the beginning of our sample 
until the very early 1980s, and the secular decline from the early 1980s 
until the end of our sample. Interest rates begin our sample at about 0.2 
percent per month (roughly 2.4 percent per year), increase to a rate of 

Figure 5.2  U.S. Stock Price Index, January 1955–December 2009

SOURCE: Authors’ calculations.
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72   Bradley and Jansen

almost 1.2 percent per month (roughly 14.4 percent per year), and then 
return by the end of our sample to a rate near 0.2 percent per month. 
This run-up and subsequent decline in rates is most often blamed on 
infl ation rates, which increased from the mid-1960s through the 1970s, 
peaking in the early 1980s before declining gradually throughout the 
next several decades. Of course, the large secular movements contain 
many shorter periods of ups and downs in interest rates, as the graph of 
interest rate changes makes clear. Also apparent in the graph of interest 
rate changes is the high volatility from the late 1970s through the early 
1980s.

Figure 5.3  U.S. Interest Rate, January 1955–December 2009

SOURCE: Authors’ calculations.
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Forecasting Asset Prices Using Nonlinear Models   73

ESTIMATING THE NONLINEAR MODELS

In this section we describe how we estimate the nonlinear models 
that we use for producing our out-of-sample forecasts. Our estimation 
proceeds in three steps. First we test for linearity in our three variables. 
The null hypothesis will be that the modeled relationship is linear, and a 
rejection leads to continued estimation of a nonlinear model. The idea is 
not to estimate a nonlinear model if that is unnecessary. Second, when 
nonlinearity is detected, we will estimate a threshold model. Third, we 
will also estimate a second nonlinear model, which we will call a “cur-
rent depth of recession” model.

Threshold models capture the possibility that the dynamics of a 
variable may be state-dependent. They allow the data-generating pro-
cess to vary across two or more states of nature. For this reason, they 
are also often called “regime-switching” models. Seasonal models for 
industrial production or “day of week” models for stock returns are 
examples of deterministic threshold models. For these models the oc-
currence of a regime switch is known with certainty. However, many 
interesting cases involve stochastic threshold models, in which the re-
gime switch is unknown. An example is given by a model in which 
stock market returns are driven by a different dynamic process after 
large declines in stock prices. Bradley and Jansen (2004) provide one 
attempt at forecasting stock returns in a nonlinear framework.

Threshold models are an example of a model in which the state 
variable is observable. In a deterministic threshold model it is clear that 
we observe the day of the week and that we can allow our model to 
behave differently on different days of the week. In a stochastic thresh-
old model we can observe that there has been a large decline in stock 
prices, and then we can allow our model to behave differently after such 
a large decline. The key feature is that the state variable, either the day 
of the week or the decline in stock prices, is observable. This stands in 
contrast to models with unobserved state variables, such as the vari-
ous Markov switching models. In those models the state variable is an 
unobserved variable, and changes in the underlying hidden state vari-
able lead to changes in the behavior of the variable we are modeling. 
Thus a key modeling decision is between using a nonlinear model with 
observable state variables and using a nonlinear model with hidden 
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74   Bradley and Jansen

or unobserved state variables. The choice depends in part on whether 
there are observed variables that can adequately indicate or represent 
the state of the world. Here we estimate and forecast with observable 
state variables.

We investigate two types of threshold models, the threshold autore-
gressive (TAR) model and the smooth transition autoregressive (STAR) 
model. A TAR model specifi es (at least) two sets of dynamics for the 
variable of interest, y, with the regime switch dependent upon the value 
of a “transition” variable, labeled z. The threshold model can be written 
as follows: 

0
1 1

p p

t i t i i t i t t
i i

y a y y    
 

 
    

 
   ,

where

(5.4) 
0

1

t d

t

t d

if z c

if z c







 
            

           
.

In this threshold model, the behavior of the variable yt is a pth order 
autoregressive model governed by the coeffi cients αi when the transi-
tion variable zt−d is below the threshold value, c. When the transition 
variable is greater than the threshold value, the behavior of the variable 
yt is an autoregressive model governed by the coeffi cients αi + βi. Thus 
the variable yt changes behavior depending on the relationship between 
the transition variable and the threshold. 

The transition variable is the observable state variable we men-
tioned above. Changes in this variable lead to changes in the behavior 
of yt. The transition variable has a subscript t − d to indicate that it is a 
lagged value, and d is an integer value of 1 or higher. The parameter d 
is known as the “delay” and indicates the delay between changes in the 
transition variable and changes in the behavior of yt. 

The TAR model seems simple, with an indicator variable δ switch-
ing from zero to one as the transition variable crosses a threshold value. 
This is a step function, with δ equaling zero when zt−d is on one side of 
the threshold and one when zt−d is on the other side of the threshold. 
Yet, despite this simplicity, the TAR model has proven useful as a 
model to capture nonlinear behavior. 
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The STAR model generalizes the threshold approach by allowing a 
smooth transition between the two regimes. This transition is governed 
by a function of the threshold variable, z, and the transition function 
is usually specifi ed as being either logistic (LSTAR) or exponential 
(ESTAR). The shape of the transition function governs the nature of 
the movement from one regime to another. The main difference is that 
logistic specifi cation is one-sided, in the sense that there are alternative 
dynamics for either large or small values of the transition function, and 
an intermediate range where the dynamics are a combination of the dy-
namics at the two extremes. The exponential specifi cation is two-sided, 
in the sense that there is a set of dynamics for both large and small val-
ues, and a different set of dynamics for intermediate values. 

The structure of the STAR model is given by

0
1 1

( )
p p

t i t i i t i t d t
i i

y a y y F z    
 

 
    

 
 

 
,

where

(5.5) 
1( )( ) 1 t dz c

t dF z e  
 

              (LSTAR)

or 
  
 

^2( )( ) 1 , 0t dz c
t dF z e   


              
(ESTAR).

We illustrate the nature of a STAR model transition function in Fig-
ure 5.4. In a TAR model there is a discrete switch between the two 
regimes, as illustrated by the line that goes almost straight up. The tran-
sition function takes a value of zero before the period of the switch 
and a value of one afterward. In a STAR model the switch between 
the regimes is more gradual, with the degree of smoothness depending 
upon the size of the transition parameter, γ. When gamma takes a small 
value the transition is very gradual, as illustrated by the dotted line. As 
gamma gets larger, the STAR model begins to approximate the discrete 
switch of the TAR model, as illustrated by the curved lighter line. Thus, 
one advantage of the STAR model is that it permits, but does not re-
quire, a relatively abrupt switch between regimes.

