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Abstract

Building performance simulation (BPS) is a powerful tool to estimate and re-

duce building energy consumption at the design stage. However, the true po-

tential of BPS remains unrealized if trial and error simulation methods are prac-

ticed to identify combinations of parameters to reduce energy use of design al-

ternatives. Optimization algorithms coupled with BPS is a process-orientated tool

which identifies optimal building configurations using conflicting performance in-

dicators. However, the application of optimization approaches to building design

is not common practice due to time and computation requirements. This paper

proposes a hybrid evolutionary algorithm which uses information gained during

previous simulations to expedite and improve algorithm convergence using tar-

geted deterministic searches. This technique is applied to a net-zero energy home

case study to optimize trade-offs in passive solar gains and active solar generation

using a cost constraint.
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Abbreviations

BPS Building Performance Simulation

BW Box-Whisker Plot

DE Differential Evolution

DHW Domestic Hot-Water

EA Evolutionary Algorithm

EUI Energy Use Intensity

GA Genetic Algorithm

GenOpt Generic Optimization Program

HJ Hooke-Jeeves search

MARR Minimal Acceptable Rate of Return

MIHEA Mutual Information Hybrid Evolutionary Algorithm

NPV Net-Present Value

NZEH Net-Zero Energy House

PSO Particle Swarm Optimization

PSOIW Particle Swarm Optimization Inertial Weight

PV Photovoltaic Panels

1. Introduction

Building performance simulation coupled with optimization techniques is a

powerful tool to identify optimal pathways to improve the energy, cost and en-

vironmental performance of new buildings. To reduce energy consumption and

maximize solar energy use in new buildings, pivotal design decisions must be
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made within a narrow time frame before the solidification of the final design.

These design-stage decisions commit 80–90% of a building’s life-cycle opera-

tional energy demand (Ramesh et al., 2010; UNEP-SBCI, 2007). In North Amer-

ica, energy used to construct and operate buildings accounts for some 40% of total

energy use (DOE, 2009). Reductions in building energy use has the largest eco-

nomical greenhouse gas abatement potential estimated to be in the range of 5.3

to 6.7 GtCO2−eq/yr, representing 18 to 35% of the total abatement potential by

2030 (Parry et al., 2007).

Optimization techniques in concert with BPS offer the following benefits:

(i) automated search and discovery of potential optimal designs which best achieve

desired performance objectives; and (ii) consideration of conflicting system level

design trade-offs.

Since each building simulation problem has a unique set of constraints, cli-

mate conditions, shape characteristics (Hachem et al., 2011) and occupant usage

characteristics, optimization studies must inevitably be performed on a case-by-

case basis. Reducing time requirements for optimization studies while improving

search resolution is an important research area of BPS.

The utilization of information obtained during the search process still remains

unexplored in building optimization research. This paper proposes a data-mining

technique within the optimization process. A new algorithm is presented to extract

and strategically apply information gained using sub-searches to improve search

resolution and expedite algorithm convergence for building simulation problems.

This algorithm is applied to a net-zero energy house (NZEH) design case

study. A NZEH generates as much renewable energy on-site as it consumes over

a year (Torcellini et al., 2006). Residential buildings in Canada are ideal case-
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studies since they are sparsely occupied buildings, with relatively low energy use

intensity compared to other building types (NRCan-OEE, 2009). They offer large

surfaces, such as walls and roofs, for solar panel installation to offset energy con-

sumption. Due to growing interest, an international task-force was established

to determine NZE building definitions and simulation approaches (IEA/ECBCS,

2013). NZE building design requires an integrated approach involving passive

solar design, improved envelope insulation and air-tightness, renewable energy

generation, and control strategies to regulate solar gains. The process of balanc-

ing passive solar with energy efficiency and renewable energy generation involves

many interacting design aspects and requires a systematic optimization approach

to reduce costs and achieve the NZE target.

This paper contains the following sections. Section 2 reviews previous studies

related to the application of optimization algorithms in BPS. Section 3 presents

the proposed methodology, and the algorithm is applied to a case study in section

4. Discussions of results are presented in section 5, followed by conclusions.

2. Review of Optimization Methodologies Applicable to Building Performance

Simulation

In this section, suitable optimization approaches for building simulation stud-

ies are reviewed. Few previous researchers have incorporated information ob-

tained during the optimization search process to identify specialized search strate-

gies for building simulation problems. Therefore, a more general overview of

methods and algorithms which have proven to be versatile in BPS applications are

presented; some search approaches are applied in the proposed methodology.

The following optimization approaches are discussed: (i) deterministic searches,
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(ii) population-based searches, and (iii) hybrid search approaches.

A deterministic search operates on individual building representations to iden-

tify optimal regions by changing the value of variables using small increments or

decrements. Two deterministic searches are discussed: i) hill-climbing search,

and ii) Hooke-Jeeves search. These searches are called deterministic as a search

operation on the same individual for a given optimization problem will always

result in the same search outcome.

In a hill-climbing search, building design variables are incrementally changed

to improve an objective function. Typically, the order in which variables are

searched and the particular building design representation being searched will

greatly affect the search outcome. Renders (1994) recommended integrating a hill-

climbing search into the mutation operator of a genetic algorithm or as a forked

process interwoven into the search algorithm. Bucking et al. (2010) demonstrated

that performing a hill-climbing search on weakly interacting variables at the start

of the hybrid algorithm and locking them inside an EA improves algorithm per-

formance and search resolution for solar building optimization studies.

