
Carleton University, Technical Report SCE-13-05 October 2013

Multi-objective construction of an entire adequate test
suite for an EFSM

Nesa Asoudeh
Department of Systems and Computer Engineering

Carleton University
Ottawa, Canada

nasoudeh@sce.carleton.ca

Yvan Labiche
Department of Systems and Computer Engineering

Carleton University
Ottawa, Canada

labiche@sce.carleton.ca

Abstract—In this paper we propose a method and a tool to
generate test suites from extended finite state machines,
accounting for multiple (potentially conflicting) objectives. We
aim at maximizing coverage and feasibility of a test suite while
minimizing similarity between its test cases and minimizing
overall cost. Therefore, we define a multi-objective genetic
algorithm that searches for optimal test suites based on four
objective functions. In doing so, we create an entire test suite at
once as opposed to test cases one at a time. Our approach is
evaluated on two different case studies, showing interesting
initial results.

Keywords—state-based testing; EFSM; genetic algorithm; multi-
objective optimization; case studies

I. INTRODUCTION

Extended Finite State Machines (EFSMs) are widely used
in software modeling and a great volume of research exists in
the area of state-based testing from EFSMs. One of the main
difficulties in test generation from an EFSM is that not all the
paths in an EFSM are feasible [1], because of guard conditions
and actions in the EFSM. Another challenge is decreasing cost
and increasing effectiveness of generated test suites to make
them scalable to large industrial applications. The latter can be
achieved for instance through increasing test case diversity [2].

Search-Based Software Engineering (SBSE) has emerged
in the field of software engineering since the nature of software
engineering problems lend themselves well to meta-heuristic
search techniques, especially when tradeoffs between different
constraints need to be found, since they can provide solutions
in cases where optimal solutions are either theoretically
impossible or practically infeasible [3]. SBSE has proved to be
very successful and there has been a significant increase in
interest in this field in the recent years [4]. In search-based
software testing (SBST) a meta-heuristic search automates or
partially automates a testing task [5].

In this paper, we propose an SBST technique for test suite
generation from EFSMs. We use a multi-objective genetic
algorithm (GA) to search for an adequate test suite (so far for
the all-transitions criterion) that is most likely feasible, has low
cost, and has low similarity between its test paths. To the best
of our knowledge, this is the first attempt to use those four
objectives together in the context of state-based testing (SBT).

Another important contribution is that we attempt to build an
entire test suite at once as opposed to constructing test cases
one at a time until adequacy is reached, as has been done in the
past during SBT. We argue that the latter is a kind of greedy
search for an adequate test suite and therefore can only lead to
a sub-optimal solution to the problem of adequate test suite
construction.

The rest of the paper is structured as follows. Section II
discusses related work. Section III describes our multi-
objective genetic algorithm, which we experiment with as
reported in section IV. We discuss threats to the validity of our
results in section V. Conclusions are drawn in section VI.

II. RELATED WORK

Testing strategies put into place when testing from a state
machine, or a set of communicating state machines, heavily
depend on the kind of behaviour specification the state model
contains. When the state machine does not have actions (or
activities) on transitions or states, or guard conditions, then
approaches exist to automatically generate feasible test cases,
such as the W-method [6]: any traversal of the graph
representing the state machine is feasible. A set of communi-
cating state machines can under some conditions (to avoid a
state space explosion) be transformed into a larger EFSM from
which the abovementioned techniques can be used [7].
Alternatively, techniques specific to communicating state
machines exist (e.g., [8]). Other techniques involve symbolic
execution (e.g., [9], [10]) or a meta-heuristic search (e.g., [11]).
Alternatively, one can consider testing techniques for labeled
transition systems (e.g., [12]).

When the state machine (or a set of communicating state
machines) has actions (or activities) and/or guards that are all
linear (i.e., they can be written in the form c1x1+ c2x2+…+ cnxn

= b, where ci and b are constants) [1], automated test case
construction is also feasible: e.g., [1], [13], [14], [15], [16]. In
all those cases, the testing technique is typically offline since it
is possible to statically analyze the model and create feasible
test cases prior to executing them. There are exceptions, such
as UPPAAL-TRON [13], which is a technique (and a tool) for
online testing a real-time embedded software from a timed
automaton (or network of timed automata) specification.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carleton University's Institutional Repository

https://core.ac.uk/display/217624592?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Carleton University, Technical Report SCE-13-05 October 2013

In previously mentioned approaches, generated test cases
typically have the form prefix-target-suffix [17], where target
is a test objective to achieve, such as a transition to reach,
prefix is a path in the state machine that allows the test to reach
the target, and suffix is a sequence that allows for instance to
identify the state that was reached after triggering the target.
Test cases are therefore typically created one at a time, each
test case achieving one test objective. Instead, we try to
generate an entire adequate test suite in one optimization step.

When actions (or activities) and guards are specified with a
more complex language, offline testing is typically not possible
since it is very difficult (or even impossible) to statically
analyze both the state-based behavior and the pieces of code,
which can be as complex as any piece of Java/C/C++ code, to
create feasible test cases: e.g., Conformiq [10] uses a Java-like
language for specifying actions; Instead, online testing is
necessary to simulate state changes caused by those pieces of
code to identify the resulting state and therefore identify what
can be the next event to send to the implementation/simulation
of the state–based behavior.