There are four steps involved in identifying and estimating a STAR 
model. The fi rst step is the identifi cation and estimation of a linear auto-
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76   Bradley and Jansen

regressive model. The primary purpose of this step is to determine the 
lag lengths that will be used for linearity testing and, if nonlinearity is 
detected, for estimating the STAR model. Step two is to test for linear-
ity, to make sure that a nonlinear model is needed. If linearity is not 
rejected, there is often no need to continue the process of estimating 
a nonlinear model. If linearity is rejected, the third step is to identify 
the STAR model specifi cation. Here identifi cation is used in the time 
series sense and is meant to specify the various features of the model, 
such as lag lengths. It is in this third step that one determines whether 
an exponential or a logistical star model is appropriate. The last step is 
the actual estimation of the specifi ed STAR model. This can be done 
with various nonlinear optimization procedures, and we use nonlinear 
least squares.

In this exercise we will identify and estimate three models: one for 
industrial production, one for a long-term bond rate, and one for ex-
cess equity returns. We begin the estimation of the linear models with 
stationarity testing. We perform both the Augmented Dickey-Fuller 
(ADF) and the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests, and 

Figure 5.4  STAR Transition Functions—Role of Gamma

SOURCE: Authors’ calculations.
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the results are presented in Table 5.1. Note that the ADF test has a null 
hypothesis of nonstationarity or “integrated of order one,” written as 
I(1). The KPSS test has a null hypothesis of stationarity, or I(0).

Our ADF tests fail to reject the null of I(1) for the levels of the log 
industrial production [Log(IP)] and the bond interest rate (INT), but re-
ject that null for the level of excess returns (ER). This indicates that log 
industrial production and the bond interest rate should be differenced, 
while excess returns are stationary as calculated. We note that the ADF 
test fails to reject the null of I(1) for the S&P 500, which is consistent 
with the result that excess returns, calculated in part from differencing 
the log S&P 500 index [Log(S)], are I(0). The ADF results are corrobo-
rated by the KPSS tests, which reject the null of I(0) for the levels of 
the log of industrial production and the bond rate, but fail to reject that 
null for excess returns. 

Table 5.1  Testing for Stationarity

Variable
ADF testa 

series in levels

ADF testa

series in fi rst 
differences

KPSS testb

series in levels

KPSS testb

series in fi rst 
differences

Log(IP) −2.55
(p = 0.31)

(2 lags, trend)
Fail to reject

−12.25
(0.00)
(1 lag)
Reject

0.42
(5% CV = 0.15) 

(trend)
Reject

0.14
(5% CV = 0.46)

Fail to reject
Log(S) −1.71

(p = 0.75)
(1 lag, trend)
Fail to reject

−19.29
(p = 0.00)
(0 lags)
Reject

0.63
(5% CV = 0.15) 

(trend)
Reject

0.10
(5% CV = 0.46)

Fail to reject
INT −1.73

(p = 0.42)
(2 lags)

Fail to reject

−18.08
(0.00)
(1 lag)
Reject

0.96
(5% CV = 0.15) 

Reject

0.27
(5% CV = 0.46)

Fail to reject
ER −19.20

(p = 0.00)
(0 lags)
Reject

 0.09
(5% CV = 0.15) 

Fail to reject

 

NOTE: Blank = not applicable.
a ADF test: Null hypothesis is I(1). 
b KPSS test: Null hypothesis is I(0). 
SOURCE: Authors’ calculations. 
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Based upon these two tests, we estimate linear models in the fi rst 
differences of the log of industrial production (DLIP) and the bond in-
terest rate (DINT), and in the level of excess returns (ER). We proceed 
to determine the appropriate lag length for these linear models, and here 
we select the lag lengths using a standard goodness of fi t criterion, the 
Schwartz Information Criterion (SIC). Using the SIC to pick lag lengths 
involves searching over a range of possible lag lengths selected a priori 
and fi nding the lag length within that set that will minimize the SIC. 
Here we searched over a range from 1 lag to 12 lags. 

Our models will possibly contain multiple right-hand-side vari-
ables at various lags, and not just lags of the dependent variable. This 
raises a few issues with lag selection. One procedure is to search over 
the entire lag space, with 1 through 12 lags of each variable. If there 
are three right-hand-side variables, as there are in some of our models, 
this involves 12 cubed regressions. An alternative is to use an itera-
tive procedure, fi rst picking the lags of the dependent variable and then 
proceeding with the other explanatory variables. We follow this latter 
approach. We fi rst selected the best univariate model, then the best lags 
of the second variable, holding constant the lags specifi ed for the de-
pendent variable in the univariate specifi cation, and then the best lags 
of the third variable given the lags of the fi rst two variables. The results 
are provided in Table 5.2. 

 The linear model for the change in the log of industrial production 
contains two lags of the change in the log of industrial production, two 
lags of excess stock returns, and one lag of the change in the interest 
rate. The linear models for the asset returns are more parsimonious. 
Neither one contains any lags of change of the log of industrial produc-
tion, so the real sector variable will not be included in the models for 
the fi nancial variables. 

Table 5.2  Determining the Lag Length for the Linear Models

DLIP ER DINT
Univariate AR(2); −6.74 AR(1); −3.93 AR(2);  −14.14

Bivariate 2 lags ER; −6.75 0 lags DLIP; −3.93 2 lags ER;  −14.15

Trivariate 1 lag DINT; −6.75 1 lag DINT; −3.94 0 lags DLIP; −14.15

SOURCE: Authors’ calculations.
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The estimated linear models are presented in Table 5.3. Estimation 
was by ordinary least squares. Excess returns have a positive effect on 
current growth in industrial production. Interestingly, increases in the 
interest rate also have a positive effect on current growth in industrial 
production. As for excess returns, increases in the interest rate have a 
decidedly negative impact on excess returns. Finally, changes in the 
interest rate are affected positively by excess returns. 

