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Abstract— Reverse-engineering object interactions from source 
code can be done through static, dynamic, or hybrid (static plus 
dynamic) analyses. In the latter two, monitoring a program and 
collecting runtime information translates into some overhead 
during program execution. Depending on the type of application, 
the imposed overhead can reduce the precision and accuracy of 
the reverse-engineered object interactions (the larger the over-
head the less precise or accurate the reverse-engineered interac-
tions), to such an extent that the reverse-engineered interactions 
may not be correct, especially when reverse-engineering a multi-
threaded software system. One is therefore seeking an instrumen-
tation strategy as less intrusive as possible. In our past work, we 
showed that a hybrid approach is one step towards such a solu-
tion, compared to a purely dynamic approach, and that there is 
room for improvements. In this paper, we uncover, in a systemat-
ic way, other aspects of the dynamic analysis that can be im-
proved to further reduce runtime overhead, and study alternative 
solutions. Our experiments show effective overhead reduction 
thanks to a modified procedure to collect runtime information. 

Index Terms— Reverse engineering; Overhead; Multi-
threaded; Hybrid analysis; Object interactions; Logging. 

I. INTRODUCTION 
Object interactions, for instance rendered as UML interac-

tion diagrams, can be recovered from source code through stat-
ic, dynamic, or hybrid analyses. Such interactions can then be 
used for program comprehension and verification for example. 
A static analysis usually produces accurate diagrams through 
source code analysis regardless of all possible program inputs 
and behaviour [1]. However, a static analysis recovers program 
behaviour conservatively. Language features such as late bind-
ing, generalization, overloading, and aliasing hinder reverse 
engineering object interactions solely from source code, and 
sometimes make that even impossible; it is in general NP-hard 
[2]. Therefore, engineers turn to dynamic analysis to recover 
such interactions. However, the instrumentation that captures 
dynamic information adds runtime overhead to the execution of 
the system under study (SUS), increasing the SUS’s response 
time to the extent that a deadline may be missed, resulting in an 
observed behaviour that may be different from the expected 
one. This is sometimes referred to as the “probe effect”. Reduc-
ing the probe effect is important when reverse-engineering any 
behaviour since overhead can drastically increase execution 
times to the point that it is not practical for engineers to wait. 

Reducing the probe effect is especially important when reverse-
engineering interactions in a multi-threaded system: as men-
tioned earlier, execution overhead may lead to deadline missed 
and therefore a different observed behaviour than the expected 
one. Therefore, one may turn to hybrid (static plus dynamic) 
approaches to benefit from the advantages of each kind of 
technique and minimize their drawbacks. A hybrid analysis has 
the potential to produce more accurate and less conservative 
behaviour by 1) capturing as much information as possible in 
the static analysis and 2) capturing, at runtime, the remaining 
amount of information while reducing the probe effect. 

We have shown in our past work that combining static and 
dynamic analyses reduces runtime overhead compared to a 
purely dynamic approach [3]. In this paper, we optimize the 
design and implementation of the AspectJ instrumentation used 
in our hybrid approach [3] to further reduce the overhead. To 
do so, we systematically identify characteristics of our previous 
hybrid instrumentation (thereafter referred to as Light) that may 
lead to overhead and study to what extent they actually con-
tribute to the overhead. Then, we systematically discuss a set of 
optimizations for each characteristic and study the extent of 
overhead reduction. More specifically, we answer the follow-
ing research questions (RQ): RQ1: To what extent does each 
characteristic of the Light instrumentation contribute to over-
head? RQ2: What are proper optimizations for the Light in-
strumentation and how much do they reduce overhead? RQ3: 
How effective is combining optimization strategies studied in 
RQ2 at reducing the probe effect? 

Our contribution, which should be of interest to anyone 
who intends to develop a hybrid reverse-engineering technique, 
is five-fold: (i) A classification of the characteristics of our 
Light instrumentation that may produce overhead. This is a 
somewhat general result that would apply to other hybrid in-
strumentation techniques, in particular, those based on AspectJ 
instrumentation; (ii) A protocol to systematically study the con-
tribution to overhead of each characteristic. Again, this should 
apply to other hybrid instrumentation techniques; (iii) A quanti-
tative analysis of the contribution to overhead of each charac-
teristic of our hybrid technique; (iv) A discussion about ways to 
optimize our hybrid technique to further reduce overhead; (v) 
A quantitative analysis of the result of implementing some of 
these optimizations, thereby reducing overhead.  
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Note that those contributions, although obtained in the spe-
cific context of a hybrid technique, based on AspectJ, to re-
verse engineer object interactions, should apply more broadly 
to other techniques to reverse engineer runtime details, not nec-
essarily hybrid (e.g., dynamic) nor based on AspectJ. Our em-
pirical results can be seen as actionable findings that others can 
build on when devising reverse-engineering technology. 

The reminder of this paper is organized as follows. In sec-
tion II, we review some concepts of aspect-oriented program-
ming and discuss related work. We elaborate on our Light in 
section III. In section IV, we identify optimizations that would 
potentially reduce overhead due to Light. In section V, we ex-
plain our case studies and the experiments we conducted to 
answer research questions. We conclude in section VI. 

II. BACKGROUND AND RELATED WORK 
We first review aspect-oriented programming (AOP) and 

AspectJ in particular, only focussing on details that relate to 
our overhead reduction objective. (We assume basic 
knowledge of AOP and AspectJ.) Next, we discuss works that 
relate to our approach to reduce instrumentation overhead with 
a particular focus on AspectJ as instrumentation technology. 

A. Aspect Oriented Programming 
AOP is a software development and maintenance paradigm 

that either abstracts away existing crosscutting concerns from 
core concerns or adds new concerns to core concerns in the 
form of aspects. In our case, we add new concerns to core con-
cerns. The programming language of the SUS (e.g., C++, Java) 
drives the choice of AOP technology. The target programming 
language for the SUS we chose is Java. Different Java AOP 
technologies exist: e.g., AspectJ [4], DiSL [5], Spring [6], 
JBoss-AOP [7]. We selected AspectJ [4] because it is widely 
used and more mature than other technologies. 

AspectJ provides constructs to implement individual con-
cerns (i.e., aspects) and their weaving with other (new or core) 
concerns. New aspects are implemented through advice and 
inter-type declaration constructs. An advice is a piece of Java 
code that executes at certain points (i.e., join point) in the SUS, 
and uses the AspectJ API to collect information about the SUS. 
AspectJ inter-type declaration constructs provide a mechanism 
to alter the static structure of the SUS, such as adding new 
methods or fields. Weaving rules (i.e., pointcuts) select particu-
lar join points from the core Java concern (i.e., the SUS) or 
other concerns where advice(s) must execute. 

The AspectJ compiler uses a byte-code weaving approach 
that first supplies the SUS to the Java compiler, compiles the 
aspects, and then weaves the compiled aspects into the com-
piled SUS to generate woven JVM compliant byte-code files 
[4]. The AspectJ compiler performs advice weaving in two 
phases: lookup and invocation. Lookup selects a set of advices 
that applies to each join point whereas invocation runs the se-
lected set of advices on that join point. The compiler performs 
these in two modes: compile-time weaving (a.k.a. static weav-
ing) executes lookup at compile time and invocation at runtime 
whereas load-time weaving performs both at runtime [8]. In 
our experimentations, we use compile-time weaving. 

B. Optimizing Instrumentation for Performance 
Discussing overhead reduction of a reverse-engineering (or 

probing) technology generally includes reducing the number of 
probes, reducing the cost of probing and reducing the cost of 
data collection (e.g., [9, 10]). The number of probes and the 
cost of data collection directly depend on the intent of the re-
verse-engineering activity: the more one wants to collect, the 
larger number of probes and the more data collected by each 
probe. Reducing overhead due to those characteristics is exact-
ly what triggered our use of a hybrid technology [3].  

In this section we rather discuss overhead reduction of 
probing, which is about weaving and also a very context de-
pendent issue: one tries to optimize weaving for C++ very dif-
ferently from Java simply because of the characteristics of the 
target languages. Some general weaving optimization princi-
ples may apply regardless of the technology and one may get 
inspired by AspectC++ weaving optimization solutions (e.g., 
[11]) when trying to optimize AspectJ weaving. We do not 
contribute to AspectJ weaving mechanisms or to the AspectJ 
language: we consider this outside the scope of this paper. 

In the realm of Java programs, different technologies exist 
to probe behaviour: e.g., AspectJ [4] and DiSL [5] offer high 
level languages to facilitate probing whereas ASM [12] and 
BCEL [13] provide APIs to directly work on the byte-code. 
DiSL [5] is a very appealing, recent solution since the authors 
argue that it is equally expressive as AspectJ and as efficient as 
ASM (and more efficient than AspectJ), thereby having the 
advantages of both kinds of solutions without their drawbacks. 
The overhead reduction reported by the authors on several case 
studies, when comparing DiSL to AspectJ is not precise 
enough to make a decision as to use one technology or the oth-
er in a specific context. Specifically, we know (section II.C) 
that several AspectJ constructs are very expensive (high over-
head) and that several attempts have been made to remedy the 
situation; some authors also suggest efficient usages of some 
AspectJ constructs to reduce overhead. Unfortunately, the 
comparison between DiSL and AspectJ does not disclose 
which of those constructs were used. This is an important piece 
of information that is missing since, as discussed later, we do 
not use those expensive AspectJ constructs. Plus, our own 
overhead study (see below) shows that AspectJ itself is a very 
small contributor to overhead. We conclude that, at the time of 
writing, there is no compelling argument showing that, in our 
context, we should use DiSL rather than AspectJ. 

C. Optimizing the Performance of AspectJ Programs 
There are two general approaches to improve the perfor-

mance of an AspectJ program: making an efficient use of the 
AspectJ language, improving the AspectJ compiler or the JVM. 
Since we intend to use AspectJ as a toolbox, we only focus on 
the former and not contribute to the latter: we want to devise an 
efficient use of the AspectJ language for the purpose of re-
verse-engineering object interactions. 

An efficient use of the AspectJ language requires both effi-
cient weaving rules (pointcuts) and efficient concerns (advices 
and inter-type declarations). We report on the few works we 
have found that discuss efficient practices for AspectJ pro-
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gramming. Dufour et al. [14] suggest AspectJ programming 
guidelines for reducing overhead, noticing programmers im-
pose considerable overhead to a base program (i.e., SUS) when 
they use loose pointcuts, i.e., pointcuts that match too many 
join points, generic advices (in particular generic around ad-
vice), the cflow pointcut, or when they introduce too many 
new constructors through inter-type declarations. Similarly, the 
AspectJ reference books [4, 15] provide recommendations on 
how to improve the performance of AspectJ programs, such as 
an efficient use of APIs for dynamic context collection (join 
point APIs versus Java reflection APIs). 

Programming and refactoring of Java programs for perfor-
mance improvement [16-18] is also related to our work since 
AspectJ declarations are written in Java. We simply mention 
them here to indicate that we account for refactoring for per-
formance improvement opportunities in our work. 

