
Carleton University, Technical Report SCE-16-01 September 2016

1

Comparing GUI Functional System Testing with Functional

System Logic Testing - An Experiment

Abdulaziz Alkhalid

Department of Systems and Computer Engineering

Carleton University

Ottawa, Canada

akhalid@sce.carleton.ca

Yvan Labiche

Department of Systems and Computer Engineering

Carleton University

Ottawa, Canada

labiche@sce.carleton.ca

Abstract— The practitioner interested in reducing software

verification effort may found herself lost in the many alternative

definitions of Graphical User Interface (GUI) testing that exist

and their relation to the notion of system testing. One result of

these many definitions is that one may end up testing twice the

same parts of the Software Under Test (SUT), specifically the

application logic code. To clarify two important testing activities

for the avoidance of duplicate testing effort, this paper studies

possible differences between GUI testing and system testing

experimentally. Specifically, we selected a SUT equipped with

system tests that directly exercise the application code; We used

GUITAR, a well-known GUI testing software to GUI test this

SUT. Experimental results show important differences between

system testing and GUI testing in terms of structural coverage

and test cost.

Keywords—System testing; GUI testing; Entity-Control-

Boundary design principle

I. INTRODUCTION

Advances in technology used as platforms for Graphical
User Interface (GUI) software lead to more complex, platform-
independent GUI-based software. Current GUI software are
capable of serving different types of users with different levels
of abilities (e.g. ordinary user, user with disability, Web user,
or Mobile user). These advances in technology produce
challenges for software testers who are responsible for
software verification of those GUI-based software. As a result,
software testers find themselves in front of several testing types
to choose and use, such as GUI testing and system testing.

A well accepted definition of software system testing is that
it is a phase of software testing conducted on the complete
software to evaluate its compliance with its requirements, be
they functional or non-functional [1]. However, there is
confusion about alternative definitions of GUI testing one can
find in the literature. For example, Ammann and Offutt
classified GUI testing into usability testing and functional
testing and further classified the latter into GUI system testing,
regression testing, input validation testing and GUI testing [2].
They argue that GUI system testing is system testing of the
entire software through its GUI while GUI testing is verifying
that the GUI works correctly without verifying the underlying
application code. Memon et al. defined GUI testing as system
testing for software that has a graphical user interface [3]. We
conclude that Memon’s notion of GUI testing encompasses
both notions of GUI testing and GUI system testing of
Ammann and Offutt. As further shown by our study of
literature on the topic (section II), we conclude that the reader
interested in testing a GUI-based software may found herself
lost in the many alternative definitions of GUI testing that exist

and their relation to the notion of system testing. For instance,
using Memon’s definition of GUI testing, one can use a tool
like GUITAR [4] to trigger both the GUI and the underlying
functionalities whereas when using Ammann and Offutt’s
definitions one can use JUnit to directly test the application
code, bypassing the GUI, and verify the GUI separately. One
risk of using incompatible definitions for GUI testing and
system testing is to duplicate testing effort: One conducts
system testing of the application logic by bypassing the GUI
and conducts GUI testing of the software with GUITAR [5],
thereby testing the application logic twice.

The paper therefore attempts to answer the following
research questions:

Research Question 1. What are available definitions of system
and GUI testing and how they relate to each other?

Research Question 2. How system testing (bypassing the UI)
and GUI testing compare in terms of structural coverage and
test cost?

Fig. 1 shows the focus of this paper. It illustrates several
software testing definitions by showing the software divided in
its GUI layer and its application logic layer. It illustrates that
system testing can focus on the functional aspects of the
System Under Test (SUT), referred to as functional system
testing, or the non-functional aspects of the SUT also
sometimes referred to as the “alities”, referred to as non-
functional system testing. Both can trigger only the GUI (an
arrow stops at the GUI layer), the GUI and the underlying
application logic layer (arrow to the GUI layer, going through
the GUI as dashed line and triggering the application logic
layer) or only the application logic layer. It also shows that our
scope, non-greyed-out part, is limited to functional system
testing and does not deal with the alities of the SUT. When
functional system testing is applied through the GUI, we call it
GUI system testing in order to distinguish it from functional
system testing applied to the logic application directly.

We focus on desktop applications since such applications
typically require more robust UIs [6, 7]. Another motivation is
the difficulty, to the point of impracticality, of GUI system
testing for any SUT with non-trivial UI: for instance, using
GUITAR [4] on Microsoft WordPad in Windows 7 [5], which
contains over 50 GUI events, is extremely expensive (in terms
of number of tests). This is confirmed by the experiment we
discuss in this paper.

The rest of this paper is organized as follows. Section II
surveys possible definitions of GUI testing and shows how

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Carleton University's Institutional Repository

https://core.ac.uk/display/217625403?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

they relate to one another. In doing so we reveal a risk of
redundancies in testing effort between GUI testing and system
testing and we introduce definitions we will rely on in the
remainder of the paper. Section III presents the
experiment, including: the case study we will use
measurement, the executions of tests. Results (Section
show differences between the two testing techniques in terms
of test cost and structural coverage and confirm the risks of
redundant efforts when conducting GUI testing and system
testing. Section V presents related work. Section
conclusions. Section VII presents an appendix.

II. DEFINITONS

We present some definitions of system testing, GUI testing,
and other testing activities. As discussed below, these
definitions warrant the study of differences (if any) between
system testing and GUI testing. The intent of this
to report on a systematic mapping study on GUI testing
definitions and other testing definitions. We simply report on
representative definitions of main software testing terms to
answer Research Question 1: What are available definitions
system and GUI testing and how they relate to each other?

We used a systematic method, though not a systematic
literature review or systematic mapping study, to identify
relevant definitions. The method started by identifying books
available in the Software Quality Engineering Laboratory
(SQUALL) at Carleton University and Carleton University
library in the area of software engineering and software testing.
In the case of library books, this meant using the Library
search engine to identify books using the following keywords:
testing, software GUI testing, software verificatio
testing. Then, we identified chapters of those books which
discuss software testing and in particular GUI testing by
browsing through the tables of contents and skimming through
pages, looking for keywords like “GUI testing” or “system
testing”. Section VII presents an appendix that contains t
complete list of 52 books, both from the research laboratory
and the Library. We believe that, for our search for definitions,
looking into textbooks is an adequate procedure, rather than for
instance searching in academic paper databases.

We nevertheless surveyed by searching online resources,
i.e., Google Scholar, IEEE Xplore, Science Direct, ACM,
Engineering Village and Scopus using the following sear
strings: Graphical User Interface Testing, GUI testing, GUI
testing "AND" system testing, definition of GUI testing, Oracle

FIG. 1. Functional and non-functional system testing

2

they relate to one another. In doing so we reveal a risk of
ffort between GUI testing and system

testing and we introduce definitions we will rely on in the
presents the design of our

case study we will use, the
. Results (Section IV)

techniques in terms
confirm the risks of

conducting GUI testing and system
work. Section VI presents

presents an appendix.

e present some definitions of system testing, GUI testing,
discussed below, these

definitions warrant the study of differences (if any) between
system testing and GUI testing. The intent of this paper is not

systematic mapping study on GUI testing
definitions and other testing definitions. We simply report on
representative definitions of main software testing terms to

What are available definitions of
and how they relate to each other?

, though not a systematic
literature review or systematic mapping study, to identify
relevant definitions. The method started by identifying books
available in the Software Quality Engineering Laboratory

rleton University
library in the area of software engineering and software testing.
In the case of library books, this meant using the Library
search engine to identify books using the following keywords:
testing, software GUI testing, software verification, GUI
testing. Then, we identified chapters of those books which
discuss software testing and in particular GUI testing by
browsing through the tables of contents and skimming through
pages, looking for keywords like “GUI testing” or “system

presents an appendix that contains the
books, both from the research laboratory

. We believe that, for our search for definitions,
an adequate procedure, rather than for

instance searching in academic paper databases.

We nevertheless surveyed by searching online resources,
i.e., Google Scholar, IEEE Xplore, Science Direct, ACM,
Engineering Village and Scopus using the following search
strings: Graphical User Interface Testing, GUI testing, GUI
testing "AND" system testing, definition of GUI testing, Oracle

for GUI testing, GUI testing tools, automated GUI testing,
survey of GUI testing, GUI testing taxonomy. This step was
necessary to find recent surveys or taxonomies in the area of
GUI testing. This allowed us to identify a recent (2013)
systematic mapping study on GUI testing
Computer Science Bibliography [8]
related the GUI testing when needed for a specific author.

The rest of this section is structured as follows.
Subsection II.A reports on definitions about system testing.
Subsection II.B describes definitions of GUI testing.
Subsection II.C concludes and presents the definitions we will
rely on in the reminder of this manuscript.

A. System testing

System testing is defined as a “testing phase conducted on
the complete integrated system to evaluate the system
compliance with its specified requirements on functional and
non-functional aspects” [1]. This definition is in accordance
with other authors’ definitions [1, 9
definition of software system testing
guide to the Software Engineering Body of Knowledge
(SWEBOK guide) [15].

Ammann and Offutt define system testing as deriving tests
from external descriptions of the software including
specifications, requirements and design
define functional system testing as deriving tests that verify the
system as thoroughly as possible ove
requirements specified in the requirements specification
document, including requirements about the GUI
defines black-box functional testing as a way to test conditions
on the basis of the program or system's functionality
[page. 39].