The Hooke-Jeeves (HJ) search (1961), a member of the general pattern search

family (Audet and Dennis, 2002), is a deterministic search which explores defined

step-sizes in each continuous design variable coordinate. The algorithm selects

the design variable, for a given step-size, that best improves fitness. If fitness

is not improved, then the process is repeated to find the best step-size improve-

ment in the other design variable coordinates. When no further improvements

are made, the step-size is decreased, as previous step-sizes are assumed to be too

large. Decreasing step-sizes requires the algorithm to be constantly converging.

This disadvantage can be overcome by combining the HJ algorithm with other
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global searches, as demonstrated by Wetter and Polak (2004).

Population-based algorithms perform operations on populations of represen-

tative building designs. Often they are called metaheuristics due to their nature

of finding near optimal solutions to a wide range of problems. Two popular

population-based search algorithms previously used in BPS were genetic or evo-

lutionary algorithms and particle swarm optimizations.

The first algorithm selected for discussion from the group of population-based

algorithms is the Genetic Algorithm (GA), from the Evolutionary Algorithm (EA)

family. GAs have become popular due to their ease of implementation and proven

ability to solve multi-modal and multi-objective problems. Computational pseudo-

evolution was first demonstrated by Goldberg (1989) using biological inspirations.

Performing genetic operations, such as mutations and crossovers, on representa-

tions in combination with selection operators emulate the ‘survival of the fittest’

found in biological evolution. Eiben and Rudolph (1999) described members of

the EA family as “adaptive systems having a ‘basic instinct’ to increase the aver-

age and maximum fitness of a population.” Genetic algorithms are a well-studied

metaheuristic. Wang et al. (2006) used a GA to perform a multi-objective opti-

mization using life-cycle cost and exergy on a green building with a polygonal-

shaped floor plan. Caldas (2008) used a GA to simultaneously optimize building

geometry, energy efficiency and visual comfort. Many modifications exist com-

bining the best elements of other search strategies from the evolutionary algorithm

family such as Differential Evolution (DE) (Price et al., 2005). Literature refers

to a modified GA by its more general family name, EA. EAs have been scaled to

building optimization problems with many design variables. For example, Kämpf

et al. (2010a) optimized the solar radiation availability for a grid of buildings. A
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benefit of EAs is the flexibility to include sub-specialized search strategies. For

example, multi-island EAs allow for the population in one generation to be di-

vided into sub-populations, or islands, where specialized sub-population search

can be performed. This approach is useful to deconstruct large optimization prob-

lems into smaller, easier to solve problems. Ooka and Komamura (2009) utilized

a multi-island EA to design, and control an HVAC system for a hospital in Japan.

A Particle Swarm Optimization (PSO) (Kennedy et al., 2001) is fundamentally

different from evolutionary cycles found in EAs. Instead of forming a new popu-

lation of individuals each iteration, the existing population is allowed to gravitate

towards other more fit individuals, or particles, in the population. This attraction

effect is a form of directed mutation also found in DE (Kennedy et al., 2001). Par-

ticles are updated using the best local and global particles in the swarm. PSO com-

petes favourably with other optimization algorithms. For example, Elbeltagi et al.

(2005) compared five evolutionary based algorithms and found PSO to outperform

the other algorithms for a discrete design problem, with regards to reproducibil-

ity of optimal solutions and ability to scale with increasing problem sizes. PSOs

are the primary population-based search approach used in the Generic Optimiza-

tion Program (GenOpt) commonly used in building optimization studies (Wetter,

2011).

More recently, researchers have combined the strengths of population-based

and deterministic algorithms into a hybrid approach. Population-based algorithms

identify near optimal regions; deterministic searches intensify the search process

around near optimal landscapes. Although hybridization can occur at different

levels (Feoktistov, 2006), the most common approach is to augment a population-

based search with a local deterministic search. The GenOpt tool performs a HJ
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search on the optimal individual resulting from a PSO (Wetter, 2011). This algo-

rithm was found to have better convergence properties for non-multimodal prob-

lems compared to a hybrid DE algorithm (Kämpf et al., 2010b).

Based on the evaluation of the reviewed algorithms, an EA and hill-climbing

search was selected for the proposed methodology.

3. Methodology

In this section, two evolutionary algorithms are proposed. EAs allows for the

required flexibility to incorporate search strategies based on information obtained

during the optimization process. In addition, effective search strategies are bor-

rowed from other optimization algorithms and incorporated into the proposed EA.

For example, pseudo-differential gradients originating from DE were explored as

a mutation operator. Hill-climbing searches from the deterministic family are

examined to perform searches on isolated design variables. The proposed opti-

mization algorithms are discussed in the next section. Before providing details,

some mathematical terminology used in the methodology is reviewed.

The formal goal of a minimization study is to find a design variable vector, x,

such that:

min{ f (x)} (1)

where: x is the design variable vector x = (x1, x2, · · · , xN)T , in design space X ⊂

RN; the objective or fitness function, f (), evaluates set of design variables onto an

‘objective’ vector y = (y1, y2, · · · , yM)T where fi ∈ R
M, yi = fi(x), fi : RN → R1

for i = 1, 2, · · · ,M, describes the objective or solution space Y ⊂ RM; min{ f (x)}

is subject to L constraints gi(x) ≤ 0 where i = 1, 2, · · · , L; feasible design vectors
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set x|gi(x) ≤ 0 form the feasible design space X∗, and corresponding objective

vectors set y|x ∈ X∗ form feasible objective space Y∗; for a minimization problem,

a design vector a ∈ X∗ is Pareto optimum if no design vector b ∈ X∗ exists such

that yi(b) ≤ yi(a), i = 1, 2, · · · ,M.