An efficient implementation of byte-code weaving, i.e., im-
proving the AspectJ compiler, involves optimizing either the 
AspectJ compiler or the JVM. A number of works suggest op-
timizations to the original AspectJ weaving mechanisms [8, 19-
24], such as the around advice, the cflow pointcut, or advice 
dispatch. Although we do not follow this path of instrumenta-
tion optimization, we note we do not use computationally ex-
pensive AspectJ constructs for which optimizations have been 
proposed (around advices or cflow pointcuts). In our experi-
ments, we optimize the implementation of AspectJ concerns, 
and use the standard AspectJ compiler and the standard JVM. 

Since adding new concerns to core concerns adds overhead, 
an instrumentation alternative could be to manually hard code 
the new concerns into the SUS in Java instead of using (As-
pectJ) aspects. Studies [19, 25] reported the performance of an 
aspect program is equal to or better than the equivalent non-
aspect program due to better encapsulation of advices. 

Finally, one may argue that AspectJ performs faster with 
load-time weaving compared to compile-time weaving. On the 
one hand, compile time weaving reduces the runtime overhead 
by executing lookup at compile time. On the other hand, oppo-
site to load-time weaving, compile-time weaving is unable to 
take advantage of runtime data and JVM internal structure to 
implement optimizations for the inserted aspects [8]. However, 
empirical studies show that the AspectJ compiler causes lesser 
runtime overhead with compile-time weaving than with load-
time weaving when there is a large number of classes loaded or 
join points executed [26]. Thus, we opted for compile-time 
weaving as this paper target industrial-sized software systems. 

D. Optimizing Traces for Performance 
A dynamic analysis monitors and gathers different types of 

data from a SUS, and typically stores this data in a file as an 
execution trace using a specific format for offline consumption 
[27]. Capturing less data or condensing the gathered data be-
fore storage can potentially reduce the overhead of a dynamic 
analysis. Several trace formats exist for recording object inter-
actions or other kinds of data (e.g., OTF focuses on recording 
performance data [28]). For obvious reasons, we focus on trace 
formats for storing object interactions. Prominent works on 

trace format for storing object interactions discuss encoding, 
condensing, compacting data in a trace file since such files tend 
to be huge: [29], [30]. In our context, although these are valid 
objectives, we are more interested in reducing the overhead due 
to producing the data than the format of storage of the data in a 
file. A trade off needs to be found between the overhead due to 
producing the data, possibly condensed/compacted, and the 
amount of data to store. In our case, since we privileged over-
head reduction and we collect as few data as possible which we 
believe is already condensed enough, we decided to not use any 
of the existing condensing/compacting solutions.  

Baca minimizes the overhead of producing execution traces 
within procedures thanks to a hybrid solution [31]. We rather 
focus on object interactions. Last, path profiling techniques 
(e.g., [32]) measure the frequencies of path executions. Again, 
we rather focus on object interactions. 

III. DYNAMIC ANALYSIS IN THE HYBRID APPROACH 
Our hybrid approach [3] instruments SUS code to generate 

traces, analyzes source code to create control flow graphs, and 
then transforms an instance of the trace model and instances of 
control flow graphs (for several methods) into a UML scenario 
diagram. We refer the reader to other documents [3, 33] for 
more details. In this section, we provide self-contained discus-
sion of the dynamic analysis part of the hybrid approach, which 
we intend to improve, and study possible sources of overhead. 

A. Trace Model 
Our execution Trace model (Fig. 1) is very close in struc-

ture to the UML 2 Superstructure’s Message components to 
facilitate transformations to UML scenario diagrams. Log rep-
resents a single program execution and contains a sequence of 
MessageLogs. A MessageLog represents a message sent to 
the logger to signal the start of an execution between a sending 
object and a receiving object (the two associations to Mes-
sageLogOccurenceSpecification). In class Mes-
sageLogOccurenceSpecification, attribute covered is a 
String containing the identification of an object (a unique 
identifier representing an object of a class). MessageLog’s 
attributes specify the kind of message (messageSort attrib-
ute), the message’s signature, and the name of the class whose 
instance executes the called method (bindToClass). For a 
MessageLog instance, using bindToClass and signature 
attribute values, we know exactly which method in a hierarchy 
of classes actually executed, i.e., the data allow us to account 
for overriding. In the case of a static call, bindToClass con-
tains the class defining this static method. This way, the trans-
formation algorithm can determine the specific class and meth-
od invoked by the method call. SourceLocation (in Mes-
sageLog) specifies the location (name of the class and lin-
eNumber) in the source code from where the logged method 
call has been made; this is the call site where we can bridge the 
dynamic information to static information (control flow graph). 

B. Light Instrumentation 
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package instrumentation; 
public aspect MethodAspect { 

pointcut callMethod() : call (!static * PackageName..*(..)); 
pointcut callStaticMethod() : call (static * PackageName..*(..)) 
&& !call (*PackageName..objectIDgenerator(..));  
pointcut callConstructor() : call (PackageName..new(..)) && 
!within (instrumentation..*); 
 
before(): callMethod () { 
 //Content of advice 
} 
before(): callStaticMethod () { 
 //Content of advice 
} 
before(): callConstructor () { 
 //Content of advice 
} 
 

 private static String getLineNumber(String s) {...} 
 private static String getFileName(String s) {...} 
 private static String getBindToClassName(String s) {...} 
 private static String getStaticClassName(String s){...} 
 private static String getStaticBindToClassName(String s) {...} 
 private static String getNewBindToClassName(String s) {...} 
 private static String getMethodSignature(String s) {...} 
 private static String getStaticLifelineName (String s) {...} 
}	
  

Fig. 2. Excerpt of the MethodAspect aspect class 
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private int ClassName.objectID = ClassName.objectIDgenerator(objectID); 
private static int ClassName.currentObjectID = 1; 
private static int ClassName.objectIDgenerator(int i) { 
 int id = i; 
 if(i<1){ 
       LinkedList log = new LinkedList(); 
  id = ClassName.currentObjectID++; 
       log.add("<lifeline className=\"ClassName\" 
name=\"className_" + id + "\"/>"); 
       Logger.getLoggingClient().instrument(log); 
  } 
 return id; 
} 
declare parents : ClassName implements ObjectID; 
public String ClassName.getObjectID() { 
 if (objectID < 1){ 
 objectID = ClassName.objectIDgenerator(objectID); 
 } 
 return "ClassName_" + objectID; 
}	
  

Fig. 3. Excerpt of the IdentifierAspect aspect class 
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package instrumentation; 
public interface ObjectID { 
 public String getObjectID(); 
}	
  

Fig. 4. ObjectID interface 

 

The Light instrumentation collects information to instanti-
ate the Trace model (Fig. 1) thanks to several AspectJ aspects 
(MethodAspect in Fig. 2, IdentifierAspect in Fig. 3), an 
interface (ObjectID in Fig. 4), and a logger class. The latter 
simply gets trace information (MessageLogs) from aspects and 
writes to a file on disk. The MethodAspect aspect defines 
three pointcuts callMethod(), callStaticMethod(), and 
callConstructor() lines (3, 4, 5 in Fig. 2) in order to inter-
cept all calls to methods (either static or not, synchCall mes-
sage type) and constructors (createMessage message type), 
thereafter referred to as "method call" for any call type, in a 
SUS. The pointcuts ensure that advices execute on call joint 
points in the SUS and exclude calls to objectIDgenerator 
and methods in the instrumentation package. More accu-
rately, the pointcuts specify before() advices to execute on 
call joint points, i.e., before a method call is 
made (lines 6, 37, 61 in Fig. 2). The call 
joint point enables an advice to collect infor-
mation about both the caller, i.e. the sending 
object (e.g., line number (lineNumber), and 
the source file name (name of the class) from 
where the call was made) and the callee, i.e., 
the receiving object (e.g., class name 
(bindToClass) or object identity (cov-
ered)). Advices in the MethodAspect rely 
on the capability of the instrumented code to 
count classes’ instances, and report on a 
unique identifier for each instance, which is 
achieved thanks to the IdentifierAspect 
aspect and the ObjectID interface. Interface 
ObjectID defines method 
getObjectID()which returns the object 
identity information: a unique String for 
each instance of a given class (line 3 in Fig. 
4). Method getObjectID() is implemented 
by changing the static structure of the SUS 
through inter-type declaration in the Identi-
fierAspect aspect, which adds the imple-
mentation of the getObjectID() method for 
every class in the SUS (line 14 in Fig. 3). For 
each method call (except for the call to a con-
structor), advices in the MethodAspect 
uniquely identify interacting objects' instanc-
es, i.e., caller and callee, through 
getObjectID(). In case of a call to a con-
structor, the advice cannot capture the object 
identity information (since the advice executes 
before object creation has completed); instead 
the IdentifierAspect aspect applies the 
objectIDgenerator() method (through 
inter-type declaration) for each constructor to 
automatically record (by calling the logger) 
the object identity right after its initialization 
to compensate the missing object identity pri-
or to constructor call  (lines 8, 9 in Fig. 3). 
More specifically, for each class in the SUS, 

the static method objectIDgenerator() implements an 
extension of the singleton design pattern to count the number of 
instances of that class, to assign a new unique number to each 
new instance of that class, and log the class name and the new 
instance unique number in the trace file  (lines 3 to 12 in Fig. 
3). 