System testing evaluates the functionality and performance
of the whole application. Beside evaluating the functional
requirements of the application, sys
variety of tests including [17] [page. 233]:
testing, which measures the system against predefined
objectives by comparing the actual and required performance
levels; Security testing, which evaluates the presence and
appropriate functioning of the security of the application to
ensure the integrity and confidentiality of the data;
testing, which investigates the behaviour of the system under
conditions that overload its resources a
on the system processing time; Compatibility testing
tests the compatibility of the application to interact with other
applications or systems; Conversion testing
whether the software is robust to changes o
Usability testing, that decides how well the user is able to use
and understand the application; Documentation testing
verifies that the user documentation is accurate and ensures
that the manual procedures work correctly;
which verifies the ability of the system to back up its data so as
to be robust to software or hardware failure;
which verifies the system’s ability to recover from a software
or hardware failure; Installation testing
ability to install the system successfully. This taxonomy of
system test activities can be divided further
out of the scope of this paper.

functional system testing

for GUI testing, GUI testing tools, automated GUI testing,
survey of GUI testing, GUI testing taxonomy. This step was

o find recent surveys or taxonomies in the area of
GUI testing. This allowed us to identify a recent (2013)
systematic mapping study on GUI testing [3]. We used the dblp

[8] to look for publications
ng when needed for a specific author.

is structured as follows.
reports on definitions about system testing.

describes definitions of GUI testing.
nd presents the definitions we will

rely on in the reminder of this manuscript.

ystem testing is defined as a “testing phase conducted on
the complete integrated system to evaluate the system
compliance with its specified requirements on functional and

. This definition is in accordance
[1, 9-13], with the IEEE

definition of software system testing [14] as well as with the
guide to the Software Engineering Body of Knowledge

Ammann and Offutt define system testing as deriving tests
from external descriptions of the software including

s, requirements and design [2]. Naik and Tripathy
define functional system testing as deriving tests that verify the
system as thoroughly as possible over the full range of
requirements specified in the requirements specification
document, including requirements about the GUI [16]. Lewis

box functional testing as a way to test conditions
n the basis of the program or system's functionality [17]

evaluates the functionality and performance
of the whole application. Beside evaluating the functional
requirements of the application, system testing consists of a

[page. 233]: Performance
, which measures the system against predefined

objectives by comparing the actual and required performance
ich evaluates the presence and

appropriate functioning of the security of the application to
ensure the integrity and confidentiality of the data; Stress

, which investigates the behaviour of the system under
conditions that overload its resources and the impact this has

Compatibility testing, which
tests the compatibility of the application to interact with other

Conversion testing, which investigates
whether the software is robust to changes of data formats;

, that decides how well the user is able to use
Documentation testing, that

verifies that the user documentation is accurate and ensures
that the manual procedures work correctly; Backup testing,
which verifies the ability of the system to back up its data so as
to be robust to software or hardware failure; Recovery testing,
which verifies the system’s ability to recover from a software

Installation testing, which verifies the
ability to install the system successfully. This taxonomy of
system test activities can be divided further [16, 17] but this is

3

System testing is also said to exercise system-level
behaviour, triggering behaviour from a system-level input,
through the software, to a system-level output [18] [page. 191].

Acceptance testing [1, 19] is typically conducted by the
customers or their representatives, who define a set of test
cases that will be executed to qualify and accept the software
product according to acceptance criteria [16]. The set of tests is
usually a subset of the set of system tests [11, 17], including
both functional and non-functional tests. As a consequence,
since system testing, according to previous definitions,
includes the verification of the GUI, acceptance testing does
also involve some verification of the GUI [10].

B. GUI testing

While searching for definitions of GUI testing, the general
observation we can make is that most of the authors do not
provide a clear definition of GUI testing. This is not the case
for other types of testing even with those which are close to the
notion of GUI testing like system testing. Few published
documents defined GUI testing as system testing. We discuss
below two views of GUI testing that are representative of what
we have found in our search for definitions.

GUI testing can be defined as system testing for software
that has a GUI [3, 5], that is system testing of the entire
software performed through its GUI. Tests are then sequences
of events developed to exercise the GUI’s widgets (e.g., text
fields, buttons and dropdown lists) [3]. Similarly, Grilo et al.
defined GUI testing as an activity for increasing confidence in
the SUT and its correctness by finding defects in the GUI itself
or the whole software application [20].

Memon defined GUI testing as a process that consists of a
number of steps [21] which are similar to any testing activity:
e.g., creating tests, executing tests..

Assuming the standard, IEEE definition of system testing
we already discussed, we argue that GUI testing as defined by
Memon creates tests that do not address performance, usability,
safety, installation, nor other “alities” (Section II.A). Except
perhaps for some robustness tests, which may incidentally be
created by GUITAR, Memon’s notion of GUI testing is more
about functional characteristics of the GUI-based software than
its non-functional characteristics. This illustrates a major
difference between system testing and Memon’s definition of
GUI testing.

According to Ammann and Offutt, determining whether the
GUI and the logic of a GUI-based software behave as
expected

1
 includes usability testing and functional testing [2].

The former refers to the assessment of how usable the interface
is according to principles of user interface design. The latter
refers to whether the user interface works as intended. They
further classified functional testing in this context into four
categories: GUI system testing, regression testing, input

1 Ammann and Offutt discuss that usability testing and functional testing are

the two activities of GUI testing. They then split functional testing into four

categories, including GUI testing, which results in a circular definition of the

notion of GUI testing. We believe this circular definition was not intentional.

To avoid this circular definition, we write that usability testing and functional

testing are the two activities involved in determining whether the GUI and the

logic of a GUI-based software behave as expected.

validation testing and GUI testing. GUI system testing refers to
“the process of conducting system testing through the GUI”.
Regression testing is about “testing of GUI after changes are
made” [2]. We note the authors do not specify whether these
changes are made to the user interface only, the logic of the
software or both of them. We assume it is the latter. Input
validation testing aims to verify whether the GUI “recognize[s]
the user input and respond[s] correctly to invalid input” [2].
This is similar to robustness testing, which has been defined by
the IEEE as a test to measure the degree to which a system or
component can function correctly in the presence of invalid
input” [22]. In this decomposition of functional testing in the
context of a GUI-based software, GUI testing (the last of the
four categories) is about assessing whether the GUI works, that
is whether the UI controls work and allow the user of the UI to
navigate between screens.

We first notice that Ammann and Offutt’s definitions do
not account for alternative non-functional requirements of the
UI to usability and robustness (input validation), which also
need to be verified. Also, well-known discussions about
testability and sensitization [23] tell us that exercising the SUT
through its UI (GUI system testing) and verifying the UI itself
(GUI testing) separately would not be sufficient to ensure the
entire SUT behaves as expected. Some separate verification of
the application logic itself would be necessary.

Contrasting Amman and Offutt’s definition to Memon’s
definition, we see that Memon’s notion of GUI testing is
identical to the notion of GUI system testing by Ammann and
Offutt, except with regards to non-functional requirements.

C. Conclusion

In line with the majority of the references on the topic,
including the IEEE definition, we abide by the definition that
states that system testing is about evaluating compliance of an
entire software system with its specified functional and non-
functional requirements. It follows that, although prominent
definitions of system testing [1, 9, 10, 17] do not explicitly
mention the GUI, in case the software system has a GUI,
system testing encompasses the evaluation of the GUI against
(GUI-specific) functional and non-functional requirements
because system testing works on the entire product. This
confirms that system testing includes GUI testing, which is
very much like, though slightly different to, Ammann & Offutt
definition, as discussed earlier.

Fig. 2 illustrates the main definitions we have encountered
in our survey and that we have discussed in previous sections.
It shows that a GUI-based SUT can be decomposed into its UI
and its application logic layers and their respective functional
and non-functional (“alities”) characteristics (left and right
hand sides of the layers, respectively). Arrows point to the
layer that is directly exercised by tests and whether tests go
through the UI layer (dotted lines) or not. When an arrow
points to the UI layer and does not continue, through the UI
layer, to the application logic layer, this means the UI is
verified in isolation from the underlying application logic.

The figure illustrates the general definition of system
testing we abide to (orange arrows): directly exercising the UI
or the application logic layers (direct, plain arrows), possibly

exercising the latter through the former (dotted arrows). Those
tests focus on either functional or non
characteristics, which we refer to as functional system testing
and non-functional system testing, respectively.

In red the figure illustrates Ammann & Offutt's definitions.
GUI testing is about the functional aspects of the GUI,
focusing only on the UI layer, so the arrows goes to the
functional part of the GUI and stops there. From their
definitions, we do not have evidence that GUI testing also
focuses on non-functional characteristics, especially since
usability testing is a separate activity in their discussion

Usability testing is about an "ality" so the arrow goes to the
"alities" part of the GUI and stops there. GUI system testing is
system testing through the UI so arrows go to the UI (both
functional and non-functional) and go through to the
application logic. We already discussed that Memon’s
definition of GUI testing is identical to Ammann & Offutt’s
definition of GUI system testing, though only focusing on the
functional characteristics (only the left arrow for GUI system
testing in the figure).