The proposed algorithms require discrete variables. This is beneficial as dis-

crete variables improve the convergence properties of the optimization algorithm

by shrinking the solution space.

3.1. Proposed Optimization Algorithms

This section describes the proposed optimization algorithms. Clojure (Hickey,

2012), a LISP programming language, was used to integrate mixed optimization

strategies into an evolutionary algorithm.

Figure 1 presents the integration of BPS with a typical optimization algorithm.

Upper and lower limits of design variables are first defined. These limits define

the entire possible set of designs available to the optimization algorithm. Once

algorithm and design variables are defined, the optimization algorithm can be ini-

tiated. Design representations from the algorithm are converted into simulation

files. Simulation files are evaluated using a building simulation tool to determine

the performance of each design in question. Simulation results are interpreted

and assigned fitness values before entering the algorithm. Databases are used

by the optimization algorithm to store relevant simulation information. Building

representations in the algorithm are improved upon until a terminal criterion is

satisfied.

In the following sections, two algorithms, a modified evolutionary algorithm

(section 3.1.1) and an information-driven hybrid evolutionary algorithm (section 3.1.2)
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Figure 1: Integration of BPS with an optimization algorithm

are proposed. The performance of both algorithms are benchmarked and dis-

cussed in later sections.

3.1.1. Proposed Modified Evolutionary Algorithm (EA)

This section describes several improvements to an EA for solar building de-

sign optimization problems; a more exhaustive review of EA design can be found

in Eiben and Smith (2003). These algorithms are most similar to the Genetic Al-

gorithm described in section 2. However, the more general family name, EA, is

used since these algorithms leverage search strategies from other algorithm sub-

classes such a Differential Evolution algorithms.

A modified EA was developed and configured to estimate algorithm perfor-

mance. Investigating the performance of the modified EA algorithm provided lon-

gitudinal data from which the hybrid-EA can be compared to. Figure 2 presents

the evolutionary cycle common to an EA.

In Figure 2, a set of binary genomes, or simplified representations of building

designs, form the population. The population is initialized by randomly creating

the specified population size and the fitness of each individual is evaluated; in this

paper an energy simulation program evaluates building energy use. This popula-

tion becomes the parent population as it enters the evolutionary cycle. Parent se-
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Figure 2: Overview of an evolutionary algorithm

lection is used to select genomes for variation operators such as recombination and

mutations. The fitness of new individuals, called children, is evaluated. Survivor

selection, or replacement, selects which genomes from the old and new population

will survive in the next generation. The process is repeated until a termination cri-

terion is reached, typically a set number of evolutionary cycles sometimes called

iterations or generations. Individuals are elite if there exist no other individual in

the present population with a better fitness. Elitism is an algorithm feature where

a specified number of elite individuals pass to the next generation.

Two types of recombination were used. The first method shared data between

two parents on a bit-by-bit basis using a uniform crossover and the second method

shared information on a variable-by-variable basis. Uniform recombination on a

variable-by-variable basis, shown in Figure 3, was beneficial as it was unlikely

that a binary string representing a sensitive design parameter would be transferred
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from a parent to a candidate child for longer binary representations; from expe-

rience, representations with greater than 50 bits for building optimization prob-

lems. An algorithm parameter defined the probability of selecting recombination

method 1 over method 2. This parameter defined which recombination method

was used at each crossover instance. Grey-coded binary representations required

that adjacent parameters differ by one bit. This ensured that representations with

similar binary encodings had similar design parameters settings.

Figure 3: Variable uniform recombination

Two types of mutation operators were explored: (i) a binary mutation operator,

and (ii) a differential mutation. A binary mutation operated on a binary genome

by flipping bits with a probability of 2% and returned the resulting representa-

tion. The diversity of the population can be increased by using a higher mutation

rate but at the detriment of possibly losing progress made within evolutionary cy-

cles. The second method used was a differential mutation. Differential operators

are the primary evolutionary mechanism found in DE and PSO algorithms. This

modified discrete mutation operated on a single parent using gradient informa-

tion from three unique, randomly selected individuals from the population, see

modified version of differential mutation (Storn and Price, 1995) adapted to work

within a binary EA. A scaling factor determined the scaling of the gradient dif-

ference used in the operator. The mutation rate was identical to the probability of
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mutation used in the bit-flip operator. After the differential mutation, the resulting

continuous representation required rounding to conform to the specified variable

step-sizes. Thus, the representation was rounded back into a discrete vector be-

fore conversion into a binary format. If values exceeded specified ranges within

the differential mutation, they were randomly reset to an allowed value, as recom-

mended by Feoktistov (2006). An algorithm parameter defined the probability of

selecting mutation method 1 over method 2.