The next step is to test for linearity. We use the approach derived 
by Luukkonen, Saikkonen, and Teräsvirta (1988) and Teräsvirta and 

Table 5.3  Linear Model Estimates
DLIP ER DINT

Constant 0.0015
(0.0004)

p = 0.0000

4.43E-04
(1.36E-03)
p = 0.7440

1.20E-06
(8.18E-06)
p = 0.8829

DLIP(−1) 0.3098
(0.0404)

p = 0.0000

—
—
—

—
—
—

DLIP(−2) 0.1028
(0.0399)

p = 0.0103

—
—
—

—
—
—

ER(−1) 0.0231
(0.0100)

p = 0.0211

0.2086
(0.0397)

p = 0.0000

6.27E-04
(2.50E-4)
p = 0.0122

ER(−2) 0.0308
(0.0099)

p = 0.0020

—
—
—

6.31E-04
(2.50E-04)
p = 0.0119

DINT(−1) 4.6626
(1.5652)

p = 0.0030

−26.5785
(6.2857)

p = 0.0000

0.3863
(0.0404)

p = 0.0000
DINT(−2) —

—
—

—
—
—

−0.1925
(0.0406)

p = 0.0122
R2 0.1951 0.0842 0.1720
Std. error 0.0081 0.0332 0.0002
SIC −6.7509 −3.9441 −14.1487
NOTE: — = data not available.
SOURCE: Authors’ calculations.
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Anderson (1992), in which linearity is tested with the “approximating 
equation.” The advantage of this approach is that it simultaneously tests 
for linearity and provides guidance about the specifi cation of the non-
linear model. The approximating equation is given as follows:

(5.6) 2
0 1, 2, 3,

1 1 1

p p p

t i t i i t i t d i t i t d
i i i

y y y z y z       
  

     
                

         3
4,

1

p

i t i t d t
i

y z  


                        ,

where yt is the variable being modeled, zt−d is the transition variable, and 
d is the delay between when the transition variable crosses the threshold 
value and the variable of interest’s alternative dynamics become active. 
The null hypothesis of linearity is a test of β2i = β3i = β4i = 0. 

We take a general approach to testing for linearity by using fi ve 
possible transition variables and up to a three-period delay. We start by 
using the dependent variable as the transition variable to see if the vari-
able’s own values indicate the source of nonlinearity. This would mean, 
for example, that the change in the log of the industrial production 
would be the transition variable for itself. We then look at the possi-
bility that one of the other two variables being modeled could be the 
transition variable. For the change in the log of industrial production, 
this means testing whether the change in the bond rate or excess returns 
is the transition variable. Finally, we consider two external variables. 
The fi rst, called current depth of the recession, or CDR, is the distance 
from the past peak in industrial production and its current value. This 
variable would capture a situation in which recessions and expansions 
had alternative dynamics. A variable similarly defi ned for the stock in-
dex, CDB (current depth of stocks), measures the difference between 
the previous peak in the S&P 500 index and index’s current value. This 
variable would capture a situation in which rising and falling S&P 500 
index values generated different dynamics. 

The results of estimating the approximating equation and testing 
for linearity are given in Table 5.4. First, there is no evidence suggest-
ing rejection of linearity for excess returns. No tests for any threshold 
variable for any delay are close to suggesting a rejection of linear-
ity. We conclude that excess returns are best modeled here as a linear 
process. There is abundant evidence, however, to support rejecting 
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linearity for both the change in the log of industrial production and 
the change in the bond rate. Of the 15 different tests for linearity, 9 
of them support rejection, suggesting that a fi nding of nonlinearity is 
not dependent upon a very specifi c combination of threshold variable 
and delay. A review of all instances that show rejection indicates that 
a single lag of the change in the log of industrial production should 
be chosen as the threshold variable. Similar results are found for the 
change in the bond rate, in that 11 of the 15 tests produce evidence 
indicating rejection of linearity. A review of those tests indicates that a 
single lag of excess returns should be chosen as the threshold variable 
for the change in the bond rate.

Table 5.4  Testing for Linearity
Dependent variables for linearity test

Threshold
variables

DLIP                               ER DINT
Chi-sq. P-value Chi-sq. P-value Chi-sq. P-value

CDB(−1) 35.59 0.0020 5.03 0.5402 18.27 0.1076
CDR(−1) 30.63 0.0098 4.34 0.6302 28.47 0.0047
ER(−1) 22.08 0.1056 2.43 0.8764 52.13** 0.0000
DINT(−1) 16.59 0.3442 8.68 0.1925 51.96* 0.0000
DLIP(−1) 52.25** 0.0001 8.77 0.1871 25.80 0.0114

CDB(−2) 41.87* 0.0002 2.73 0.8424 20.88 0.0522
CDR(−2) 28.53 0.0185 7.91 0.2445 30.83 0.0021
ER(−2) 29.70 0.0131 5.36 0.4985 24.30 0.0185
DINT(−2) 17.23 0.3052 6.83 0.3369 43.54 0.0000
DLIP(−2) 25.84 0.0398 5.03 0.5400 19.52 0.0768

CDB(−3) 29.04 0.0159 1.68 0.9467 15.93 0.1944
CDR(−3) 14.45 0.4917 5.75 0.4515 35.18 0.0004
ER(−3) 19.50 0.1921 5.20 0.5182 39.93 0.0001
DINT(−3) 31.66 0.0072 3.48 0.7469 40.05 0.0001
DLIP(−3) 17.54 0.2878 6.50 0.3692 9.66 0.6459
NOTE: * signifi cant at the 0.10 level (two-tailed test); ** signifi cant at the 0.05 level 

(two-tailed test).
SOURCE: Authors’ calculations.
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Given that we fi nd evidence rejecting linearity for two of the vari-
ables, the next step is to identify which STAR model is appropriate for 
each, the LSTAR or the ESTAR model. This is done through a series of 
hypothesis tests on the coeffi cients in the approximating equation. The 
null hypothesis of linearity is tested through setting to zero all of the es-
timated coeffi cients on the threshold variable. The identifi cation of the 
model specifi cation looks at similar tests for subsets of the coeffi cients. 
Teräsvirta and Anderson (1992) specify a set of three hypotheses:

(5.7) 1 4,: 0,iH i    ,
 

2 3, 4,: 0 | 0,i iH i     , and     
 

3 2, 3, 4,: 0 | 0,i i iH i                      .

Rejection of H1 indicates that an LSTAR model is appropriate. Fail-
ure to reject H1 but rejection of H2 indicates that an ESTAR model is 
appropriate. Finally, failure to reject H1 or H2 but rejection of H3 indi-
cates that an LSTAR model is appropriate. 