To summarize, we define Functional System Testing
checking conformance of the entire GUI
against its functional requirements, either by directly
interacting with the application logic (arrow 3 in
isolating and focusing only on the UI (arrow 2), by focusing on
the UI in combination with the application logic (arrows 1 and
2), or a combination of those. We also define
System Testing as checking conformance of the entire GUI
based software against its non-functional requirements, either
by directly interacting with the application logic (arrow 6), by
isolating and focusing only on the UI (arrow 4), by focusing on
the UI in combination with the application logic (arrows 4 and
5), or a combination of those.

GUI system testing can be either functional or non
functional. So we use the term GUI functional system testing
for our GUI testing experiments. As for GUI non
system testing, it is out of our scope. Functional system testing
is one part of system testing, the other
functional system testing, and they both include some form of
GUI testing. In our experiments we refer to system
application logic code, so we use the term function
logic testing in the rest of this paper. As for
system logic testing, it is out of our scope.

FIG. 2. RELATIONSHIP BETWEEN DIFFERENT TESTING TY

4

exercising the latter through the former (dotted arrows). Those
tests focus on either functional or non-functional

tics, which we refer to as functional system testing
respectively.

In red the figure illustrates Ammann & Offutt's definitions.
GUI testing is about the functional aspects of the GUI,

e arrows goes to the
functional part of the GUI and stops there. From their
definitions, we do not have evidence that GUI testing also

functional characteristics, especially since
in their discussion.

Usability testing is about an "ality" so the arrow goes to the
"alities" part of the GUI and stops there. GUI system testing is
system testing through the UI so arrows go to the UI (both

functional) and go through to the
gic. We already discussed that Memon’s

definition of GUI testing is identical to Ammann & Offutt’s
definition of GUI system testing, though only focusing on the
functional characteristics (only the left arrow for GUI system

Functional System Testing as
checking conformance of the entire GUI-based software
against its functional requirements, either by directly
interacting with the application logic (arrow 3 in Fig. 2), by
isolating and focusing only on the UI (arrow 2), by focusing on
the UI in combination with the application logic (arrows 1 and
2), or a combination of those. We also define Non-Functional

as checking conformance of the entire GUI-
functional requirements, either

by directly interacting with the application logic (arrow 6), by
isolating and focusing only on the UI (arrow 4), by focusing on

I in combination with the application logic (arrows 4 and

GUI system testing can be either functional or non-
functional. So we use the term GUI functional system testing
for our GUI testing experiments. As for GUI non-functional

Functional system testing
other one being non-

, and they both include some form of
system test of the
functional system

s for non-functional

III. EXPERIMENT

In this section we discuss an experiment we conducted
whereby we compare GUI functional system testing
functional system logic testing
application logic, in an attempt to answer
How system testing (bypassing the UI) and GUI testing
compare in terms of structural coverage and test cost
introduce the case study software we use in the experiment
(section III.A). This software comes with functional system
tests directly interacting with the application logic code. Next
(section III.B) we discuss the measure
experiment to answer the research question. Sections
and III.D discuss executing the functional system tests directly
on the application logic code and the system tests created and
executed through the GUI by GUITAR, respectively. Threats
to validity are discussed in section III.E

A. Software Under Test (SUT)

The GUI-based SUT provides three functionalities
work on Boolean expressions. The
buttons. Clicking on any of the button(s) generates a child
window to handle the corresponding functionality.
table window accepts a string
expression (TextField) and generates its truth table upon
request (“Compute Truth Table” button) according to different
user-selected formats (with strings
characters ‘F’ and ‘T’, or characters
table of the provided Boolean expression is shown in a
TextArea at the bottom of the window.
window computes (“Compute DNF
normal form of the Boolean expression provided in
and displays the result in a text area. The third
interface for an implementation of the variable negation testing
technique [24]. The input must be provided as a series of terms
of the DNF of a Boolean expression. The user must enter those
terms in input TextField(s), one term per TextField. If the three
default TextFields are not enough (i.e., the DNF has more than
three terms), the user clicks the AddProductTerm button to add
a new TextField. The user then can click the
Neg.” button and the result appears in
user can press on the “Show Text Cases
program shows a table with a set of entries satisfying the test
objectives of the variable negation testing technique.

Each time a computation is asked (button), if
entered a string that is not recognized as a Boolean expression
by the parser (according to the grammar it uses), a parsing error
message appears in a different pop
computation is actually triggered.

The overall architecture of the SUT follows the Entity
Control-Boundary (ECB) design principle which divides
classes over three main kinds of responsibilities
classes realize the UI, entity classes hold the data, control
classes realize functionalities.

We had to update the GUI of the
fit the GUI testing tool, namely GUITAR. For instance, the
original UI was made of tabbed panes, one pane for each of the
three functionalities; Panes are not correctly handled by
GUITAR and we changed that to new windows created upon
clicking on buttons as discussed earlier. Thanks to the use of

DIFFERENT TESTING TYPES

XPERIMENT DESIGN

we discuss an experiment we conducted
GUI functional system testing and

 applied directly on the
application logic, in an attempt to answer Research Question 2:

(bypassing the UI) and GUI testing
compare in terms of structural coverage and test cost? We first
introduce the case study software we use in the experiment

). This software comes with functional system
tests directly interacting with the application logic code. Next

) we discuss the measures we use in the
experiment to answer the research question. Sections III.C

discuss executing the functional system tests directly
on the application logic code and the system tests created and
executed through the GUI by GUITAR, respectively. Threats

III.E.

SUT provides three functionalities that
work on Boolean expressions. The main window has three
buttons. Clicking on any of the button(s) generates a child

indow to handle the corresponding functionality. The truth
 representing a Boolean

expression (TextField) and generates its truth table upon
button) according to different

selected formats (with strings “false” and “true”, or
, or characters ‘0’ and ‘1’). The truth

table of the provided Boolean expression is shown in a
TextArea at the bottom of the window. The DNF Expression

Compute DNF” button) the disjunctive
normal form of the Boolean expression provided in a text field

text area. The third window is an
interface for an implementation of the variable negation testing

. The input must be provided as a series of terms
of a Boolean expression. The user must enter those

terms in input TextField(s), one term per TextField. If the three
default TextFields are not enough (i.e., the DNF has more than
three terms), the user clicks the AddProductTerm button to add

ld. The user then can click the “Compute Var.
button and the result appears in an output TextArea. The

Show Text Cases” button, and the
program shows a table with a set of entries satisfying the test

negation testing technique.

Each time a computation is asked (button), if the user has
a string that is not recognized as a Boolean expression

by the parser (according to the grammar it uses), a parsing error
message appears in a different pop-up window and no

The overall architecture of the SUT follows the Entity-
Boundary (ECB) design principle which divides

kinds of responsibilities [25]: boundary
ize the UI, entity classes hold the data, control

GUI of the case study several times to
fit the GUI testing tool, namely GUITAR. For instance, the
original UI was made of tabbed panes, one pane for each of the
three functionalities; Panes are not correctly handled by
GUITAR and we changed that to new windows created upon

s as discussed earlier. Thanks to the use of

5

the ECB design principle, those changes had no impact on the
control and entity classes and therefore no impact on the
system level JUnit tests.

B. Measurement

We measure structural coverage of each testing campaign,
specifically line and branch coverage (i.e., the percentage of
lines and branches executed by test runs) using COBERTURA
[26]. In order to have a fair comparison between GUI system
tests and functional system tests, since system tests interact
directly with control classes, thereby bypassing the GUI, we do
not measure coverage of GUI classes, system test classes, nor
the main class. In other words we only measure coverage of
individual control and entity classes which code should be
exercised by both system tests and GUI tests, and total
coverage for those classes. We measure coverage of the same
12 classes when executing each test suite.

We are also interested in test cost. Since each system test
case executing directly on the application logic is made of a
single call to a method of a control class realizing one
functionality, we measure test suite cost as the number of test
cases in a test suite. Each GUITAR test is made of a series of
widget triggers and we measure the cost of a GUITAR test
suite as the number of its test cases. As discussed later in the
paper, an automatically generated GUITAR test does not
necessarily click on a “Compute” button and therefore not
every GUITAR test actually triggers a functionality of the
SUT. To obtain a cost measure of GUITAR test suites that is
comparable to the test suite cost measure of system test suites
interacting directly with the application logic, we also count the
number of GUITAR tests that contain a click on a “Compute”
button as a measure of a GUITAR test suite.

C. Experiments—Functional system testing to the application

logic code

The system test suite exercising the application logic code
consists of 11 JUnit black-box tests. Six of them test the truth
table functionality and hence they are applied on class
TruthTableControl. Two test the DNF generation functionality
and therefore exercise the DNFControl class. Three test the
variable negation functionality and therefore exercise the
VariableNegationControl class. Functional system testing was
performed by the original author of the software, prior to our
experiments and the test cases were not subsequently changed.
Specifically, we did not try to improve the test suite, for
instance to improve structural coverage since we are using it as
a basis of comparison with GUI tests.

Using this test suite we devised the following experiments.
Experiment F only uses the truth table system test cases, which
each use one Boolean expression as an input, specifically: x
AND (y OR Z), a xor b, a or (not b), a XNOR (b
nand R), a NOR b, (A AND d) XOR (not(C XNOR (NOT
b))). Experiment G only uses the DNF system test cases,
which each use one Boolean expression: (a or b) and c,
and (a AND b) XOR c. Experiment H only uses the three test
cases exercising the variable negation functionality. The first
test case has two input Boolean expressions: a and b and
not c, and a and d. The second test case has four input
Boolean expressions: x and not y and z, y and w, not
x and w, and y and not z. The third test case has two input

Boolean expressions: x and not y and z, and y and w.
Experiment I contains all 11 test cases.