A SQLite database (SQLite, 2012) stored design variable sets, algorithm pa-

rameters and building performance metrics such as breakdowns of annual energy

consumption from energy simulations. SQLite allows for concurrent writes from

simultaneous building simulations originating from multi-core and distributed com-

puters. To save computation time, a database query confirmed if an identical repre-

sentation has been simulated previously before calling the energy simulation tool.

SQL queries allowed for the quick recollection of previously simulated design pa-

rameter sets and corresponding energy consumption. Database queries were used

to data-mine information as described in the following section.

3.1.2. Incorporation of Mutual Information into a Hybrid Evolutionary Algorithm

(MIHEA)

The proposed EA from the previous section was augmented with a module

to data-mine previous simulation information. This hybrid EA was developed to

extract information regarding variable interdependencies and strategically deploy

deterministic searches to improve algorithm performance.

EAs are best suited for finding near-optimal solutions and there is no guar-

antee that searches will resolve to absolute minima. Deterministic searches are

better suited for resolving local minima, or search intensification. In building op-
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timization, interactions between variables are treated as a hindrance when they

could improve the search process. For example, weakly dependent design vari-

ables might be susceptible to deterministic searches. Similarly, if interactions are

identified between sub-clusters of design variables, sub-population search strate-

gies might expedite the search process.

A hill-climbing algorithm was used for the deterministic search. A hill-climbing

search increments or decrements each design parameter such that fitness is im-

proved. The difficulty lies in identifying which design variables may be weakly

interacting and thus susceptible to deterministic searches within the present land-

scape of the solution space. Mutual information calculations, a concept originat-

ing from information theory (Cover and Tomas, 2006), identified weakly interact-

ing variables.

By definition, mutual information is a measure of dependency between two

random variables (Cover and Tomas, 2006). Due to its Bayesian roots, the updat-

ing of mutual information throughout the optimization search reduces the uncer-

tainty in interaction calculations and builds confidence in selected variables for

deterministic searches.

One effective way to extract variable interdependencies is to use the mutual

information shared between two design variables denoted by I(Xi, X j) in equa-

tion 2 (Cover and Tomas, 2006), noting that xi belongs to the set Xi (xi ∈ Xi) and

x j belongs to the set X j (x j ∈ X j).

I(Xi, X j) =
∑
xi,x j

p(xi, x j) · log2

(
p(xi, x j)

p(xi) · p(x j)

)
(2)

Probability calculations are made using representations of previously simu-

lated individuals, saved in the database. The functions p(xi) and p(x j) are the
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marginal probability functions of discrete random variables Xi and X j for a given

performance range. Similarly, p(xi, x j) is the joint probability for discrete vari-

ables Xi and X j for a specified performance range. From p(xi, x j), p(xi), and p(x j)

the mutual information common to variables Xi and X j can be calculated.

If variables Xi and X j are independent, then p(xi, x j) = p(xi) · p(x j) and

I(Xi, X j) = 0, indicating that no information is shared. Larger values of I(Xi, X j)

indicates that more information is shared between variables Xi and X j. Given these

relations, I(Xi, X j) ≥ 0.

Finally, equation 3 calculates the total information that design variable Xi

shares with all other design variables. Note that deterministic searches work best

on variables that are loosely coupled to other variables in the model, i.e. variables

with the lowest Ii. The identification and strategic searching of weakly interacting

variables is an improvement over population-based optimization searches such as

EAs.

Ii =

N∑
j=1

I(Xi, X j) where, j , i (3)

Information depends on the fitness of the set of design vectors used for the cal-

culation even through fitness is not explicitly used in mutual information calcula-

tions. For example, in a building simulation problem, information calculated for a

set of design vectors which are evaluated in a range of annual energy use intensity

(EUI) of [800, 1200) MJ/m2 would be different than information calculated from

design vectors evaluated within [400, 800) MJ/m2. Mutual information tends to

increase as EUI decreases since building designs with lower energy consumption

tend to have more strongly coupled variables to achieve a given performance level.

Figure 4 and Table 1 presents the proposed mutual information hybrid EA
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(MIHEA). The evolutionary cycle was identical to Figure 2 except for the addi-

tion of a data-mining module which identified weakly-interacting variables and

performed a hill-climbing search on the elite individual in the present population.

The data-mining of variable interactions was repeated every two generations as

determined by the ‘datamine?’ decision block. After the formation and evaluation

of the child population, the elite member of the previous population entered the

data-mining module.

initialize

evaluate

parents stop?

selection

variations

children

replacement

datamine?

evaluate

update
elite indiv

see Table 1

evolutionary cycle

no
no

yes

Figure 4: Overview of the proposed mutual information evolutionary algorithm (MIHEA)

Variables were selected for the hill-climbing search using two criteria: (i) the

mutual information shared with other design variables, and, (ii) the frequency

that each variable had been deterministically searched in all previous generations.

Mutual information calculations used at most 100 unique individuals from the

database ordered by improving fitness to calculate interactions. The MIHEA se-

lected variables for hill-climbing searches using a tournament selection operator
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Table 1 Information-driven deterministic hill-climbing search
Precondition: a is a grey-coded binary string and the elite individual in the population

1 function MIdetsearch(a)
2 a← binary2discrete(a) . Note: a = (a1, · · · , aN)T

3 data← getnBestIndiv(n=100) . Select 100 fittest individuals from database
4 I← calcMI(data) . Calculate and sum mutual information
5 freq vars← calcFreq() . Calculate frequency of previously searched variables
6 vars← tournSelect(I, freq vars) . Select variables using tournament
7 for var ∈ vars do . Hill-climbing increments and decrements variable var
8 b← hillclimb inc dec(a,var) . Conduct hill-climbing search
9 return discrete2binary(b) . Convert discrete representation to binary

to identify variables with low total mutual information, see equation 3, and a low

frequency of being previously hill-climbed. Tournament operators ensured that

the same variables were not searched repeatability every generation but still gave

preference to variables that were weakly interacting.