The results of testing theses hypotheses for our models are pre-
sented in Table 5.5. The table shows that H1 is rejected for both vari-
ables, indicating an LSTAR specifi cation is appropriate for both the 
change in the log of industrial production and the change in the bond 
rate.

At this point we estimated the LSTAR model for changes in the 
log of industrial production by nonlinear least squares, with results re-
ported in Table 5.6. There are some important issues in estimating TAR 
and STAR models that have to do with discontinuities in the likelihood 
function, and these have been documented and discussed in Hansen 
(1997). Our solution is to conduct a grid search for various values of the 
threshold value in the TAR model, and the parameter estimates of the 
TAR model are used as starting values for the STAR estimation.

In Table 5.6 we will fi rst examine the transition variable and its role 
in our model. The transition variable is one lag of the change in the log 
of industrial production. Here the estimated value for the threshold is 
−0.0035, which suggests that, roughly, the dynamics of the growth in 
industrial production will differ when that growth is positive (specifi -
cally, above −0.0035) as compared to when it is negative (specifi cally, 
below −0.0035). 
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One important issue to examine is whether one regime of the STAR 
model is just being estimated on a single or a very few data points, so 
that the model is really just showing that a few data points are a special 
case. To examine this issue we use the following histogram, Figure 5.5, 
which shows that the estimated threshold does not simply identify a few 
observations at the extreme tail of the distribution. Instead, we see that, 
over the history of the variable, many observations occur above, and 
below, the threshold. Thus both regimes occurred with some regularity.

The estimated value of the transition parameter, γ, is relatively large 
at 262.04, suggesting a relatively sharp transition between the regimes, 
as DLIP(−1) varies around −0.0035. We thus also estimate a TAR 
model for the change in the log of industrial production to serve as a 

Table 5.5  Identifying the STAR Model Specifi cations

Hypothesis tests

Dependent variable:
DLIP

Dependent variable: 
DINT

Chi-sq. Prob. Chi-sq. Prob.

Threshold variable: 
DLIP(−1)

Threshold variable: 
ER(−1)

0 2, 3, 4,: 0,i i iH i      52.25 0.0000 52.13 0.0000

1 4,: 0,iH i   16.90 0.0047 13.85 0.0078

2 3, 4,: 0 | 0,i iH i    14.01 0.0155 3.14 0.5340

3 2, 3, 4,: 0 | 0,i i iH i      21.34 0.0007 35.13 0.0000

Threshold variable: 
CDB(−2)

Threshold variable: 
DINT(−1)

0 2, 3, 4,: 0,i i iH i      41.87 0.0002 51.96 0.0000

1 4,: 0,iH i   12.79 0.0254 9.91 0.0420

2 3, 4,: 0 | 0,i iH i    2.60 0.7611 17.62 0.0015

3 2, 3, 4,: 0 | 0,i i iH i      26.48 0.0001 24.43 0.0001

SOURCE: Authors’ calculations.
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basis for comparison with the STAR model. The estimated value for the 
threshold for the TAR model is reported in Table 5.7 and is very close to 
that of the STAR model. Figure 5.6 graphs the transition functions for 
the TAR and STAR model. Of course this is a step function for the TAR 
model, and, as the graph makes clear for the STAR model, there is a 
large range where the two extreme regimes are “smoothly” combined to 
generate the dynamics that we observe. As the following graph shows, 
the switch between regimes takes place just below zero. 

The estimated LSTAR model for the change in the bond rate is pre-
sented in Table 5.8. The coeffi cients on lags of the changes in the bond 
rate in the lower regime were statistically insignifi cant in initial esti-
mates of both the STAR and TAR models, and their inclusion caused 
convergence diffi culties for the STAR model, so we set these two coef-
fi cients to zero for the results reported in Table 5.8 (and for the TAR 
model reported in Table 5.9). 

Table 5.6  LSTAR for DLIP, January 1955–December 2004
Constant 0.0018        (0.0004); p = 0.0001
DLIP(−1) 0.1795        (0.1034); p = 0.0830
DLIP(−2) 0.3527       (0.1265); p = 0.0055
ER(−1) −0.0116       (0.0313); p = 0.7115
ER(−2) 0.1109        (0.0381); p = 0.0037
DINT(−1) 9.0912       (3.4673); p = 0.0090
DLIP(−1) × F[DLIP(−1)] 0.1581      (0.1325); p = 0.2331
DLIP(−2) × F[DLIP(−1)] −0.3357   (0.1508);  p = 0.0263
ER(−1) × F[DLIP(−1)] 0.0502      (0.0407); p = 0.2173
ER(−2) × F[DLIP(−1)] −0.1145    (0.0486); p = 0.0189
DINT(−1) × F[DLIP(−1)] −7.3670     (4.9938); p = 0.1407
Gamma   262.04 (187.44);  p = 0.1626
Threshold for DLIP(−1) −0.0035     (0.0032); p = 0.2758
R2 0.2283
Std. error 0.0079
SIC −6.7184
Log likelihood 2,057.110
SOURCE: Authors’ calculations.
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For the bond rate the transition variable is one lag of the change in 
the bond rate, or DINT(−1). The estimated threshold value is −0.00048, 
a value that falls far to the left in the distribution of changes in the bond 
rate between positive and negative values, suggesting that changes in 
the bond rate are largely governed by one regime, with occasional large 
declines in the bond rate leading to alternative dynamics. Figure 5.7 
presents the histogram of excess returns. We see that there are only a 
small, though not trivial, number of observations in the lower regime. 

The estimated value for the transition parameter is also large for this 
model, 464.7, so we again estimate a TAR model for comparison, with 
results reported in Table 5.9. In the TAR model, the estimated threshold 
value is −0.00048, nearly the same as the STAR model. Given this and 
the size of the transition variable in the LSTAR model, the two models 
provide very similar results in terms of the region around the switch, as 
seen in Figure 5.8. 

So far, we have estimated four nonlinear models to be used in out-
of-sample forecasting, an LSTAR and a TAR for both the change in 

Figure 5.5  Histogram for DLIP

SOURCE: Authors’ calculations.
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the log of industrial production and the change in the bond rate. We 
now supplement these models with an alternative approach to captur-
ing nonlinearity among the real and fi nancial variables. We specify and 
estimate CDR models for the change in the log of industrial production, 
for excess returns, and for the change in the bond rate. 

