
Carleton University, Technical Report SCE-15-02 November 2015

Reducing Instrumentation Overhead when Reverse-
Engineering Object Interactions

Hossein Mehrfard
Department of Systems and Computer Engineering

Carleton University
Ottawa, Ontario, Canada

mehrfard@sce.carleton.ca

Yvan Labiche
Department of Systems and Computer Engineering

Carleton University
Ottawa, Ontario, Canada
labiche@sce.carleton.ca

Abstract— Reverse-engineering object interactions from source
code can be done through static, dynamic, or hybrid (static plus
dynamic) analyses. In the latter two, monitoring a program and
collecting runtime information translates into some overhead
during program execution. Depending on the type of application,
the imposed overhead can reduce the precision and accuracy of
the reverse-engineered object interactions (the larger the over-
head the less precise or accurate the reverse-engineered interac-
tions), to such an extent that the reverse-engineered interactions
may not be correct, especially when reverse-engineering a multi-
threaded software system. One is therefore seeking an instrumen-
tation strategy as less intrusive as possible. In our past work, we
showed that a hybrid approach is one step towards such a solu-
tion, compared to a purely dynamic approach, and that there is
room for improvements. In this paper, we uncover, in a systemat-
ic way, other aspects of the dynamic analysis that can be im-
proved to further reduce runtime overhead, and study alternative
solutions. Our experiments show effective overhead reduction
thanks to a modified procedure to collect runtime information.

Index Terms— Reverse engineering; Overhead; Multi-
threaded; Hybrid analysis; Object interactions; Logging.

I. INTRODUCTION
Object interactions, for instance rendered as UML interac-

tion diagrams, can be recovered from source code through stat-
ic, dynamic, or hybrid analyses. Such interactions can then be
used for program comprehension and verification for example.
A static analysis usually produces accurate diagrams through
source code analysis regardless of all possible program inputs
and behaviour [1]. However, a static analysis recovers program
behaviour conservatively. Language features such as late bind-
ing, generalization, overloading, and aliasing hinder reverse
engineering object interactions solely from source code, and
sometimes make that even impossible; it is in general NP-hard
[2]. Therefore, engineers turn to dynamic analysis to recover
such interactions. However, the instrumentation that captures
dynamic information adds runtime overhead to the execution of
the system under study (SUS), increasing the SUS’s response
time to the extent that a deadline may be missed, resulting in an
observed behaviour that may be different from the expected
one. This is sometimes referred to as the “probe effect”. Reduc-
ing the probe effect is important when reverse-engineering any
behaviour since overhead can drastically increase execution
times to the point that it is not practical for engineers to wait.

Reducing the probe effect is especially important when reverse-
engineering interactions in a multi-threaded system: as men-
tioned earlier, execution overhead may lead to deadline missed
and therefore a different observed behaviour than the expected
one. Therefore, one may turn to hybrid (static plus dynamic)
approaches to benefit from the advantages of each kind of
technique and minimize their drawbacks. A hybrid analysis has
the potential to produce more accurate and less conservative
behaviour by 1) capturing as much information as possible in
the static analysis and 2) capturing, at runtime, the remaining
amount of information while reducing the probe effect.

We have shown in our past work that combining static and
dynamic analyses reduces runtime overhead compared to a
purely dynamic approach [3]. In this paper, we optimize the
design and implementation of the AspectJ instrumentation used
in our hybrid approach [3] to further reduce the overhead. To
do so, we systematically identify characteristics of our previous
hybrid instrumentation (thereafter referred to as Light) that may
lead to overhead and study to what extent they actually con-
tribute to the overhead. Then, we systematically discuss a set of
optimizations for each characteristic and study the extent of
overhead reduction. More specifically, we answer the follow-
ing research questions (RQ): RQ1: To what extent does each
characteristic of the Light instrumentation contribute to over-
head? RQ2: What are proper optimizations for the Light in-
strumentation and how much do they reduce overhead? RQ3:
How effective is combining optimization strategies studied in
RQ2 at reducing the probe effect?

Our contribution, which should be of interest to anyone
who intends to develop a hybrid reverse-engineering technique,
is five-fold: (i) A classification of the characteristics of our
Light instrumentation that may produce overhead. This is a
somewhat general result that would apply to other hybrid in-
strumentation techniques, in particular, those based on AspectJ
instrumentation; (ii) A protocol to systematically study the con-
tribution to overhead of each characteristic. Again, this should
apply to other hybrid instrumentation techniques; (iii) A quanti-
tative analysis of the contribution to overhead of each charac-
teristic of our hybrid technique; (iv) A discussion about ways to
optimize our hybrid technique to further reduce overhead; (v)
A quantitative analysis of the result of implementing some of
these optimizations, thereby reducing overhead.

Carleton University, Technical Report SCE-15-02 November 2015

Note that those contributions, although obtained in the spe-
cific context of a hybrid technique, based on AspectJ, to re-
verse engineer object interactions, should apply more broadly
to other techniques to reverse engineer runtime details, not nec-
essarily hybrid (e.g., dynamic) nor based on AspectJ. Our em-
pirical results can be seen as actionable findings that others can
build on when devising reverse-engineering technology.

The reminder of this paper is organized as follows. In sec-
tion II, we review some concepts of aspect-oriented program-
ming and discuss related work. We elaborate on our Light in
section III. In section IV, we identify optimizations that would
potentially reduce overhead due to Light. In section V, we ex-
plain our case studies and the experiments we conducted to
answer research questions. We conclude in section VI.

II. BACKGROUND AND RELATED WORK
We first review aspect-oriented programming (AOP) and

AspectJ in particular, only focussing on details that relate to
our overhead reduction objective. (We assume basic
knowledge of AOP and AspectJ.) Next, we discuss works that
relate to our approach to reduce instrumentation overhead with
a particular focus on AspectJ as instrumentation technology.

A. Aspect Oriented Programming
AOP is a software development and maintenance paradigm

that either abstracts away existing crosscutting concerns from
core concerns or adds new concerns to core concerns in the
form of aspects. In our case, we add new concerns to core con-
cerns. The programming language of the SUS (e.g., C++, Java)
drives the choice of AOP technology. The target programming
language for the SUS we chose is Java. Different Java AOP
technologies exist: e.g., AspectJ [4], DiSL [5], Spring [6],
JBoss-AOP [7]. We selected AspectJ [4] because it is widely
used and more mature than other technologies.

AspectJ provides constructs to implement individual con-
cerns (i.e., aspects) and their weaving with other (new or core)
concerns. New aspects are implemented through advice and
inter-type declaration constructs. An advice is a piece of Java
code that executes at certain points (i.e., join point) in the SUS,
and uses the AspectJ API to collect information about the SUS.
AspectJ inter-type declaration constructs provide a mechanism
to alter the static structure of the SUS, such as adding new
methods or fields. Weaving rules (i.e., pointcuts) select particu-
lar join points from the core Java concern (i.e., the SUS) or
other concerns where advice(s) must execute.

The AspectJ compiler uses a byte-code weaving approach
that first supplies the SUS to the Java compiler, compiles the
aspects, and then weaves the compiled aspects into the com-
piled SUS to generate woven JVM compliant byte-code files
[4]. The AspectJ compiler performs advice weaving in two
phases: lookup and invocation. Lookup selects a set of advices
that applies to each join point whereas invocation runs the se-
lected set of advices on that join point. The compiler performs
these in two modes: compile-time weaving (a.k.a. static weav-
ing) executes lookup at compile time and invocation at runtime
whereas load-time weaving performs both at runtime [8]. In
our experimentations, we use compile-time weaving.

B. Optimizing Instrumentation for Performance
Discussing overhead reduction of a reverse-engineering (or

probing) technology generally includes reducing the number of
probes, reducing the cost of probing and reducing the cost of
data collection (e.g., [9, 10]). The number of probes and the
cost of data collection directly depend on the intent of the re-
verse-engineering activity: the more one wants to collect, the
larger number of probes and the more data collected by each
probe. Reducing overhead due to those characteristics is exact-
ly what triggered our use of a hybrid technology [3].

In this section we rather discuss overhead reduction of
probing, which is about weaving and also a very context de-
pendent issue: one tries to optimize weaving for C++ very dif-
ferently from Java simply because of the characteristics of the
target languages. Some general weaving optimization princi-
ples may apply regardless of the technology and one may get
inspired by AspectC++ weaving optimization solutions (e.g.,
[11]) when trying to optimize AspectJ weaving. We do not
contribute to AspectJ weaving mechanisms or to the AspectJ
language: we consider this outside the scope of this paper.

In the realm of Java programs, different technologies exist
to probe behaviour: e.g., AspectJ [4] and DiSL [5] offer high
level languages to facilitate probing whereas ASM [12] and
BCEL [13] provide APIs to directly work on the byte-code.
DiSL [5] is a very appealing, recent solution since the authors
argue that it is equally expressive as AspectJ and as efficient as
ASM (and more efficient than AspectJ), thereby having the
advantages of both kinds of solutions without their drawbacks.
The overhead reduction reported by the authors on several case
studies, when comparing DiSL to AspectJ is not precise
enough to make a decision as to use one technology or the oth-
er in a specific context. Specifically, we know (section II.C)
that several AspectJ constructs are very expensive (high over-
head) and that several attempts have been made to remedy the
situation; some authors also suggest efficient usages of some
AspectJ constructs to reduce overhead. Unfortunately, the
comparison between DiSL and AspectJ does not disclose
which of those constructs were used. This is an important piece
of information that is missing since, as discussed later, we do
not use those expensive AspectJ constructs. Plus, our own
overhead study (see below) shows that AspectJ itself is a very
small contributor to overhead. We conclude that, at the time of
writing, there is no compelling argument showing that, in our
context, we should use DiSL rather than AspectJ.

C. Optimizing the Performance of AspectJ Programs
There are two general approaches to improve the perfor-

mance of an AspectJ program: making an efficient use of the
AspectJ language, improving the AspectJ compiler or the JVM.
Since we intend to use AspectJ as a toolbox, we only focus on
the former and not contribute to the latter: we want to devise an
efficient use of the AspectJ language for the purpose of re-
verse-engineering object interactions.

An efficient use of the AspectJ language requires both effi-
cient weaving rules (pointcuts) and efficient concerns (advices
and inter-type declarations). We report on the few works we
have found that discuss efficient practices for AspectJ pro-

Carleton University, Technical Report SCE-15-02 November 2015

gramming. Dufour et al. [14] suggest AspectJ programming
guidelines for reducing overhead, noticing programmers im-
pose considerable overhead to a base program (i.e., SUS) when
they use loose pointcuts, i.e., pointcuts that match too many
join points, generic advices (in particular generic around ad-
vice), the cflow pointcut, or when they introduce too many
new constructors through inter-type declarations. Similarly, the
AspectJ reference books [4, 15] provide recommendations on
how to improve the performance of AspectJ programs, such as
an efficient use of APIs for dynamic context collection (join
point APIs versus Java reflection APIs).

Programming and refactoring of Java programs for perfor-
mance improvement [16-18] is also related to our work since
AspectJ declarations are written in Java. We simply mention
them here to indicate that we account for refactoring for per-
formance improvement opportunities in our work.