D. Experiments—GUI functional system testing

When using GUITAR for GUI functional system testing on
our case study, we generated a test suite using GUITAR’s
default setting as this proved to be effective in a number of
experiments [5]. We obtained 200 test cases by using the
default value L=3. Each of those tests is a traversal of a graph
(so-called the Event Flow Graph—EFG) representing the entire
GUI of the SUT and that GUITAR’s Ripper creates made of a
triplet (L=3) of GUI widgets with a shortest path prefix: each
triplet of GUI widgets of the EFG is exercised at least once.
So, in theory, each test case may trigger events for widgets
related to none of the functionalities (e.g., a test containing
only menu items), one of the functionalities, two of the
functionalities or all three functionalities, though not
necessarily triggering the application logic code that realizes
those functionalities. For instance we obtained a test case that
provides a text input for a text field used in the truth table
functionality and then a text input for a text field used in the
DNF functionality, without any button click (i.e., no
application logic code triggered).

Analyzing the 200 test cases, we found that 17 provide an
input (through a text field) to the truth table functionality, 11
provide an input (through a text field) to the DNF functionality,
and 129 provide an input (through several text fields) to the
variable negation functionality. The different numbers of tests
in simply due to the larger number of widgets of the latter
window (recall several text fields are needed). We also note
that GUITAR does not know when, in a test case, i.e., in a
sequence of events, to actually trigger a functionality, i.e.,
when to click on a “compute” button: a user would click only
after filling the required text field(s). As a result, when a test
case has events to fill a text field used in the truth table
functionality, this event is not necessarily followed by a “click”
on the “Compute truth Table” button to actually trigger the
functionality; the text case may very well continue with a
different window, for a different functionality without
triggering the truth table functionality (code). What we know
as a fact, after having checked the 200 tests, is that in the 17
(resp., 11, 129) tests

2
 that provide a string to a text field used

for the truth table (resp., DNF, variable negation) functionality,
at least one test case has a text field followed by a click on a
“compute” button, ensuring that the application logic code of
each functionality is at least triggered once. We also know that
out of the 200 tests, 77 do not use any text field that is required
by any of the three functionalities. A compute button triggering
some functionality of the application logic was clicked eight
times within the replay of 200 test cases.

Last we note that GUITAR uses, during the replaying
process, its own set of strings for text fields and these are not
Boolean expressions. Using the defaults strings provided by
GUITAR would not trigger functionalities but would result in
parsing errors: The application code starts to parse the input

2 Some of those tests provide a string to text fields belonging to more than one

functionality window; a test may therefore contribute to more than one of

these three sets with 17, 11, and 129 elements. So it would be wrong to sum

up these numbers and compare the result to the total number of tests (200).

6

string and reports a parsing error (in an error window) if the
string is not a Boolean expression. One can specify test inputs
(i.e., Boolean expressions) for GUITAR tests in many different
ways. In an attempt to be as systematic as possible and obtain
coverage results that can be compared to those obtained by
system tests, we devised a number of experiments each one
having a specific test input selection procedure.

Experiment A for truth table. This experiment tests the truth
table functionality only. A Boolean expression is used each
time a TextField for the truth table functionality appears in a
test case, and we use GUITAR’s default strings, which are not
Boolean expressions, for any other TextField. The question is
however: which Boolean expression to use when a GUITAR
test case needs one to exercise the truth table functionality? To
have a fair comparison with system tests we used their input
Boolean expressions and split Experiment A into seven
experiments. Since the system tests use six different Boolean
expressions, we design six variations of experiment A where
each one systematically uses one of those six Boolean
expressions systematically when the TextField for the truth
table functionality needs an input. Specifically, in experiment
A.1, we use input “x AND (y OR Z)” each time we need
such an input for a TextField that is needed for truth table. In
experiment A.2, we use “a xor b”. In A.3, we use “a or
(not b)”. In A.4, we use “a XNOR (b nand R)”. In A.5,
we use “a NOR b”. In A.6, we use “ (A AND d) XOR
(not(C XNOR (NOT b)))”. A seventh variation of
experiment A randomly assigns those Boolean expressions to
text fields for the truth table functionality, ensuring that each
Boolean expression is used at least once.

Experiment B for DNF. This experiment tests the DNF
functionality only. A Boolean expression is used each time a
TextField for the DNF functionality appears in a test case, and
we use GUITAR’s default strings for any other TextField.
Similarly to experiment A, and since the system test suite uses
two inputs for this functionality, we create two sub-
experiments where each input is systematically used; and we
create a third experiment where test inputs for DNF are
randomly selected from these two inputs ensuring that each
Boolean expression is used at least once.

Experiment C for variable negation. Similarly to previous
A and B, a Boolean expression is used each time a TextField
for the variable negation functionality appears in a test case,
and we use GUITAR’s default strings for any other TextField.
Again, we split this experiment, reusing inputs we used for
functional system testing. In experiment C.1, each time the
variable negation functionality needs an input (i.e., a series of
Boolean expressions) we use the following three terms: “x
and not y and z”, “y and w”, and “not x and w”. Notice
that this is the second system test input for variable negation,
except that the last term has been omitted. The reason is that
the GUI tests only use three inputs for variable negation: not
more, not less. The variable negation GUI provides three
TextFields to the user and a button to add more TextFields if
needed. GUITAR systematically and only uses three. The Add
product term button is sometimes clicked, thereby adding a
fourth text field, but when this is the case, the fourth text field
is not used to provide a value. The second experiment (C.2)
uses the first system test input systematically each time the

GUITAR test cases requires an input for variable negation.
Since this input has two terms and GUITAR systematically
fills the three TextFields, we use GUITAR’s default input for
the third input. The third experiment (C.3) uses the third
system test input, with two terms, similarly to C.2. The last
experiment (C.4) is a random selection of the inputs used in the
first three experiments, ensuring that each input is used at least
once.

Experiment D for the three functionalities. This experiment
works on all three functionalities together. We performed two
sub-experiments. In experiment D.1, each time an input is
needed for truth table (resp., DNF, Variable negation) we used
that of experiment A.1 (resp. B.1, C.1). In the second sub-
experiment, we used the randomized selection of the previous
experiments, i.e., as in A.7, B.3, and C.4. The decision to use
these combinations of experiments A, B and C in both sub-
experiments was made prior to conducting any of the
experiments we report on in this document, i.e., prior to
obtaining the results of GUI functional system testing coverage
and selection was picked up in random way.

Experiment E using expressions from the Internet. This
experiment works on the three functionalities together.
However, instead of using GUITAR’s default values or the
values used during functional system testing, we used Boolean
expressions we collected from the Internet [27-34] such that
each time a Boolean expression is needed in GUITAR’s test
cases we used a different one: the 200 GUITAR test cases
require 213 Boolean test inputs. The Boolean expressions were
mostly available in websites related to academic mathematical
topics and computer circuits design. In doing so we attempt to
simulate what a user may do with GUITAR test cases when
testing our case study.

E. Threats to validity

Similarly to any experiment, our work is subject to threats
to validity [35].

Threats to construct validity relate to our choice of
measurement as a way to compare system testing and GUI
testing. Although many different criteria can be considered
when comparing two different testing techniques, structural
coverage is a well-know measurement for such an objective,
and statement and branch coverage are two standard criteria
that are extensively used. We also measure cost. The cost of
testing a system can depend on the time and resources required
for executing the tests [23]. Further these factors are typically
directly proportional to the size of the test suite: The greater the
number of tests the more resources will be utilized. We
therefore measure, similarly to many others before us, in the
context of unit test [36] or GUI tests [37], the cost of a test
suite as the number of test cases of that test suite.

Conclusion validity is about the relation between what we
manipulate and what we observe. Threats to conclusion
validity are concerned with issues that affect the ability to draw
the correct conclusion about relations between the
manipulation and the observation of an experiment. We tried to
set up our experiments as systematically as possible,
accounting for possible points of variation (e.g., input selection
for GUI tests) in, we believe, an as fair as possible way.

7

GUITAR exhibits a stochastic behaviour: several executions
can result in different test suites. Although several executions
of GUITAR would be needed to obtain a more thorough
comparison, we only executed GUITAR once. We believe
however that results of other executions would be similar,
which we have observed, because test cases highly depend on
the characteristics of the GUI, which did not change: e.g.,
regardless of the execution of GUITAR, there would be many
more tests exercising the Variable Negation functionality
because of the larger number of widgets, randomly, GUITAR
would generate a similar number of tests that do not click on a
“Compute” button. We therefore consider our GUITAR test
suite representative and this threat to conclusion very low.

Internal validity is about the set up of our experiments.
Threats to internal validity are influences that can affect the
independent variable (structural and branch coverage in our
experiment) with respect to causality, without our knowledge.
We started from a system test suite that we did not create and
that achieves a very decent level of coverage; We used the
default GUITAR settings which have been shown by others to
work well; We systematically designed our experiments, prior
to conducting them, to ensure a fair comparison.