Beaudry and Koop’s (1993) CDR model is designed to capture the 
asymmetric dynamic caused by the fact that negative shocks to real and 
fi nancial variables tend to have temporary effects but positive shocks 
tend to have permanent effects. This asymmetry is embodied in the 
model through the inclusion of a CDR term, which measures the dis-
tance from the previous peak of the variable to the current value. This 
term is positive when the current value is below the previous peak:

(5.8) CDRt  =   max(Yt − j)j ≥ 0 − Yt  .
      
Inclusion of this CDR term converts an otherwise linear model (like 

an AR model) into a nonlinear model:

Table 5.7  TAR For DLIP, January 1955–December 2004
Constant 0.0018     (0.0005);  p = 0.0001
DLIP(−1) 0.2199     (0.0818); p = 0.0074
DLIP(−2) 0.2635       (0.0823); p = 0.0014
ER(−1) 0.0013       (0.0190); p = 0.9461
ER(−2) 0.0800      (0.0178); p = 0.0000
DINT(−1) 9.3324       (2.6351); p = 0.0004
DLIP(−1) × δ 0.0971       (0.1095); p = 0.3755
DLIP(−2) × δ −0.2099      (0.0932); p = 0.0246
ER(−1) × δ 0.0303       (0.0222); p = 0.1727
ER(−2) × δ −0.0679      (0.0213); p = 0.0015
DINT(−1) × δ −7.1795      (3.2521); p = 0.0277
Threshold for DLIP(−1) −0.003
R2 0.2258
Std. error 0.0079
SIC −6.7365
Log likelihood 2,056.135
SOURCE: Authors’ calculations.
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(5.9) Θ(L)t ΔYt = δ + [Ω(L) − 1]CDRt + εt  .    
  

Here Θ(L) and Ω(L) represent polynomials in the lag operator L, a 
convenient way to represent that there are lags of ΔY and lags of CDR 
in the equation. If the coeffi cient on the CDR term is positive, then ΔY 
grows faster when CDR increases—that is, when the recession is deeper. 
In other words, ΔY grows fasters after a negative shock has placed the 
economy in a deep recession. When the economy recovers and is grow-
ing above its previous peak, this extra growth in ΔY is eliminated. In 
this case, positive shocks will have longer-lasting positive effects on ΔY 
than negative shocks. Of course, if the coeffi cient on the CDR term is 
< 0, the opposite case holds: a negative shock leads to more persistent 
performance below the previous peak. 

To allow for possible nonlinear effects from the fi nancial markets 
and the real sector, we investigate two versions of a CDR-type model, 
one for industrial production and one for stock prices. The CDR term has 
a positive value when industrial production is below its previous peak, 
and the CDB term has a positive value when the S&P 500 is below its 

Figure 5.6  DLIP Models: Transition Functions TAR and STAR

SOURCE: Authors’ calculations.
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Table 5.8  LSTAR for DINT, January 1955–December 2004
Constant 1.95E-06 (8.07E-06); p = 0.8090
DINT(−1) — — —
DINT(−2) — — —
ER(−1) −0.0118 (0.0028); p = 0.0000
ER(−2) 0.0083 (0.0017); p = 0.000
DINT(−1) × F 0.3995 (0.0461); p = 0.0000
DINT(−2) × F −0.2235 (0.0409); p = 0.0000
ER(−1) × F 0.0129 (0.0029); p = 0.0000
ER(−2) × F −0.0078 (0.0170); p = 0.0000
Gamma 464.68 (183.01); p = 0.0014
Threshold for DINT(−1) −4.81E-04 (4.78E-05); p = 0.0000
R2 0.2276
Std. error 1.94E-04
SIC −14.1756
Log likelihood 4,281.459
NOTE: — = data not available.
SOURCE: Authors’ calculations.

Table 5.9  TAR for DINT, January 1955–December 2004
Constant 1.29E-06 (7.97E-06); p = 0.8710
DINT(−1) — — —
DINT(−2) — — —
ER(−1) −0.0099 (0.0014); p = 0.0000
ER(−2) 0.0086 (0.0014); p = 0.0000
DINT(−1) × δ 0.3869 (0.0439); p = 0.0000
DINT(−2) × δ −0.2159 (0.0401); p = 0.0000
ER(−1) × δ 0.0108 (0.0014); p = 0.0000
ER(−2) × δ −0.0080 (0.0014); p = 0.0000
Threshold for DINT(−1) −0.00048
R2 0.2245
Std. error 1.94E-04
SIC −14.1928
Log likelihood 4,280.239
NOTE: — = data not available.
SOURCE: Authors’ calculations.
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Figure 5.7  Histogram for Changes in the Interest Rate

SOURCE: Authors’ calculations.

Figure 5.8  DINT Models: Transition Functions TAR and STAR

SOURCE: Authors’ calculations.
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previous peak. The two graphs in Figure 5.9 display the values for CDR 
and CDB and illustrate the differences in their time series histories.

To investigate this specifi cation of nonlinearity, we took the linear 
models presented in Table 5.3 and augmented them with both terms—
CDR and CDB. Neither the CDR term nor the CDB term was signifi cant 
for the change in the bond interest rate, indicating that the CDR class 
of models was not appropriate for that variable. In contrast, both the 
CDR and the CDB terms were signifi cant in the model for the change 
in the log of industrial production (see Table 5.10). The sum of the coef-
fi cients on the CDR term is positive, meaning that industrial production 
grows faster after a negative shock to industrial production. This means 
that negative real shocks have shorter lasting effects than positive real 
shocks and industrial production tends to grow relatively rapidly after 

Figure 5.9  Current Depth of Recession and Current Depth of Stocks, 
January 1955–December 2004

NOTE: CDR stands for current depth of recession. CDB stands for current depth of stocks.
SOURCE: Authors’ calculations.
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recessions. In contrast, the sign of the sum of the coeffi cients on the 
CDB term is negative. This suggests that industrial production grows 
more slowly after stock market declines. 

Only the CDR term was signifi cant in the excess returns equation, 
and the estimated model is presented in Table 5.11. The coeffi cient on 
the CDR term is positive, suggesting that excess returns grow faster 

Table 5.10  CDR Model for DLIP
Constant 0.0023    (0.0006); p = 0.0001
DLIP(−1) 0.1296    (0.0872); p = 0.1378
DLIP(−2) 0.1229    (0.0411); p = 0.0029
ER(−1) 0.0770    (0.0258); p = 0.0030
ER(−2)   —   —  —
DINT(−1) 4.9270     (1.5277); p = 0.0013
CDR(−1) −0.1840   (0.0997); p = 0.0655
CDR(−2) 0.2241    (0.0958); p = 0.0197
CDB(−1) 0.0611    (0.0286); p = 0.0335
CDB(−2) −0.0722   (0.0278); p = 0.0096
R2 0.2274
Std. error 0.0079
SIC −6.7599
Log likelihood 2,056.741
NOTE: — = data not available.
SOURCE: Authors’ calculations.

