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4
Forecasting Regional and
Industry-Level Variables

Challenges and Strategies

David E. Rapach
Saint Louis University 

Forecasting regional and industry-level (RIL) variables is an im-
portant task for a wide variety of economic agents. Policymakers at all 
levels of government utilize such forecasts, including local and state 
governments when planning budgets and the Federal Reserve when 
formulating U.S. monetary policy (e.g., the Beige Book). Businesses 
in the private sector also rely on such forecasts as inputs when taking 
employment, production, and investment decisions. The recent “Great 
Recession” highlights the relevance of forecasting RIL variables for 
policymakers and businesses: revenue reductions make accurate fore-
casts imperative for planning purposes and the effi cient allocation of 
now-more-limited resources.

Forecasting almost any economic variable is, of course, extremely 
challenging. Nevertheless, forecasting RIL variables exacerbates typi-
cal forecasting diffi culties. In particular, there are usually a plethora 
of potential predictors—global, national, regional, and industry vari-
ables—that are relevant for forecasting RIL variables. While theoretical 
models help to identify key determinants of a given RIL variable, such 
models are usually highly stylized and thus do not necessarily provide 
the most appropriate forecasting specifi cations, especially given the 
various idiosyncrasies surrounding individual RIL variables. A fore-
caster thus faces substantial model uncertainty. While the forecaster 
could include all potential predictors in a single forecasting model, 
such highly parameterized models usually fare very poorly in terms of 
out-of-sample forecasting, due in no small part to model uncertainty.1 
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Alternatively, the forecaster could preselect a relatively small number 
of predictors, but this ignores the potentially useful information avail-
able in the excluded variables. In this chapter, I outline some tractable 
approaches for incorporating information from a large number of po-
tential predictors that avoid overly parameterized specifi cations. Recent 
research indicates that such approaches are quite benefi cial for improv-
ing forecasts of RIL variables.

In addition to model uncertainty, model instability is a serious con-
cern for forecasting RIL variables. Changes in institutions, public policy, 
and technology, among many other factors, can precipitate structural 
breaks that cause the predictive power of individual variables to vary 
signifi cantly over time. Moreover, it is extremely diffi cult to predict the 
occurrence of structural breaks. Similar to model uncertainty, model 
instability causes highly parameterized models to break down in out-of-
sample forecasting, so that a forecaster of RIL variables needs tractable 
approaches that are reasonably robust to structural breaks. Fortunately, 
approaches useful for dealing with model uncertainty also appear help-
ful for mitigating structural instability when forecasting RIL variables.

I outline three approaches—1) general-to-specifi c modeling with 
bagging (GETS-bagging), 2) forecast combination, and 3) factor mod-
els—for improving forecasts of RIL variables. GETS-bagging and 
forecast combination are methods for utilizing, in a tractable manner, 
information from a large set of potential predictors that are reasonably 
robust to model uncertainty and instability. Factor models focus on 
potentially strong relationships between RIL and national variables. I 
provide intuition and guidance on implementing these approaches. In 
addition, I discuss empirical results from recent research on forecasting 
RIL variables, highlighting examples pertaining to forecasting employ-
ment growth for Michigan and Missouri.

It is important to stress that the present chapter is relatively brief and 
is not meant as an exhaustive literature survey. Instead, it is intended 
to introduce the reader to strategies for improving forecasts of RIL vari-
ables from the recent literature—strategies designed to address the keen 
challenges posed by model uncertainty and instability.2
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FORECASTING STRATEGIES

This section outlines forecasting approaches aimed at improving 
forecasts of RIL variables. I begin with a general (“kitchen sink”) model 
that serves to illustrate some of the pitfalls that the GETS-bagging, 
combination, and factor model approaches are designed to avoid.

Kitchen-Sink Model

Consider the following general model specifi cation:

(4.1)
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bance term. The left-hand side of Equation (4.1) is a cumulative growth 
rate for the variable of interest that we wish to forecast.3 The k subscript 
indicates that ,k ty  is an RIL variable, where k indexes the region or in-
dustry. The ,i tx  variables (i = 1, . . . , N) on the right-hand side of Equation 
(4.1) represent N potential predictors of ,

h
k t hy  , where N can be large. 