Threats to external validity limit our ability to generalize
results. We acknowledge we used only one case study, one
system test suite, one GUITAR test suite, which hurts external
validity. We qualitatively explain results so they become less
dependent on the case study and test suites, to give our results a
better chance of being generalizable.

IV. RESULTS

We first discuss the results of experiments F, G, H and I
about functional system testing directly applied on the
application logic (i.e., control) classes (section IV.A) and then
the results of experiments A, B, C, D and E on functional
system testing through the GUI with GUITAR (section IV.B).
We summarize the results in section IV.C.

A. Results about functional system logic testing (F, G, H, I)

TABLE I shows coverage levels achieved in experiments
F, G, H and I. We notice that although the target of experiment
F is the truth table functionality, which is directly supported by
the TruthTableControl class, only 92% of the lines and
branches of this class are covered in experiment F. It appears

from experiments G, H and I that TruthTableControl offers
unique services to the other two control classes (DNFControl
and VariableNegationControl), specifically in terms of
presenting truth table information in specific formats: e.g., in
experiments G and H, the coverage of TruthTableControl is not
null. We confirmed that without those specific services, i.e.,
methods in class TruthTableControl that are only used by other
control classes, experiment F would achieve 100% line and
branch coverage of class TruthTableControl. Because the test
suite specifically targets the truth table functionality, the
coverage of the two other control classes, as well as
accompanying classes (e.g., Cube) is zero (line and branch).

The test suite specifically targeting the DNF construction
functionality (Experiment G) achieves 100% line and branch
coverage of the DNFControl class, i.e., the control class that
implements the logic of the functionality being tested. Not
surprisingly, the test suite does not trigger the third
functionality: 0 line and branch coverage of
VariableNegationControl.

The test suite exercising the variable negation functionality
(Experiment H) achieves 84% line and 87% branch coverage
of class VariableNegationControl. The uncovered code was a
single method that is responsible for printing results in specific
format for program debugging. Similarly the previous
experiment, it is not surprising that the test suite does not cover
at all class DNFControl, and we observe that
TruthTableControl is somewhat covered.

The union of the three previous test suites (experiment I)
achieves 100% line and branch coverage for
TruthTableControl and DNFControl, and only 84% line and
87% branch coverage of VariableNegationControl.

B. Results about GUI functional system testing

In experiment A (TABLE II), results show how coverage
increases with the increase of complexity of the test input
Boolean expression: as a simple measure of complexity, we
consider that the more terms and variety of Boolean
expressions the higher the complexity of the Boolean
expression). For example, in experiment A.6 line and branch
coverage are maximum, whereas they are minimum in
experiment A.2. In experiment A.7, the coverage values are at
their minimum, which may look like a contradiction since we

TABLE I. LINE AND BRANCH COVERAGE FOR EXPERIMENTS F, G, H AND I (N/A WHEN NO BTRANCH TO MEASURE)

 Experiment F Experiment G Experiment H Experiment I

Class # Classes in this Package Line Branch Line Branch Line Branch Line Branch

1 BinaryExpressionSolver 0.37 0.30 0.30 0.25 0.25 0.23 0.37 0.30

2 BinaryExpressionSolverTokenManager 0.59 0.49 0.43 0.26 0.39 0.22 0.59 0.49

3 BooleanVariable 0.80 N/A 0.80 N/A 0.80 N/A 0.80 N/A

4 Cube 0.00 0.00 0.00 0.00 0.95 0.94 0.95 0.94

5 DNFControl 0.00 0.00 1.00 1.00 0.00 0.00 1.00 1.00

6 LogicalExpressionParser 0.37 0.26 0.33 0.21 0.34 0.23 0.37 0.26

7 LogicalExpressionParserTokenManager 0.65 0.60 0.56 0.42 0.52 0.37 0.65 0.60

8 SetOfBooleanVariables 0.93 0.77 0.93 0.77 0.93 0.77 0.93 0.77

9 SimpleCharStream 0.37 0.35 0.30 0.25 0.30 0.25 0.37 0.35

10 Token 0.75 1.00 0.75 1.00 0.75 1.00 0.75 1.00

11 TruthTableControl 0.92 0.92 0.60 0.40 0.70 0.44 1.00 1.00

12 VariableNegationControl 0.00 0.00 0.00 0.00 0.84 0.87 0.84 0.87

 Total coverage 0.42 0.39 0.36 0.27 0.49 0.40 0.60 0.57

8

use all test inputs. However, remember that not every filled
TextField for truth table is followed by a click on the
“Compute” button in test cases; In experiment A.7, it just
happened that when a click happens, the Boolean expression
we selected at random for the TextField was always the
simplest one (a xor b).

We make similar observations for experiment B, regarding
the low coverage value obtained with the random selection of
inputs. We note that experiment B1 and B2 use expressions of
similar complexity, resulting in similar coverage values.

For experiment C, it is noticeable that in experiments C.2
and C.3, we obtained low coverage values for each of line and
branch coverage. We justify this by the lack of a third valid
(Boolean) input in both experiments. The SUT parses all
inputs, discovers that one is not a valid Boolean expression
(parsing error), brings this to the attention of the user and stops:
the application logic does not execute. This observation shows
how the input affects the coverage in our experiment and hence
justifies our controlled test selection procedure.

For experiment D, the overall results are better than when
testing each functionality separately, as expected since all
functionalities are exercised with some Boolean expressions,
but coverage only reaches 58% (line) and 52% (branch) even
though we used the same test inputs as with functional system
logic testing. This is again due to the fact that not all TextField
input is followed by a button click in GUITAR tests. The
random selection of Boolean expressions in experiment D.2
proved to give the same line coverage as when we used one
arbitrary Boolean expression as in experiment D.1. However,
the branch coverage is higher and this indicates more
sensitivity of branch coverage to the test input. In other words,
it is a different observation from experiment A where we got
the same coverage in two experiments (random and normal)
when those experiments depended on the same input (i.e., the
same Boolean expression).

With retrospect, in light of the results of GUI functional
system testing coverage, another interesting combination
would have been A.6, B.2 and C.1 because this maximizes
coverage for each functionality separately. We did not a
posteriori consider this combination because we did not expect
drastically different (improved) coverage results.

For experiment E (TABLE III), we notice that the control
classes got the highest coverage value of all the classes in the
SUT. This is due to the structure of the software: Beside the

control classes, the rest of the software is basically a parser
whose code was automatically generated by JavaCC; and the
parser is only triggered through the control classes which
causes problems of controllability of its code. Unit tests of the
parser would help us increase this coverage.

One general issue with software testing is how to provide
the right values to the software. Software controllability
describes how easy it is to provide a program with the needed
inputs, in terms of values, operations, and behaviours [2]. For
example, it is easy to control a piece of software for which all
inputs are values entered from a keyboard [2, 38, 39]. On the
other hand, when the software gets its input values from
sensors, it is difficult to control. Typically, a tester has less
control with component/system testing than with unit testing.
Controllability can also mean the ease to reach some
predefined level of coverage, i.e., to exercise specific
behaviour or pieces of code: it is more difficult to reach
coverage of units with system testing than with unit testing. In
general with a higher level of testing (e.g., system testing) it is
harder to trigger specific elements of the code/functionality
provided by lower levels of the code than with a lower level of
testing (e.g., unit testing). When doing integration testing, it is
harder to trigger specific statements of the code than with
testing those units of the code directly. Similarly, when doing
GUI functional system testing, it is harder to trigger elements
of the code than when doing functional system logic testing,
and even more so than when doing unit testing.

TABLE II. TOTAL LINE AND BRANCH COVERAGE FOR EXPERIMENTS A, B, C AND D

Experiment A Experiment B Experiment C

Exp # Boolean Expression
Line

Coverage

Branch

Coverage
Exp # Boolean Expression

Line

Coverage

Branch

Coverage
Exp #

Line

Coverage

Branch

Coverage

A.1 x AND (y OR Z) 0.35 0.25 B.1 (a or b) and c 0.36 0.25 C.1 0.52 0.43

A.2 a xor b 0.33 0.23 B.2 (a AND b) XOR c 0.37 0.27 C.2 0.16 0.10

A.3 a or (not b) 0.36 0.26 B.3
Random Boolean

expressions
0.36 0.25 C.3 0.16 0.10

A.4 a XNOR (b nand R) 0.37 0.28 Experiment D C.4 0.52 0.43

A.5 a NOR b 0.34 0.24 Exp # Line Coverage
Branch

Coverage

A.6 (A AND d) XOR (not(C XNOR (NOT b))) 0.40 0.33 D.1 0.58 0.50

A.7 Random Boolean expressions 0.33 0.23 D.2 0.58 0.52

TABLE III. LINE AND BRANCH COVERAGE FOR EXPERIMENT E

Class # Classes Name
Line

Coverage

Branch

Coverage

1 BinaryExpressionSolver 0.29 0.25

2 BinaryExpressionSolverTokenManager 0.50 0.34

3 BooleanVariable 0.80 N/A

4 Cube 0.95 0.94

5 DNFControl 1.00 1.00

6 LogicalExpressionParser 0.37 0.26

7 LogicalExpressionParserTokenManager 0.62 0.53

8 SetOfBooleanVariables 0.93 0.81

9 SimpleCharStream 0.30 0.25

10 Token 0.75 1.00

11 TruthTableControl 0.96 0.84

12 VariableNegationControl 0.94 0.95

 Total coverage 0.57 0.51

9

C. Results Analysis—System testing vs. GUI functional system

testing

As alluded to earlier when we discussed the setup of
GUITAR and the tailoring of the tests it generates to our SUT
(i.e., the test input selection), using GUITAR involved a lot of
effort (e.g., looking at the details of the EFG and the generated
tests) and therefore time. It took significantly less effort and
time to the original author of the code to generate system tests.
Although we do not have precise measurements of these two
time efforts, we conjecture there is a difference of more than an
order of magnitude between the two. It terms of test suite
execution, executing the entire system test suite is almost
instantaneous; A single replay of the GUI test suite takes
around 20 minutes on an ordinary computer with Intel(R)
Core(TM) i7-2670QM CPU @ 2.2 GHz with 8 GB of RAM.
Yet another comparison one can make is about the number of
tests: the system test suite has eleven tests; the GUI test suite
has 200 tests. All tests for functional system logic testing call
the functionality while GUI system tests call the functionality
eight times.