The follow section describes how the proposed algorithms were benchmarked.

3.2. Optimization Algorithm Performance Comparison

Comparing the performance of the proposed optimization algorithms was chal-

lenging because both proposed EA and MIHEA algorithms depend on stochastic

processes and simulations in this study were conducted in batches on multi-core

processors.

The performance of the proposed EA and MIHEA were compared to GenOpt’s

particle swarm inertial weight (PSOIW) algorithm (Wetter, 2011). Initial popula-

tions were randomized for each optimization run to ensure that algorithms were

compared under different initial fitness landscapes. Identical design variables and

variable step-sizes were used to constrain algorithms to the same solution spaces.

The following measures compared algorithm performance: (i) sensitivity of
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algorithm configurations, (ii) repeatability studies, and (iii) convergence analysis.

The sensitivity study compares the sensitivity of each algorithm to its initial con-

figuration. In addition, this study determines which initial configuration resulted

in the best algorithm performance. A repeatability study explores how consis-

tently each algorithm will find optimal or near optimal solutions and the expected

fitness value for each algorithm given a single optimization run. The repeatabil-

ity study also compares algorithms to determine reductions in computational and

time requirements. Because the optimization algorithm used in the study depends

on stochastic processes, a significant sample of optimization runs is required to

conduct the repeatability study. Finally, a convergence analysis compares how

quickly each algorithm converges to optimal landscapes from a random initial

population.

In the following case study, we compare the performance of the proposed EA

and MIHEA to the GenOpt PSOIW algorithm. The proposed EA and MIHEA

are also compared separately to estimate the performance improvement from aug-

menting the EA with information-driven deterministic searches.

4. Case Study: Net-Zero Energy House

The case study involves the optimization of a net-zero energy home (NZEH)

located in Montréal, Québec. The energy model was calibrated using monitored

data from an occupied near-NZEH located near Montréal (Doiron et al., 2011)

to ensure that the model used for the optimization case study reflects the energy

balances of a NZEH.

The model was calibrated using the ÉcoTerra house, one of 15 houses in

the Canada Mortgage and Housing Corporation EQuilibrium Housing Demon-
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stration Initiative, is a two-story, detached home located in Eastman, Québec,

Canada. Alouette Homes prefabricated the home and Natural Resources Canada,

Canada Mortgage and Housing Corporation, and Hydro Québec partially funded

the project. A balance of passive solar design strategies, roof-top building-integrated

photovoltaic panels (PV) and a geothermal heat-pump provided on-site renewable

energy generation (Chen et al., 2010a,b). Since the site-NZE definition was se-

lected (Torcellini et al., 2006), the primary energy factor associated with electric-

ity from the grid was not considered.

4.1. Objective function

The objective of the study was to minimize the net-annual energy consumption

of a near net-zero energy home. Heating, cooling, fan loads, PV generation and

lighting loads were simulated using EnergyPlus (Crawley et al., 2000). The objec-

tive function used for this case study was the annual net-electricity consumption

of the building, see equation 4,

f (x) = Qheat/COPH + Qcool/COPC + Eelec − EPV (4)

where: x = (x1, x2, · · · , xN)T is a design variable vector; f (x) is the annual net-

electricity consumption of the building (kWh); COP is the average annual co-

efficient of performance of the ground-source heat pump in heating and cooling

mode, 3.77 and 2.77 respectively; Q is the annual heating and cooling load (kWh);

Eelec is the annual electricity consumption in lighting, domestic hot-water (DHW),

appliances and plug-loads (kWh) and; EPV is the electricity generated by the roof-

top photovoltaic panels (kWh). When f (x) < 0 this implies the net-generation of

electricity, or a positive-energy house.

This case study used twenty-six discrete variables, see Table 2. Note that
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Table 2: Sample of influential variables for NZEH case study
Variable Units Min. Max. No. Steps Description
azi degrees -45 45 32 Building orientation/azimuth
aspect – 0.7 2.2 8 Aspect ratio (south facing width to depth ratio)
wall ins m2K/W 3.5 13.0 8 Effective resistance of wall insulation
ceil ins m2K/W 5.6 15.0 8 Effective resistance of ceiling insulation
base ins m2K/W 0.0 7.0 8 Effective resistance of basement wall insulation
slab ins m2K/W 0.0 2.3 4 Effective resistance of slab insulation
ovr south m 0.00 0.45 4 Width of Southern Window Overhangs
pv area % 0 90 8 Percent of PV area on roof
pv eff % 12 15 4 PV efficiency
roof slope degrees 30 45 8 South facing roof/PV slope
wwr s % 5 80 8 Percent of window to wall ratio, south (also N,E,W)
GT s – 1 4 4 Glazing type, south (also N,E,W)
heating sp ◦C 18 25 4 Heating setpoint
cooling sp ◦C 25 28 4 Cooling setpoint
FT – 1 2 2 Window Framing Types (1:Wood, 2:Vinyl)
slab th m 0.1 0.2 8 Concrete slab thickness
vwall th m 0.00 0.35 8 Concrete wall thickness (basement)
zone mix L/s 0 400 4 Air circulation rate between thermal zones
infil ACH 0.025 0.179 8 Natural infiltration rate

variable descriptions are shown for the south orientation only; also, the PV slope is

equal to the roof slope. Design of experiment techniques (Goos and Jones, 2011)

and previous studies (da Graca et al., 2012; Kolokotsa et al., 2011; O’Brien, 2011;

Wang, 2005) aided in identifying influential design variables. Table 3 shows the

binary encoding used in the representation for a sample of variables. Equation 5

demonstrates the translation of a partial representation from binary to vector space

using the encodings of Table 3.