An efficient implementation of byte-code weaving, i.e., im-
proving the AspectJ compiler, involves optimizing either the
AspectJ compiler or the JVM. A number of works suggest op-
timizations to the original AspectJ weaving mechanisms [8, 19-
24], such as the around advice, the cflow pointcut, or advice
dispatch. Although we do not follow this path of instrumenta-
tion optimization, we note we do not use computationally ex-
pensive AspectJ constructs for which optimizations have been
proposed (around advices or cflow pointcuts). In our experi-
ments, we optimize the implementation of AspectJ concerns,
and use the standard AspectJ compiler and the standard JVM.

Since adding new concerns to core concerns adds overhead,
an instrumentation alternative could be to manually hard code
the new concerns into the SUS in Java instead of using (As-
pectJ) aspects. Studies [19, 25] reported the performance of an
aspect program is equal to or better than the equivalent non-
aspect program due to better encapsulation of advices.

Finally, one may argue that AspectJ performs faster with
load-time weaving compared to compile-time weaving. On the
one hand, compile time weaving reduces the runtime overhead
by executing lookup at compile time. On the other hand, oppo-
site to load-time weaving, compile-time weaving is unable to
take advantage of runtime data and JVM internal structure to
implement optimizations for the inserted aspects [8]. However,
empirical studies show that the AspectJ compiler causes lesser
runtime overhead with compile-time weaving than with load-
time weaving when there is a large number of classes loaded or
join points executed [26]. Thus, we opted for compile-time
weaving as this paper target industrial-sized software systems.

D. Optimizing Traces for Performance
A dynamic analysis monitors and gathers different types of

data from a SUS, and typically stores this data in a file as an
execution trace using a specific format for offline consumption
[27]. Capturing less data or condensing the gathered data be-
fore storage can potentially reduce the overhead of a dynamic
analysis. Several trace formats exist for recording object inter-
actions or other kinds of data (e.g., OTF focuses on recording
performance data [28]). For obvious reasons, we focus on trace
formats for storing object interactions. Prominent works on

trace format for storing object interactions discuss encoding,
condensing, compacting data in a trace file since such files tend
to be huge: [29], [30]. In our context, although these are valid
objectives, we are more interested in reducing the overhead due
to producing the data than the format of storage of the data in a
file. A trade off needs to be found between the overhead due to
producing the data, possibly condensed/compacted, and the
amount of data to store. In our case, since we privileged over-
head reduction and we collect as few data as possible which we
believe is already condensed enough, we decided to not use any
of the existing condensing/compacting solutions.

Baca minimizes the overhead of producing execution traces
within procedures thanks to a hybrid solution [31]. We rather
focus on object interactions. Last, path profiling techniques
(e.g., [32]) measure the frequencies of path executions. Again,
we rather focus on object interactions.

III. DYNAMIC ANALYSIS IN THE HYBRID APPROACH
Our hybrid approach [3] instruments SUS code to generate

traces, analyzes source code to create control flow graphs, and
then transforms an instance of the trace model and instances of
control flow graphs (for several methods) into a UML scenario
diagram. We refer the reader to other documents [3, 33] for
more details. In this section, we provide self-contained discus-
sion of the dynamic analysis part of the hybrid approach, which
we intend to improve, and study possible sources of overhead.

A. Trace Model
Our execution Trace model (Fig. 1) is very close in struc-

ture to the UML 2 Superstructure’s Message components to
facilitate transformations to UML scenario diagrams. Log rep-
resents a single program execution and contains a sequence of
MessageLogs. A MessageLog represents a message sent to
the logger to signal the start of an execution between a sending
object and a receiving object (the two associations to Mes-
sageLogOccurenceSpecification). In class Mes-
sageLogOccurenceSpecification, attribute covered is a
String containing the identification of an object (a unique
identifier representing an object of a class). MessageLog’s
attributes specify the kind of message (messageSort attrib-
ute), the message’s signature, and the name of the class whose
instance executes the called method (bindToClass). For a
MessageLog instance, using bindToClass and signature
attribute values, we know exactly which method in a hierarchy
of classes actually executed, i.e., the data allow us to account
for overriding. In the case of a static call, bindToClass con-
tains the class defining this static method. This way, the trans-
formation algorithm can determine the specific class and meth-
od invoked by the method call. SourceLocation (in Mes-
sageLog) specifies the location (name of the class and lin-
eNumber) in the source code from where the logged method
call has been made; this is the call site where we can bridge the
dynamic information to static information (control flow graph).

B. Light Instrumentation

Carleton University, Technical Report SCE-15-02 November 2015

1
2
3
4

5

6

36
37

60
61

86

87
88
89
90
91
92
93
94
95

package instrumentation;
public aspect MethodAspect {

pointcut callMethod() : call (!static * PackageName..*(..));
pointcut callStaticMethod() : call (static * PackageName..*(..))
&& !call (*PackageName..objectIDgenerator(..));
pointcut callConstructor() : call (PackageName..new(..)) &&
!within (instrumentation..*);

before(): callMethod () {
 //Content of advice
}
before(): callStaticMethod () {
 //Content of advice
}
before(): callConstructor () {
 //Content of advice
}

 private static String getLineNumber(String s) {...}
 private static String getFileName(String s) {...}
 private static String getBindToClassName(String s) {...}
 private static String getStaticClassName(String s){...}
 private static String getStaticBindToClassName(String s) {...}
 private static String getNewBindToClassName(String s) {...}
 private static String getMethodSignature(String s) {...}
 private static String getStaticLifelineName (String s) {...}
}	

Fig. 2. Excerpt of the MethodAspect aspect class

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19

private int ClassName.objectID = ClassName.objectIDgenerator(objectID);
private static int ClassName.currentObjectID = 1;
private static int ClassName.objectIDgenerator(int i) {
 int id = i;
 if(i<1){
 LinkedList log = new LinkedList();
 id = ClassName.currentObjectID++;
 log.add("<lifeline className=\"ClassName\"
name=\"className_" + id + "\"/>");
 Logger.getLoggingClient().instrument(log);
 }
 return id;
}
declare parents : ClassName implements ObjectID;
public String ClassName.getObjectID() {
 if (objectID < 1){
 objectID = ClassName.objectIDgenerator(objectID);
 }
 return "ClassName_" + objectID;
}	

Fig. 3. Excerpt of the IdentifierAspect aspect class

1
2
3
4

package instrumentation;
public interface ObjectID {
 public String getObjectID();
}	

Fig. 4. ObjectID interface

The Light instrumentation collects information to instanti-
ate the Trace model (Fig. 1) thanks to several AspectJ aspects
(MethodAspect in Fig. 2, IdentifierAspect in Fig. 3), an
interface (ObjectID in Fig. 4), and a logger class. The latter
simply gets trace information (MessageLogs) from aspects and
writes to a file on disk. The MethodAspect aspect defines
three pointcuts callMethod(), callStaticMethod(), and
callConstructor() lines (3, 4, 5 in Fig. 2) in order to inter-
cept all calls to methods (either static or not, synchCall mes-
sage type) and constructors (createMessage message type),
thereafter referred to as "method call" for any call type, in a
SUS. The pointcuts ensure that advices execute on call joint
points in the SUS and exclude calls to objectIDgenerator
and methods in the instrumentation package. More accu-
rately, the pointcuts specify before() advices to execute on
call joint points, i.e., before a method call is
made (lines 6, 37, 61 in Fig. 2). The call
joint point enables an advice to collect infor-
mation about both the caller, i.e. the sending
object (e.g., line number (lineNumber), and
the source file name (name of the class) from
where the call was made) and the callee, i.e.,
the receiving object (e.g., class name
(bindToClass) or object identity (cov-
ered)). Advices in the MethodAspect rely
on the capability of the instrumented code to
count classes’ instances, and report on a
unique identifier for each instance, which is
achieved thanks to the IdentifierAspect
aspect and the ObjectID interface. Interface
ObjectID defines method
getObjectID()which returns the object
identity information: a unique String for
each instance of a given class (line 3 in Fig.
4). Method getObjectID() is implemented
by changing the static structure of the SUS
through inter-type declaration in the Identi-
fierAspect aspect, which adds the imple-
mentation of the getObjectID() method for
every class in the SUS (line 14 in Fig. 3). For
each method call (except for the call to a con-
structor), advices in the MethodAspect
uniquely identify interacting objects' instanc-
es, i.e., caller and callee, through
getObjectID(). In case of a call to a con-
structor, the advice cannot capture the object
identity information (since the advice executes
before object creation has completed); instead
the IdentifierAspect aspect applies the
objectIDgenerator() method (through
inter-type declaration) for each constructor to
automatically record (by calling the logger)
the object identity right after its initialization
to compensate the missing object identity pri-
or to constructor call (lines 8, 9 in Fig. 3).
More specifically, for each class in the SUS,

the static method objectIDgenerator() implements an
extension of the singleton design pattern to count the number of
instances of that class, to assign a new unique number to each
new instance of that class, and log the class name and the new
instance unique number in the trace file (lines 3 to 12 in Fig.
3).

Note that there is a call to the logger class for each advice

Fig. 1. Trace Model

Carleton University, Technical Report SCE-15-02 November 2015

6
7
8
9
10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26

27
28

29
30
31
32

33

34
35
36

before(): callMethod () {	

 String thisID = new String();	

 String targetID = new String();	

 LinkedList log = new LinkedList();	

 if (thisJoinPoint.getThis() != null) {	

 try {	

 thisID = ((ObjectID) thisJoinPoint.getThis()).getObjectID();	

 }	

 catch (ClassCastException e) {	

 thisID = "Caught NonInstrumentedCaller";	

 } 	

 } else {	

 thisID =
getStaticClassName(thisJoinPointStaticPart.getSourceLocation().toString());	

 }	

 try {	

 targetID = ((ObjectID) thisJoinPoint.getTarget()).getObjectID();	

 } catch (ClassCastException e) {	

 targetID = "Caught NonInstrumentedCallee";	

 }	

 log.add("<messageLog bindToClass=\""	

+MethodAspect.getBindToClassName(thisJoinPoint.getTarget().toStr
ing()) 	

+ "\" messageSort=\"synchCall\" signature=\""	

 + MethodAspect.getMethodSignature(thisJoinPoint.toString()) +
"\">");	

 log.add(" <sendEvent covered=\"" + thisID + "\"/>");	

 log.add(" <receiveEvent covered=\"" + targetID + "\"/>");	

 log.add(" <sentFrom lineNumber=\""	

+MethodAspect.getLineNumber(thisJoinPointStaticPart.getSourceLoc
ation().toString() + "\" name=\"" 	

+MethodAspect.getFileName(thisJoinPointStaticPart.getSourceLocat
ion().toString()) + "\"/>");	

 log.add("</messageLog>"); 	

 Logger.getLoggingClient().instrument(log);	

}	

Fig. 5. callMethod advice

61
62
63
64
65
66
67
68
69
70
71
72

73
74
75
76
77
78

79
80
81
82

83
84

85
86

before(): callConstructor () {
 String thisID = new String();
 LinkedList log = new LinkedList();
 if (thisJoinPoint.getThis() != null) {
 try{
 thisID = ((ObjectID) thisJoinPoint.getThis()).getObjectID();
 }
 catch (ClassCastException e) {
 thisID = "Cought NonInstrumentedCaller";
 }
 } else {
 thisID =
getStaticClassName(thisJoinPointStaticPart.getSourceLocation().toString());
 }

 log.add("<messageLog bindToClass=\""
 + MethodAspect.getNewBindToClassName(thisJoinPoint.toString())
 + "\" messageSort=\"createMessage\" signature=\"new "
 + MethodAspect.getMethodSignature(thisJoinPoint.toString())+
"\">");
 log.add(" <sendEvent covered=\"" + thisID + "\"/>");
 log.add(" <receiveEvent covered=\"not yet available\"/>");
 log.add(" <sentFrom lineNumber=\""
 + MethodAspect.getLineNumber(thisJoinPointStaticPart.getSourceLo
cation().toString()) + "\" name=\""
 + MethodAspect.getFileName(thisJoinPointStaticPart.getSourceLoca
tion().toString ()) + "\"/>");
 log.add("</messageLog>");
 Logger.getLoggingClient().instrument(log);
 }	

Fig. 6. callConstructor advice

in MethodAspect as well as for
each object creation (i.e., in method
objectIDgenerator()) in Iden-
tifierAspect to record the cap-
tured dynamic information, resulting
in one call to the logger for each
intercepted method call in the SUS
and two calls to the logger for each
intercepted constructor call in the
SUS. Each time the logger is called,
it records the received information to
a file on disk; therefore, we can ex-
pect a large number of accesses to
the disk for any typical program.