Note that there is a call to the logger class for each advice 

 
Fig. 1.  Trace Model  
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before(): callMethod () {	
  
 String thisID = new String();	
  
 String targetID = new String();	
  
 LinkedList log = new LinkedList();	
  
 if (thisJoinPoint.getThis() != null) {	
  
  try {	
  
      thisID = ((ObjectID) thisJoinPoint.getThis()).getObjectID();	
  
   }	
  
   catch (ClassCastException e) {	
  
    thisID = "Caught NonInstrumentedCaller";	
  
  } 	
  
 } else {	
  
  thisID = 
getStaticClassName(thisJoinPointStaticPart.getSourceLocation().toString());	
  
 }	
  
 try {	
  
  targetID = ((ObjectID) thisJoinPoint.getTarget()).getObjectID();	
  
 } catch (ClassCastException e) {	
  
  targetID = "Caught NonInstrumentedCallee";	
  
  }	
  
 log.add("<messageLog bindToClass=\""	
  

+MethodAspect.getBindToClassName(thisJoinPoint.getTarget().toStr
ing()) 	
  

+ "\" messageSort=\"synchCall\" signature=\""	
  
  + MethodAspect.getMethodSignature(thisJoinPoint.toString()) + 
"\">");	
  
 log.add(" <sendEvent covered=\"" + thisID + "\"/>");	
  
 log.add(" <receiveEvent covered=\"" + targetID + "\"/>");	
  
 log.add(" <sentFrom lineNumber=\""	
  

+MethodAspect.getLineNumber(thisJoinPointStaticPart.getSourceLoc
ation().toString() + "\" name=\"" 	
  
+MethodAspect.getFileName(thisJoinPointStaticPart.getSourceLocat
ion().toString()) + "\"/>");	
  

 log.add("</messageLog>");    	
  
 Logger.getLoggingClient().instrument(log);	
  
}	
  

Fig. 5. callMethod advice 
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before(): callConstructor () { 
 String thisID = new String(); 
 LinkedList log = new LinkedList(); 
 if (thisJoinPoint.getThis() != null) { 
  try{ 
      thisID = ((ObjectID) thisJoinPoint.getThis()).getObjectID(); 
   }  
   catch (ClassCastException e) { 
      thisID = "Cought NonInstrumentedCaller"; 
  } 
 } else { 
  thisID = 
getStaticClassName(thisJoinPointStaticPart.getSourceLocation().toString()); 
 } 
 
 log.add("<messageLog bindToClass=\"" 
  + MethodAspect.getNewBindToClassName(thisJoinPoint.toString()) 
  + "\" messageSort=\"createMessage\" signature=\"new " 
  + MethodAspect.getMethodSignature(thisJoinPoint.toString())+ 
"\">"); 
 log.add(" <sendEvent covered=\"" + thisID + "\"/>"); 
 log.add(" <receiveEvent covered=\"not yet available\"/>"); 
 log.add(" <sentFrom lineNumber=\""    
  + MethodAspect.getLineNumber(thisJoinPointStaticPart.getSourceLo 
cation().toString()) + "\" name=\""     
  + MethodAspect.getFileName(thisJoinPointStaticPart.getSourceLoca  
tion().toString ()) + "\"/>"); 
 log.add("</messageLog>"); 
 Logger.getLoggingClient().instrument(log); 
 }	
  

Fig. 6. callConstructor advice 

in MethodAspect as well as for 
each object creation (i.e., in method 
objectIDgenerator()) in Iden-
tifierAspect to record the cap-
tured dynamic information, resulting 
in one call to the logger for each 
intercepted method call in the SUS 
and two calls to the logger for each 
intercepted constructor call in the 
SUS. Each time the logger is called, 
it records the received information to 
a file on disk; therefore, we can ex-
pect a large number of accesses to 
the disk for any typical program.  

We review the collected infor-
mation for a typical method call by 
looking at representative advices, the 
before():CallMethod() and the 
be-
fore():callConstructor()advi
ces which capture information for 
calls to non-static methods (Fig. 5) 
and constructor (Fig. 6). The be-
fore():callStaticMethod()ad
vice  collects similar (though less) 
information to the be-
fore():callMethod() advice. 
We later refer to these advices dur-
ing our discussion of possible opti-
mizations. The collected information 
(six and five pieces of data for be-
fore():callMethod() and be-
fore():callConstructor() 
advices respectively as shown in Fig. 
5 and Fig. 6) in these advice include: 
unique identifiers of interacting ob-
jects (lines 12, 21 and 66) or classes 
in case of a static caller (lines 18 and 
72), the signature of the method be-
ing called (lines 28 and 78) as well 
as the name of the called class (lines 
26 and 76), and the file name from 
where the call is made, i.e., in the 
caller (lines 32, 33 and 82, 83). The 
instrumentation should handle calls 
between the SUS code and code 
outside of the SUS code itself (e.g., 
third party library, JVM/JRE); there-
fore, each time an advice collects 
information regarding unique identi-
fiers of interacting objects, it accounts for the possibility that 
the caller or the callee is not instrumented and therefore does 
not have a unique identifier: lines 14 to 16, 22 to 24, and 68 to 
70. 

C. Characteristics of the Light Instrumentation 
We characterize the Light instrumentation from four differ-

ent viewpoints that impact overhead: 1) the mechanism by 
which data is collected (e.g., use of the AspectJ API); 2) the 
data (amount and type) being collected (e.g., to instantiate ele-
ments of the Trace model); 3) the encoding of the data trans-
ferred from one instrumentation component to another or to the 



Carleton University, Technical Report SCE-15-02  November 2015 

JVM (e.g., the information transferred from aspects to the log-
ger); 4) the logging of data, i.e., the mechanism to store the 
dynamic information (e.g., recording to a file). 

More precisely, these characteristics lead us to systemati-
cally discuss sources of overhead in the Light instrumentation. 
We can study the first characteristic to identify more efficient 
ways to gather the information such as refactoring pointcuts, 
advices and our object identification mechanism. The second 
characteristic may lead to collecting less information at run 
time and compensate for the missed runtime information by 
additional static analysis of the code, though this would addi-
tionally require that we modify the Trace and the Static models. 
The third characteristic is about minimizing the generated in-
formation from each instrumentation component to minimize 
the overhead. Finally, for the fourth characteristic we can study 
different ways of storing dynamic information. 

Our intuition from past experiments [3] is that logging and 
encoding of data are major contributors to overhead, though 
such contributions have not yet been quantified to warrant op-
timization activities. Plus, the implementation of the Light in-
strumentation followed good programming practices to im-
prove maintenance and modularity for instance; Light was not 
designed with optimization in mind. 

IV. OPTIMIZING THE DYNAMIC ANALYSIS 
We suggest optimizations for collecting data, encoding da-

ta, and logging data. We later report on experiments with dif-
ferent combinations of these optimizations (section V). Study-
ing how to collect less data at runtime is left to future work. 

A. On Collecting Data 
Optimizing data collecting includes choosing optimized 

weaving rules, optimizing aspect implementation based on Java 
refactoring or AspectJ refactoring. 

1) Weaving rules: 
Optimizing pointcuts involves choosing the right join points 

for advices, and capturing the chosen join points at the right 
time during execution. The Light instrumentation intercepts 
interactions in the SUS with call join points and pointcuts 
execute advices before each method (either static or not) and 
constructor call. Among many AspectJ join points (e.g., exe-
cution) the call join point is the only one that can capture 
sufficient data, as required by the Trace model (e.g., identifying 
callers and callees data), with a minimum number of join points 
(i.e., with the smallest overhead). Recall that capturing a fewer 
number of join points reduces the instrumentation overhead 
(fewer probe points). We decided to keep this instrumentation 
as we found it adequate from an overhead point of view. 

A user of this technology, with a priori knowledge about 
the SUS could tailor instrumentation to parts of the SUS that 
are of prime interest, for instance avoiding GUI components. 

2) Java refactoring: 
In aspects, the choice of data-types and the modularization 

of the aspect code into functions can impact overhead, i.e., in-
creasing the number of method calls (NMC). The MethodAs-
pect and IdentifierAspect aspects use a local variable of 
type LinkedList to prepare the logging information to be 

passed to the Logger. In addition, IdentifierAspect weaves 
global static variables of type int to each class in the SUS 
at runtime. Refactoring this Java code with performance in 
mind may lead to using fewer global variables to increase per-
formance (local variables operate more efficiently in Java). In 
addition, other Java data-types, such as StringBuilder, 
String, byte, short, may perform more efficiently than 
LinkedList and int as they may require less memory. An-
other refactoring could be to reduce modularity (i.e., reducing 
NMC) within aspects. For instance the Light instrumentation 
uses helper methods in its advices; their body could be copied 
directly into advices at the expense of reusability since we are 
primarily concerned with performance. 

3) AspectJ refactoring: 
We can examine different refactorings of AspectJ aspects, 

such as: 1) the choice of advice, 2) alternative object unique 
identification, and 3) the choice of APIs for dynamic infor-
mation collection. With respect to the advice, an around() 
advice would be more expensive than the current before() 
advice. One advantage of a before() advice over an af-
ter() advice is that it keeps the order of invocations in the 
trace as they happen at runtime; an after() would require 
expensive post-processing to re-construct the correct order. We 
therefore keep the current before() advice.  

A different object unique identification mechanism, not 
logging objectID during inter-type declaration, could be to 
define an after():execution(constructor) advice to 
log the object identification instead of logging during inter-type 
declaration. However, such an advice would need to collect 
more data to compensate for the data provided by the missing 
inter-type declaration. Yet another solution could be to remove 
all inter-typed objectIDgenerator() methods as well as 
calls to the logger in the IdentifierAspect aspect. In this 
case, we can identify object instances, again with the af-
ter():execution(constructor) advice, and use a Java 
data-structure (e.g., a HashMap) that counts, stores, and looks 
up object instances. The JVM does not provide any facility to 
uniquely identify objects over time; even methods such as 
hashcode() or identityHashCode() do not guarantee that 
two distinct values will be obtained for two different objects.  

To collect dynamic data in an advice one can use the As-
pectJ APIs, the Java reflection APIs, or directly change the 
Java code (without using any API). Literature indicates that 
AspectJ performs faster than the Java reflection APIs or a 
equivalent ad-hoc Java implementation [4, 19]. We thus did not 
change the use of the AspectJ API to collect dynamic data. 

B. On Encoding Data 
The (dynamic) trace data is a string of characters which is 

eventually converted into bytes in computer memory. Passing a 
lesser amount of data from one instrumentation component to 
another or to the JVM without losing any piece of data could 
reduce the amount of computer resources (memory and CPU) 
and the overhead. The Light instrumentation can be optimized 
in four ways with this respect: 1) choosing a proper Java char-
acter encoding, 2) generating a lesser amount of characters for 
each log item in advices and inter-typed methods, 3) condens-
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ing the data passed by aspects to the logger based on existing 
trace formats, and 4) changing the mechanism by which data is 
passed from aspects to the logger.  

Aside from the mentioned Java data-types (LinkedList 
and int) used to record dynamic data in memory, data is con-
verted to bytes from those data-types based on the character 
encoding used by the JVM. Using a character encoding such as	
  
US-ASCII (7 bit encoding), ISO-8859-1 or UTF-8 (8 bit en-
codings) can reduce overhead (reduced memory usage).  

The Light instrumentation produces dynamic data in a form 
similar to XMI, which requires some (formatting) processing. 
Instead, producing raw data, i.e., without formatting (and there-
fore processing) can reduce overhead. In addition, SUS pack-
age and class names with long character strings impose more 
overhead as we collect the class name information for caller, 
callee, and object identification. Mapping fully qualified class 
names to integer identifiers (e.g., with a hash table) can solve 
this issue, though at the expense of some processing (i.e., use 
of a hash table); a trade-off needs to be examined and only ex-
periments can tell us what is right. Uniquely identifying object 
instances with an integer value rather than a string (as currently 
done in Light) would reduce overhead.  

Another way to optimize encoding is to use an existing 
trace format when producing data (recall the related work sec-
tion). While such a format reduces memory usage and leads to 
sending lesser data to the logger, it imposes more computation 
to actually format the data. The tradeoff needs investigation.  

Lastly, the logger currently received log data in a generic 
way (a LinkedList object) regardless of the type of each log 
item (e.g., logs for constructor are different from others). In-
stead of such a generic logger, we can investigate loggers spe-
cialized to the different types of logs. This would reduce the 
amount of data passed to the logger (e.g., no need to pass the 
kind of call); Since the logger is invoked for each method call 
in the SUS, a gain, even small, for each call can count. 