For expositional and notational simplicity, the right-hand side of Equa-
tion (4.1) includes only a single lag of ,k ty  and each ,i tx  variable; it is 
straightforward to allow for additional lags and thus a more general 
dynamic structure.

Consider forming a forecast of , * 1
h
k ty   using information available 

through *t  based on the general model given by Equation (4.1):

(4.2) , * , * , * , * , , * , *
1

ˆˆ ˆ ˆ
N

h
k t h k t k t k t k i t i t

i
y a b y c x



      , 

where , *ˆk ta , , *k̂ tb , and ĉk,i,t* (i = 1, . . . , N) are ordinary least square (OLS) 
estimates of the corresponding parameters in Equation (4.1) based on 
data from the beginning of the sample through t*. When N is large, 
a serious drawback to this approach is that it can entail substantial 
in-sample overfi tting, which translates into very poor out-of-sample 
forecasting performance. Intuitively, a highly parameterized model—a 
model with many ,i tx  variables—can deliver a substantial 2R  statistic for 
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the in-sample period, but because of model uncertainty and structural 
instability, the good fi t is specifi c to the sample and not robust.

Goyal and Welch (2008) and Rapach, Strauss, and Zhou (2010) 
provide recent examples of the poor forecasting performance of kitchen-
sink models in the context of forecasting U.S. stock returns. Many po-
tential predictors of aggregate market returns have been proposed in the 
fi nance literature, and different theoretical models emphasize different 
predictors. Goyal and Welch, as well as and Rapach, Strauss, and Zhou, 
fi nd that general models with a large number of potential predictors 
from the literature substantially underperform when measured against 
the simple random-walk model with respect to U.S. stock returns. This 
type of result is common in the literature, so one can conclude that very 
simple models are almost always better than very general models for 
forecasting purposes. When forecasting RIL variables, one should thus 
avoid kitchen-sink models.4

GETS-Bagging

Pretesting provides a method for paring down Equation (4.1) into 
a more parsimonious model that includes only the important predic-
tors of ,

h
k t hy  . This is often referred to as general-to-specifi c (GETS) 

modeling. Consider again the problem of forming a forecast of , *
h
k t hy   

using information available through t*. Instead of including all N of the 
,i tx  variables in the forecasting model, as in Equation (4.2), we fi rst esti-

mate Equation (4.1) and compute the t-statistic associated with each ,i tx
. We then drop any variable from the forecasting model with a t-statistic 
whose absolute value is below a certain threshold, for example, 1.96 or 
1.645. The forecasting model thus becomes a reduced version of Equa-
tion (4.2) that contains only the signifi cant predictors. In this way, we 
attempt to identify a more parsimonious forecasting model that only 
includes what we deem to be important determinants of ,

h
k t hy  .

While pretesting reduces the dimension of the forecasting model, 
the selection of the predictors to include in the forecasting model can be 
sample-specifi c, thereby representing in-sample overfi tting in another 
guise. Breiman (1996) introduces the idea of bootstrap aggregating 
(bagging) as a procedure for stabilizing the pretesting decision rule. In 
essence, we harness the power of the computer to generate a large num-
ber of pseudo samples of observations for ,

h
k t hy   and ,i tx  (i = 1, . . . , N) 
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using bootstrapping techniques. For each pseudo sample, we apply 
the decision rule and select the predictors to include in the forecasting 
model, forming a forecast based on the selected predictors under the 
pseudo sample. The GETS-bagging forecast is then a simple average of 
the forecasts corresponding to each of the pseudo samples. Intuitively, 
the pseudo samples provide new learning sets for the decision rule, 
thereby reducing the instability of the decision rule and its dependence 
on a specifi c sample and improving forecasting performance.5

Inoue and Kilian (2008) were the fi rst to employ GETS-bagging 
in a macroeconomic forecasting context (the U.S. infl ation rate). They 
fi nd that GETS-bagging produces signifi cant forecasting gains rela-
tive to a simple autoregressive (AR) time-series model and a general 
model similar to Equation (4.1), as well as relative to pretesting with-
out bagging. More to the theme of this chapter, Rapach and Strauss 
(forthcoming) fi nd that GETS-bagging produces consistent and signifi -
cant out-of-sample gains for forecasting U.S. state-level employment 
growth. Results for forecasting Michigan and Missouri employment 
growth are discussed in more detail in the next section.