Table 5.11  CDR Model for ER
Constant 1.19E-03    (1.59E-03); p = 0.4529
ER(−1) 0.1996          (0.0399); p = 0.0000
DINT(−1) −26.4039        (6.2711); p = 0.0000
CDR(−1) 0.0960           (0.0486); p = 0.0486
R2 0.0902
Std. error 0.0331
SIC −3.9400
SOURCE: Authors’ calculations.

up11mhaiefch5.indd   91up11mhaiefch5.indd   91 11/17/2011   3:02:47 PM11/17/2011   3:02:47 PM



92   Bradley and Jansen

when industrial production is in its “recovery” phase and expanding out 
of a recession.

FORECAST EVALUATION

The above models were all estimated over a sample period from 
January of 1955 to December of 2004 (1955.01–2004.12). We reserved 
the fi nal 58 data points, 2005.01–2009.10, for an out-of-sample fore-
casting comparison. The idea is to estimate the model up to 2004.12, 
as if we are actually in 2004.12, and use that information and param-
eter estimates to forecast in 2005.01. Then we update the sample to 
1955.01–2005.01 and use that information to forecast 2005.2. We 
continue this exercise through our last data point, forecasting 2009.10 
using the sample 1955.01–2009.09. In this way our forecasts are all 
constructed using only information available at the time of the forecast. 

The above description is an ideal, however, as data revisions oc-
cur after the fact, and we have used data available to us late in 2009. 
If data revisions occurred—and they certainly did to industrial produc-
tion—then our entire sample in 2009 contains data different from what 
a forecaster would have available in real time. This is a topic of great 
interest in the current literature but not one we deal with in this study. 
Fortunately, fi nancial series such as stock prices and returns are not 
typically subject to the data revision problem.

An important issue is how to judge forecasting performance. We 
can calculate how far off each individual forecast is for the various 
models, and average the forecast errors over our 58-data-point fore-
casting sample. More often, we calculate the average of the squared 
forecast errors, and still more often we calculate the square root of the 
average of the squared forecast errors, or the root mean square forecast-
ing error (RMSFE). This is probably the most widely cited measure of 
forecast accuracy. Another widely used measure is the average of the 
absolute value of the forecasting errors, the mean absolute forecasting 
error (MAFE). Other loss functions are possible, including measures of 
turning points and loss functions based on utility or profi t functions, but 
we will not pursue those alternatives here.
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Table 5.12 provides the out-of-sample measures of the RMSFE and 
MAFE for our three variables (DINT, DLIP, ER) and our four models 
(linear, TAR, STAR, CDR). For excess returns we also provide a ran-
dom walk model. We highlight the model that achieves the best (lowest) 
value for each variable. For the RMSFE criterion, the best DINT model 
is the linear model. The TAR model does a particularly poor job. For 
DLIP, the best RMSFE values are given by the STAR model, followed 
by the TAR model. The linear model only does better than the CDR 
model. Finally, for ER the best RMSFE value is provided by the CDR 
model, and both models beat a random walk.

For the MAFE criterion, we again fi nd that the best forecasts of 
DINT are provided by the linear model, although here the STAR model 
appears to do almost as well as the linear model. For DLIP, the best 
forecasts are from the TAR model, followed by the STAR model, with 
the linear model third. Again the CDR model does the worst of the four. 
For ER, the best forecasts come from the CDR model, followed by the 
linear model, with the random walk bringing up the rear.

More insight into the relative forecast performance can be gleaned 
from examining the forecasts and forecast errors. Figure 5.10 plots the 
values for the changes in the bond rate, DINT, along with forecasts of 
DINT from the linear model and the TAR model. These are graphed on 
the left-hand scale. The actual values are represented by the line identi-

Table 5.12  Performance Measures for Out-of-Sample Forecasts, January
2005–October 2009

RMSE loss 
criterion Linear TAR STAR CDR

Random 
walk

DINT 1.76E-04 3.40E-04 1.92E-04 —
DLIP 8.28E-03 7.64E-03 7.54E-03 8.64E-03 —
ER 4.52E-02 — — 4.46E-02 4.77E-02

MAE loss 
criterion Linear TAR STAR CDR

Random 
walk

DINT 1.33E-04 1.82E-04 1.35E-04 —
DLIP 5.67E-03 5.16E-03 5.28E-03 5.72E-03 —
ER 2.90E-02 — — 2.84E-02 3.11E-02
NOTE: — = model not estimated; blank = not applicable.
SOURCE: Authors’ calculations.

up11mhaiefch5.indd   93up11mhaiefch5.indd   93 11/17/2011   3:02:48 PM11/17/2011   3:02:48 PM



94   Bradley and Jansen

fi ed in the legend as “DINT_M12,” and the forecasts are the other lines. 
There is a big difference between the actual values and the forecast 
from the TAR model in the middle of 2008. The TAR model predicted a 
large value for DINT at this time, but the large value failed to material-
ize. The difference between the actual value of DINT and the forecast 
from the TAR model is about −0.002, a large value that led the TAR 
model to perform quite poorly based on the RMSFE. The forecast er-
rors themselves are plotted at the top, and on the right-hand scale, of 
Figure 5.10. The large downward spike in mid-2008 is the TAR model 
forecast error we have just discussed.

Figure 5.11 plots the forecasts, actual value, and forecast errors for 
changes in the log of industrial production. The line with black squares 
in the lower part of the graph is the actual value of DLIP, which expe-
rienced large upward and downward moves in the latter half of 2008. 
These movements in DLIP were not forecast by either the linear or TAR 

Figure 5.10  Changes in the Bond Rate and Forecasts, January 2005–
September 2009

SOURCE: Authors’ calculations.
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models. Hence this movement generated forecast errors, which can be 
seen in the top of Figure 5.11 on lines graphed against the right-hand 
scale. The forecast errors from the linear and TAR models seem similar 
in Figure 5.11, although there is some discrepancy near the end of 2008 
and at the beginning of 2009. During this period the TAR model does 
slightly better, and this leads to the TAR model having a lower RMSFE 
in Table 5.12.