We review the collected infor-
mation for a typical method call by
looking at representative advices, the
before():CallMethod() and the
be-
fore():callConstructor()advi
ces which capture information for
calls to non-static methods (Fig. 5)
and constructor (Fig. 6). The be-
fore():callStaticMethod()ad
vice collects similar (though less)
information to the be-
fore():callMethod() advice.
We later refer to these advices dur-
ing our discussion of possible opti-
mizations. The collected information
(six and five pieces of data for be-
fore():callMethod() and be-
fore():callConstructor()
advices respectively as shown in Fig.
5 and Fig. 6) in these advice include:
unique identifiers of interacting ob-
jects (lines 12, 21 and 66) or classes
in case of a static caller (lines 18 and
72), the signature of the method be-
ing called (lines 28 and 78) as well
as the name of the called class (lines
26 and 76), and the file name from
where the call is made, i.e., in the
caller (lines 32, 33 and 82, 83). The
instrumentation should handle calls
between the SUS code and code
outside of the SUS code itself (e.g.,
third party library, JVM/JRE); there-
fore, each time an advice collects
information regarding unique identi-
fiers of interacting objects, it accounts for the possibility that
the caller or the callee is not instrumented and therefore does
not have a unique identifier: lines 14 to 16, 22 to 24, and 68 to
70.

C. Characteristics of the Light Instrumentation
We characterize the Light instrumentation from four differ-

ent viewpoints that impact overhead: 1) the mechanism by
which data is collected (e.g., use of the AspectJ API); 2) the
data (amount and type) being collected (e.g., to instantiate ele-
ments of the Trace model); 3) the encoding of the data trans-
ferred from one instrumentation component to another or to the

Carleton University, Technical Report SCE-15-02 November 2015

JVM (e.g., the information transferred from aspects to the log-
ger); 4) the logging of data, i.e., the mechanism to store the
dynamic information (e.g., recording to a file).

More precisely, these characteristics lead us to systemati-
cally discuss sources of overhead in the Light instrumentation.
We can study the first characteristic to identify more efficient
ways to gather the information such as refactoring pointcuts,
advices and our object identification mechanism. The second
characteristic may lead to collecting less information at run
time and compensate for the missed runtime information by
additional static analysis of the code, though this would addi-
tionally require that we modify the Trace and the Static models.
The third characteristic is about minimizing the generated in-
formation from each instrumentation component to minimize
the overhead. Finally, for the fourth characteristic we can study
different ways of storing dynamic information.

Our intuition from past experiments [3] is that logging and
encoding of data are major contributors to overhead, though
such contributions have not yet been quantified to warrant op-
timization activities. Plus, the implementation of the Light in-
strumentation followed good programming practices to im-
prove maintenance and modularity for instance; Light was not
designed with optimization in mind.

IV. OPTIMIZING THE DYNAMIC ANALYSIS
We suggest optimizations for collecting data, encoding da-

ta, and logging data. We later report on experiments with dif-
ferent combinations of these optimizations (section V). Study-
ing how to collect less data at runtime is left to future work.

A. On Collecting Data
Optimizing data collecting includes choosing optimized

weaving rules, optimizing aspect implementation based on Java
refactoring or AspectJ refactoring.

1) Weaving rules:
Optimizing pointcuts involves choosing the right join points

for advices, and capturing the chosen join points at the right
time during execution. The Light instrumentation intercepts
interactions in the SUS with call join points and pointcuts
execute advices before each method (either static or not) and
constructor call. Among many AspectJ join points (e.g., exe-
cution) the call join point is the only one that can capture
sufficient data, as required by the Trace model (e.g., identifying
callers and callees data), with a minimum number of join points
(i.e., with the smallest overhead). Recall that capturing a fewer
number of join points reduces the instrumentation overhead
(fewer probe points). We decided to keep this instrumentation
as we found it adequate from an overhead point of view.

A user of this technology, with a priori knowledge about
the SUS could tailor instrumentation to parts of the SUS that
are of prime interest, for instance avoiding GUI components.

2) Java refactoring:
In aspects, the choice of data-types and the modularization

of the aspect code into functions can impact overhead, i.e., in-
creasing the number of method calls (NMC). The MethodAs-
pect and IdentifierAspect aspects use a local variable of
type LinkedList to prepare the logging information to be

passed to the Logger. In addition, IdentifierAspect weaves
global static variables of type int to each class in the SUS
at runtime. Refactoring this Java code with performance in
mind may lead to using fewer global variables to increase per-
formance (local variables operate more efficiently in Java). In
addition, other Java data-types, such as StringBuilder,
String, byte, short, may perform more efficiently than
LinkedList and int as they may require less memory. An-
other refactoring could be to reduce modularity (i.e., reducing
NMC) within aspects. For instance the Light instrumentation
uses helper methods in its advices; their body could be copied
directly into advices at the expense of reusability since we are
primarily concerned with performance.

3) AspectJ refactoring:
We can examine different refactorings of AspectJ aspects,

such as: 1) the choice of advice, 2) alternative object unique
identification, and 3) the choice of APIs for dynamic infor-
mation collection. With respect to the advice, an around()
advice would be more expensive than the current before()
advice. One advantage of a before() advice over an af-
ter() advice is that it keeps the order of invocations in the
trace as they happen at runtime; an after() would require
expensive post-processing to re-construct the correct order. We
therefore keep the current before() advice.

A different object unique identification mechanism, not
logging objectID during inter-type declaration, could be to
define an after():execution(constructor) advice to
log the object identification instead of logging during inter-type
declaration. However, such an advice would need to collect
more data to compensate for the data provided by the missing
inter-type declaration. Yet another solution could be to remove
all inter-typed objectIDgenerator() methods as well as
calls to the logger in the IdentifierAspect aspect. In this
case, we can identify object instances, again with the af-
ter():execution(constructor) advice, and use a Java
data-structure (e.g., a HashMap) that counts, stores, and looks
up object instances. The JVM does not provide any facility to
uniquely identify objects over time; even methods such as
hashcode() or identityHashCode() do not guarantee that
two distinct values will be obtained for two different objects.

To collect dynamic data in an advice one can use the As-
pectJ APIs, the Java reflection APIs, or directly change the
Java code (without using any API). Literature indicates that
AspectJ performs faster than the Java reflection APIs or a
equivalent ad-hoc Java implementation [4, 19]. We thus did not
change the use of the AspectJ API to collect dynamic data.

B. On Encoding Data
The (dynamic) trace data is a string of characters which is

eventually converted into bytes in computer memory. Passing a
lesser amount of data from one instrumentation component to
another or to the JVM without losing any piece of data could
reduce the amount of computer resources (memory and CPU)
and the overhead. The Light instrumentation can be optimized
in four ways with this respect: 1) choosing a proper Java char-
acter encoding, 2) generating a lesser amount of characters for
each log item in advices and inter-typed methods, 3) condens-

Carleton University, Technical Report SCE-15-02 November 2015

ing the data passed by aspects to the logger based on existing
trace formats, and 4) changing the mechanism by which data is
passed from aspects to the logger.

Aside from the mentioned Java data-types (LinkedList
and int) used to record dynamic data in memory, data is con-
verted to bytes from those data-types based on the character
encoding used by the JVM. Using a character encoding such as	

US-ASCII (7 bit encoding), ISO-8859-1 or UTF-8 (8 bit en-
codings) can reduce overhead (reduced memory usage).

The Light instrumentation produces dynamic data in a form
similar to XMI, which requires some (formatting) processing.
Instead, producing raw data, i.e., without formatting (and there-
fore processing) can reduce overhead. In addition, SUS pack-
age and class names with long character strings impose more
overhead as we collect the class name information for caller,
callee, and object identification. Mapping fully qualified class
names to integer identifiers (e.g., with a hash table) can solve
this issue, though at the expense of some processing (i.e., use
of a hash table); a trade-off needs to be examined and only ex-
periments can tell us what is right. Uniquely identifying object
instances with an integer value rather than a string (as currently
done in Light) would reduce overhead.

Another way to optimize encoding is to use an existing
trace format when producing data (recall the related work sec-
tion). While such a format reduces memory usage and leads to
sending lesser data to the logger, it imposes more computation
to actually format the data. The tradeoff needs investigation.

Lastly, the logger currently received log data in a generic
way (a LinkedList object) regardless of the type of each log
item (e.g., logs for constructor are different from others). In-
stead of such a generic logger, we can investigate loggers spe-
cialized to the different types of logs. This would reduce the
amount of data passed to the logger (e.g., no need to pass the
kind of call); Since the logger is invoked for each method call
in the SUS, a gain, even small, for each call can count.

C. On Logging Data
With the Light instrumentation, whenever an advice exe-

cutes or an object is created, the Logger is called (synchronous
call). The logger first reads log items from the passed
LinkedList variable and writes the data to the disk. There are
two main sources of overhead here: 1) the high coupling be-
tween the log generation process (i.e., aspect instrumentation)
and the log storage process (i.e., the logging mechanism) which
happen in the same thread of execution. Reducing this coupling
would reduce overhead. 2) Writing to the disk adds largely to
the runtime overhead, as there is one such operation per meth-
od call in the SUS, and two operations per constructor call. In
general, there are two main approaches for storing dynamic
data: logging locally or remotely.

When logging on the same machine, we can fill a buffer of
logs in memory and flush the buffer to disk when it is full (a
producer-consumer implementation). This reduces the number
of accesses to the disk and therefore overhead, at the expense
of longer disk accesses. The performance of this solution also
depends on the capacity of the memory and the disk technology
(e.g., SSD). In situations where the aspect instrumentation gen-

erates a large number of log items, the faster pace of log gener-
ation over the pace of log storage may eventually exceed the
queue capacity and slow down instrumentation. In addition,
although the aspect instrumentation may not interact directly
with the logger, the log storage process has a negative effect on
the aspect instrumentation as it consumes resources.

When logging remotely, the storage process happens in a
log server machine and log items are sent over the network,
possibly combined with a buffer on the client (log generation)
side. The overhead due to local storage is replaced with over-
head due to packets construction according to the selected net-
work protocol and the overhead of sending packets to the log
server through the network. The throughput of the network
bounds logging: a slow network communication (either due to
the selected protocol or the network configuration) causes a
bottleneck and consequently hurts performance. In addition,
depending on the selected protocol, there is a chance to lose
some of the transferred packets from the client to the server.

V. CASE STUDIES
We designed three experiments to answer each research

question (Introduction). This section first discusses the experi-
mental design of these experiments by presenting case studies
and our measurement of overhead. We then present results.