Table 3: Sample of grey-coded binary representation of design variables
Variable: aspect Variable: wall ins Variable: ceil ins

encoding value, – encoding value, m2K/W encoding value, m2K/W
000 0.7 000 3.50 000 5.60
001 0.9 001 4.86 001 6.94
011 1.1 011 6.21 011 8.29
010 1.3 010 7.57 010 9.63
110 1.6 110 8.93 110 10.97
111 1.8 111 10.29 111 12.31
101 2.0 101 11.64 101 13.66
100 2.2 100 13.00 100 15.00
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Binary Representation︷                              ︸︸                              ︷
“ 010︸︷︷︸

aspect
110︸︷︷︸

wall ins

000︸︷︷︸
ceil ins

. . . ”→

Vector Representation︷                      ︸︸                      ︷
(1.3, 8.93, 5.60, . . . ) (5)

Electric lighting ensured that a minimum illuminance of 200 lx was present in

all occupied spaces regardless of the window-to-wall ratio. A heat recovery ven-

tilator with an efficiency of 60%, taken from manufacturer specifications, main-

tained the ventilation rate at 0.3 air-changes per hour in all occupied spaces. Roller

shades were automatically deployed if exterior solar radiation on the exterior win-

dow surface exceeded 150 W/m2 and if exterior temperature on the window ex-

ceeded 20 ◦C. These values ensured that blinds were closed if there was potential

for zone overheating.

4.2. Cost Constraint

This section describes the formulation of a cost constraint used in the case-

study. A cost constraint required the algorithm to minimize net-energy consump-

tion cost-effectively. Establishing a cost-constraint ensured that algorithm identi-

fied cost-effective design trade-offs between passive-solar design and renewable

energy generation. If the cost-constraint was exceeded, a barrier function was

applied to the objective function and net-energy consumption was set to infinity.

Incremental cost of materials and operational energy costs over the life-cycle

is shown in equation 6. A cost constraint of $90,000 was determined based on

published cost premiums of NZEHs in Canada (CMHC, 2009). Costs were eval-

uated over the life-cycle of the building. Hence, initial, operational, and replace-

ment costs are evaluated using the net-present value (NPV) of each design. Cost

calculations were performed by post-processing energy simulation results.
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g(x) = CNPV + ENPV + RNPV − S NPV (6)

≤ $90, 000

where: CNPV : is the capital costs of materials and equipment in Canadian dollars;

ENPV : is the operational energy costs calculated from energy simulation results;

RNPV : is the replacement cost for materials and equipment; and S NPV : is the

salvage or residual value using a linear depreciation method.

Materials were scheduled for replacement based on an expected serviceable

lifetime (RSMeans, 2011). A marginal electricity rate of 7 cents with an escalation

rate of 2.0% was used (Hydro-Québec, 2010). Note that all monetary amounts

refer to Canadian dollars. Life-cycle costs were calculated over a 30 year time

horizon.

The NPV of each term is calculated using:

NPV =

N∑
t=0

Ct

(1 + a)t (7)

where: Ct: is the future net-cash flow at year, t (Net meaning Ct = cashout −

cashin); a: is the minimal acceptable rate of return (MARR); and N: is the

number of years considered in the life-cycle.

Equation 8 specified the minimal acceptable rate of return used for net-present

value calculations.

a = (1 + r)(1 + i) − 1 (8)
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where: r is assumed bank rate, a 2.14% return from a 10 year GIC from 2002 to

2012 (Bank of Canada, 2009); i is the annual inflation rate, 2.0% in Canada (Bank

of Canada, 2009); a is the calculated minimal acceptable rate of return, 4.18%.

Initial costs were broken down as follows:

C = wallinsCost + ceilinsCost + baseinsCost + slabinsCost +

roofCost + overhangCost + concrCost + PVCost +

winCost + airtightCost (9)

where: C is the total material cost; insCost is the cost of wall, ceiling, base-

ment and slab insulation; winCost is the cost of windows based on glazing area;

roofCost is the incremental cost of additional roof framing beyond 30 degrees

slope; overhangCost is the cost of overhangs; concrCost is the cost of concrete

walls and slab for passive thermal storage; PVCost is the cost of PV panels and

inverters; and airtightCost is the incremental cost associate with tighter envelopes.

These costs were specified from RS-Means data (RSMeans, 2011, 2012).

5. Results and Discussion

To ensure that the EA and PSOIW algorithms were operating properly, the sen-

sitivity of several algorithm configurations were explored. The algorithm settings

which resulted in the lowest fitness values were selected for future optimization

runs, see run no. 1 of Tables 4 and 5.