The overall coverage results of our experiments are
reported in TABLE IV: since we have sub-experiments for
GUI experiments we show the average coverage values and
standard deviations (in parenthesis).

Results show that the coverage of functional system logic
testing is better than that of GUI functional system testing in all
pairs of comparable experiments, i.e., for experiments targeting
the same functionality: F and A, H and C, and I, D and E;
except for experiment (G and B) in which they are equal.
Experiment C has the highest values of standard deviation.
This is due to the lack of one input in two sub experiments
(only partial input was provided in the test because a test does
not have to fill all Boolean terms).

For comparison purpoess we excluded some classes from
the instrumentation. In particular we excluded classes that were
not covered (0% line coverage) by system tests. These classes
are handling parsing errors: e.g., ParseException, and
TokenMgrError. We omitted them because they are not part of
the core functionalities that are tested by functional system
tests (e.g., computing a truth table). We acknowledge the GUI
tests do exercise these classes (coverage greater than 0). This is
however only due to the fact that we rely on GUITAR’s default
input values, which are not Boolean expressions. Should the
system tests also include robustness test, these classes would
also be covered.

The difference of coverage between functional system logic
testing and GUI functional system testing shows the values of
difference is greater than or equal to zero except for two outlier
classes; which we discuss next. The first outlier is branch
coverage for class SetOfBooleanVariables in the parser. We
inspected the source code and found that the only difference in
coverage between GUI functional system testing and functional
system logic testing is one branch, which is covered in GUI
functional system testing but not in functional system logic
testing. The branch is triggered when the Boolean expression
test input uses several times the same Boolean variable: this
never happens in the system test inputs, but this happens in
Boolean expressions we collected from the Internet.

The second outlier is for class VariableNegationControl.
By inspecting the code we found a method in this class that is
covered by GUI tests but not by system tests. The method
breaks the Boundary-Control-Entity principle as it provides
GUI functionality but is placed in a control class: it implements
a service offered by the control class to present data in a
specific format. Hence, the functional system tests do not
trigger this method.

To summarize, the second outlier is due to code that is
misplaced and should not be counted when measuring
structural coverage of functional system tests, and the first
outlier would not take place if a Boolean expression with twice
the same Boolean variable were used as test input.

We simulated, by considering the lines and branches these
methods contribute, the coverage one would obtain if (1) the
Entity-Boundary-Control principle were adequately followed,
i.e., the code missed by original system tests were not in a
control class but more adequately placed in a GUI class, and
(2) at least one Boolean expression with at least twice the same
Boolean variable were used in system test inputs. TABLE V
shows the values of line coverage and branch coverage for
experiment E, experiment I and the simulated improvement of
experiment I (Simulated-I). In experiment Simulated-I, line and
branch coverage would reach 94% and 98.9%, respectively.
We conclude that values for line coverage and branch coverage
of control classes for functional system logic testing are better
than those obtained with GUI functional system testing even
when accounting for the two outliers. We conclude that GUI
functional system testing is more expensive than functional
system logic testing.

V. RELATED WORK

Though we have not found any study like ours in the
literature, we can relate to some related work on GUI testing.
Then, we move to discuss tools for GUI testing and hence we
justify our choose of GUITAR.

TABLE IV. LINE AND BRANCH COVERAGE FOR ALL THE EXPERIMENTS

 ID Main Experiment
Line Coverage Branch Coverage

Average Total (Standard Deviation)

G
U

I

A Truth table 0.35 (0.03) 0.26 (0.04)

B DNF 0.36 (0.01) 0.26 (0.01)

C Variable negation 0.34 (0.21) 0.27 (0.19)

D All three operations 0.58 (0.01) 0.51 (0.02)

E Expressions from Internet 0.57 0.51

S
y

st
em

 F Truth table 0.42 0.39

G DNF 0.36 0.27

H Variable negation 0.49 0.40

I All three operations 0.60 0.57

TABLE V. LINE AND BRANCH COVERAGE FOR CONTROL CLASSES

 Experiment E Experiment I Simulated-I

Class# Line Branch Line Branch Line Branch

DNFControl 1 1 1 1 1 1

TruthTableControl 0.96 0.84 1 1 1 1

VariableNegationControl 0.94 0.95 0.84 0.87 94 98.9

10

Memon’s PhD thesis [40] presents a framework for GUI
testing, called GUITAR [5], that generates, runs, and assesses
GUI tests [6]. Descriptions of the main components of that
framework with further optimizations and improvements of the
process may be found for reverse engineering [41], coverage
analysis of test cases [42], test oracle generation [43], and
regression testing [44, 45]. GUITAR is a tool that performs
GUI system testing per authors definitions, but GUI functional
system testing and input validation testing based on our
experience with it. Another approach for GUI functional
system testing is to represent the behavior of the GUI as a state
model, possibly with technology to avoid the state explosion
problem [46], to generate tests [47]. Just as in every level of
testing, GUI tests must consider both valid and invalid inputs
and hence we tried to apply both inputs when doing GUI
testing. From a tool perspective, many tools exist for capturing
manually entered sequences. In this “capture/replay” paradigm,
test case selection involves entering every input sequence of
events manually. Model-based testing (MBT) approaches for
GUI-testing present a test case selection process which
constructs test cases based on the model [48, 49].

Script-based tools are widely used such as JFCUnit,
Selenium WebDriver, Robotium, Abbot, and SOAtest [5]. As
another example, the Sikuli testing framework [50] employs
computer vision techniques to develop a visual language for
writing test scripts. MBT approaches employ tool support for
automated test case generation. Several tools exist for
generating test cases automatically. Automated test planning
[51] uses AI planning to generate test cases based on the state
of a GUI before and after executing a user-defined operation
[5]. GUI variants [52] enable testers to convert business logic
test cases into presentation logic test cases. The PETTool [53]
identifies patterns in GUIs and generates generic testing
solutions based on the patterns.

Beside Memon's work, reverse engineering approaches
include Silva and colleagues’ [48] which automatically reverse
engineers a behavioral model of the GUI from the source code
of Java Swing-based GUI applications, and Pavia and
colleagues’ [54] which reverse engineers a GUI into a
specification model which can be used by Spec Explorer [55]
to generate test cases [5]. Amalfitano et al. presented a
tool [56] that is a similar MBT tool using a reverse engineering
technique to automatically construct the GUI model. The tool
automatically generates test cases from the state machine
whose results can be automatically checked against pre-defined
constraints for mobile applications. Tools such as Crawljax
[49] and Revangie [57] employ similar techniques for web
applications.

REST [58] enables a user to evolve test scripts when the
GUI changes. The tool detects differences between the original
and modified versions of a GUI and generates a warning if a
script needs correction.

To provide appropriate context for our discussion of
GUITAR, we now consider how GUITAR, from an
automation engineering perspective, compares to existing
alternatives. GUITAR proved to be a superior alternative over
other tools in a comparative study [5] that included a
comparison between: (1) GUITAR [4], a research tool that

handles the complete life cycle of automated GUI testing from
ripping the SUT to replaying test cases; (2) NModel [59], a
model-based testing framework for C# programs; (3) Quick
Test Pro [60], a popular, proprietary, multi-platform tool for
test automation; (4) Selenium [61] WebDriver, a popular API
for browser automation. It was also found to be superior to (6)
Marathon [62], a capture/reply tool that uses Paython, (7)
Sikuli [50], a reverse engineering tool that uses image
recognition techniques (8) JAutomate [63], a tool for GUI
testing based on image recognition.

GUITAR generates a set of XML files when testing a GUI-
based application. Based on our experience, it is possible to use
Gephi [64] in order to visualize the Event-Flow-Graph of the
SUT. This is an advantage of using GUITAR as visualization
allows manual verification of models.

VI. CONCLUSION

We presented an experimental investigation of the concept
of GUI testing in term of definitions, steps, requirements,
design and capture/replay. The paper investigated relationships
between GUI testing and other types of testing such as system
testing. We noted disagreements about what GUI testing is, in
comparison with system testing. We therefore decided to
conduct an experiment whereby we study the differences in
terms of structural coverage of the application logic code
between system tests and GUI tests.