A. Case Study software
We rely on two case studies to answer the Research Ques-

tions: Table I. Weka, an open source, industry sized data-
mining software, is used to understand how much each charac-
teristics of the Light instrumentation contributes to overhead
and how much the optimized instrumentation reduces over-
head, especially on a large size software. The Producer-
Consumer system is a well known, typical producer-consumer:
The producer creates an (empty) object, puts the object in a
FIFO queue, and then pauses its execution (causing delay by
calling the Java Thread.sleep() method) for a specified
time period (deadline); Simultaneously, the consumer checks
the queue constantly to take out any object it may contain, and
consumes it. Consuming takes time, which we simulate by exe-
cuting a deterministic computation (with loops, method calls,
object creations). We control the magnitude of this computa-
tion (delay), e.g., number of method calls, with a configuration
parameter. If the queue is full when the producer wants to de-
posit an element, the producer throws an exception. This design
gives us the opportunity to set a constant delay in the producer,
vary the consumer delay (configuration parameter), and study
the impact of instrumentation (the computation is traced).

Reverse-engineering experiments require executions. We
used a comprehensive test case that comes with the Weka dis-
tribution (Weka_TC): it asks Weka to apply multiple classifiers
to a dataset. We designed four test cases in the Producer-

TABLE I. CHARACTERISTICS OF THE TWO CASE STUDY SYSTEMS

Case study Classes LOC NMCSUS RQ
Weka Weka_TC 1,180 238,556 3,993,699 1,2

Producer-
Consumer

TC1
9 237

50,002
3 TC2 225,002

TC3 500,002
TC4 5,000,002

Carleton University, Technical Report SCE-15-02 November 2015

Consumer, each one using a different value for the delay con-
figuration parameter: TC1 with input 104, TC2 with input
4.5*104, TC3 with input 105, and TC4 with input 106.

Table I summarizes characteristics of the two case studies:
number of classes (accounting for inner classes) and lines of
code (without counting blank lines and comment lines). The
NMCSUS column reports on the total number of calls to con-
structors, static and non-static methods we observed within the
SUS, which we computed thanks to a dedicated simple AspectJ
aspect. The last column indicates which case study system is
used to answer which research question.

B. Overhead Measurement
We evaluate overhead by timing program executions in two

ways: the Linux time command (www.gnu.org/software/time)
times the difference between the start and end of each program
execution; calls to the Java currentTimeInMillis() meth-
od at the start and end of the SUS. We note that, unlike the
latter, the former times the start of the JVM as well as other
JVM bookkeeping activities (e.g., garbage collector), and not
only the time spent executing the (instrumented) SUS. Since
we compare the execution time for different instrumentations
with the same time measurement in our experiments, this
should not have any impact on our conclusions. In addition, we
deemed our number of executions (100 executions of each test
case) sufficient to average out such unexpected behaviours. We
do not report on the overhead imprint on hardware resources
(e.g., CPU and memory usage) since systems with limited re-
sources (such as embedded systems) is out of our scope.

Execution were performed on a Asus machine (laptop) with
an Intel(R) i7-3610QM (at 2.3 Ghz * 8), 16 GB of memory and
250 GB Solid-State drive, running Ubuntu 12.4 64x, Open JDK
1.6.0_30, and AspectJ 1.6.7. For the server, we used a Dell PC
with an Intel(R) Xeon(R) (at 2.66 Ghz) quad core and 16 GB
memory, running WindowsXP 64x, JDK 1.7.0_21. We did not
collect any execution time for the server.

C. Experiments
1) Experiment for RQ1

We conducted a set of experiments with Weka and meas-
ured execution time (using the Linux time command). The
objective was to identify the contribution of several compo-
nents of the Light instrumentation to overhead, specifically, the
contribution to overhead of: AspectJ interception mecha-
nisms, that is aspects without advice code (i.e., empty code)
and without object identification mechanism and therefore
without logging (which we refer to as AspectJOverhead);
Object identification mechanism only, i.e., inter-typed
methods in the IdentifierAspect, but not accounting for

the lines that prepare and log object ID (referred to as Ob-
jectInterOverhead); Aspect advices accounting for log
preparation in inter-typed methods, i.e., the code created to
capture data to be recorded in trace statements (referred to as
AdviceOverhead); Logging mechanism though without writ-
ing to the disk (referred to as LoggerOverhead); Writing data
to the disk (referred to as DiskOverhead). AdviceOverhead
includes AdviceObjectOverhead and AdviceContex-
tOverhead, which therefore indicates the overhead due to
inquiring for the object information in advices and the over-
head due to collecting and preparing the rest of the information.

We measured ObjectInterOverhead, AdviceOver-
head, LoggerOverhead and DiskOverhead indirectly. Their
direct measure could be done by inserting calls to Java Sys-
tem.currentTimeMillis() at adequate places and printing
out the result. This would however introduce additional over-
head, though small. Instead, we used other measurements and
computed the six overhead values mentioned above as dis-
cussed next.

In a first experiment, we timed execution while comment-
ing out the calls to the logger in all advices and inter-typed
methods. This way the aspect code intercepts everything as in
the full-fledged Light version, collects all the required infor-
mation, but does not send the information to the logger, and the
information is therefore not saved on disk. In a second experi-
ment, we timed while not only commenting out the calls to the
logger, but also commenting out lines that prepare the object
data in aspects (advices and inter-type methods). Again, the
aspect code intercepts everything but does not make calls to the
logger, nor get object data, nor prepare the log information. In
another (3rd) experiment, we timed with empty advices and
without object identification, i.e., the aspect code intercepts
everything but does not collect any information, does not iden-
tify any object instance, does not call the logger, which does
not save anything. In another (4th) experiment, we timed with
empty advices, though this time including object identification,
but commenting out lines for preparing and saving log (i.e., call
to logger). In yet another (5th) experiment, we only commented
out the statements that save information to the disk in the log-
ger (the lines that write to the file in the logger). The aspect
code therefore intercepts everything, collects and sends all the
required to the logger, which prepares the trace statements to

TABLE II. THE OVERHEAD OF DIFFERENT COMPONENTS OF LIGHT

 Light Light\
CallsToLogger

Light\
AdviceObject

Light\
EmptyAdvice

AspectJ
Overhead

Light\
NoDiskSave

AspectJ interception mechanisms x x x x x x
Object identification x x x x x

Advices Object info x x x x
Other info x x x

Logger x x
Disk writes x

∎ 𝑂𝑏𝑗𝑒𝑐𝑡𝐼𝑛𝑡𝑒𝑟𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 = 𝐿𝑖𝑔ℎ𝑡\𝐸𝑚𝑝𝑡𝑦𝐴𝑑𝑣𝑖𝑐𝑒 − 𝐴𝑠𝑝𝑒𝑐𝑡𝐽𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑
∎ 𝐴𝑑𝑣𝑖𝑐𝑒𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 = 𝐿𝑖𝑔ℎ𝑡\𝐶𝑎𝑙𝑙𝑠𝑇𝑜𝐿𝑜𝑔𝑔𝑒𝑟 − 𝐿𝑖𝑔ℎ𝑡\𝐸𝑚𝑝𝑡𝑦𝐴𝑑𝑣𝑖𝑐𝑒
∎ 𝐴𝑑𝑣𝑖𝑐𝑒𝑂𝑏𝑗𝑒𝑐𝑡𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 = 𝐿𝑖𝑔ℎ𝑡\𝐴𝑑𝑣𝑖𝑐𝑒𝑂𝑏𝑗𝑒𝑐𝑡 − 𝐿𝑖𝑔ℎ𝑡\𝐸𝑚𝑝𝑡𝑦𝐴𝑑𝑣𝑖𝑐𝑒
∎ 𝐿𝑜𝑔𝑔𝑒𝑟𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 = 𝐿𝑖𝑔ℎ𝑡\𝑁𝑜𝐷𝑖𝑠𝑘𝑆𝑎𝑣𝑒 − 𝐿𝑖𝑔ℎ𝑡\𝐶𝑎𝑙𝑙𝑠𝑇𝑜𝐿𝑜𝑔𝑔𝑒𝑟
∎ 𝐷𝑖𝑠𝑘𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 = 𝐿𝑖𝑔ℎ𝑡 − 𝐿𝑖𝑔ℎ𝑡\𝑁𝑜𝑑𝑖𝑠𝑘𝑆𝑎𝑣𝑒

Fig. 7. Measurement computations

Carleton University, Technical Report SCE-15-02 November 2015

be saved but does not save anything on disk.
We therefore obtain five different execution

times, in addition to the execution time of the
full-fledged Light version, respectively (to the
above discussion): Light\CallsToLogger,
Light\AdviceObject, AspectJOverhead,
Light\EmptyAdvice, and Light\NoDiskSave.
The components of the Light instrumentation that are activated
(or not) in these experiments are summarized in TABLE II.
With such measurements, we can compute AspectJOver-
head, AdviceOverhead, LoggerOverhead, and DiskOver-
head: Fig.7.

Although the suggested overhead measurements are mind-
ful of the overhead of the AspectJ instrumentation and the log-
ging, they do not offer a way to quantify the amount of over-
head due to the encoding of information. Designing such an
experiment would be difficult since the encoding of infor-
mation involves many different activities that are dispersed
around the instrumentation process. We will indirectly answer
this question by measuring the amount of optimization due to
better encoding of information after we conduct experiments in
response to RQ2. Therefore, instead of measuring the amount
of overhead due to this characteristic, we measure the amount
of overhead reduction due to implementing encoding optimiza-
tions in the Light instrumentation.

2) Experiment for RQ2
We experimented with many of the suggested optimizations

separately (section IV). We do not report on each optimization
individually in this paper (page limits); instead we packaged
different simple, promising (when tried separately) optimiza-
tions for collecting, encoding, and logging data in three exper-
iments, and applied all those optimizations in a fourth one. We
confirmed that all those optimizations are lossless when com-
pared to Light.

In a first experiment we used String instead of
LinkedList for local variables in advices and for parameters
to calls to the logger (String proved to outperform other data
types we tried) and removed helper methods either by using the
AspectJ API or copying their body where necessary. In a se-
cond experiment we used raw data instead of the format origi-
nally used in Light when transferring data to the logger, using
int instead of String for object unique identifier, using
String instead of LinkedList for local variables, using the
ASCII character encoding, and using a specialized logger in-
stead of generic logger for each advice. In a third experiment
we optimized the logger by using a custom remote logger
communicating over TCP, keeping everything else unmodified.
We chose TCP, over UDP, as a reliable protocol to transfer
data. Our experimentation with UDP resulted in (trace) data
being lost (the amount of data-loss depends on network config-
urations, network routers, distance between client and server,
etc.). We also considered existing logging frameworks such as
Log4J, which proved to be inadequate as it led to too much
overhead by either not providing a large enough buffer size or
collecting unnecessary data, thereby imposing additional over-
head. As mentioned earlier, a 4th experiment uses all the opti-
mizations of the first three together. These optimizations are

respectively referred to as partially optimized 1, 2, and 3 (PO1,
PO2, PO3), and “optimized”.

We did not keep many of the optimizations we mentioned
earlier due to increased overhead (e.g., using the Java reflection
API instead the AspectJ API), or no overhead reduction (e.g.,
Hashmap to uniquely identify objects).