C. On Logging Data 
With the Light instrumentation, whenever an advice exe-

cutes or an object is created, the Logger is called (synchronous 
call). The logger first reads log items from the passed 
LinkedList variable and writes the data to the disk. There are 
two main sources of overhead here: 1) the high coupling be-
tween the log generation process (i.e., aspect instrumentation) 
and the log storage process (i.e., the logging mechanism) which 
happen in the same thread of execution. Reducing this coupling 
would reduce overhead. 2) Writing to the disk adds largely to 
the runtime overhead, as there is one such operation per meth-
od call in the SUS, and two operations per constructor call. In 
general, there are two main approaches for storing dynamic 
data: logging locally or remotely. 

When logging on the same machine, we can fill a buffer of 
logs in memory and flush the buffer to disk when it is full (a 
producer-consumer implementation). This reduces the number 
of accesses to the disk and therefore overhead, at the expense 
of longer disk accesses. The performance of this solution also 
depends on the capacity of the memory and the disk technology 
(e.g., SSD). In situations where the aspect instrumentation gen-

erates a large number of log items, the faster pace of log gener-
ation over the pace of log storage may eventually exceed the 
queue capacity and slow down instrumentation. In addition, 
although the aspect instrumentation may not interact directly 
with the logger, the log storage process has a negative effect on 
the aspect instrumentation as it consumes resources. 

When logging remotely, the storage process happens in a 
log server machine and log items are sent over the network, 
possibly combined with a buffer on the client (log generation) 
side. The overhead due to local storage is replaced with over-
head due to packets construction according to the selected net-
work protocol and the overhead of sending packets to the log 
server through the network. The throughput of the network 
bounds logging: a slow network communication (either due to 
the selected protocol or the network configuration) causes a 
bottleneck and consequently hurts performance. In addition, 
depending on the selected protocol, there is a chance to lose 
some of the transferred packets from the client to the server. 

V. CASE STUDIES 
We designed three experiments to answer each research 

question (Introduction). This section first discusses the experi-
mental design of these experiments by presenting case studies 
and our measurement of overhead. We then present results. 

A. Case Study software 
We rely on two case studies to answer the Research Ques-

tions: Table I. Weka, an open source, industry sized data-
mining software, is used to understand how much each charac-
teristics of the Light instrumentation contributes to overhead 
and how much the optimized instrumentation reduces over-
head, especially on a large size software. The Producer-
Consumer system is a well known, typical producer-consumer: 
The producer creates an (empty) object, puts the object in a 
FIFO queue, and then pauses its execution (causing delay by 
calling the Java Thread.sleep() method) for a specified 
time period (deadline); Simultaneously, the consumer checks 
the queue constantly to take out any object it may contain, and 
consumes it. Consuming takes time, which we simulate by exe-
cuting a deterministic computation (with loops, method calls, 
object creations). We control the magnitude of this computa-
tion (delay), e.g., number of method calls, with a configuration 
parameter. If the queue is full when the producer wants to de-
posit an element, the producer throws an exception. This design 
gives us the opportunity to set a constant delay in the producer, 
vary the consumer delay (configuration parameter), and study 
the impact of instrumentation (the computation is traced).  

Reverse-engineering experiments require executions. We 
used a comprehensive test case that comes with the Weka dis-
tribution (Weka_TC): it asks Weka to apply multiple classifiers 
to a dataset. We designed four test cases in the Producer-

TABLE I.  CHARACTERISTICS OF THE TWO CASE STUDY SYSTEMS 

Case study Classes LOC NMCSUS RQ 
Weka Weka_TC 1,180 238,556 3,993,699 1,2 

Producer-
Consumer 

TC1 
9 237 

50,002 
3 TC2 225,002 

TC3 500,002 
TC4 5,000,002 
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Consumer, each one using a different value for the delay con-
figuration parameter: TC1 with input 104, TC2 with input 
4.5*104, TC3 with input 105, and TC4 with input 106. 

Table I summarizes characteristics of the two case studies: 
number of classes (accounting for inner classes) and lines of 
code (without counting blank lines and comment lines). The 
NMCSUS column reports on the total number of calls to con-
structors, static and non-static methods we observed within the 
SUS, which we computed thanks to a dedicated simple AspectJ 
aspect. The last column indicates which case study system is 
used to answer which research question. 

B. Overhead Measurement 
We evaluate overhead by timing program executions in two 

ways: the Linux time command (www.gnu.org/software/time) 
times the difference between the start and end of each program 
execution; calls to the Java currentTimeInMillis() meth-
od at the start and end of the SUS. We note that, unlike the 
latter, the former times the start of the JVM as well as other 
JVM bookkeeping activities (e.g., garbage collector), and not 
only the time spent executing the (instrumented) SUS. Since 
we compare the execution time for different instrumentations 
with the same time measurement in our experiments, this 
should not have any impact on our conclusions. In addition, we 
deemed our number of executions (100 executions of each test 
case) sufficient to average out such unexpected behaviours. We 
do not report on the overhead imprint on hardware resources 
(e.g., CPU and memory usage) since systems with limited re-
sources (such as embedded systems) is out of our scope. 

Execution were performed on a Asus machine (laptop) with 
an Intel(R) i7-3610QM (at 2.3 Ghz * 8), 16 GB of memory and 
250 GB Solid-State drive, running Ubuntu 12.4 64x, Open JDK 
1.6.0_30, and AspectJ 1.6.7. For the server, we used a Dell PC 
with an Intel(R) Xeon(R) (at 2.66 Ghz) quad core and 16 GB 
memory, running WindowsXP 64x, JDK 1.7.0_21. We did not 
collect any execution time for the server. 

C. Experiments 
1) Experiment for RQ1 

We conducted a set of experiments with Weka and meas-
ured execution time (using the Linux time command). The 
objective was to identify the contribution of several compo-
nents of the Light instrumentation to overhead, specifically, the 
contribution to overhead of: AspectJ interception mecha-
nisms, that is aspects without advice code (i.e., empty code) 
and without object identification mechanism and therefore 
without logging (which we refer to as AspectJOverhead); 
Object identification mechanism only, i.e., inter-typed 
methods in the IdentifierAspect, but not accounting for 

the lines that prepare and log object ID (referred to as Ob-
jectInterOverhead); Aspect advices accounting for log 
preparation in inter-typed methods, i.e., the code created to 
capture data to be recorded in trace statements (referred to as 
AdviceOverhead); Logging mechanism though without writ-
ing to the disk (referred to as LoggerOverhead); Writing data 
to the disk (referred to as DiskOverhead). AdviceOverhead 
includes AdviceObjectOverhead and AdviceContex-
tOverhead, which therefore indicates the overhead due to 
inquiring for the object information in advices and the over-
head due to collecting and preparing the rest of the information.  

We measured ObjectInterOverhead, AdviceOver-
head, LoggerOverhead and DiskOverhead indirectly. Their 
direct measure could be done by inserting calls to Java Sys-
tem.currentTimeMillis() at adequate places and printing 
out the result. This would however introduce additional over-
head, though small. Instead, we used other measurements and 
computed the six overhead values mentioned above as dis-
cussed next.  

In a first experiment, we timed execution while comment-
ing out the calls to the logger in all advices and inter-typed 
methods. This way the aspect code intercepts everything as in 
the full-fledged Light version, collects all the required infor-
mation, but does not send the information to the logger, and the 
information is therefore not saved on disk. In a second experi-
ment, we timed while not only commenting out the calls to the 
logger, but also commenting out lines that prepare the object 
data in aspects (advices and inter-type methods). Again, the 
aspect code intercepts everything but does not make calls to the 
logger, nor get object data, nor prepare the log information. In 
another (3rd) experiment, we timed with empty advices and 
without object identification, i.e., the aspect code intercepts 
everything but does not collect any information, does not iden-
tify any object instance, does not call the logger, which does 
not save anything. In another (4th) experiment, we timed with 
empty advices, though this time including object identification, 
but commenting out lines for preparing and saving log (i.e., call 
to logger). In yet another (5th) experiment, we only commented 
out the statements that save information to the disk in the log-
ger (the lines that write to the file in the logger). The aspect 
code therefore intercepts everything, collects and sends all the 
required to the logger, which prepares the trace statements to 

TABLE II. THE OVERHEAD OF DIFFERENT COMPONENTS OF LIGHT 

 Light Light\ 
CallsToLogger 

Light\ 
AdviceObject 

Light\ 
EmptyAdvice 

AspectJ 
Overhead 

Light\ 
NoDiskSave 

AspectJ interception mechanisms x x x x x x 
Object identification x x x x  x 

Advices Object info x x x   x 
Other info x x    x 

Logger x     x 
Disk writes x      

 

∎  𝑂𝑏𝑗𝑒𝑐𝑡𝐼𝑛𝑡𝑒𝑟𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 = 𝐿𝑖𝑔ℎ𝑡\𝐸𝑚𝑝𝑡𝑦𝐴𝑑𝑣𝑖𝑐𝑒 − 𝐴𝑠𝑝𝑒𝑐𝑡𝐽𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑
∎  𝐴𝑑𝑣𝑖𝑐𝑒𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 = 𝐿𝑖𝑔ℎ𝑡\𝐶𝑎𝑙𝑙𝑠𝑇𝑜𝐿𝑜𝑔𝑔𝑒𝑟 − 𝐿𝑖𝑔ℎ𝑡\𝐸𝑚𝑝𝑡𝑦𝐴𝑑𝑣𝑖𝑐𝑒
∎  𝐴𝑑𝑣𝑖𝑐𝑒𝑂𝑏𝑗𝑒𝑐𝑡𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 = 𝐿𝑖𝑔ℎ𝑡\𝐴𝑑𝑣𝑖𝑐𝑒𝑂𝑏𝑗𝑒𝑐𝑡 − 𝐿𝑖𝑔ℎ𝑡\𝐸𝑚𝑝𝑡𝑦𝐴𝑑𝑣𝑖𝑐𝑒
∎  𝐿𝑜𝑔𝑔𝑒𝑟𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 = 𝐿𝑖𝑔ℎ𝑡\𝑁𝑜𝐷𝑖𝑠𝑘𝑆𝑎𝑣𝑒 − 𝐿𝑖𝑔ℎ𝑡\𝐶𝑎𝑙𝑙𝑠𝑇𝑜𝐿𝑜𝑔𝑔𝑒𝑟
∎  𝐷𝑖𝑠𝑘𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 = 𝐿𝑖𝑔ℎ𝑡 − 𝐿𝑖𝑔ℎ𝑡\𝑁𝑜𝑑𝑖𝑠𝑘𝑆𝑎𝑣𝑒

 

Fig. 7. Measurement computations 
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be saved but does not save anything on disk.  
We therefore obtain five different execution 

times, in addition to the execution time of the 
full-fledged Light version, respectively (to the 
above discussion): Light\CallsToLogger, 
Light\AdviceObject, AspectJOverhead, 
Light\EmptyAdvice, and Light\NoDiskSave. 
The components of the Light instrumentation that are activated 
(or not) in these experiments are summarized in TABLE II. 
With such measurements, we can compute AspectJOver-
head, AdviceOverhead, LoggerOverhead, and DiskOver-
head: Fig.7. 