Finally, Figure 5.12 plots linear and CDR forecasts of excess re-
turns. Again we see there was a large downward spike in ER in the 
fourth quarter of 2008 that was not forecast by either the linear or the 
CDR models. Thus this spike shows up in the top of Figure 5.12 as 
forecast errors for both the linear and CDR models. As with industrial 
production in Figure 5.11, it is diffi cult to see much difference in the 
forecasts, or forecast errors, from the linear and CDR models. The main 

Figure 5.11  Forecasts, Actual Value, and Forecast Errors for Changes in 
the Log of Industrial Production, January 1955–September 
2009

SOURCE: Authors’ calculations.
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difference appears beginning in the middle of 2009, and this small 
difference leads to the CDR model having somewhat lower RMSFE 
values compared to the linear model. 

One issue with results such as in Table 5.12 is the lack of a mea-
sure for saying just how much better one model’s forecasts are over 
another’s. We would like a way of answering this question. Usually 
this is phrased as an issue of statistical signifi cance. We want to know 
whether, for the ER model, the CDR model forecasts are statistically 
signifi cantly better than the forecasts of the linear model.

There are a variety of tests available for answering this question. A 
classic test of forecast accuracy is the Diebold and Mariano (1995) test, 
which has as its null hypothesis that two forecasts are equally accurate 
by the chosen criterion (say RMSFE), and the alternative that one of 
the two is better. Another test is called the encompassing test, which 

Figure 5.12  Linear and CDR Forecasts of Excess Returns, January 1955–
September 2009

SOURCE: Authors’ calculations.
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compares two forecasts and asks whether, given one forecast, there is 
additional useful information in the second forecast. If the answer is 
yes, then you might want to combine the two forecasts. If the answer 
is no, then you might want to use the best forecast and ignore the second 
forecast as containing no additional information once you have the fi rst 
forecast. Encompassing tests have been in use for quite some time, and 
some early advocates include Chong and Hendry (1986) and Harvey, 
Leybourne, and Newbold (1989).

In conducting these tests, an important practical issue is whether or 
not your forecasting models are nested. The initial Diebold and Mariano 
test was designed for use with nonnested forecasting models, which are 
basically two unrelated forecasting models. Nested forecasting models, 
in contrast, are models where one model is a subset of another model. In 
our models, the linear model is nested inside the CDR model. If we just 
eliminate the CDR terms—say, by setting the coeffi cients on the CDR 
terms to zero—we get back the linear model. Similarly, our TAR and 
STAR models also nest the linear model. If we just set the terms mul-
tiplying the transition variable all to zero, then we have a one-regime 
linear model. 

Statistical comparisons of nested models bring up complications 
relative to comparisons of nonnested models. This issue has been ex-
plored by a number of authors, including work by West (1996), Clark 
(1999), McCracken (2000), and Clark and McCracken (2001), and we 
refer the interested reader to those papers.

Giacomini and White (2006) suggest a new approach to statistical 
comparisons of forecasts from nested models. Basically they have a 
version of the Diebold and Mariano test that works for nested models, 
a model based on the idea of conditional forecast comparisons, and we 
use their approach here. In Table 5.13 we report tests of the RMSFE 
loss function for our various models. In these tests we select a baseline 
model and compare our other models to the baseline. For the DINT 
and DLIP forecasts we use the linear model as the baseline. For the ER 
forecasts we use the random walk model as the baseline. 

For the DINT forecasts we see in Table 5.12 that the smallest 
RMSFE was for the linear model. Thus the test results in Table 5.13 
are basically tests of whether the baseline linear model is statistically 
signifi cantly better than the TAR or STAR models. The answer is that 
while the linear model has a lower RMSFE, it is not statistically sig-
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nifi cantly lower than either of the two nonlinear models. This is even 
true for the TAR model, which appeared to perform quite poorly in 
terms of RMSFE. Still, this is no victory for the nonlinear models. A 
linear model is much easier to estimate and to use for forecasting. If a 
linear model gives forecasts that are as good or better than the nonlinear 
model alternatives, then we would usually avoid going to the trouble of 
forecasting from a nonlinear model.

For the DLIP forecasts, we see in Table 5.12 that the lowest 
RMSFE values were generated by the two nonlinear models. In Ta-
ble 5.13 we see that even though TAR and STAR both provided better 
RMSFE values, the improvement was not statistically signifi cant. The 
TAR model has the best marginal probability value, 13.1 percent, but 
that means that at conventional signifi cance levels of 5 or even 10 per-
cent we would not reject the hypothesis of equal RMSFE for the linear 
and TAR forecasts. 

For the ER forecasts, we compared both the linear model and the 
CDR model to a random walk baseline. In Table 5.12 we see that the lin-
ear model had better RMSFE values than the random walk model, and 
that the CDR model had better RMSFE values than the linear model, 
but in Table 5.13 we see that neither the linear nor the CDR model im-
proves on the random walk model in a statistically signifi cant amount. 

The results for the DLIP and ER forecasts are disappointing for 
fans of the nonlinear model. In both cases a nonlinear model or models 
made improvements in terms of RMSFE values, but these improve-
ments were not statistically signifi cant.

Table 5.13  GW Version of DM Test (unconditional)—RMSE Loss Function
 Variable to 
forecast

Random 
walk Linear TAR STAR CDR/CDB

DINT — Baseline 1.2871
(p = 0.203)

0.9974
(p = 0.323)

—

DLIP — Baseline 1.5092
(p = 0.131)

1.2880
(p = 0.198)

−0.7353
(p = 0.465)

ER Baseline 1.5329
(p = 0.125)

  0.5257
(p = 0.601)

NOTE: — = model not estimated; blank = not applicable.
SOURCE: Authors’ calculations.

up11mhaiefch5.indd   98up11mhaiefch5.indd   98 11/17/2011   3:02:52 PM11/17/2011   3:02:52 PM



Forecasting Asset Prices Using Nonlinear Models   99

In Table 5.14 we report a similar exercise using the MAFE crite-
rion. Here we fi nd a bit better news for the nonlinear models. For DINT 
we again fi nd that the linear model is best, but for DLIP we fi nd that the 
forecasts from the TAR model are statistically signifi cantly better than 
forecasts from the linear model. The marginal probability value is 3.2 
percent, indicating that at standard signifi cance levels of 5 percent we 
would reject the hypothesis of equal forecasting accuracy—in terms of 
MAFE—of the linear model and the TAR model.