3) Experiment for RQ3
We used the four test cases for Producer-Consumer we

mentioned earlier. Except for the value of the delay configura-
tion parameter, all other settings remained the same: the dead-
line in the producer thread to suspend execution was one se-
cond. A test case is considered a failure in this experiment if
the instrumented Producer-Consumer losses data (the producer
cannot produce); it is a success otherwise. Recall a producer-
consumer works well if the consumption rate is greater or equal
to the production rate, but produced items will be missed if the
consumption rate is smaller than the production rate. The test
cases we used ensure that production is slower or equal to con-
sumption in the non-instrumented version. Therefore, all test
cases should pass. We measured execution times using the Java
currentTimeInMillis() method at the start and end of the
consumer to compute the delay. We ran three versions of the
Producer-Consumer: the non-instrumented one, which we refer
to as Base, the original (Light) instrumentation, and the opti-
mized Light instrumentation, which we refer to as Optimized.

4) Executions
Each execution was repeated 100 times, and we will report

on averages. The standard deviation of all samples was below
1%, and we do not report on those values. Also, we compared
samples with a Student t-test, and differences are always very
statistically significant at α=0.05. We confirmed this with the
Mann–Whitney U non-parametric test.

D. Results
1) Answering RQ1

TABLE III shows execution time values (in seconds) for
Base and Light, as well as the contribution (in seconds and
percentages) of each characteristic of the Light instrumentation.
Writing log items to disk is, as expected contributing signifi-
cantly to overhead. Unexpectedly, it is by far the largest con-
tributor to overhead (71%). Looking into alternative logging
mechanisms to reduce this overhead is therefore paramount.
The second highest contributor to overhead (25%) is the ad-
vice. Although this is much less than writing to the disk, this is
still a considerable amount of overhead compared to Base. De-
spite our initial intuition, AspectJOverhead amounts to only 3%
of total overhead, which suggests the AspectJ interception
mechanisms we used are very efficient. The contributions to
the overall overhead of object identification (ObjectInterOver-
head) and the logger (LoggerOverhead) are negligible. Note

TABLE III. AVERAGE EXECUTION TIMES (100 EXECUTIONS) IN SECOND FOR EACH PART OF THE
LIGHT INSTRUMENTATION (WEKA TEST CASE)

Base Light AdviceOverhead ObjectInter
Overhead

AspectJ
Overhead

Logger
Overhead

Disk
Overhead AdviceContext-

Overhead
AdviceObject-

Overhead
0.37 17.50

(%100)
3.57
(%20.4)

0.89
(%5)

0.076
(%0.4)

0.435
(%3)

0.025
(%0.1)

12.5
(%71.4)

Carleton University, Technical Report SCE-15-02 November 2015

that we consider the ObjectInterOverhead to be repre-
sentative of the overhead due to object identification.
Thus, the inter-typed declarations we used for object
identification does not impose much overhead.

2) Answering RQ2
All partially optimized instrumentations indicate

overhead reduction (TABLE IV). As we anticipated,
optimizing the logging mechanism (PO3) showed the
largest amount of overhead reduction (53%). Optimiza-
tions on encoding data (PO2) showed the second largest
overhead reduction (30%), as optimizing data encoding
results in the least data transmission and trace size. Op-
timizations on collecting data (PO1) showed the small-
est amount of overhead reduction. Since there is not
much additional optimization we could envision for
collecting data, besides collecting fewer data and compensat-
ing with additional static analysis, we believe this is another
indication of the effectiveness of AspectJ interception mecha-
nisms. We show two execution times for the optimized in-
strumentation: timeSUS is the amount of time to execute We-
ka_TC and illustrates nearly 74% overhead reduction com-
pared to Light. On the other hand, the client virtual machine
has to wait for 285 seconds (timelog) after the end of the execu-
tion of the SUS (Weka) for all the packets to be transferred
from the client to the server. The risk, although we have not
observed it, is that this may translate into overhead for the SUS
if buffers used for network communication get full. The reason
for such TCP behaviour is that the TCP congestion control
mechanism slows down the rate by which the client packets are
sent and consequently creates a bottleneck.

TABLE IV also shows the trace size for each optimization.
Among different partial optimizations, PO2 and Optimized
show reduced trace size, as expected. The optimized version
generates a slightly larger trace due to a mechanism we insert-
ed to monitor transmission of data.

Looking at the size of traces (TABLE IV) and the time
spent to write data on disk (DiskOverhead in TABLE III) the
Light instrumentation needs, on average, to send data to the
Logger at a rate of 250 megabyte/second (mb/s): LightTrace-
Size/(LightOverhead-DiskOverhead). Our network bandwidth
allowed for at most 12.5 mb/s which is far less than 250 mb/s.
Therefore, fixing this TCP bottleneck, either by solving the
congestion control problem (e.g., using parallel TCP sockets)
or using another fast, but reliable protocol (such as SCTP) will
increase the network throughput and improve performance,
though unlikely to the required rate mentioned above.

We conclude that different criteria must be accounted for
and adapted when optimizing the logging mechanism, includ-
ing network throughput, network bandwidth, overhead due to
encoding data for network transmission, system resources
(memory and CPU), type of communication protocol, and that
these criteria have various, conflicting impacts on a given so-
lution.

3) Answering RQ3
TABLE V shows actual delays due to instrumentation and

a coarse grained comparison of relative executions between
the consumer and the producer: “Greater” (resp. “Smaller”)

means that the consumption rate is greater (resp. smaller) than
the production rate, i.e., the producer is slower (resp. faster)
than the consumer, “Equal” means the two rates are approxi-
mately the same (both producer and consumer work at approx-
imately the same pace). The delays in the Base and Light col-
umns indicate the average (over 100 executions) time for the
consumer to consume an object. Delay values in the optimized
column illustrate two different measures: the first (left) col-
umn indicates the average consumption time when the aspects
do not have to wait for access to the logging buffer (i.e., the
buffer is not full); the subscript indicates the number of queue
accesses the consumer performs while this condition holds; the
second (right) column indicates the average consumption time
when the logging buffer gets full (because of low network
transfer rate) and the aspects have to wait for access to the
logging buffer. The producer is negligibly affected by the in-
strumentation as it executes only one method call (to the
queue) in case the queue is not full and therefore only one call
is instrumented: its execution times are therefore not reported.

For Base (TABLE V), the consumer is faster than the pro-
ducer in each test case. However, in Light, the consumer is
slower than the producer for TC3 and TC4. This is evidence
that the instrumentation changes the behaviour of the SUS: the
producer cannot produce objects. With our optimization (“Op-
timized” column), only TC4 shows a change of behaviour,
indicating that we reduce the risk of behaviour change due to
instrumentation. The amount of delay (second column) for the
optimized solution is worse than Light for all four test cases as
the instrumentation buffer gets full. The optimized logger is not
fast enough at removing log items from the instrumentation
buffer and sending them over the network because of the low
throughput of the TCP network protocol. This is another incen-
tive for trying to reduce the amount of data to log (and there-
fore transfer to the server). The number of consumer execu-
tions in the first column of optimized (subscript) declines from
TC1 to TC4 as the length of consumer executions grows.

VI. CONCLUSION
A hybrid instrumentation strategy is a good idea when re-

verse engineering object interactions since it benefits from the
good characteristics of static and dynamic strategies. Our pre-
vious work identified that our hybrid strategy imposed execu-
tion time overhead, since it was not designed with performance

TABLE IV. AVERAGE EXECUTION TIMES (100 EXECUTIONS) FOR NO INSTRUMENTA-
TION, LIGHT, PARTIALLY OPTIMIZED AND OPTIMIZED INSTRUMENTATIONS

Test case Base Light Partially Optimized Optimized
1 2 3 timeSUS timelog

Weka_
TC

Time (sec) 0.37 17.51
100%

14.90
-15%

12.22
-30%

8.34
-53%

4.60
-74% 289.85

Size (MB) no trace 1250 1250 460 1250 488

TABLE V. EFFECT OF INSTRUMENTATION OVERHEAD ON THE PRODUCER-CONSUMER

 Base Light Optimized
Rate Consumer delay Rate Consumer delay Rate Consumer delay

TC1 Greater 1.5*10-5 Greater 0.229 Greater 0.07165 3.5
TC2 Greater 4*10-5 Equal 1.008 Greater 0.3236 14.7
TC3 Greater 8.5*10-5 Smaller 2.27 Greater 0.7114 35
TC4 Greater 77*10-5 Smaller 23.18 Smaller 5.71 355

Carleton University, Technical Report SCE-15-02 November 2015

in mind but rather with maintainability, understandability ob-
jectives (i.e., good design principles), that may become unac-
ceptable if one wants to reverse engineer object interactions
from a multi-threaded software. In this paper we therefore tried
to precisely characterize and quantify possible sources of over-
head. This gave us actionable findings, specifically, which
characteristics of our hybrid instrumentation to change (opti-
mize) the instrumentation and to reduce execution time over-
head. We implemented a number of such optimizations and
experimented on one, industry size case study. We also evalu-
ated to what extent execution time overhead can indeed change
the observed behaviour when one reverse-engineers a multi-
threaded software. Results indicate that our optimizations can
reduce overhead up to 74% compared to our previous hybrid
work. However, their benefit diminishes when the system runs
long executions because of the low throughput of the TCP pro-
tocol. We believe our findings can be used more broadly to
reduce instrumentation overhead in other contexts. Other ave-
nues for optimization can be considered, including: a faster,
more reliable network protocol (e.g., SCTP), further reducing
the amount of data collected at runtime and compensating with
more static analysis (e.g., point-to analysis, call graph).

REFERENCES

[1] Ernst M.D., “Static and Dynamic Analysis: Synergy and
Duality,” Proc. of ICSE Workshop on Dynamic Analysis, pp.
24-27, 2003.

[2] Horwitz S., “Precise Flow-Insensitive May-Alias Analysis Is
NP-Hard,” ACM TOPLAS, vol. 19, no. 1, pp. 1-6, 1997.

[3] Labiche Y., Kolbah B. and Mehrfard H., “Combining Static and
Dynamic Analyses to Reverse Engineer Scenario Diagrams,”
Proc. of IEEE ICSM, pp. 130-139, 2013.

[4] Laddad R., AspectJ in Action: Enterprise AOP with Spring
Applications, Manning Publications Co., p. 568, 2009.

[5] Marek L., Zheng Y., Ansaloni D., Bulej L., Sarimbekov A.,
Binder W. and Tuma P., “Introduction to Dynamic Program
Analysis with Disl,” Science of Computer Programming, pp. 1 -
16, 2014.

[6] Mak G., Long J. and Rubio D., “Spring Aop and AspectJ
Support,” Spring Recipes, Apress, pp. 117-158, 2010.

[7] Pawlak R., Seinturier L. and Retaillé J.-P., “Jboss AOP,”
Foundations of AOP for J2ee Development, Apress, pp. 91-112,
2005.

[8] Golbeck R.M., Davis S., Naseer I., Ostrovsky I. and Kiczales
G., “Lightweight Virtual Machine Support for AspectJ,” Proc.
of Int. Conference on Aspect-oriented software development,
ACM, pp. 180-190, 2008.

[9] Kumar N., Childers B.R. and Soffa M.L., “Low Overhead
Program Monitoring and Profiling,” Proc. of ACM workshop on
Program analysis for software tools and engineering, pp. 28-
34, 2005.

[10] Fischmeister S. and Lam P., “Time-Aware Instrumentation of
Embedded Software,” IEEE Transactions on Industrial
Informatics, vol. 6, no. 4, pp. 652-663, 2010.