Although the suggested overhead measurements are mind-
ful of the overhead of the AspectJ instrumentation and the log-
ging, they do not offer a way to quantify the amount of over-
head due to the encoding of information. Designing such an 
experiment would be difficult since the encoding of infor-
mation involves many different activities that are dispersed 
around the instrumentation process. We will indirectly answer 
this question by measuring the amount of optimization due to 
better encoding of information after we conduct experiments in 
response to RQ2. Therefore, instead of measuring the amount 
of overhead due to this characteristic, we measure the amount 
of overhead reduction due to implementing encoding optimiza-
tions in the Light instrumentation. 

2) Experiment for RQ2 
We experimented with many of the suggested optimizations 

separately (section IV). We do not report on each optimization 
individually in this paper (page limits); instead we packaged 
different simple, promising (when tried separately) optimiza-
tions for collecting, encoding, and logging data in three exper-
iments, and applied all those optimizations in a fourth one. We 
confirmed that all those optimizations are lossless when com-
pared to Light. 

In a first experiment we used String instead of 
LinkedList for local variables in advices and for parameters 
to calls to the logger (String proved to outperform other data 
types we tried) and removed helper methods either by using the 
AspectJ API or copying their body where necessary. In a se-
cond experiment we used raw data instead of the format origi-
nally used in Light when transferring data to the logger, using 
int instead of String for object unique identifier, using 
String instead of LinkedList for local variables, using the 
ASCII character encoding, and using a specialized logger in-
stead of generic logger for each advice. In a third experiment 
we optimized the logger by using a custom remote logger 
communicating over TCP, keeping everything else unmodified. 
We chose TCP, over UDP, as a reliable protocol to transfer 
data. Our experimentation with UDP resulted in (trace) data 
being lost (the amount of data-loss depends on network config-
urations, network routers, distance between client and server, 
etc.). We also considered existing logging frameworks such as 
Log4J, which proved to be inadequate as it led to too much 
overhead by either not providing a large enough buffer size or 
collecting unnecessary data, thereby imposing additional over-
head. As mentioned earlier, a 4th experiment uses all the opti-
mizations of the first three together. These optimizations are 

respectively referred to as partially optimized 1, 2, and 3 (PO1, 
PO2, PO3), and “optimized”. 

We did not keep many of the optimizations we mentioned 
earlier due to increased overhead (e.g., using the Java reflection 
API instead the AspectJ API), or no overhead reduction (e.g., 
Hashmap to uniquely identify objects).  

3) Experiment for RQ3 
We used the four test cases for Producer-Consumer we 

mentioned earlier. Except for the value of the delay configura-
tion parameter, all other settings remained the same: the dead-
line in the producer thread to suspend execution was one se-
cond. A test case is considered a failure in this experiment if 
the instrumented Producer-Consumer losses data (the producer 
cannot produce); it is a success otherwise. Recall a producer-
consumer works well if the consumption rate is greater or equal 
to the production rate, but produced items will be missed if the 
consumption rate is smaller than the production rate. The test 
cases we used ensure that production is slower or equal to con-
sumption in the non-instrumented version. Therefore, all test 
cases should pass. We measured execution times using the Java 
currentTimeInMillis() method at the start and end of the 
consumer to compute the delay. We ran three versions of the 
Producer-Consumer: the non-instrumented one, which we refer 
to as Base, the original (Light) instrumentation, and the opti-
mized Light instrumentation, which we refer to as Optimized. 

4) Executions 
Each execution was repeated 100 times, and we will report 

on averages. The standard deviation of all samples was below 
1%, and we do not report on those values. Also, we compared 
samples with a Student t-test, and differences are always very 
statistically significant at α=0.05. We confirmed this with the 
Mann–Whitney U non-parametric test. 

D. Results 
1) Answering RQ1 

TABLE III shows execution time values (in seconds) for 
Base and Light, as well as the contribution (in seconds and 
percentages) of each characteristic of the Light instrumentation. 
Writing log items to disk is, as expected contributing signifi-
cantly to overhead. Unexpectedly, it is by far the largest con-
tributor to overhead (71%). Looking into alternative logging 
mechanisms to reduce this overhead is therefore paramount. 
The second highest contributor to overhead (25%) is the ad-
vice. Although this is much less than writing to the disk, this is 
still a considerable amount of overhead compared to Base. De-
spite our initial intuition, AspectJOverhead amounts to only 3% 
of total overhead, which suggests the AspectJ interception 
mechanisms we used are very efficient. The contributions to 
the overall overhead of object identification (ObjectInterOver-
head) and the logger (LoggerOverhead) are negligible. Note 

TABLE III. AVERAGE EXECUTION TIMES (100 EXECUTIONS) IN SECOND FOR EACH PART OF THE 
LIGHT INSTRUMENTATION (WEKA TEST CASE) 

Base Light AdviceOverhead ObjectInter 
Overhead 

AspectJ 
Overhead 

Logger 
Overhead 

Disk 
Overhead AdviceContext-

Overhead 
AdviceObject-

Overhead 
0.37 17.50 

(%100) 
3.57 
(%20.4) 

0.89 
(%5) 

0.076 
(%0.4) 

0.435 
(%3) 

0.025 
(%0.1) 

12.5 
(%71.4) 
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that we consider the ObjectInterOverhead to be repre-
sentative of the overhead due to object identification. 
Thus, the inter-typed declarations we used for object 
identification does not impose much overhead. 

2) Answering RQ2 
All partially optimized instrumentations indicate 

overhead reduction (TABLE IV). As we anticipated, 
optimizing the logging mechanism (PO3) showed the 
largest amount of overhead reduction (53%). Optimiza-
tions on encoding data (PO2) showed the second largest 
overhead reduction (30%), as optimizing data encoding 
results in the least data transmission and trace size. Op-
timizations on collecting data (PO1) showed the small-
est amount of overhead reduction. Since there is not 
much additional optimization we could envision for 
collecting data, besides collecting fewer data and compensat-
ing with additional static analysis, we believe this is another 
indication of the effectiveness of AspectJ interception mecha-
nisms. We show two execution times for the optimized in-
strumentation: timeSUS is the amount of time to execute We-
ka_TC and illustrates nearly 74% overhead reduction com-
pared to Light. On the other hand, the client virtual machine 
has to wait for 285 seconds (timelog) after the end of the execu-
tion of the SUS (Weka) for all the packets to be transferred 
from the client to the server. The risk, although we have not 
observed it, is that this may translate into overhead for the SUS 
if buffers used for network communication get full. The reason 
for such TCP behaviour is that the TCP congestion control 
mechanism slows down the rate by which the client packets are 
sent and consequently creates a bottleneck.    

TABLE IV also shows the trace size for each optimization. 
Among different partial optimizations, PO2 and Optimized 
show reduced trace size, as expected. The optimized version 
generates a slightly larger trace due to a mechanism we insert-
ed to monitor transmission of data.  

Looking at the size of traces (TABLE IV) and the time 
spent to write data on disk (DiskOverhead in TABLE III) the 
Light instrumentation needs, on average, to send data to the 
Logger at a rate of 250 megabyte/second (mb/s): LightTrace-
Size/(LightOverhead-DiskOverhead). Our network bandwidth 
allowed for at most 12.5 mb/s which is far less than 250 mb/s. 
Therefore, fixing this TCP bottleneck, either by solving the 
congestion control problem (e.g., using parallel TCP sockets) 
or using another fast, but reliable protocol (such as SCTP) will 
increase the network throughput and improve performance, 
though unlikely to the required rate mentioned above. 

We conclude that different criteria must be accounted for 
and adapted when optimizing the logging mechanism, includ-
ing network throughput, network bandwidth, overhead due to 
encoding data for network transmission, system resources 
(memory and CPU), type of communication protocol, and that 
these criteria have various, conflicting impacts on a given so-
lution.  

3) Answering RQ3 
TABLE V shows actual delays due to instrumentation and 

a coarse grained comparison of relative executions between 
the consumer and the producer: “Greater” (resp. “Smaller”) 

means that the consumption rate is greater (resp. smaller) than 
the production rate, i.e., the producer is slower (resp. faster) 
than the consumer, “Equal” means the two rates are approxi-
mately the same (both producer and consumer work at approx-
imately the same pace). The delays in the Base and Light col-
umns indicate the average (over 100 executions) time for the 
consumer to consume an object. Delay values in the optimized 
column illustrate two different measures: the first (left) col-
umn indicates the average consumption time when the aspects 
do not have to wait for access to the logging buffer (i.e., the 
buffer is not full); the subscript indicates the number of queue 
accesses the consumer performs while this condition holds; the 
second (right) column indicates the average consumption time 
when the logging buffer gets full (because of low network 
transfer rate) and the aspects have to wait for access to the 
logging buffer. The producer is negligibly affected by the in-
strumentation as it executes only one method call (to the 
queue) in case the queue is not full and therefore only one call 
is instrumented: its execution times are therefore not reported.  

For Base (TABLE V), the consumer is faster than the pro-
ducer in each test case. However, in Light, the consumer is 
slower than the producer for TC3 and TC4. This is evidence 
that the instrumentation changes the behaviour of the SUS: the 
producer cannot produce objects. With our optimization (“Op-
timized” column), only TC4 shows a change of behaviour, 
indicating that we reduce the risk of behaviour change due to 
instrumentation. The amount of delay (second column) for the 
optimized solution is worse than Light for all four test cases as 
the instrumentation buffer gets full. The optimized logger is not 
fast enough at removing log items from the instrumentation 
buffer and sending them over the network because of the low 
throughput of the TCP network protocol. This is another incen-
tive for trying to reduce the amount of data to log (and there-
fore transfer to the server). The number of consumer execu-
tions in the first column of optimized (subscript) declines from 
TC1 to TC4 as the length of consumer executions grows. 