Forecast Combination

Instead of beginning with a general model, forecast combination 
takes a weighted average of forecasts generated by a large number 
of individual models. In the context of macroeconomic forecasting, 
Stock and Watson (1999, 2003, 2004) have popularized a combination 
approach that pools information from N individual autoregressive dis-
tributed lag (ARDL) models:

(4.3) , , , , ,    ( 1, , )h h
k t h k k k t k i i t k t hy a b y c x e i N         . 

Analogous to Equation (4.2), we can form a forecast  of , *
h
k t hy   at t* for 

each ARDL based on estimates of the parameters in Equation (4.3) de-
rived from data available through t*.6 A combination forecast of , *

h
k t hy   

is then given by
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where ,
, *ˆ h i

k t hy   (i = 1, . . . , N) is the forecast of , *
h
k t hy   based on  the 

individual ARDL model with ,i tx , , *i t  (i = 1, . . . , N) is the combin-
ing weight corresponding to ,

, *ˆ h i
k t hy  , and , *1

1N
i ti




 . As stressed by 
Timmermann (2006), the intuition behind forecast combination is the 
same as that behind portfolio diversifi cation: we reduce forecasting 
“risk” by averaging across a large number of individual forecasts, rather 
than by relying on a single forecasting model.

To implement the combination forecast, we need to determine the 
combining weights. There are a myriad of methods available for doing 
this, which are nicely surveyed by Timmermann (2006). An interesting 
result from the literature is that relatively simple schemes typically out-
perform more elaborate schemes, even though more elaborate schemes 
are theoretically optimal under certain assumptions. The problem is that 
model uncertainty and instability frequently render these assumptions 
inaccurate, limiting the usefulness of theoretically optimal weights in 
practice.

A simple combining scheme that often works well in practice is 
equal weighting: , * 1/i t N   for all i. In the context of the general 
model, Equation (4.1), Rapach, Strauss, and Zhou (2010) show that 
equal weighting can be viewed as a type of “shrinkage” estimator. In-
tuitively, shrinkage limits the parameter space and prevents overfi tting, 
thereby improving out-of-sample forecasting performance. While equal 
weighting often produces very consistent forecasting gains, additional 
gains can be realized by “tilting” the combining weights toward partic-
ular individual forecasts. For example, we could select the combining 
weights based on the performance of the individual forecasting mod-
els over a reasonably long holdout out-of-sample test period. The key, 
however, is not to overdo it. That is, it is typically best to hew fairly 
closely to equal weighting; otherwise, we have another manifestation 
of overfi tting, and the forecasts become overly susceptible to model 
uncertainty and instability.7

Rapach and Strauss (forthcoming) fi nd that combination forecasts 
outperform AR benchmark forecasts of U.S. state-level employment 
growth for 49 of the 50 individual states for a fi rst-quarter 1990 to 
fourth-quarter 2010 forecast evaluation period, demonstrating the use-
fulness of the forecast combination approach for RIL variables. Specifi c 
results for Michigan and Missouri employment growth forecasts are 
presented on pp. 59–61.8 In another recent application, Rapach and 
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Strauss (2009) show that combination forecasts improve upon AR 
benchmark forecasts of real housing price growth for a number of inte-
rior states for the period from fi rst-quarter 1995 to fourth-quarter 2006. 
However, combination forecasts do not outperform the AR benchmark 
forecasts for a number of coastal states during this period, which could 
indicate that these coastal states experienced housing price bubbles.