[11] Tartler R., Lohmann D., Scheler F. and Spinczyk O.,
“Aspectc++: An Integrated Approach for Static and Dynamic

Adaptation of System Software,” Knowledge-Based Systems,
vol. 23, no. 7, pp. 704-720, 2010.

[12] Kuleshov E., “Using the Asm Framework to Implement
Common Java Bytecode Transformation Patterns,” Proc. of
Aspect-Oriented Software Development, 2007.

[13] Apache Commons, “BCEL: The Byte Code Engineering
Library,” 2015; http://commons.apache.org/proper/commons-
bcel/.

[14] Dufour B., Goard C., Hendren L., Moor O.d., Sittampalam G.
and Verbrugge C., “Measuring the Dynamic Behaviour of
AspectJ Programs,” Proc. of OOPSLA, ACM, pp. 150-169,
2004.

[15] Gradecki J.D. and Lesiecki N., Mastering AspectJ - Aspect-
Oriented Programming in Java, Wiley, 2003.

[16] Mens T. and Tourwe T., “A Survey of Software Refactoring,”
IEEE TSE, vol. 30, no. 2, pp. 126-139, 2004.

[17] Moreira J.E., Midkiff S.P., Gupta M., Artigas P.V., Snir M. and
Lawrence R.D., “Java Programming for High-Performance
Numerical Computing,” IBM Systems Journal, vol. 39, no. 1,
pp. 21-56, 2000.

[18] Bloch J., Effective Java, Pearson Education, 2008.
[19] Hilsdale E. and Hugunin J., “Advice Weaving in AspectJ,”

Proc. of Aspect-oriented Software Development, ACM, 2004.
[20] Avgustinov P., Christensen A.S., Hendren L., Kuzins S.,

Lhotak J., Lhotak O., de Moor O., Sereni D., Sittampalam G.
and Tibble J., “Optimising AspectJ,” Proc. of ACM on
Programming Language Design and Implementation,, 2005.

[21] Bockisch C., Kanthak S., Haupt M., Arnold M. and Mezini M.,
“Efficient Control Flow Quantification,” Proc. of OOPSLA,
ACM, pp. 125-138 2006.

[22] Avgustinov P., Bodden E., Hajiyev E., Hendren L., Lhotak O.,
de Moor O., Ongkingco N., Sereni D., Sittampalam G., Tibble
J. and Verbaere M., “Aspects for Trace Monitoring,” Formal
Approaches to Software Testing and Runtime Verification,
LNCS 4262, Springer Berlin Heidelberg, pp. 20-39, 2006.

[23] Hundt C., Stohr D. and Glesner S., “Optimizing Aspect-
Oriented Mechanisms for Embedded Applications,” Objects,
Models, Components, Patterns, LNCS, Springer, pp. 137-153,
2010.

[24] Eric B., Laurie H. and Ondrej L., “A Staged Static Program
Analysis to Improve the Performance of Runtime Monitoring,”
Proc. of ECOOP, Springer-Verlag, pp. 525 - 549, 2007.

[25] Lung C.-H., Ajila S. and Liu W.-L., “Measuring the
Performance of Aspect Oriented Software: A Case Study of
Leader/Followers and Half-Sync/Half-Async Architectures,”
Information Systems Frontiers, pp. 1-14, 2013.

[26] Setty R.B., Dyer R.E. and Rajan H., Weave Now or Weave
Later: A Test-Driven Development Perspective on Aspect-
Oriented Deployment Models, Technical Report, 2008.

[27] Zaidman A., “Scalability Solutions for Program
Comprehension through Dynamic Analysis,” University of
Antwerp, 2006.

[28] Knüpfer A., Brendel R., Brunst H., Mix H. and Nagel W.E.,
“Introducing the Open Trace Format (OTF),” LNCS 3992,
Springer, pp. 526-533, 2006.

Carleton University, Technical Report SCE-15-02 November 2015

[29] Reiss S.P. and Renieris M., “Encoding Program Executions,”
Proc. of ACM/IEEE ICSE, pp. 221-230, 2001.

[30] Hamou-Lhadj A. and Lethbridge T., “A Metamodel for the
Compact but Lossless Exchange of Execution Traces,” SoSyM,
vol. 11, no. 1, pp. 77-98, 2012.

[31] Baca D., “Tracing with a Minimal Number of Probes,” Proc. of
IEEE SCAM, pp. 74-83, 2013.

[32] Thomas B. and James R.L., “Efficient Path Profiling,” Proc. of
ACM/IEEE international symposium on Microarchitecture,
IEEE Computer Society, pp. 46-57, 1996.

[33] Kolbah B., “Reverse Engineering of Java Programs through
Static and Dynamic Analysis to Generate Scenario Diagrams,”
ECE, Carleton University, Ottawa, 2011.

VII. APPENDIX
In this appendix, we conduct different experiments to

find best optimization activities for: collecting data (A),
encoding data (B), and logging data (C). We investigate
which optimization alternative worsens and which reduces
the overhead. In many of experiments in this appendix, we
use Overhead Emulator (OE) case study, a small and easy to
setup program with four classes, which emulates overhead
by making method calls (NMC: four millions) and using
loops and conditionals. We intentionally adjusted the NMC
in OE close to Weka_TC to be able to generalize optimiza-
tions for larger systems. We use Linux time command for
all experiments in this section. For most of experiments (ex-
cept Log4J experiment), we report on average execution
time of 100 executions and confirm the result similar to the
process mentioned in V.C.4 (though, we do not report on
statistical values in this technical report).

A. Experiments on Collecting Data
In this section, we conduct different experiments to find

best refactoring activities suggested in IV.A. These experi-
ments address optimizations on: variable's data-type and dec-
laration type (section 1), dynamic context collection (section
2), and object identification mechanism (section 3). We use
OE case study for the first two optimizations and both We-
ka_TC and OE case studies for the last optimization. As not-
ed before, different refactoring activities would not be im-
pacted by the differences of the two cases study systems.

1) The variable's data-type and declaration type
The choice of data-type and declaration type can poten-

tially change the performance of Light instrumentation. We
replace local variable of type LinkedList (such as line 9 in
Fig. 5) and class variable of type int (such as lines 1 and 2
in Fig. 3) in MethodAspect and IdentifierAspect with
other local or global Java data-types to understand which
data-type with which declaration type performs more effi-
ciently in the Light instrumentation. We conduct experiments
with objects of type LinkedList, StringBuilder and
String as well as primary Java data-types short, byte and
String1 where each data-type (or object) is declared either
as a class (or aspect) variable or method (or advice) variable.
Note that except primary Java data-types all other data-types
in Java should be initialized as a new object before assigning
to a variable.

a) experiment design:

1 In this case Java simulates the variable of type String similar to
primary data-types by assigning string literals directly to the variable.

We conduct nine experiments based on OE to evaluate
data-type and declaration type alternatives other than local
LinkedList and global int. We look at data-types String
and StringBuilder to replace LinkedList and primary
data-types short (16 bit) and byte (8 bit) to replace int
(32 bit). Data-types String and StringBuilder are cho-
sen since they are common Java data-types for immutable
and mutable string variables respectively (we do not choose
StringBuffer since Java documentation suggests
StringBuilder performs faster). Primary data-types
short and byte are chosen since they require less memory
for initialization compared to int. In the first experiment, we
modify the Light instrumentation by replacing the local vari-
able of type LinkedList in advices and inter-typed methods
(i.e., className.objectIDgenerator()) with the stat-
ic variable of type LinkedList in aspects (i.e., global vari-
able) to measure the execution time. In another set of exper-
iments, we conduct four experiments where, in the first two,
we replace the local variable of type LinkedList in the
Light instrumentation with the local variable of types
String and StringBuilder and in the second two, simi-
larly to the first experiment, we replace the local variable of
type LinkedList with the static variable of types
String and StringBuilder in aspects. When we create
StringBuilder object, we assign the length of log item to
the constructor of this object. Note that we initialized local
String variable as a new object where we used the keyword
new for a single String variable creation throughout the
advice or inter-typed methods for the whole log item (in case
of the global variable, a single static String variable is
newed in the aspect). Alternatively, we can pass string liter-
als directly to the String variable without using the key-
word new. We think String should be performing more
efficiently in this case since JVM uses its string pool for var-
iable initialization. In addition, we suspect there is overhead
due to concatenation operation since a local LinkedList
variable in advice uses the concatenation operation 12 times
to form a log item. Therefore, we run another experiment
(sixth experiment) to measure execution time where we re-
place the local variable of type LinkedList in advices with
17 and in inter-typed methods with three local variables of
type String (literals assigned directly). In this case the
Logger needs to be modified based on advices and methods.
Note that multiple local String declarations are negligible
in this situation since Java initializes String data-type (with
direct assignment of string literals) similar to its primary
data-types with very little initialization overhead (In fact, our

Carleton University, Technical Report SCE-15-02 November 2015

experiment (not reported here) indicates that the difference
between single declaration and multiple declarations is a
fraction of millisecond). Similarly to the sixth experiment,
we conduct the seventh experiment this time based on local
String objects with no concatenation operation to measure
the execution time. This execution time helps us to better
understand the impact of concatenation overhead in the Light
instrumentation. Finally, we conduct the last two experi-
ments by replacing the static variable of type int in the
IdentifierAspect (lines 1, 2, 3, 4 in Fig. 3) with short
and byte to investigate performance improvement due to
using less memory.

It is important to note that when static mutable data-
types (i.e., global LinkedList and StringBuilder) re-
place the local LinkedList, unlike the local LinkedList,
they do not cause any initialization overhead in advices (or
inter-typed methods). However, static mutable data-types
impose an additional overhead due to deletion operation at
the end of advices (or methods) by emptying the global vari-
able after passing the log item string to the Logger. There is
no such need (i.e., deletion operation) in the case of global
immutable variable (i.e., global String object) since a new
immutable object has to be created when the old object is
modified. Note that, except the sixth and seventh experi-
ments, new data-types (either local or global) do not add any
new concatenation operation to the ones already exist in the
local LinkedList.

For all nine experiments, we disable calls to the Logger
in advices and inter-typed methods (same as the way
Light\CallsToLogger is calculated in TBALE II). This way,
we remove the logging overhead from the Light instrumenta-
tion and able to better monitor the impact of data-type
changes in the collecting of information. Note that we lim-
ited our choices of data-type only to those mentioned ones
since they satisfy simple string operations efficiently: insert
string operation, remove operation, and return string opera-
tion. Other Java data-types (such as HashMap and TreeSet)
do other operations efficiently rather than performing basic
operations on string literals and integer numbers efficiently.

b) experiment results:
TABLE VI shows the execution times of experimenta-

tions on OE with different data-types and declaration-types
when no call is made from aspects to the Logger. The second
column in the table shows the execution time of the Light
instrumented OE when no call is made from aspects to the
Logger (i.e., Light\CallsToLogger). We use this execution
time as a index to compare with other execution times.
Though, we verified the equivalency of the generated trace in

all experiments with the trace of Light instrumentation be-
fore calculating execution times in the table. TABLE VI
shows that both global LinkedList and StringBuilder
data-types (third and ninth columns) performed worse than
local LinkedList. The slight increase (2%) in the execution
time of global LinkedList compared to execution time of
local LinkedList shows that the overhead due removing
log item at the end of advices is more than the overhead due
to LinkedList creation. In the case of global String-
Builder, the execution time (due to replacing local
LinkedList) marginally increased (by 7%). Even the local
declaration of StringBuilder (in the eighth column) did
not perform better than local LinkedList (by adding 9% to
overhead). The StringBuilder object is an array based
data-type where a variable-length array contains a sequence
of characters (of type CharSequence). Therefore, the over-
head of inserting new strings of a log item and removing the
log item in the local LinkedList is still better than the type
StringBuilder (declared either locally or globally). Note
that by assigning the number of characters in the log item to
the constructor of StringBuilder, we do not change the
length of array (and consequently do not add more over-
head).