VI. CONCLUSION 
A hybrid instrumentation strategy is a good idea when re-

verse engineering object interactions since it benefits from the 
good characteristics of static and dynamic strategies. Our pre-
vious work identified that our hybrid strategy imposed execu-
tion time overhead, since it was not designed with performance 

TABLE IV. AVERAGE EXECUTION TIMES (100 EXECUTIONS) FOR NO INSTRUMENTA-
TION, LIGHT, PARTIALLY OPTIMIZED AND OPTIMIZED INSTRUMENTATIONS 

Test case Base Light Partially Optimized Optimized 
1 2 3  timeSUS  timelog  

Weka_ 
TC 

Time (sec) 0.37 17.51 
100% 

14.90 
-15% 

12.22 
-30% 

8.34 
-53% 

4.60 
-74% 289.85 

Size (MB) no trace 1250 1250 460 1250 488 

TABLE V. EFFECT OF INSTRUMENTATION OVERHEAD ON THE PRODUCER-CONSUMER 

 Base Light Optimized 
Rate Consumer delay Rate Consumer delay Rate Consumer delay 

TC1 Greater 1.5*10-5 Greater 0.229 Greater 0.07165 3.5 
TC2 Greater 4*10-5 Equal 1.008 Greater 0.3236 14.7 
TC3 Greater 8.5*10-5 Smaller 2.27 Greater 0.7114 35 
TC4 Greater 77*10-5 Smaller 23.18 Smaller 5.71 355 

 



Carleton University, Technical Report SCE-15-02  November 2015 

in mind but rather with maintainability, understandability ob-
jectives (i.e., good design principles), that may become unac-
ceptable if one wants to reverse engineer object interactions 
from a multi-threaded software. In this paper we therefore tried 
to precisely characterize and quantify possible sources of over-
head. This gave us actionable findings, specifically, which 
characteristics of our hybrid instrumentation to change (opti-
mize) the instrumentation and to reduce execution time over-
head. We implemented a number of such optimizations and 
experimented on one, industry size case study. We also evalu-
ated to what extent execution time overhead can indeed change 
the observed behaviour when one reverse-engineers a multi-
threaded software. Results indicate that our optimizations can 
reduce overhead up to 74% compared to our previous hybrid 
work. However, their benefit diminishes when the system runs 
long executions because of the low throughput of the TCP pro-
tocol. We believe our findings can be used more broadly to 
reduce instrumentation overhead in other contexts. Other ave-
nues for optimization can be considered, including: a faster, 
more reliable network protocol (e.g., SCTP), further reducing 
the amount of data collected at runtime and compensating with 
more static analysis (e.g., point-to analysis, call graph). 
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VII. APPENDIX 
In this appendix, we conduct different experiments to 

find best optimization activities for: collecting data (A), 
encoding data (B), and logging data (C). We investigate 
which optimization alternative worsens and which reduces 
the overhead. In many of experiments in this appendix, we 
use Overhead Emulator (OE) case study, a small and easy to 
setup program with four classes,  which emulates overhead 
by making method calls (NMC: four millions) and using 
loops and conditionals. We intentionally adjusted the NMC 
in OE close to Weka_TC to be able to generalize optimiza-
tions for larger systems. We use Linux time command for 
all experiments in this section. For most of experiments (ex-
cept Log4J experiment), we report on average execution 
time of 100 executions and confirm the result similar to the 
process mentioned in V.C.4 (though, we do not report on 
statistical values in this technical report).  

A. Experiments on Collecting Data 
In this section, we conduct different experiments to find 

best refactoring activities suggested in IV.A. These experi-
ments address optimizations on: variable's data-type and dec-
laration type (section 1), dynamic context collection (section 
2), and object identification mechanism (section 3). We use 
OE case study for the first two optimizations and both We-
ka_TC and OE case studies for the last optimization. As not-
ed before, different refactoring activities would not be im-
pacted by the differences of the two cases study systems. 

1) The variable's data-type and declaration type 
The choice of data-type and declaration type can poten-

tially change the performance of Light instrumentation. We 
replace local variable of type LinkedList (such as line 9 in 
Fig. 5) and class variable of type int (such as lines 1 and 2 
in Fig. 3) in MethodAspect and IdentifierAspect with 
other local or global Java data-types to understand which 
data-type with which declaration type performs more effi-
ciently in the Light instrumentation. We conduct experiments 
with objects of type LinkedList, StringBuilder and 
String as well as primary Java data-types short, byte and 
String1 where each data-type (or object) is declared either 
as a class (or aspect) variable or method (or advice) variable. 
Note that except primary Java data-types all other data-types 
in Java should be initialized as a new object before assigning 
to a variable.  

a) experiment design:  

                                                             
1 In this case Java simulates the variable of type String similar to 
primary data-types by assigning string literals directly to the variable.  

We conduct nine experiments based on OE to evaluate 
data-type and declaration type alternatives other than local 
LinkedList and global int. We look at data-types String 
and StringBuilder to replace LinkedList and primary 
data-types short (16 bit) and byte (8 bit) to replace int 
(32 bit). Data-types String and StringBuilder are cho-
sen since they are common Java data-types for immutable 
and mutable string variables respectively (we do not choose 
StringBuffer since Java documentation suggests 
StringBuilder performs faster). Primary data-types 
short and byte are chosen since they require less memory 
for initialization compared to int. In the first experiment, we 
modify the Light instrumentation by replacing the local vari-
able of type LinkedList in advices and inter-typed methods 
(i.e., className.objectIDgenerator()) with the stat-
ic variable of type LinkedList in aspects (i.e., global vari-
able) to measure the execution time. In another set of exper-
iments, we conduct four experiments where, in the first two, 
we replace the local variable of type LinkedList in the 
Light instrumentation with the local variable of types 
String and StringBuilder and in the second two, simi-
larly to the first experiment, we replace the local variable of 
type LinkedList with the static variable of types 
String and StringBuilder in aspects. When we create 
StringBuilder object, we assign the length of log item to 
the constructor of this object. Note that we initialized local 
String variable as a new object where we used the keyword 
new for a single String variable creation throughout the 
advice or inter-typed methods for the whole log item (in case 
of the global variable, a single static String variable is 
newed in the aspect). Alternatively, we can pass string liter-
als directly to the String variable without using the key-
word new. We think String should be performing more 
efficiently in this case since JVM uses its string pool for var-
iable initialization. In addition, we suspect there is overhead 
due to concatenation operation since a local LinkedList 
variable in advice uses the concatenation operation 12 times 
to form a log item. Therefore, we run another experiment 
(sixth experiment) to measure execution time where we re-
place the local variable of type LinkedList in advices with 
17 and in inter-typed methods with three local variables of 
type String (literals assigned directly). In this case the 
Logger needs to be modified based on advices and methods. 
Note that multiple local String declarations are negligible 
in this situation since Java initializes String data-type (with 
direct assignment of string literals) similar to its primary 
data-types with very little initialization overhead (In fact, our 
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experiment (not reported here) indicates that the difference 
between single declaration and multiple declarations is a 
fraction of millisecond). Similarly to the sixth experiment, 
we conduct the seventh experiment this time based on local 
String objects with no concatenation operation to measure 
the execution time. This execution time helps us to better 
understand the impact of concatenation overhead in the Light 
instrumentation. Finally, we conduct the last two experi-
ments by replacing the static variable of type int in the 
IdentifierAspect (lines 1, 2, 3, 4 in Fig. 3) with short 
and byte to investigate performance improvement due to 
using less memory.  

It is important to note that when static mutable data-
types (i.e., global LinkedList and StringBuilder) re-
place the local LinkedList, unlike the local LinkedList, 
they do not cause any initialization overhead in advices (or 
inter-typed methods). However, static mutable data-types 
impose an additional overhead due to deletion operation at 
the end of advices (or methods) by emptying the global vari-
able after passing the log item string to the Logger. There is 
no such need (i.e., deletion operation) in the case of global 
immutable variable (i.e., global String object) since a new 
immutable object has to be created when the old object is 
modified. Note that, except the sixth and seventh experi-
ments, new data-types (either local or global) do not add any 
new concatenation operation to the ones already exist in the 
local LinkedList. 

For all nine experiments, we disable calls to the Logger 
in advices and inter-typed methods (same as the way 
Light\CallsToLogger is calculated in TBALE II). This way, 
we remove the logging overhead from the Light instrumenta-
tion and able to better monitor the impact of data-type 
changes in the collecting of information. Note that we lim-
ited our choices of data-type only to those mentioned ones 
since they satisfy simple string operations efficiently: insert 
string operation, remove operation, and return string opera-
tion. Other Java data-types (such as HashMap and TreeSet) 
do other operations efficiently rather than performing basic 
operations on string literals and integer numbers efficiently. 

b) experiment results: 
TABLE VI shows the execution times of experimenta-

tions on OE with different data-types and declaration-types 
when no call is made from aspects to the Logger. The second 
column in the table shows the execution time of the Light 
instrumented OE when no call is made from aspects to the 
Logger (i.e., Light\CallsToLogger). We use this execution 
time as a index to compare with other execution times. 
Though, we verified the equivalency of the generated trace in 

all experiments with the trace of Light instrumentation be-
fore calculating execution times in the table. TABLE VI 
shows that both global LinkedList and StringBuilder 
data-types (third and ninth columns) performed worse than 
local LinkedList. The slight increase (2%) in the execution 
time of global LinkedList compared to execution time of 
local LinkedList shows that the overhead due removing 
log item at the end of advices is more than the overhead due 
to LinkedList creation. In the case of global String-
Builder, the execution time (due to replacing local 
LinkedList) marginally increased (by 7%). Even the local 
declaration of StringBuilder (in the eighth column) did 
not perform better than local LinkedList (by adding 9% to 
overhead). The StringBuilder object is an array based 
data-type where a variable-length array contains a sequence 
of characters (of type CharSequence). Therefore, the over-
head of inserting new strings of a log item and removing the 
log item in the local LinkedList is still better than the type 
StringBuilder (declared either locally or globally). Note 
that by assigning the number of characters in the log item to 
the constructor of StringBuilder, we do not change the 
length of array (and consequently do not add more over-
head). 

When we replaced local LinkedList with a single 
String object, declared either locally in advices (second 
experiment) or globally in aspects (fourth experiment), exe-
cution times (fourth and fifth columns) increased by more 
than 50 percent. When we removed all concatenation opera-
tions and declared 17 local String objects in advices (sev-
enth experiment), the execution time (sixth column) reduced 
by 40 percent. This difference between execution times 
(when a single or multiple String objects declared) indi-
cates the heavy cost of using concatenation operation due to 
the immutable creation of String instances: each time a 
String object is appended with new characters, a new 
String instance is created. As we expected, when string 
literals are directly assigned to the String without using any 
concatenation operation (sixth experiment), the execution 
time (seventh column) cut nearly into half of the local 
LinkedList execution time. When we replaced static 
int with static short or static byte (eighth and ninth 
experiments), execution times ( tenth and eleventh columns) 
slightly reduced. Though, variables of type short and byte 
need to be cast to int again before returning the value when 
calls to the logger are activated. Therefore, it does not worth 
to change the int variables in the Light instrumentation. 