Parallelization of building simulations to multi-core processors was used ex-

tensively for this study. Parallel simulations can greatly reduce optimization time

requirements but do so with diminishing returns, as per Amdahl’s law of compu-
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Table 4: Parametric run for various algorithm parameters, EA

EA Parameters Run 1 Run 2 Run 3 Run 4 Run 5
Representation 62 bit binary string – – – –
Population Size 10 – – – –

Recombination * 60% Method 1 60% Method 1 60% Method 2 80% Method 2 60% Method 2
Mutation � 60% Method 2 60% Method 2 60% Method 1 60% Method 1 80% Method 2

Mutation Prob 2.0% 3.0% 2.0% 2.0% 1.0%
Scaling Factor 0.7 0.5 0.5 0.5 0.1

No. Generations 35 – – – –
Fitness (kWh) −1481 −1400 −1367 −1104 −934

* Recombination: Method 1: Bit-by-bit Uniform; Method 2: Variable Uniform
�Mutation: Method 1: Bit-by-bit Mutation; Method 2: Differential Mutation

–: No change as compared to Run 1

Table 5: Parametric run for various algorithm parameters, GenOpt PSOIW
GenOpt PSOIW Parameters Run 1 Run 2 Run 3 Run 4 Run 5

Representation Discrete – – – –
Topology gbest – – – –

Population Size 10 – – – –
Neighborhood Size 5 – – – –

Cognitive Acceleration 2.8 1.0 3.4 1.8 2.8
Social Acceleration 1.3 1.0 1.5 1.8 2.3

Max Velocity Discrete 4 3 3 4 2
Initial Inertia Weight 1.2 – 1.6 1.4 –
Final Inertia Weight 1.0 – 1.4 1.2 –

No. Iterations 35 – – – –
Fitness (kWh) −1205 −1003 −1171 −1202 −861

–: No change as compared to Run 1

tational parallelization (Amdahl, 1967). To identify the optimal population size or

number of particles, a parallelization simulation study was performed. Figure 5

shows that five simultaneous building simulations allows for an optimal speed-

up of four times compared to a sequential simulation strategy. The improvement

factor of Figure 5 shows that it is most computationally efficient to conduct en-

ergy simulations in batches of five. Since a population of five individuals was

insufficient to maintain population diversity within the evolutionary and PSOIW

algorithms, a population of ten individuals was selected. Thus, two simulation

batches of five individuals were required per algorithm iteration and they were
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approximately time equivalent to two separate energy simulations.
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Figure 5: Simulation scalability test on NZEH energy model

Table 6 shows the results of the repeatability study. The results in Table 6

represent the expected fitness value for each algorithm given a single optimization

run. This data was built using 20 repeated optimization runs. A sample size of 20

repeated optimization runs yielded 97% statistical power using a p-value of 5%.

One standard deviation of data is shown with the average fitness value of optimal

solutions.

Table 6: Expected optimal fitness for the proposed EA, proposed MIHEA and PSOIW based on
20 repeated optimization runs, NZEH case study

Proposed EA Proposed MIHEA GenOpt PSOIW
No. of energy simulations 350 364 350
No. of deterministic searches 0 14 0
No. of simulations batches 70 70 70
Algorithm generations/iterations 35 28 35
Mean fitness (kWh) −1250 ± 172 −1411 ± 119 −1112 ± 213

In Table 6 the expected optimal value of the proposed EA is slightly improved

over the PSOIW. A larger disparity was observed when comparing the MIHEA to
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the PSOIW algorithm. The MIHEA algorithm found designs which had 20%

lower fitness values with less variance. Since simulations were conducted in

batches on multi-core processors, each algorithm was allowed an equal number

of simulation batches rather than an equal number of building simulations. Recall

that each batch consisted of five energy simulations. Thus the proposed EA and

PSOIW were allowed 70 simulation batches over 35 algorithm iterations. Since

MIHEA required one batch of six deterministic searches every other generation

the total number of generations was reduced to 28 for a total of 70 simulation

batches. MIHEA required 14 more energy simulations than the other algorithms

because simulation batches of six were used for deterministic searches instead of

batches of five for each algorithm generation. However, the computational re-

quirements are equivalent across all compared algorithms.

Table 7 shows the optimal NZEH parameter sets for the case study. The opti-

mal design shown in Table 7 generated a net of 1491 kWh of electricity and was

found using MIHEA. The cost constraint was sufficiently large to allow for the full

roof-surface to be covered in PV panels and achieve the NZE target. To achieve

this optimal design required integrated design approach. A balance of passive

solar strategies, such as: air-tight envelopes (0.025 ACH natural infiltration rate),

sufficient wall envelope insulation values (8.56 m2K/W), appropriate south-facing

window-to-wall percentage (48%), sufficient air circulation between zones to dis-

tribute solar gains (133 L/s) and sizing of thermal mass (0.25 m central thermal

storage wall in basement). Thermal mass allowed storage of solar gains and in-

teracted with solar gain control strategies. Blind control strategies and exterior

shading allowed for a larger window-to-wall fraction while maintaining accept-

able visual comfort. The identification of trade-offs between passive solar design,
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Table 7: Optimization results with MIHEA: Optimal design for case study
Variable Description Units Optimal Values
azi Building orientation/azimuth degrees 0
aspect Aspect ratio (south facing width to depth ratio) – 1.3
wall ins Effective resistance of wall insulation m2K/W 8.93
ceil ins Effective resistance of ceiling insulation m2K/W 10.97
base ins Effective resistance of basement wall insula-