The experiments used GUITAR to perform GUI functional
system testing for a GUI-based Software Under Test (SUT).
Results show that coverage achieved by functional system
logic testing is better than, though close to, that of GUI
functional system testing. Moreover, our experiments show
that GUI testing “à la” GUITAR requires more time and
computation cost than system testing. Although replications of
our experiments are necessary to precisely understand the
phenomenon we have encountered, our results empirically
prove the existence of duplicate effort when using GUI testing
and system testing simultaneously. Our investigation suggests
that the use of system testing on the application logic code
would be a less costly verification technique of the application
logic of the SUT than GUI testing.

The validity threats were evaluated. This is important to do
upfront to ensure that the threats are minimized [35]. It is close
to impossible to avoid all threats [35]. But all threats in our
experiment were identified and whenever possible mitigated.
Based on our evaluation, we were hopefully ready to run the
experiment and it is possible to repeat the experiment several
times when we had any doubt in coverage results when
conducting the experiment. For example, many of our GUI
testing experiments were repeated many times using two
versions of GUITAR and with two types of integration with
COBERTURA with ANT [65] and with shell script. We
believe our results are valid and generalizable.

To summarize, we believe the software testing research
community and testing practitioners need to better define what
GUI testing is in comparison to system testing and when GUI
testing “à la” GUITAR should be used.

11

VII. APPENDIX

• Abbott, J., Software testing techniques. 1986.

• Ammann, P., J. Offutt, Introduction to software testing. 2008, Cambridge;

New York;: Cambridge University Press.

• Beydeda, S. and V. Gruhn, Testing Commercial-off-the-Shelf Components

and Systems. 2005: Springer Berlin Heidelberg.

• Binder, R., Testing Object-oriented Systems: Models, Patterns, and Tools.

2000: Addison-Wesley.

• Black, R., Advanced software testing. 2009, Santa Barbara, Calif: Rocky

Nook.

• Bruegge and Dutoit, Object-Oriented Software Engineering: Using UML,

Patterns and Java. 2000.

• Chip, D., Software Test Engineering with IBM Rational Functional Tester:

The Definitive Resource. 2009: Pearson Education India.

• Desikan, S. and G. Ramesh, Software testing: principles and practice.

2006, India: Pearson Education

• Miguel Sales Dias, Sylvie Gibet, Marcelo M. Wanderley, Rafael Bastos,

Gesture-Based Human-Computer Interaction and Simulation. 7th

International Gesture Workshop. 2009, Lisbon: Springer Science &

Business Media

• Dustin, E., Garrett, T., Gauf, B., Implementing automated software testing:

how to lower costs while raising quality. 2009, Upper Saddle River, N.J:

Addison-Wesley

• Elfriede Dustin, Jeff Rashka, John Paul, Automated software testing:

introduction, management, and performance. 1999, Addison-Wesley.

• Farrell-Vinay, P., Manage software testing. 2008, Boca Raton: Auerbach

Publications

• Fewster, M. and D. Graham, Software Test Automation: Effective Use of

Test Execution Tools. ACM Press Series. 1999: Addison-Wesley

• Gomaa, H., Designing Concurrent, Distributed, and Real-Time

Applications with UML. 2000: Addison-Wesley Professional

• Hierons, R.M., J.P. Bowen, and M. Harman, Formal Methods and Testing:

An Outcome of the FORTEST Network. Revised Selected Papers.

illustrated ed. Lecture Notes in Computer Science, ed. M. Harman. 2008:

Springer Berlin Heidelberg.

• Homes, B., Fundamentals of software testing. 2012.

• IEEE, Standard Glossary of Software Engineering Terminology (ANSI).

1991, The Institute of Electrical and Electronics Engineers Inc.

• Jorgenson, P.C., Software Testing: A Craftsmans Approach, in Taylor &

Francis Group. 2008: New York.

• Pfleeger, S.L. and J.M. Atlee, Software engineering: theory and practice.

1998: Pearson Education India.

• Jorgenson, P.C., Software Testing: A Craftsmans Approach, in CRC Press.

1995: New York.

• Kaner, C., Fiedler, R., Foundations of software testing: a BBST workbook.

2014: Context Driven Press.

• Kaner, C., B. Pettichord, and J. Bach, Lessons learned in software testing:

a context-driven approach. 2002, New York: Wiley.

• King, J.C., Symbolic Execution and Program Testing. Communications of

the ACM 1976.

• Koirala, S., Sheikh, S., Software testing interview questions. 2008,

Sudbury, Mass: Jones and Bartlett.

• Lewis, W.E., Software testing and continuous quality improvement. CRC

press, 2004.

• Li, K. and M. Wu, Effective GUI testing automation: Developing an

automated GUI testing tool. John Wiley & Sons, 2006.

• Li, K. and M. Wu, Effective software test automation: developing an

automated software testing tool. 2006: John Wiley & Sons.

• Majchrzak, T.A., Improving software testing: technical and organizational

developments. 2012, New York; Berlin: Springer.

• Mathur, A. Foundations of software testing: fundamental algorithms and

techniques. 2013, New Delhi: Dorling Kindersley (India).

• Mathur, A.P., Foundations of Software Testing. 2008: Pearson Education.

• McGregor, J.D. and D.A. Sykes, A practical guide to testing object-

oriented software. 2001: Addison-Wesley Professional.

• Memon, A.M., A comprehensive framework for testing graphical user

interfaces, in Computer Science. 2001, University of Pittsburgh.

• Mili, A.,Tchier, F., Software testing: concepts and operations. 2015:

Wiley.

• Mitchell, J.L., R. Black, Advanced software testing. 2015, Santa Barbara,

Rocky Nook.

• Myers, G.J., C. Sandler, and T. Badgett, The art of software testing. 2011:

John Wiley & Sons.

• Naik, S. and P. Tripathy, Software testing and quality assurance: theory

and practice. 2011: John Wiley & Sons.

• Notenboom, E., Testing Embedded Software. 2003: Addison-Wesley.

• Commission of Ieee-Standards Board Ieee Xplore International

Organization, I.o.E.a.E.E.a.C.o.I.-S.B.I.X.I., Software and systems

engineering: software testing. 2013, New York; Geneva; ISO.

• Patton, R., Software testing. 2001, Indianapolis, Ind: Sams.

• Pezze, M. and M. Young, Software testing and analysis: process,

principles, and techniques. 2007: John Wiley & Sons.

• Pries, K.H. and J.M. Quigley, Testing complex and embedded systems.

2011: CRC Press.

• Roper, M., Software testing. 1994, New York; London; McGraw-Hill.

• Rubin, J. and D. Chisnell, Handbook of usability testing, How to plan,

design, and conduct effective tests. 2008: Google Books.

• Schutz, W., The testability of distributed real-time systems. Vol. 245.

1993: Springer.

• Sharma, M., R. Padmanaban, and C.R.C. Press, Leveraging the wisdom of

the crowd in software testing. 2015, Boca Raton: CRC Press.

• Singh, S., G. Singh, and S. Singh, Software Testing. International Journal

of Advanced Research in Computer Science, 2010. 1(3): p. 403-406.

• Utting, M. and B. Legeard, Practical model-based testing: a tools

approach. 2010: Morgan Kaufmann.

• Vance, S., Quality code: software testing principles, practices, and

patterns. 2013, Upper Saddle River, NJ: Addison-Wesley.

• Werner, S., The Testability of Distributed Real-Time Systems. 1993:

Kluwer Academic Publishers. 160.

• Whittaker, J.A., Exploratory Software Testing: Tips, Tricks, Tours, and

Techniques to Guide Test Design. 2009: Pearson Education.

• Colin Willcock, Thomas Deiß, Stephan Tobies, Stefan Keil, Federico

Engler, Stephan Schulz, Anthony Wiles, An Introduction to TTCN-3.

2011: WILEY.

• Pressman, R., Software Engineering: A practitioner approach, 6th edition,

McGrawHill, 2005.

12

REFERENCES
[1] Desikan, S. and G. Ramesh, Software testing: principles and practice.

2006, India: Pearson Education

[2] Ammann, P. and J. Offutt, Introduction to Software Testing. Vol. 1.
2008, New York: Cambridge University Press.

[3] Banerjee, I., B. Nguyen, V. Garousi, and A. Memon, Graphical user
interface (gui) testing: Systematic mapping and repository. Information
and Software Technology, 2013. 55(10): p. 1679-1694.

[4] Memon, A., GUITAR. 2015, https://sourceforge.net/projects/guitar/.

[5] Nguyen, B.N., B. Robbins, I. Banerjee, and A. Memon, GUITAR: an
innovative tool for automated testing of gui-driven software. Automated
Software Engineering, 2014. 21(1): p. 65-105.

[6] Ganov, S.R., C. Killmar, S. Khurshid, and D.E. Perry. Test generation
for graphical user interfaces based on symbolic execution. in
Proceedings of the 3rd international workshop on Automation of
software test. 2008: ACM.

[7] Forrester, J.E. and B.P. Miller. An empirical study of the robustness of
Windows NT applications using random testing. in Proceedings of the
4th USENIX Windows System Symposium. 2000: Seattle.

[8] dblp. Computer Science Bibliography. 2016 [cited 2014; Available
from: http://dblp.uni-trier.de/.

[9] Abbott, J., Software testing techniques. 1986.

[10] Homes, B., Fundamentals of software testing. 2012.