Factor Models

Another potentially useful approach for forecasting RIL variables 
is factor modeling. If RIL variables have strong links to a national 
variable, factor models can exploit these links to generate improved 
forecasts. Consider the following simple factor model:

(4.5) , ,k t k k t k ty f       , 

where ƒt is an economy-wide or aggregate factor and ,k t   is a zero-mean 
disturbance that may be serially correlated. The coeffi cient on the factor 
( k ) is referred to as the factor “loading” or “exposure.” This coeffi -
cient captures the strength of the relationship between the RIL variable 
and the aggregate factor, with a larger k  indicating a stronger response 
of ,k ty  to fl uctuations in ƒt . Perhaps the best-known example of a fac-
tor model in economics and fi nance is the canonical capital asset pricing 
model, where ,k ty  is the excess return on a particular stock and ƒt  rep-
resents the excess return on the market portfolio. The return on a stock 
with large k  value, or “beta,” responds more strongly to changes in the 
market return and thus has greater systemic risk exposure in the context 
of the capital asset pricing model.9

While ƒt  can be treated as an unobserved latent variable to be 
estimated (using, e.g., principal component analysis), ƒt  frequently 
coincides with an observable aggregate variable. It is then straightfor-
ward to construct a forecast of an RIL variable based on Equation (4.5). 
Consider, for example, forecasting U.S. state-level employment growth 
using the following factor model specifi cation:

(4.6) ,
, * , * , * , * , *

ˆˆ ˆˆ ˆh f h h
k t h k t k t US t h k t hy y          , 
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where , *ˆ h
US t hy   is a forecast of aggregate U.S. employment growth; , *ˆk t  

and  , *
ˆ

k t  are OLS estimates of the intercept and slope coeffi cients, 
respectively, in a regression of state k employment growth on U.S. em-
ployment growth based on data through t*; and , *ˆh

k t h   is a forecast of the 
disturbance term in Equation (4.5) that takes into account the possible 
serial correlation in the disturbance term.10 The forecast given by Equa-
tion (4.6) requires a forecast of U.S. employment growth to plug into 
the right-hand side. A GETS-bagging or combination forecast of U.S. 
employment growth is a natural choice.

Building on Owyang, Rapach, and Wall (2009), Rapach and Strauss 
(forthcoming) forecast U.S. state-level employment growth using 
Equation (4.6). They show that factor model forecasts outperform AR 
benchmark model forecasts for the vast majority of states. The forecast-
ing gains are very sizable for a number of states (including Michigan 
and Missouri, as described in more detail in the next section). There are 
a few states, however, where the factor model performs much worse 
than the AR benchmark, so that factor model forecasts appear to of-
fer gains on a somewhat less consistent basis than GETS-bagging and 
combination forecasts. Rapach et al. (2011) provide another application 
in the context of forecasting stock returns for industry-sorted portfo-
lios. They fi nd that a conditional version of the popular Fama-French 
three-factor model (Fama and French 1993) delivers statistically and 
economically signifi cant out-of-sample gains for forecasting industry 
returns.

Estimation Window

The discussion thus far has assumed that the parameters of the 
forecasting model are estimated using data from the beginning of the 
available sample through the time of forecast formation. If we suspect 
the existence of substantial structural breaks, at fi rst blush it may seem 
appropriate to use an estimation window that excludes prebreak data. As 
shown by Pesaran and Timmermann (2007) and Clark and McCracken 
(2009), however, it can be optimal to include prebreak data according 
to a mean-squared-error criterion; this is a manifestation of the clas-
sical bias-effi ciency trade-off. Furthermore, Pesaran and Timmermann 
(2007) and Clark and McCracken (2009) show that the theoretically 
optimal estimation window is a complicated function of the timing and 
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magnitude of structural breaks. A forecaster will not know these things a 
priori, so they must be estimated from the data. Estimating the timing of 
breaks is notoriously diffi cult. Moreover, by estimating these additional 
parameters, we again run the risk of having an overly parameterized 
forecasting model that performs poorly out-of-sample. In practice, it is 
thus often advisable to employ an expanding window (as assumed in 
the discussion above). Another strategy is to combine forecasts across 
models estimated using a variety of window sizes, since this approach 
recognizes that an expanding window is not necessarily optimal but still 
avoids the overfi tting problem associated with trying to estimate the 
precise timing of structural breaks.