tion
m2K/W 5.08

slab ins Effective resistance of slab insulation m2K/W 1.39
ovr south Width of Southern Window Overhangs m 0.34
pv area Percent of PV area on roof % 90
pv eff PV efficiency % 15
roof slope South facing roof/PV slope degrees 45
wwr s Percent of window to wall ratio, south % 48
wwr n Percent of window to wall ratio, north % 10
wwr e Percent of window to wall ratio, east % 10
wwr w Percent of window to wall ratio, west % 10
GT s Glazing type, south (also N,E,W) – 2
FT Window Framing Types (1:Wood, 2:Vinyl) – 2
slab th Concrete slab thickness m 0.2
vwall th Concrete wall thickness (basement) m 0.251
zone mix Air circulation rate between thermal zones L/s 133
infil Natural infiltration rate ACH 0.025

Fitness of Individual (kWh) -1491

energy efficiency and active solar electricity generation is a significant application

of the proposed optimization algorithm.

Table 8 shows the deterministic search probability for a sample of design vari-

ables from the case study. The search probability is defined as the probability that

a given design variable will be searched deterministically within the MIHEA. The

probability of selecting a variable for a deterministic search with no prior informa-

tion is 1/N, where N is the number of design variables. The actual search proba-

bility was calculated by post-processing previous MIHEA optimization runs. The

variables with the highest deterministic search probability were the sizing of re-

newable energy generation, such as PV efficiency, area of PV coverage, roof/PV

slope and heating/cooling setpoints. Variables that were rarely selected for de-

27



terministic searches were the solar orientation of the building (azimuth) and the

aspect ratio (ratio of south facing width to depth ratio). Both variables were tightly

coupled to other design variables. The optimization of coupled variables is best

handled in the EA.

Table 8: Search probability of design variable within MIHEA for Case Study
Variable Description Search Probability (%)

pv eff PV efficiency 5.4
pv area PV area 5.3

roof slope Roof and PV angle 5.1
set heat Heating setpoint 4.8
set cool Cooling setpoint 4.7
aspect Aspect ratio 1.6

azi Building orientation 0.6

Box-whisker (BW) plots compared the distribution of optimization results for

each optimization algorithm (Fig. 6). BW plots allow for side-by-side compar-

isons of the convergence characteristics of each algorithm using five important

statistical properties of the optimization datasets. In the BW plots, the dashes

represent extremes of the data points (starting point of initial population and final

optimized population). The thick line inside the box represents the mean quartile

of the set. The lines of the box represent the lower and upper quartiles of the set

where 50% of data points reside. The algorithm with the lowest mean fitness has

the best convergence properties. Bean plots (Kampstra, 2008) were superimposed

onto this Figure to show the individual fitness distribution throughout the search

using Gaussian kernel density functions (Scott, 1992). The three dotted lines rep-

resent the global maximum, minimum and mean of the dataset. These lines are

intended to simplify visual comparison of results.

Figure 6 shows the convergence analysis results for the case study using 20

optimization runs.
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Figure 6: Box-whisker plot for 20 optimization runs

Both EA and MIHEA found better optimal designs and evolved more individ-

uals closer to the optimal landscape than the PSOIW. Note, the best individual

from repeated PSOIW optimization was close to the EA solution; however both

EAs were able to converge to the near-optimal landscape using fewer fitness evalu-

ations which led to surplus individuals, as illustrated by spiking in the distribution.

Note that this spike is absent in the PSOIW algorithm. MIHEA identified optimal

solutions using only 22 generations compared to the 35 required by the proposed

EA and PSOIW.

6. Conclusions

In this paper a hybrid evolutionary algorithm is proposed for minimizing so-

lar building energy consumption. A net-zero energy house was used as a case-

study to demonstrate the algorithm. Optimization approaches are required to

identify cost-effective trade-offs between passive solar design and renewable en-

ergy generation. The MIHEA algorithm utilized information regarding variable

interactions during the optimization process to identify opportunities for deter-
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ministic searches. This augmentation is valuable as EAs are strong at optimizing

interdependent variables but have difficulties optimizing weakly coupled design

variables—a strength of deterministic searches. Results suggest that this approach

improves the reproducibility of near optimal solution set while requiring less com-

putational resources.

The proposed MIHEA algorithm is applicable to any problem that involves

various strengths of design variable interactions including several weakly inter-

acting design variables. Building energy simulation tools used for performance

evaluations of solar buildings, such as ESP-r or EnergyPlus, are ideal case studies

as they involve solving sets of sparse matrices (Clarke, 2001) or iterative solvers

applied to loosely-coupled heat balance equations (DOE, 2011). However, the

proposed algorithm may be useful for other fields. Furthermore, using mutual

information calculations to identify variables that may be susceptible to determin-

istic searches is not specific to an evolutionary algorithm. The approach could

have equally been integrated into the PSOIW algorithm or a different algorithm

entirely.

The information gained using the proposed optimization strategy is applica-

ble to practicing energy modellers. For example, knowing which sets of design

variables require simultaneous tuning and which design variables can be selected

in isolation is useful information for energy modellers attempting to model high

performance buildings.
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