TABLE VI. MEAN EXECUTION TIMES (100 EXECUTIONS) FOR DIFFERENT DATA TYPES WITH NO CALL TO THE LOGGER  

Time 
(second) 

 
Case 
Study 

LinkedList 
(local) 

LinkedList 
(global) 

String 
(local 

object) 

String 
(global 
object) 

String 
(distinct 

local object) 

String 
(local, passing 

literals) 

StringB
uilder 
(local) 

StringB
uilder 

(global) 

short 
(Identifie
rAspect) 

byte 
(IdentifierA

spect) 

OE	
   3.72	
  
(100%)	
  

3.80	
  
(+2%)	
  

5.81	
  
(+52%
)	
  

6.02	
  
(+62%)	
  

2.22	
  
(-­‐40%)	
  

2.02	
  
(-­‐46%)	
  

4.05	
  
(+9%)	
  

3.99	
  
(+7%)	
  

3.66	
  
(-­‐1.5%)	
  

3.66	
  
(-­‐1.5%)	
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 try { 
 
  Method method = 
((ObjectID)thisJoinPoint.getThis()).getClass() 
.getMethod("getObjectID"); 
  thisID = 
(method.invoke((thisJoinPoint.getThis())).toString()); 
 
 } catch (IllegalArgumentException e) { 
  e.printStackTrace(); 
 } catch (IllegalAccessException e) { 
  e.printStackTrace(); 
 } catch (InvocationTargetException e) { 
  e.printStackTrace(); 
 } catch (Exception e) { 
  e.printStackTrace(); 
 } catch (ClassCastException e) { 
  thisID = "Caught NonInstrumentedCaller"; 
 }	
  

Fig. 8. IdGenerator class 

 

2) Modifying dynamic context collection in aspects 
In this section, we want to understand the effect of modi-

fying dynamic context collection on the performance of 
Light instrumentation. More precisely, we ask the following 
RQ: How does reducing the NMC within aspect, using As-
pectJ APIs, and using Java reflection APIs change the over-
head in the Light instrumentation? 

a) experiment design: 
We design three experiments. In the first experiment we 

hardcode all helper methods within MethodAspect (lines 78 
to 94 in Fig. 2) in advice bodies. In the second experiment, 
we use AspectJ APIs to replace helper methods within 
MethodAspect and hard code helper methods in advice 
body if there is no AspectJ API for our purpose. We use the 
following AspectJ APIs: getName(), getSignature(), 
getFileName(), getLine(). In the third experiment, we 
replace the AspectJ API we used for capturing object identi-
fiers (e.g., lines 11 to 16 in Fig. 5) with the Java equivalent 
using Java reflection API (e.g., Fig. 8). 

We evaluate experiments based on two criteria: NMC 
and execution time. Similarly to the previous experiments, 
after verifying the equivalency of the trace generated from 
each experiment with the trace from the Light instrumenta-
tion, we disable calls to the Logger in advices and inter-typed 
methods when we measure execution times. This provides 
better observation over the effect of modifying dynamic con-
text collection. In addition, we are concerned with method 
calls due to the instrumentation package, that is method 
calls originating from the instrumentation package. 
NMC is the number of places (callers) in the instrumentation 
package where an invocation (or a series of invocations) is 
made to another method in the instrumentation package: e.g., 
advice to logger. We report NMC thanks to a modified ver-
sion of the Light instrumentation (i.e., manual alteration of 
its advices) that, in addition to reporting on object interac-
tions in the SUS, reports on calls that take place within the 
instrumentation package, i.e, the aspects and helper classes. 
The information we collect for each call includes: the call 
type (static/non-static/constructor), the caller's name and 
location, and the callee's name. Note that this heavier (from 
an execution time point of view) version of the Light instru-
mentation has the same instrumentation behavior as the Light 

instrumentation (measurement is accurate) and is only used 
for measuring NMC; it is not used to measure execution 
time.  

b) experiment results: 
TABLE VII shows execution times and NMCs in OE for 

different experiments. The second column (index column) 
shows the NMC and execution time for the Light instrumen-
tation. The result of the first experiment (third column) 
shows that even though the NMC was reduced nearly by 
half, the execution was reduced slightly. This indicates that 
AspectJ compiler does many of optimizations regarding local 
method calls that we manually hardcoded in the advice body. 
However, when we used AspectJ APIs and not used any 
helper methods (fourth column), the execution time reduced 
largely (by 40%). This shows the efficiency of AspectJ APIs 
over the plain Java implementation. When we replaced As-
pectJ API with Java reflection API in the third experiment 
(fifth column), the execution time largely increased. There-
fore, according to the way we used AspectJ and Java APIs, 
we can conclude that AspectJ performs more efficiently 
compared to pain Java or reflective Java APIs implementa-
tions. 

3) Modifying object identification mechanism 
In this section, we examine different modifications in the 

object identification mechanism for the possibility of over-
head reduction. We answer the following RQ with experi-
ments in this section: How does the overhead of Light in-
strumentation change when a) the callees's object identifier is 
captured with a new advice instead of inter-type declaration, 
b) a HashMap structure is used instead inter-typed methods? 

a) experiment design: 
We design two experiments where in the first experiment 

we replace the lines in objectIDgenerator() method in 
the IdentifierAspect (lines 6, 8, 9 in Fig 3) with a new 
after():execution(constructor) advice (Fig. 9) in the 
MethodAspect. In this case, no call to the logger will hap-
pen during inter-type declaration. However, such an advice 
would need to collect class name information dynamically 
(line 12 in Fig. 9), whereas the class name information is 
retrieved statically in the missing inter-typed method (line 8 
in Fig. 6). In the second experiment, we modify Light in-
strumentation in that we remove all inter-typed objectID-
generator() methods (Fig. 3) as well as calls to the logger 
in the IdentifierAspect aspect. In this case, we can iden-
tify object instances, again with the after(): execu-
tion(constructor) advice (Fig. 9), and use a Java data-
structure that counts, stores, and looks up object instances. 
For this experiment, we choose the HashMap data-structure 

TABLE VII. MEAN EXECUTION TIMES (100 EXECUTIONS) FOR DIFFERENT 
DYNAMIC CONTEXT COLLECTION MECHANISMS 

Case	
  Study	
   Light	
   NoHelper	
   NoHelper	
  
WithAsjAPI	
  

LightWith	
  
JavaAPI	
  

OE	
  
Time	
   3.72	
  

(100%)	
  
3.68	
  
(-­‐1%)	
  

2.22	
  
(-­‐40%)	
  

6.96	
  
(+74%)	
  

NMC	
   36,000,018	
  
(100%)	
  

20,000,013	
  
(-­‐45%)	
  

20,000,013	
  
(-­‐45%)	
  

28,000,022	
  
	
  (-­‐22%)	
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pointcut executeConstructor() : execution (PackageName..new(..)) && !within 
(instrument..*); 

 
after(): executeConstructor () { 
 String thisID = new String(); 
 LinkedList log = new LinkedList(); 

 
  try{ 
  thisID = ((ObjectID) thisJoinPoint.getThis()).getObjectID(); 
   }  
   catch (ClassCastException e) { 
   thisID = "Cought NonInstrumented Constructor"; 
  } 
 
 log.add("<Lifeline className=\" "  
  + MethodAspect.getNewBindToClassName(thisJoinPoint.toString()) 
  + "\" name=\" " + thisID + "\">"); 
 Logger.getLoggingClient().instrument(log); 
}	
  

Fig. 9. after():excuteConstructor() advice 
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package instrumentation; 
public final class IdGen { 
 private static IdGen singletonInstance; 
 Map<String, Integer> idmap = new HashMap<String, Integer>(); 
 
 private IdGen() { 
 } 
 
 public static IdGen getSingletonInstance() { 
  if (null == singletonInstance) { 
   singletonInstance = new IdGen(); 
  } 
  return singletonInstance; 
 } 
 
 public String getObjectId(String key) { 
  String id; 
  Integer value = idmap.get(key); 
  if (value != null) { 
   value++; 
   idmap.put(key, value); 
   id = key + value.toString(); 
  } else { 
   value = 1; 
   idmap.put(key, value); 
   id = key + value.toString(); 
  } 
  return id; 
 } 
}	
  

Fig. 10. IdGen class 
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private String PackageName.ClassName.objectID; 
declare parents : PackageName.ClassName implements ObjectID; 
public String PackageName.ClassName.getObjectID() { 
 if( objectID == null ) 
  objectID = 
IdGen.getSingletonInstance().getObjectId("ClassName_"); 
 } 
 return objectID; 
}	
  

Fig. 11. Excerpt of modified IdentifierAspect aspect 

 

 

(Fig. 10). The IdGen class uses class 
name as the key to assign values (i.e., 
objectID) to the HashMap.  

We modify IdentifierAspect 
aspect according to the IdGen class 
(Fig. 11). With new modifications, 
every time a call is made to 
getObjectID() method in the Iden-
tifierAspect, getObjectID() 
method checks whether the object has 
yet identified or not (line 4 in Fig. 11). 
If the object has not identified before 
(i.e., the value of objectID is null), 
this method calls getObjectId() 
method from the IdGen class and 
passes the class name as a key to it. 
The method looks up in the HashMap 
based on class name to check if any 
value has assigned to the class name 
(line 19 in Fig. 10). If the value has not 
been assigned to a class name, 
getObjectId() method adds class 
name as a new key to the HashMap and 
assigns a new value to the new class 
name (lines 23 to 27 in Fig. 10). Oth-
erwise, that particular class has more 
than one object instance and the meth-
od should return a new identifier for 
the object of that class (lines 20 to 22 
in Fig. 10). 

For the first and second experi-
ments, we measure the execution time 
based on OE and Weka_TC case stud-
ies respectively.  

b) experiment results: 
The third column in the TABLE 

VIII shows that when we captured 
callee's object identifier with the new 
advice in the first experiment, the 
overhead reduction was negligible in 
OE. Similarly, use of HashMap and 
after():execution() advice to-
gether in the second experiment (third 
column in the TABLE IX), slightly 
reduced the overhead. This confirms 
our earlier results (section V.D.1) that 
the object identification overhead is a small fraction of the 
total overhead in the Light instrumentation. 

B. Experiments on Encoding Data 
In this section, we investigate different optimization ac-

tivities suggested for encoding data and their impact of on 
overhead. We want to answer the following RQs in this sec-
tion: RQ1: do different Java character encodings change the 
overhead and if so to what extent? RQ2: how does the use of 
raw format instead of Light format can change the overhead? 
RQ3: does the use of a logger with a specialized method for 

TABLE VIII. MEAN EXECUTION TIMES (100 EXECUTIONS) FOR LIGHT WITH 
NEW EXECUTION ADVICE 

Case	
  Study	
   Light	
   4AdviceLight	
  

OE	
   15.44	
  
(100%)	
  

15.28	
  
(-­‐1%)	
  

 
TABLE IX. MEAN EXECUTION TIMES (100 EXECUTIONS) FOR LIGHT WITH 

HASHMAP  

Case	
  Study	
   Light	
   HashMap	
  

Weka_TC	
   17.51	
  
(100%)	
  

17.29499	
  
(-­‐1%)	
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each advice reduce the overhead? RQ4: How does long class 
names increase the overhead? 