[11] Myers, G.J., C. Sandler, and T. Badgett, The art of software testing.
2011: John Wiley & Sons.

[12] Pries, K.H. and J.M. Quigley, Testing complex and embedded systems.
2011: CRC Press.

[13] Schutz, W., The testability of distributed real-time systems. Vol. 245.
1993: Springer.

[14] Std, I., IEEE Standard for Software and System Test Documentation.
2008: p. 1-150.

[15] Alain, A. and W.M. James, Guide to the Software Engineering Body of
Knowledge - SWEBOK, ed. A. Alain, et al. 2004: IEEE Press. 228.

[16] Naik, S. and P. Tripathy, Software testing and quality assurance: theory
and practice. 2011: John Wiley & Sons.

[17] Lewis, W.E., Software testing and continuous quality improvement.
CRC press, 2004.

[18] Jorgenson, P.C., Software Testing: A Craftsmans Approach, in Taylor &
Francis Group. 2008: New York.

[19] Pezze, M. and M. Young, Software testing and analysis: process,
principles, and techniques. 2007: John Wiley & Sons.

[20] Grilo, A.M., A.C. Paiva, and J.P. Faria, Reverse engineering of gui
models for testing, in 2010 5th Iberian Conference on Information
Systems and Technologies (CISTI). 2010. p. 1-6.

[21] Memon, A.M., A comprehensive framework for testing graphical user
interfaces, in Computer Science. 2001, University of Pittsburgh.

[22] IEEE, T.I.o.E.a.E.E., Standard Glossary of Software Engineering
Terminology (ANSI). 1991.

[23] Binder, R., Testing object-oriented systems: models, patterns, and tools.
2000: Addison-Wesley Professional.

[24] Weyuker, E., T. Goradia, and A. Singh, Automatically generating test
data from a Boolean specification, in IEEE Transactions on Software
Engineering. 1994. p. 353-363.

[25] Bruegge and Dutoit, Object-Oriented Software Engineering: Using
UML, Patterns and Java. 2000.

[26] Lee, C., COBERTURA. 2015, http://cobertura.github.io/cobertura/.

[27] AllAboutCircuits. Boolean Expressions. 2015 [cited; Available from:
http://www.allaboutcircuits.com/textbook/digital/chpt-7/demorgans-
theorems/.

[28] BasicGatesandFunctions. Boolean Expressions. 2015 [cited; Available
from: http://www.ee.surrey.ac.uk/Projects/CAL/digital-
logic/gatesfunc/index.html#example.

[29] Carter, J. Boolean Expressions. 2015 [cited; Available from:
http://www.coe.uncc.edu/~jcarter/Elet3285/pageicon.gif.

[30] Dunn, K. Boolean Expressions. 2015 [cited; Available from:
http://district.bluegrass.kctcs.edu/kevin.dunn/files/Simplification/4_Sim
plification_print.html.

[31] ElectronicsTutorials. Boolean Expressions. 2015 [cited; Available
from: http://www.electronics-tutorials.ws/boolean/bool_8.html.

[32] IndiaBix. Boolean Expressions. 2015 [cited; Available from:
http://www.indiabix.com/digital-electronics/boolean-algebra-and-logic-
simplification/.

[33] NationalInstruments. Boolean Expressions. 2015 [cited; Available
from: http://www.ni.com/example/14493/en/.

[34] Sandbox. Boolean Expressions. 2015 [cited; Available from:
http://sandbox.mc.edu/~bennet/cs110/boolalg/simple.html.

[35] Wohlin, C., P. Runeson, M. Host, M.C. Ohlsson, B. Regnell, and A.
Wesslen, Experimentation in software engineering. 2012: Springer
Science & Business Media.

[36] Hutchins, M., H. Foster, T. Goradia, and T. Ostrand. Experiments of the
effectiveness of dataflow-and controlflow-based test adequacy criteria.
in Proceedings of the 16th international conference on Software
engineering. 1994: IEEE Computer Society Press.

[37] Brooks, P.A. and A.M. Memon. Automated GUI testing guided by usage
profiles. in Proceedings of the twenty-second IEEE/ACM international
conference on Automated software engineering. 2007: ACM.

[38] Freedman, R.S., Testability of software components. Software
Engineering, IEEE Transactions on, 1991. 17(6): p. 553-564.

[39] Gao, J. Component testability and component testing challenges. in
Proceedings of International Workshop on Component-based Software
Engineering (CBSE2000, held in conjunction with the 22nd
International Conference on Software Engineering (ICSE2000). 2000.

[40] Memon, A.M., A comprehensive framework for testing graphical user
interfaces. 2001, University of Pittsburgh.

[41] Memon, A.M., I. Banerjee, and A. Nagarajan. GUI Ripping: Reverse
Engineering of Graphical User Interfaces for Testing. in WCRE. 2003.

[42] McMaster, S. and A. Memon, Call-stack coverage for gui test suite
reduction. IEEE Transactions on Software Engineering, 2008. 34(1): p.
99-115.

[43] Memon, A., I. Banerjee, and A. Nagarajan. What test oracle should I use
for effective GUI testing? in Automated Software Engineering, 2003.
Proceedings. 18th IEEE International Conference on. 2003: IEEE.

[44] Memon, A., I. Banerjee, N. Hashmi, and A. Nagarajan. DART: a
framework for regression testing" nightly/daily builds" of GUI
applications. in Software Maintenance, 2003. ICSM 2003. Proceedings.
International Conference on. 2003: IEEE.

[45] Memon, A.M. Using tasks to automate regression testing of GUIs. in
IASTED International Conference on Artificial Intelligence and
Applications-AIA. 2004.

[46] White, L. and H. Almezen. Generating test cases for GUI
responsibilities using complete interaction sequences. in Software
Reliability Engineering, 2000. ISSRE 2000. Proceedings. 11th
International Symposium on. 2000: IEEE.

[47] Shehady, R.K. and D.P. Siewiorek. A method to automate user interface
testing using variable finite state machines. in Fault-Tolerant
Computing, 1997. FTCS-27. Digest of Papers., Twenty-Seventh Annual
International Symposium on. 1997: IEEE.

[48] Silva, J.L., J.C. Campos, and A.C.R. Paiva, Model-based user interface
testing with Spec Explorer and ConcurTaskTrees. Electronic Notes in
Theoretical Computer Science, 2008. 208: p. 77-93.

[49] Mesbah, A. and A. Van Deursen. Invariant-based automatic testing of
AJAX user interfaces. in Proceedings of the 31st International
Conference on Software Engineering. 2009: IEEE Computer Society.

[50] Chang, T.-H., T. Yeh, and R.C. Miller. GUI testing using computer
vision. in Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. 2010: ACM.

[51] Memon, A.M., M.E. Pollack, and M.L. Soffa, Hierarchical GUI test case
generation using automated planning. IEEE transactions on software
engineering, 2001. 27(2): p. 144-155.

13

[52] Nguyen, D.H., P. Strooper, and J.G. Suess. Model-based testing of
multiple GUI variants using the GUI test generator. in Proceedings of
the 5th Workshop on Automation of Software Test: ACM.

[53] Cunha, M., A.C.R. Paiva, H.S. Ferreira, and R. Abreu. PETTool: a
pattern-based GUI testing tool. in Software Technology and Engineering
(ICSTE), 2010 2nd International Conference on. 2010: IEEE.

[54] Paiva, A.C.R., J.o.C.P. Faria, and P.M.C. Mendes. Reverse engineered
formal models for GUI testing. in International Workshop on Formal
Methods for Industrial Critical Systems. 2007: Springer.

[55] Veanes, M., C. Campbell, W. Grieskamp, W. Schulte, N. Tillmann, and
L. Nachmanson, Model-based testing of object-oriented reactive systems
with Spec Explorer, in Formal methods and testing. 2008, Springer. p.
39-76.

[56] Amalfitano, D., A.R. Fasolino, and P. Tramontana. A gui crawling-
based technique for android mobile application testing. in Software
Testing, Verification and Validation Workshops (ICSTW), 2011 IEEE
Fourth International Conference on. 2011: IEEE.

[57] Draheim, D., C. Lutteroth, and G. Weber. A Source Code Independent
Reverse Engineering Tool for Dynamic Web Sites. in CSMR. 2005.

[58] Grechanik, M., Q. Xie, and C. Fu. Creating GUI testing tools using
accessibility technologies. in Software Testing, Verification and
Validation Workshops, 2009. ICSTW'09. International Conference on.
2009: IEEE.

[59] CodePlex. NModel. 2016 [cited; Available from:
http://nmodel.codeplex.com/.

[60] HP. Quick Test Pro. 2016 [cited; Available from:
http://www.hp.com/QuickTestPro.

[61] WebDriver, S. Selenium. 2016 [cited; Available from:
http://www.seleniumhq.org/projects/webdriver/.

[62] Co, M., Marathon. 2015, https://marathontesting.com/.

[63] Alegroth, E., M. Nass, and H.H. Olsson, JAutomate: A Tool for System-
and Acceptance-test Automation, in IEEE Sixth International
Conference on Software Testing, Verification and Validation (ICST).
2013. p. 439-446.

[64] Gephi, Gephi. 2015, https://gephi.org/.

[65] Apache. ANT. 2015 [cited; Available from: http://ant.apache.org/.