Amalgamating the Approaches

Finally, it is also worth considering amalgamating the GETS-
bagging, forecast combination, and factor model approaches. We can 
straightforwardly accomplish this by taking an average of the GETS-
bagging, combination, and factor model forecasts of an RIL variable. 
Indeed, Rapach and Strauss (forthcoming) fi nd that such an amalgam 
forecast performs very well with respect to state-level employment 
growth: it outperforms the AR benchmark forecast for nearly every 
state, does not produce the outliers of the factor model approach, and 
delivers larger gains than the three individual approaches for the clear 
majority of states. Results for Michigan and Missouri are discussed in 
the next section.

FORECASTING MICHIGAN AND MISSOURI
EMPLOYMENT GROWTH

This section reports more detailed results from Rapach and Strauss 
(forthcoming) on forecasting Michigan and Missouri state employ-
ment growth. The quarterly data composing the full sample span the 
fi rst quarter of 1976 to the fourth quarter of 2010. Employment data 
are from the Bureau of Labor Statistics (BLS), and annualized em-
ployment growth is computed as 400 times the difference in the log 
levels of employment. As emphasized in this chapter, there are a host 
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of potential predictors of RIL variables. Rapach and Strauss consider 
11 potential predictors, which are given in Table 4.1. These predictors 
are representative of the types of national and regional determinants of 
state employment growth suggested by economic intuition and more 
formal models.11

Table 4.1 reports forecasting results for the fi rst-quarter 1990–
fourth-quarter 2010 forecast evaluation period and a forecast horizon of 
two quarters ( 2h   in the notation of the previous section). The “AR 
MSFE” row provides the mean squared forecast error (MSFE) for an 
AR benchmark model. This is a popular benchmark forecasting model 
that only relies on lagged values of the variable to be forecasted. While 
it is a seemingly naive time-series model, such simple time-series mod-
els are often diffi cult to beat in practice. The other rows in Table 4.1 
report the ratio of the MSFE for the forecasting model specifi ed in the 
row heading relative to the AR MSFE. A ratio below (above) unity thus 
indicates that the competing model outperforms (underperforms) the 
AR benchmark in terms of MSFE.

As seen in Table 4.1, the AR model produces an MSFE of 4.44 
percent (2.57 percent) for Michigan (Missouri). The next rows report 
MSFE ratios for 11 ARDL models, each based on an individual predic-
tor, as in Equation (4.3). Individual ARDL model results are reported to 
illustrate the diffi culties in identifying a priori the most relevant predic-
tors for a given RIL variable. While all 11 predictors appear plausible, 
they often vary signifi cantly in their forecasting ability. For example, the 
ARDL model based on real housing price growth generates an MSFE 
that is 13 percent higher than the AR benchmark for Michigan, so the 
AR benchmark provides substantially more accurate forecasts. Hous-
ing permit growth, in contrast, reduces MSFE by 6 percent relative to 
the AR benchmark. In general, as emphasized throughout this chapter, 
model uncertainty and instability make it extremely diffi cult to deter-
mine a priori the most relevant variables for forecasting RIL variables.12

The “GETS-bagging,” “Forecast combination,” and “Factor model”
 rows in Table 4.1 report results for the forecasting strategies outlined 
on pages 54–58.13 Finally, the “Amalgam” row reports results for an 
amalgam forecast that takes the form of a simple average of the GETS-
bagging, combination, and factor-model forecasts (page 59). Table 4.1 
shows that the suggested strategies produce MSFE ratios that are always 
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below unity, so they consistently deliver forecasting gains relative to 
the AR benchmark.

Among the GETS-bagging, combination, and factor model fore-
casts, the factor model forecast performs the best for both Michigan and 
Missouri. The factor model forecast reduces MSFE by 24 percent (35 
percent) relative to the AR benchmark for Michigan (Missouri).14 For 
both states, the amalgam forecast also performs well: the MSFE reduc-
tion for the amalgam forecast relative to the AR benchmark is a very 
sizable 22 percent (32 percent) for Michigan (Missouri).