For the ER model the results in Table 5.14 indicate that forecasts 
from the linear model are statistically signifi cantly better than forecasts 
from the random walk model. But we fi nd the disappointing result that 
forecasts from the CDR model are statistically insignifi cantly different 
in accuracy from forecasts of the random walk model. Even though 
the CDR model generated a better MAFE value compared to the linear 
model, the variability of the forecasts from the CDR model means that 
the difference is judged to be statistically insignifi cant.

Overall, then, our forecast evaluation indicates only weak support 
for the superiority of forecasts of DLIP from a TAR model, and even 
weaker support for using a CDR model to forecast ER. We fi nd no sup-
port for using anything other than a linear model for forecasting DINT. 
Basically we fi nd the result, familiar to many in this literature, that non-
linear models appear to fi t well in estimation samples but that these 
models don’t fair nearly as well in out-of-sample forecasting exercises.

Table 5.14  GW Version of DM Test (unconditional)—MAE Loss Function
Random 

walk Linear TAR STAR CDR/CDB
DINT — Baseline 1.3157

(p = 0.194)
1.6432

(p = 0.106)
—

DLIP — Baseline 2.1438
(p = 0.032)

1.4329
(p = 0.152)

−0.2010
(p = 0.841)

ER Baseline 2.0097
(p = 0.044)

0.7158
(p = 0.477)

NOTE: — = model not estimated; blank = not applicable.
SOURCE: Authors’ calculations.
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SOME COMMENTS ON MULTIPLE-STEP-AHEAD
FORECASTING

In the analysis above we have investigated the ability of a set of 
nonlinear models to generate forecasts of two fi nancial variables and 
industrial production that are better than forecasts from a linear model. 
This analysis has looked at one-step-ahead forecasts, or forecasts made 
at time t for the value of variables at time t + 1. It is also possible, of 
course, to construct multiple-step-ahead forecasts—forecasts made at 
time t for the value of variables at time t + 2 or later (better represented 
as t + H, where H stands for the horizon) and for multiple-step-ahead 
forecasts H  > 1.

Nonlinear models present particular challenges when construct-
ing multiple-step-ahead forecasts. For linear models the law of iterated 
expectations and the use of the linear expectation operator on linear 
equations makes multiple-step-ahead forecasting a straightforward 
extension of one-step-ahead forecasts. To see this, consider a simple 
AR(1) model:

(5.10) yt = βyt−1 + εt .      
 
To calculate the one-step-ahead forecast we rewrite Equation (5.10) for 
time t + 1 and take expectations conditioned on knowledge of the value 
of y at time t:

(5.11) yt+1 = βyt + εt + 1 .      
   
Then, taking expectations conditioned on knowledge of yt  , we have

(5.12) E(yt+1│yt) = βyt  .      
       
To think about a two-step-ahead forecast made at time t, rewrite Equa-
tion 5.10 for time t + 2 and iteratively substitute to write the result as a 
function of the value of y at time t:

(5.13) yt+2 = βyt+1 + εt+2 = β(βyt + εt+1) + εt+2 = β2yt + βεt+1+ εt+2 .
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Then, taking expectations conditioned on knowledge of yt , we have

(5.14) E(yt + 2 | yt) = β2yt .

Thus the two-step-ahead forecast in Equation 5.14 is a simple 
extension of the one-step-ahead forecast in Equation 5.12. While the 
above is a particularly simple model in terms of notation, the principle 
holds more generally in forecasts from linear models. 

Consider now a nonlinear model. A simple TAR model would be

(5.15) yt = βyt - 1 + γyt - 1 × I (yt - 1 < c) + εt .
         

To calculate the one-step-ahead forecast, we rewrite Equation (5.15) 
for time t + 1 as

(5.16) yt + 1 = βyt + γyt × I (yt < c) + εt + 1 .    
    

Then, taking expectations conditioned on knowledge of yt , we have
        
(5.17) E(yt + 1 | yt) = βyt + γyt × I (yt < c) . 

So far this looks straightforward, much like the one-step-ahead forecast 
from the linear model. However, consider the two-step-ahead forecast made 
at time t. Rewrite Equation (5.15) for time t + 2 and iteratively substitute to 
write the result as a function of the value of y at time t :

(5.18) yt + 2 = βyt + 1 + γyt + 1 × I(yt + 1 < c) + εt + 2
       
or
 yt + 2 = β[βyt + γyt × I (yt < c) + εt + 1] + γ[βyt + γyt ×

 
 I(yt < c) + εt + 1] × I{[βyt + γyt × I(yt < c) + εt + 1] < c} + εt + 2 .
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Then, taking expectations conditioned on knowledge of yt , we have

(5.19) E(yt+2|yt) = β[βyt + γyt × I(yt < c)] + γ[βyt + γyt × I(yt < c)]

 × E(I{[βyt + γyt × I(yt < c) + εt+1] < c}|yt) + E{εt+1

 × I[εt+1< c −βyt − γyt  × I(yt < c)]|yt}. 
 

Clearly, Equation (5.19) is not a straightforward extension of Equa-
tion (5.17). In fact, the last term in Equation (5.17) involves expectation 
of the disturbance term εt + 1 interacted with a function of the same dis-
turbance term εt + 1 . It is evident, then, that the two-step-ahead forecast 
involves considerations of higher moments than the mean. To put this 
in practice requires distributional assumptions on the error term or else 
some sort of bootstrap procedure to calculate expectations from the 
empirically realized (i.e., estimated) disturbances. None of this makes 
multiple-step-ahead forecasts from nonlinear models impossible, but 
they are much more involved than such forecasts in a linear model, and 
as this chapter is already quite long we do not pursue such forecasts 
here.

CONCLUSION

Our study demonstrates once again how nonlinear models can fi t 
very well in-sample and yet struggle to outperform linear models in 
out-of-sample forecasting. This fi nding is not unusual, but it is frustrat-
ing to proponents of nonlinear modeling. Nonlinear modelers usually 
exert care in trying to avoid overfi tting within sample, and yet the out-
of-sample performance diffi culties point to overfi tting as one possible 
source of the problem. The exact reason for these diffi culties with fore-
casts from nonlinear models remains an open issue. 
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