When we replaced local LinkedList with a single
String object, declared either locally in advices (second
experiment) or globally in aspects (fourth experiment), exe-
cution times (fourth and fifth columns) increased by more
than 50 percent. When we removed all concatenation opera-
tions and declared 17 local String objects in advices (sev-
enth experiment), the execution time (sixth column) reduced
by 40 percent. This difference between execution times
(when a single or multiple String objects declared) indi-
cates the heavy cost of using concatenation operation due to
the immutable creation of String instances: each time a
String object is appended with new characters, a new
String instance is created. As we expected, when string
literals are directly assigned to the String without using any
concatenation operation (sixth experiment), the execution
time (seventh column) cut nearly into half of the local
LinkedList execution time. When we replaced static
int with static short or static byte (eighth and ninth
experiments), execution times (tenth and eleventh columns)
slightly reduced. Though, variables of type short and byte
need to be cast to int again before returning the value when
calls to the logger are activated. Therefore, it does not worth
to change the int variables in the Light instrumentation.

TABLE VI. MEAN EXECUTION TIMES (100 EXECUTIONS) FOR DIFFERENT DATA TYPES WITH NO CALL TO THE LOGGER

Time
(second)

Case
Study

LinkedList
(local)

LinkedList
(global)

String
(local

object)

String
(global
object)

String
(distinct

local object)

String
(local, passing

literals)

StringB
uilder
(local)

StringB
uilder

(global)

short
(Identifie
rAspect)

byte
(IdentifierA

spect)

OE	
 3.72	

(100%)	

3.80	

(+2%)	

5.81	

(+52%
)	

6.02	

(+62%)	

2.22	

(-­‐40%)	

2.02	

(-­‐46%)	

4.05	

(+9%)	

3.99	

(+7%)	

3.66	

(-­‐1.5%)	

3.66	

(-­‐1.5%)	

Carleton University, Technical Report SCE-15-02 November 2015

1
2
3

4

5
6
7
8
9
10
11
12
13
14
15
16

 try {

 Method method =
((ObjectID)thisJoinPoint.getThis()).getClass()
.getMethod("getObjectID");
 thisID =
(method.invoke((thisJoinPoint.getThis())).toString());

 } catch (IllegalArgumentException e) {
 e.printStackTrace();
 } catch (IllegalAccessException e) {
 e.printStackTrace();
 } catch (InvocationTargetException e) {
 e.printStackTrace();
 } catch (Exception e) {
 e.printStackTrace();
 } catch (ClassCastException e) {
 thisID = "Caught NonInstrumentedCaller";
 }	

Fig. 8. IdGenerator class

2) Modifying dynamic context collection in aspects
In this section, we want to understand the effect of modi-

fying dynamic context collection on the performance of
Light instrumentation. More precisely, we ask the following
RQ: How does reducing the NMC within aspect, using As-
pectJ APIs, and using Java reflection APIs change the over-
head in the Light instrumentation?

a) experiment design:
We design three experiments. In the first experiment we

hardcode all helper methods within MethodAspect (lines 78
to 94 in Fig. 2) in advice bodies. In the second experiment,
we use AspectJ APIs to replace helper methods within
MethodAspect and hard code helper methods in advice
body if there is no AspectJ API for our purpose. We use the
following AspectJ APIs: getName(), getSignature(),
getFileName(), getLine(). In the third experiment, we
replace the AspectJ API we used for capturing object identi-
fiers (e.g., lines 11 to 16 in Fig. 5) with the Java equivalent
using Java reflection API (e.g., Fig. 8).

We evaluate experiments based on two criteria: NMC
and execution time. Similarly to the previous experiments,
after verifying the equivalency of the trace generated from
each experiment with the trace from the Light instrumenta-
tion, we disable calls to the Logger in advices and inter-typed
methods when we measure execution times. This provides
better observation over the effect of modifying dynamic con-
text collection. In addition, we are concerned with method
calls due to the instrumentation package, that is method
calls originating from the instrumentation package.
NMC is the number of places (callers) in the instrumentation
package where an invocation (or a series of invocations) is
made to another method in the instrumentation package: e.g.,
advice to logger. We report NMC thanks to a modified ver-
sion of the Light instrumentation (i.e., manual alteration of
its advices) that, in addition to reporting on object interac-
tions in the SUS, reports on calls that take place within the
instrumentation package, i.e, the aspects and helper classes.
The information we collect for each call includes: the call
type (static/non-static/constructor), the caller's name and
location, and the callee's name. Note that this heavier (from
an execution time point of view) version of the Light instru-
mentation has the same instrumentation behavior as the Light

instrumentation (measurement is accurate) and is only used
for measuring NMC; it is not used to measure execution
time.

b) experiment results:
TABLE VII shows execution times and NMCs in OE for

different experiments. The second column (index column)
shows the NMC and execution time for the Light instrumen-
tation. The result of the first experiment (third column)
shows that even though the NMC was reduced nearly by
half, the execution was reduced slightly. This indicates that
AspectJ compiler does many of optimizations regarding local
method calls that we manually hardcoded in the advice body.
However, when we used AspectJ APIs and not used any
helper methods (fourth column), the execution time reduced
largely (by 40%). This shows the efficiency of AspectJ APIs
over the plain Java implementation. When we replaced As-
pectJ API with Java reflection API in the third experiment
(fifth column), the execution time largely increased. There-
fore, according to the way we used AspectJ and Java APIs,
we can conclude that AspectJ performs more efficiently
compared to pain Java or reflective Java APIs implementa-
tions.

3) Modifying object identification mechanism
In this section, we examine different modifications in the

object identification mechanism for the possibility of over-
head reduction. We answer the following RQ with experi-
ments in this section: How does the overhead of Light in-
strumentation change when a) the callees's object identifier is
captured with a new advice instead of inter-type declaration,
b) a HashMap structure is used instead inter-typed methods?

a) experiment design:
We design two experiments where in the first experiment

we replace the lines in objectIDgenerator() method in
the IdentifierAspect (lines 6, 8, 9 in Fig 3) with a new
after():execution(constructor) advice (Fig. 9) in the
MethodAspect. In this case, no call to the logger will hap-
pen during inter-type declaration. However, such an advice
would need to collect class name information dynamically
(line 12 in Fig. 9), whereas the class name information is
retrieved statically in the missing inter-typed method (line 8
in Fig. 6). In the second experiment, we modify Light in-
strumentation in that we remove all inter-typed objectID-
generator() methods (Fig. 3) as well as calls to the logger
in the IdentifierAspect aspect. In this case, we can iden-
tify object instances, again with the after(): execu-
tion(constructor) advice (Fig. 9), and use a Java data-
structure that counts, stores, and looks up object instances.
For this experiment, we choose the HashMap data-structure

TABLE VII. MEAN EXECUTION TIMES (100 EXECUTIONS) FOR DIFFERENT
DYNAMIC CONTEXT COLLECTION MECHANISMS

Case	
 Study	
 Light	
 NoHelper	
 NoHelper	

WithAsjAPI	

LightWith	

JavaAPI	

OE	

Time	
 3.72	

(100%)	

3.68	

(-­‐1%)	

2.22	

(-­‐40%)	

6.96	

(+74%)	

NMC	
 36,000,018	

(100%)	

20,000,013	

(-­‐45%)	

20,000,013	

(-­‐45%)	

28,000,022	

	
 (-­‐22%)	

Carleton University, Technical Report SCE-15-02 November 2015

1

2
3
4

5
6
7
8
9
10

11
12
13
14
15

pointcut executeConstructor() : execution (PackageName..new(..)) && !within
(instrument..*);

after(): executeConstructor () {
 String thisID = new String();
 LinkedList log = new LinkedList();

 try{
 thisID = ((ObjectID) thisJoinPoint.getThis()).getObjectID();
 }
 catch (ClassCastException e) {
 thisID = "Cought NonInstrumented Constructor";
 }

 log.add("<Lifeline className=\" "
 + MethodAspect.getNewBindToClassName(thisJoinPoint.toString())
 + "\" name=\" " + thisID + "\">");
 Logger.getLoggingClient().instrument(log);
}	

Fig. 9. after():excuteConstructor() advice

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

package instrumentation;
public final class IdGen {
 private static IdGen singletonInstance;
 Map<String, Integer> idmap = new HashMap<String, Integer>();

 private IdGen() {
 }

 public static IdGen getSingletonInstance() {
 if (null == singletonInstance) {
 singletonInstance = new IdGen();
 }
 return singletonInstance;
 }

 public String getObjectId(String key) {
 String id;
 Integer value = idmap.get(key);
 if (value != null) {
 value++;
 idmap.put(key, value);
 id = key + value.toString();
 } else {
 value = 1;
 idmap.put(key, value);
 id = key + value.toString();
 }
 return id;
 }
}	

Fig. 10. IdGen class

1
2
3
4
5

6
7
8

private String PackageName.ClassName.objectID;
declare parents : PackageName.ClassName implements ObjectID;
public String PackageName.ClassName.getObjectID() {
 if(objectID == null)
 objectID =
IdGen.getSingletonInstance().getObjectId("ClassName_");
 }
 return objectID;
}	

Fig. 11. Excerpt of modified IdentifierAspect aspect

(Fig. 10). The IdGen class uses class
name as the key to assign values (i.e.,
objectID) to the HashMap.

We modify IdentifierAspect
aspect according to the IdGen class
(Fig. 11). With new modifications,
every time a call is made to
getObjectID() method in the Iden-
tifierAspect, getObjectID()
method checks whether the object has
yet identified or not (line 4 in Fig. 11).
If the object has not identified before
(i.e., the value of objectID is null),
this method calls getObjectId()
method from the IdGen class and
passes the class name as a key to it.
The method looks up in the HashMap
based on class name to check if any
value has assigned to the class name
(line 19 in Fig. 10). If the value has not
been assigned to a class name,
getObjectId() method adds class
name as a new key to the HashMap and
assigns a new value to the new class
name (lines 23 to 27 in Fig. 10). Oth-
erwise, that particular class has more
than one object instance and the meth-
od should return a new identifier for
the object of that class (lines 20 to 22
in Fig. 10).

For the first and second experi-
ments, we measure the execution time
based on OE and Weka_TC case stud-
ies respectively.

b) experiment results:
The third column in the TABLE

VIII shows that when we captured
callee's object identifier with the new
advice in the first experiment, the
overhead reduction was negligible in
OE. Similarly, use of HashMap and
after():execution() advice to-
gether in the second experiment (third
column in the TABLE IX), slightly
reduced the overhead. This confirms
our earlier results (section V.D.1) that
the object identification overhead is a small fraction of the
total overhead in the Light instrumentation.