Overall, the results in Table 4.1, together with other results from 
recent research, illustrate the usefulness of the strategies suggested in 

Table 4.1  Forecasting Results, State-Level Employment Growth, Two-
Quarter Horizon, First-Quarter 1990 to Fourth-Quarter 2010 
Evaluation Period

Forecasting model Michigan Missouri
AR MSFE 4.44 2.57
ARDL models

State unemployment rate, differences 1.02 1.01
State real income growth 1.15 1.02
State real housing price growth 1.13 1.02
State housing building permit growth 0.94 1.07
U.S. manufacturing hours, differences 0.99 1.01
U.S. unemployment claims, log levels 0.96 0.79
U.S. new consumer good order growth 0.93 0.83
U.S. building permit growth 0.86 0.93
U.S. real stock price growth 0.82 0.88
U.S. real oil price growth 1.09 1.13
Average adjacent state employment growth 1.08 1.02

Suggested strategies
GETS-bagging 0.91 0.80
Forecast combination 0.91 0.86
Factor model 0.76 0.65
Amalgam 0.78 0.68

NOTE: The AR (autoregressive) MSFE (mean squared forecast error) row reports the 
MSFE for the AR benchmark model. Other rows report the MSFE ratio for the fore-
casting model indicated in the row heading relative to the AR benchmark model.

SOURCE: Adapted from Rapach and Strauss (forthcoming).
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this chapter for forecasting RIL variables. Of course, it is important 
not to read too much into these results and overgeneralize them. Fore-
casters of RIL variables should thus employ thorough back-testing of 
these strategies for a given application.15 Nevertheless, the positive 
results in recent applications are very promising, so the suggested strat-
egies should form an integral part of a forecaster’s toolbox for dealing 
with the model uncertainty and instability inherent in forecasting RIL 
variables.

Notes

1. There also may simply be an inadequate number of time-series observations to 
feasibly estimate a model that includes a very large number of potential predictors.

2. For more extensive coverage of some of the topics covered in this chapter, see 
the volumes edited by Elliott, Granger, and Timmermann (2006) and Rapach and 
Wohar (2008), as well as the references at the end of this chapter.

3. The disturbance term will be serially correlated when h > 1. 
4. Indeed, as mentioned in note 1, OLS estimation of the kitchen-sink model may not 

even be feasible if the timespan is limited relative to the large number of potential 
variables that exist for RIL variables.

5. See Inoue and Kilian (2008) and Rapach and Strauss (forthcoming) for more de-
tailed expositions of the construction of bagging forecasts.

6. Again, we can include additional lags of the right-hand-side variables in Equation 
(4.3) to allow for a more general dynamic structure.

7. Hendry and Clements (2004) provide theoretical insight on how forecast combina-
tion can improve forecasting in the presence of structural breaks.

8. Also see Rapach and Strauss (2005), who investigate the performance of a large 
number of combining methods with respect to forecasting Missouri employment 
growth.

9. Under the capital asset pricing model, the intercept term should actually be zero in 
Equation (4.5), since it represents the abnormal, risk-adjusted return (or “alpha”), 
which will be zero in an effi cient market.

10. See Rapach and Strauss (forthcoming) for details on the construction of the dis-
turbance term forecast.

11. Rapach and Strauss (forthcoming) provide data sources for the predictors.
12. In addition, in unreported results, the kitchen-sink model performs very poorly 

for each state.
13. The combining weights in Equation (4.4) for the combination forecasts are se-

lected based on the performance of the individual models over a relatively long 
holdout out-of-sample period, as discussed on page 56.

14. With respect to the factor model forecast for Michigan, the average estimate of 
βk in Equation (4.5) used in the computation of the factor model forecasts is 1.45, 



Forecasting Regional and Industry-Level Variables   63

among the largest for individual U.S. states. Michigan employment thus has large 
“exposure” to national employment cycles, likely due in large part to the automo-
bile industry’s strong link to the national business cycle.

15.  Even if back-testing provides positive results, as it says in the fi ne print, past per-
formance is no guarantee of future success.
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