1) experiment design: 
We design four experiments to answer each RQ: First, we 

examine different Java character encodings (US-ASCII (7-bit 
encoding), ISO-8859-1 (8-bit encoding), UTF-16 (16-bit 
encoding)) on the Light instrumentation and compare them 
with default character encoding (UTF-8) of the Light instru-
mentation based on their execution time. We try different 
encodings since using a Java encoding with a minimal re-
quired space at compile time can reduce the amount of 
memory being used by aspects. We pass the encoding type as 
a JVM parameter at runtime, however, we note that SUS 
should be compatible with the chosen type of encoding. 

Second, we change the Light instrumentation in that use 
raw format instead of Light format. In other words, aspects 
only pass the required dynamic information to the logger 
without using any specific format. Processing this infor-
mation to any specific format is left for after execution. 
Therefore, we expect reduction on the trace size and conse-
quently on the overhead. The local LinkedList variable in 
callMethod, callStaticMethod, callConstructor 
advices and objectIDgenerator method contains seven, 
six, six, and two pieces of information respectively.  

Third, in order to understand whether modifying the log-
ger to pass fewer arguments from aspects to the logger re-
duces the overhead, we design two versions of modified 
Light instrumentation: one with specialized logger and one 
without specialized logger. In the instrumentation with spe-
cialized logger, we modify the instrument() method in 
the logger based on the type of each advice and method. In 
this case, aspects pass fewer arguments to the logger. We 
change the Light instrumentation in that callMethod, 
callStaticMethod, callConstructor advices and ob-
jectIDgenerator method pass six, five, five, and two var-
iables of type String, when literals are assigned directly, 
respectively to the logger. In the instrumentation without 
specialized logger, aspects and inter-typed method pass 17 
and 3 String variables respectively to a logger that does not 
use of specialized methods (this instrumentation is the same 
as instrumentation mentioned in sixth experiment of 
VII.A.1). Then, the comparison between execution times of 
these two instrumentations should show the effect of passing 
fewer arguments. Note that generated trace from both exper-
iments should be equal. 

Fourth, we examine the impact of long class names on 
overhead by changing the name of each class OE from a sin-
gle character name to a 20-character name. This should dis-
close the whether there is any impact on overhead if SUS 
contains long class names and to what extent the overhead 
can change.             

We compare the execution times of all experiments based 
on OE case study. Note that except the second experiment, 
all other experiments generate trace according to the Light 
format. 

2) experiment results: 
Columns two to five in TABLE X (RQ1: first experi-

ment) show no substantial differences in overheads of differ-
ent Java character encodings, only US-ASCII encoding per-
formed slightly better. However, we note that combining the 
most efficient character encoding and Java data-type would 
considerably reduce the overhead for this type of optimiza-
tion (as shown for the efficient data-type in VII.A.1). sixth 
column (RQ2: second experiment) shows 25% overhead 
reduction when dynamic data is only passed to the logger 
(raw format). In addition, we observed the 66% shorter trace 
(trace size: 337.6 MB) compared to the Light trace (trace 
size: 989.6 MB). Eighth and ninth columns (RQ3: third ex-
periment) indicate that specialized logger can slightly reduce 
the overhead compared to the instrumentation without spe-
cialized logger (eighth column). However, this reduction is 
not considerable in our case study. Seventh column (RQ4: 
fourth experiment) shows that in the modified OE case study 
with larger class names indeed increased the trace size (trace 
size: 1320.8) as well as the overhead. However, despite our 
initial intuition, class name was not a big source of overhead. 

C. Experiments on Logging Data 
In this section, we study different optimization activities 

when logging on a remote machine or the same local ma-
chine.  

1) Remote logger 
We want to understand: RQ1: how does the Log4J 

framework can change the overhead? RQ2: how does a cus-
tomized logger based on TCP protocol can change the over-
head? and RQ3: how does a customized logger based on 
UDP protocol can change the overhead? 

a) experiment design: 
We design three experiments based on OE case study to 

examine different logging mechanisms suggested by RQs. 
Note that we do not report on the detailed implementation of 
each logging mechanism, rather we report on the design of 
each logging mechanism. In the first experiment, we modify 
Light instrumentation to log both on client and server using 
Log4J library. We change MethodAspect by adding a new 
advice to start a new thread on client and establish a client-
server connection before the start of SUS. We configure this 
logger for asynchronous communication (AsyncAppender) 
and increase the buffer size to five gigabytes on the client 
side. In the second experiment, we replace the generic logger 
of Light instrumentation with a TCP-based logger on client 
and server. Similarly to the previous experiment, we change 

TABLE X. MEAN EXECUTION TIMES (100 EXECUTIONS) OF DIFFERENT PRACTICES FOR ENCODING DATA  

Case	
  study	
   ASCII	
   ISO-­‐8859-­‐1	
   UTF-­‐8	
  (default)	
   UTF-­‐16	
   RawFormat	
   LargeClassName	
   AllArgs	
  
Logger	
  

FewerArgs	
  
Logger	
  

OE	
   15.05	
  
(-­‐2%)	
  

15.12	
  
(-­‐1.3%)	
  

15.31	
  
(100%)	
  

15.32	
  
(+1%)	
  

11.46	
  
(-­‐25%)	
  

16.47	
  
(+7.5%)	
  

11.40	
  
(100%)	
  

11.28	
  
(-­‐1%)	
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MethodAspect to start a new thread before SUS 
starts and open a TCP socket on the client. In addi-
tion, we use queue as a buffering mechanism on 
both client and server. Using queue makes aspects, 
TCP connections, and writes to disk operation (on 
server) work asynchronously from each other. In the 
third experiment, we replace the generic logger in 
the Light instrumentation with a UDP-based logger. 
Similarly to the second experiment, we start client 
socket (DatagramSocket()) before the beginning 
of SUS's execution, and use a queue both on client and serv-
er. 

b) experiment results:  
TABLE XI shows the execution time and recovered trace 

size on the server side based on OE for each experiment. We 
report on two types of execution times for each experiment: 
timeSUS and timelog. The timeSUS indicates the amount of time 
spent to execute SUS on the client whereas the timelog shows 
the time span that the client virtual machine has to wait from 
after the end of the execution of the SUS until all the packets 
has transferred from the client to the server. Note that we 
calculated the average execution time from 10 executions in 
the first experiment and 100 executions for the second and 
third experiments.  

The second column (RQ1: first experiment) shows that 
using Log4J library not only did not improve the Light in-
strumentation's overhead, but it worsened the Light's over-
head by a very large margin. In addition, the timeSUS and the 
timelog were the same in the Log4J experiment. This indi-
cates that even though we enabled asynchronous network 
communication and allocated a large buffer size, the Log4J 
framework did not perform well based on requirements of 
our instrumentation. The trace size shows that Log4J is loss-
less for transferring data. 

The timelog in the third and fourth columns (second and 
third experiments) shows that both TCP and UDP based log-
gers were able to largely reduce the overhead of Light in-
strumentation. However, as we noted in V.D.2, timelog col-
umns show a large waiting time for the next execution task 
of the SUS on the client. The trace size of these loggers in 
the table indicates that the TCP-based logger is a lossless 
logger, while the UDP-based logger loses on average 2% of 
total trace size. Therefore, since we are looking for a lossless 
transfer of information, UDP-based logger would not be a 
proper logger for our instrumentation. 

2) Local logger 
We want to understand the performance 

gain when replacing the generic logger in 
Light, which writes each log items on file as 
soon as they are generated, with another cus-
tomized local logger (so called CacheLog-

ger), which buffers logs in memory and decouples the log 
generation from the logging. 

a) experiment design: 
We design an experiment based on OE case study to 

evaluate the performance of a CacheLogger based design. 
We implement CacheLogger (Fig. 12) based on a producer-
consumer design: a log generator thread (i.e., aspects) gener-
ates log items, while CacheLogger thread stores log items on 
disk. The producer thread puts log items, received from the 
aspects, in a queue as in a memory buffer. We used a 
LinkedBlockingQueue data structure in Java since it is 
thread safe and maintains the order of logging data. Each log 
in LinkedBlockingQueue is a string representing a “log 
item”. Simultaneously, CacheLogger thread (the consumer 
thread) removes the <String> of log item from the queue 
and adds the log item to a LinkedList<String> Cache 
(the second buffer). If the Cache size reaches the Cache lim-
it, the CacheLogger thread flushes the log items from the 
LinkedList Cache to the disk. The CacheLogger thread 
uses a variable of type BufferedWriter to take log items 
off the Cache and to flush them to the disk. Depending on a 
system configuration and resources, different Cache sizes 
may perform differently. The user can change the Cache size 
to understand with which Cache size the CacheLogger thread 
has the best performance. With our configuration, our empir-
ical analysis shows that setting the Cache size to 104 bytes 
results in the best performance in the CacheLogger. When 
aspects (the producer thread) finish generating log items, 
which indicates the end of execution of the Light instrumen-
tation of the SUS, the aspect code calls the forceFlush() 
method in the CacheLogger. The forceFlush() method 
removes the remaining items from the queue, adds them to 
the Cache, and flushes them to the disk. It is imperative to 
synchronize both cache and queue during the logging process 
to not lose any log item when the consumer thread removes 
all log items from the queue. 

TABLE XI. MEAN EXECUTION TIMES (10 AND 100 EXECUTIONS) FOR LOGGING MECHANISMS 

Case 
Study 

Log4J TCP UDP 

timeSUS	
   timelog	
   TimeSUS	
   timelog	
   TimeSUS	
   timelog	
  

OE	
  

Time	
  
(sec)	
   5357	
   5357	
   6.67	
  

(-­‐57%)	
   345.80	
   6.75	
  
(-­‐56%)	
   98.55	
  

Size	
  
(MB)	
   989.6	
   989.6	
   974.2	
  

 

Fig. 12 CacheLogger design 
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b) experiment results: 
TABLE XII shows execution time without Instrumenta-

tion (third column), Light instrumentation with the generic 
Logger (fourth column), and Light instrumentation with 
CacheLogger (fifth column). Similar to past experiments, 
TimeSUS shows the time span from the beginning until the 
end test case OE_TC2 and TimeLog shows the time required 
for logging after the completion of the test case. The %55 

performance improvement of CacheLogger (i.e., TimeSUS) 
over the Light indicates that simple logging practices (e.g., 
leaving the file open when logging, buffering to reduce ac-
cesses to disk) can make a big difference in reducing the total 
overhead. It is worth noting that we used SSD technology 
our experiment, we do not expect that HDD technology can 
perform as good as SSD technology. To this date, a large 
capacity SSD disk remains an expensive storage device 
compared to HDD disk. 

 
 

TABLE XII. MEAN EXECUTION TIMES (100 EXECUTIONS) FOR CACHELOGGER AND LIGHT 

Test	
  case	
   Disk	
  techn.	
   Base	
   Light	
   CacheLogger	
  (cacheSize=10k)	
  
TimeSUS	
   TimeLog	
  

OE_TC2	
   SSD	
   0.085	
   15.44	
  
(%100)	
  

6.88	
  
(%-­‐55)	
   0.18	
  

 