B. Experiments on Encoding Data
In this section, we investigate different optimization ac-

tivities suggested for encoding data and their impact of on
overhead. We want to answer the following RQs in this sec-
tion: RQ1: do different Java character encodings change the
overhead and if so to what extent? RQ2: how does the use of
raw format instead of Light format can change the overhead?
RQ3: does the use of a logger with a specialized method for

TABLE VIII. MEAN EXECUTION TIMES (100 EXECUTIONS) FOR LIGHT WITH
NEW EXECUTION ADVICE

Case	
 Study	
 Light	
 4AdviceLight	

OE	
 15.44	

(100%)	

15.28	

(-­‐1%)	

TABLE IX. MEAN EXECUTION TIMES (100 EXECUTIONS) FOR LIGHT WITH

HASHMAP

Case	
 Study	
 Light	
 HashMap	

Weka_TC	
 17.51	

(100%)	

17.29499	

(-­‐1%)	

Carleton University, Technical Report SCE-15-02 November 2015

each advice reduce the overhead? RQ4: How does long class
names increase the overhead?

1) experiment design:
We design four experiments to answer each RQ: First, we

examine different Java character encodings (US-ASCII (7-bit
encoding), ISO-8859-1 (8-bit encoding), UTF-16 (16-bit
encoding)) on the Light instrumentation and compare them
with default character encoding (UTF-8) of the Light instru-
mentation based on their execution time. We try different
encodings since using a Java encoding with a minimal re-
quired space at compile time can reduce the amount of
memory being used by aspects. We pass the encoding type as
a JVM parameter at runtime, however, we note that SUS
should be compatible with the chosen type of encoding.

Second, we change the Light instrumentation in that use
raw format instead of Light format. In other words, aspects
only pass the required dynamic information to the logger
without using any specific format. Processing this infor-
mation to any specific format is left for after execution.
Therefore, we expect reduction on the trace size and conse-
quently on the overhead. The local LinkedList variable in
callMethod, callStaticMethod, callConstructor
advices and objectIDgenerator method contains seven,
six, six, and two pieces of information respectively.

Third, in order to understand whether modifying the log-
ger to pass fewer arguments from aspects to the logger re-
duces the overhead, we design two versions of modified
Light instrumentation: one with specialized logger and one
without specialized logger. In the instrumentation with spe-
cialized logger, we modify the instrument() method in
the logger based on the type of each advice and method. In
this case, aspects pass fewer arguments to the logger. We
change the Light instrumentation in that callMethod,
callStaticMethod, callConstructor advices and ob-
jectIDgenerator method pass six, five, five, and two var-
iables of type String, when literals are assigned directly,
respectively to the logger. In the instrumentation without
specialized logger, aspects and inter-typed method pass 17
and 3 String variables respectively to a logger that does not
use of specialized methods (this instrumentation is the same
as instrumentation mentioned in sixth experiment of
VII.A.1). Then, the comparison between execution times of
these two instrumentations should show the effect of passing
fewer arguments. Note that generated trace from both exper-
iments should be equal.

Fourth, we examine the impact of long class names on
overhead by changing the name of each class OE from a sin-
gle character name to a 20-character name. This should dis-
close the whether there is any impact on overhead if SUS
contains long class names and to what extent the overhead
can change.

We compare the execution times of all experiments based
on OE case study. Note that except the second experiment,
all other experiments generate trace according to the Light
format.

2) experiment results:
Columns two to five in TABLE X (RQ1: first experi-

ment) show no substantial differences in overheads of differ-
ent Java character encodings, only US-ASCII encoding per-
formed slightly better. However, we note that combining the
most efficient character encoding and Java data-type would
considerably reduce the overhead for this type of optimiza-
tion (as shown for the efficient data-type in VII.A.1). sixth
column (RQ2: second experiment) shows 25% overhead
reduction when dynamic data is only passed to the logger
(raw format). In addition, we observed the 66% shorter trace
(trace size: 337.6 MB) compared to the Light trace (trace
size: 989.6 MB). Eighth and ninth columns (RQ3: third ex-
periment) indicate that specialized logger can slightly reduce
the overhead compared to the instrumentation without spe-
cialized logger (eighth column). However, this reduction is
not considerable in our case study. Seventh column (RQ4:
fourth experiment) shows that in the modified OE case study
with larger class names indeed increased the trace size (trace
size: 1320.8) as well as the overhead. However, despite our
initial intuition, class name was not a big source of overhead.

C. Experiments on Logging Data
In this section, we study different optimization activities

when logging on a remote machine or the same local ma-
chine.

1) Remote logger
We want to understand: RQ1: how does the Log4J

framework can change the overhead? RQ2: how does a cus-
tomized logger based on TCP protocol can change the over-
head? and RQ3: how does a customized logger based on
UDP protocol can change the overhead?

a) experiment design:
We design three experiments based on OE case study to

examine different logging mechanisms suggested by RQs.
Note that we do not report on the detailed implementation of
each logging mechanism, rather we report on the design of
each logging mechanism. In the first experiment, we modify
Light instrumentation to log both on client and server using
Log4J library. We change MethodAspect by adding a new
advice to start a new thread on client and establish a client-
server connection before the start of SUS. We configure this
logger for asynchronous communication (AsyncAppender)
and increase the buffer size to five gigabytes on the client
side. In the second experiment, we replace the generic logger
of Light instrumentation with a TCP-based logger on client
and server. Similarly to the previous experiment, we change

TABLE X. MEAN EXECUTION TIMES (100 EXECUTIONS) OF DIFFERENT PRACTICES FOR ENCODING DATA

Case	
 study	
 ASCII	
 ISO-­‐8859-­‐1	
 UTF-­‐8	
 (default)	
 UTF-­‐16	
 RawFormat	
 LargeClassName	
 AllArgs	

Logger	

FewerArgs	

Logger	

OE	
 15.05	

(-­‐2%)	

15.12	

(-­‐1.3%)	

15.31	

(100%)	

15.32	

(+1%)	

11.46	

(-­‐25%)	

16.47	

(+7.5%)	

11.40	

(100%)	

11.28	

(-­‐1%)	

Carleton University, Technical Report SCE-15-02 November 2015

MethodAspect to start a new thread before SUS
starts and open a TCP socket on the client. In addi-
tion, we use queue as a buffering mechanism on
both client and server. Using queue makes aspects,
TCP connections, and writes to disk operation (on
server) work asynchronously from each other. In the
third experiment, we replace the generic logger in
the Light instrumentation with a UDP-based logger.
Similarly to the second experiment, we start client
socket (DatagramSocket()) before the beginning
of SUS's execution, and use a queue both on client and serv-
er.

b) experiment results:
TABLE XI shows the execution time and recovered trace

size on the server side based on OE for each experiment. We
report on two types of execution times for each experiment:
timeSUS and timelog. The timeSUS indicates the amount of time
spent to execute SUS on the client whereas the timelog shows
the time span that the client virtual machine has to wait from
after the end of the execution of the SUS until all the packets
has transferred from the client to the server. Note that we
calculated the average execution time from 10 executions in
the first experiment and 100 executions for the second and
third experiments.

The second column (RQ1: first experiment) shows that
using Log4J library not only did not improve the Light in-
strumentation's overhead, but it worsened the Light's over-
head by a very large margin. In addition, the timeSUS and the
timelog were the same in the Log4J experiment. This indi-
cates that even though we enabled asynchronous network
communication and allocated a large buffer size, the Log4J
framework did not perform well based on requirements of
our instrumentation. The trace size shows that Log4J is loss-
less for transferring data.

The timelog in the third and fourth columns (second and
third experiments) shows that both TCP and UDP based log-
gers were able to largely reduce the overhead of Light in-
strumentation. However, as we noted in V.D.2, timelog col-
umns show a large waiting time for the next execution task
of the SUS on the client. The trace size of these loggers in
the table indicates that the TCP-based logger is a lossless
logger, while the UDP-based logger loses on average 2% of
total trace size. Therefore, since we are looking for a lossless
transfer of information, UDP-based logger would not be a
proper logger for our instrumentation.

2) Local logger
We want to understand the performance

gain when replacing the generic logger in
Light, which writes each log items on file as
soon as they are generated, with another cus-
tomized local logger (so called CacheLog-

ger), which buffers logs in memory and decouples the log
generation from the logging.

a) experiment design:
We design an experiment based on OE case study to

evaluate the performance of a CacheLogger based design.
We implement CacheLogger (Fig. 12) based on a producer-
consumer design: a log generator thread (i.e., aspects) gener-
ates log items, while CacheLogger thread stores log items on
disk. The producer thread puts log items, received from the
aspects, in a queue as in a memory buffer. We used a
LinkedBlockingQueue data structure in Java since it is
thread safe and maintains the order of logging data. Each log
in LinkedBlockingQueue is a string representing a “log
item”. Simultaneously, CacheLogger thread (the consumer
thread) removes the <String> of log item from the queue
and adds the log item to a LinkedList<String> Cache
(the second buffer). If the Cache size reaches the Cache lim-
it, the CacheLogger thread flushes the log items from the
LinkedList Cache to the disk. The CacheLogger thread
uses a variable of type BufferedWriter to take log items
off the Cache and to flush them to the disk. Depending on a
system configuration and resources, different Cache sizes
may perform differently. The user can change the Cache size
to understand with which Cache size the CacheLogger thread
has the best performance. With our configuration, our empir-
ical analysis shows that setting the Cache size to 104 bytes
results in the best performance in the CacheLogger. When
aspects (the producer thread) finish generating log items,
which indicates the end of execution of the Light instrumen-
tation of the SUS, the aspect code calls the forceFlush()
method in the CacheLogger. The forceFlush() method
removes the remaining items from the queue, adds them to
the Cache, and flushes them to the disk. It is imperative to
synchronize both cache and queue during the logging process
to not lose any log item when the consumer thread removes
all log items from the queue.

TABLE XI. MEAN EXECUTION TIMES (10 AND 100 EXECUTIONS) FOR LOGGING MECHANISMS

Case
Study

Log4J TCP UDP

timeSUS	
 timelog	
 TimeSUS	
 timelog	
 TimeSUS	
 timelog	

OE	

Time	

(sec)	
 5357	
 5357	
 6.67	

(-­‐57%)	
 345.80	
 6.75	

(-­‐56%)	
 98.55	

Size	

(MB)	
 989.6	
 989.6	
 974.2	

Fig. 12 CacheLogger design

Carleton University, Technical Report SCE-15-02 November 2015

b) experiment results:
TABLE XII shows execution time without Instrumenta-

tion (third column), Light instrumentation with the generic
Logger (fourth column), and Light instrumentation with
CacheLogger (fifth column). Similar to past experiments,
TimeSUS shows the time span from the beginning until the
end test case OE_TC2 and TimeLog shows the time required
for logging after the completion of the test case. The %55

performance improvement of CacheLogger (i.e., TimeSUS)
over the Light indicates that simple logging practices (e.g.,
leaving the file open when logging, buffering to reduce ac-
cesses to disk) can make a big difference in reducing the total
overhead. It is worth noting that we used SSD technology
our experiment, we do not expect that HDD technology can
perform as good as SSD technology. To this date, a large
capacity SSD disk remains an expensive storage device
compared to HDD disk.

TABLE XII. MEAN EXECUTION TIMES (100 EXECUTIONS) FOR CACHELOGGER AND LIGHT

Test	
 case	
 Disk	
 techn.	
 Base	
 Light	
 CacheLogger	
 (cacheSize=10k)	

TimeSUS	
 TimeLog	

OE_TC2	
 SSD	
 0.085	
 15.44	

(%100)	

6.88	

(%-­‐55)	
 0.18	