Others before us have applied SBST to SBT, most notably
[2], [14]. Hemmati et al. proposed a similarity based test case
selection/minimization technique to maximize test case
diversity as diversity is believed, and has been shown to relate
to effectiveness at finding faults [2]. In a series of case studies
they used different similarity measures as objective function
and considered different search based algorithms: greedy,
clustering-based, hill climbing, Evolutionary Algorithm (EA),
and genetic algorithm (GA). By comparing the effectiveness at
detecting faults and the cost of selected test cases, they
conclude that EA, which is a simplified version of GAs, and
the Gower-Legendre (set based) similarity measure is the best
combination of optimization technique and similarity measure.
Kalaji et al. [14] generate (likely) feasible test paths one at a
time from an EFSM to produce an all-transitions adequate test
suite, and then generate input sequences that trigger those test
paths. Two different GAs are used for these two steps. The
objective function of the first GA uses a data flow analysis of
the state machine. An affecting/affected-by transition pair is a
pair of transitions such that the first transition defines a
variable, the second transition uses that variable and there is a
definition-clear path in the state machine between the two.
Each identified pair in the EFSM is assigned a penalty based
on the type of assignment operation and comparison statement
that appear in the affecting and affected-by transitions (see [14]
for more details). The objective function of the second GA is
an adaptation of similar work for finding test data for white
box testing [18], and is based on the notions of branch distance
and transition approach level. The branch distance represents
how close an input value is to satisfying a specific predicate (in
their case a guard condition). The transition approach level
measures how close a test path is to executing a specific
statement (in their case a transition). Their technique is
empirically validated on several case studies.

SBST has been mostly used in structural testing [5],
initially considering test data generation a single-objective
optimization problem, focussing on one test objective (e.g., a
branch in a control flow graph) at a time. Different avenues

have been researched to improve such test data generation. On
the one hand, Harman et al [19] proposed the first formulation
of test data generation as a multi-objective problem. On the
other hand, Michael et al [20] extended a single-objective
search to build an adequate test suite achieving many test
objectives at once, instead of searching for one solution for
each test objective separately, and iterating over objectives:
The authors do build an adequate test suite one test case at a
time; however, as opposed to other approaches, the GA-
supported search for a new test case is guided by what has
already been covered by already created test cases. A third
avenue is to create a whole adequate test suite in one general
multi-objective search, instead of creating a test case for each
test objective [21]. All these approaches consider structural
testing while we consider state-based testing. The application
of SBST to functional testing and specifically state-based
testing has been very limited [14] and has not yet considered
more than one objective, to the best of our knowledge.

In summary, our approach differs from previous
contributions in the following aspects. (1) With respect to the
construction of an entire test suite, we conduct functional
testing rather than structural testing, and we use four objective
functions together. (2) In the domain of SBT, we create an
adequate test suite at once rather than test cases one at a time to
achieve sub-objectives. We believe that creating test cases one
at a time is a sub-optimal strategy/optimization, and that our
construction of a complete test suite is a more global
optimization. (3) We use a multi-objective algorithm to
simultaneously account for test case diversity within the test
suite, feasibility of individual test cases, cost and coverage of
the entire test suite. We note that addressing multiple test
objectives is one of the open problems in search based software
testing [5]. In other words, entire test suite construction is not
novel in structural testing [21] but, as far as we know, entire
test suite construction for functional, state-based testing is a
novel contribution of this paper; multi-objective test case
construction is not novel in structural testing but, as far as we
know, multi-objective test suite construction for functional,
state-based testing is a novel contribution of this paper.

III. PROPOSED APPROACH

This section presents our solution to the problem of
generating a test suite for an EFSM. We observe that when a
test practitioner (manually) generates test cases from an EFSM
she typically has multiple goals in mind. Avoiding infeasible
paths caused by conflicts between actions and guards is one of
those goals. She will also want to achieve some level of
coverage of the EFSM test model since (1) this is a way to
trigger specific behaviours (e.g., transitions) and (2) using a
selection criterion gives a stopping condition for the
construction of test cases (one stops creating new test cases
when adequacy is achieved). She would also trigger behaviours
as much different as possible in different test paths, thus
introducing variability in her test paths (suite), in an attempt to
identify as many faults as possible, i.e., to increase
effectiveness. For instance, she could try to avoid using the
same sub-path several times in different test cases. She will
also care for the overall cost of the testing activity. She might

Carleton University, Technical Report SCE-13-05 October 2013

also be interested in other goals, but the four abovementioned
are likely the most important ones.

Therefore, we argue that test generation from an EFSM is a
multi-objective optimization problem, with a set of objectives
including coverage of the EFSM test model, variability in
generated test paths, feasibility of the test paths, and overall
cost of the generated test suite. We also argue that these
objectives are likely competing with one another. For example,
our intuition is that increasing coverage or dissimilarity
between test cases increases cost; ensuring a path is feasible
may require that we create long paths, which increases cost.

We first provide some background on multi-objective
optimization with GAs (section III.A). We then describe the
main components of our GA: encoding of the problem
solutions, i.e., what a chromosome and its genes represent
(section III.B), mutation and crossover operators (sections III.C
and III.D), objective functions (section III.E). Section III.F
discusses some GA parameters, and the construction of the
initial population. To perform our experiments, we tailored the
multi-objective GA framework included in the MATLAB
Global Optimization Toolbox [22].

A. Multi-objective Genetic Algorithm

Our optimization is multi-objective [23] with four different
objectives, whereby a solution is characterized by a vectoru = (u1,...,uk) of objective function values (in our case, k=4). A

vector (solution) dominates another vector
v = (v1,...,vk)

(denoted by) if and only if u is partially less than v:

iiii vukivuki  :},...,1{},,...,1{ .

The objectives being optimized often conflict, placing a
partial ordering on the search space. GAs are well suited to the
task of finding a solution in such a situation [24] as they rely
on a population of solutions: Individuals in the population
represent solutions that are close to an optimum and provide
different tradeoffs among the various objectives. The set of
tradeoffs, which are solutions whose corresponding vectors are
non-dominated by any other solution vector, is referred to as
the Pareto front. The final decision with respect to which
solution to select from the Pareto front is left with a decision
maker, rather than the optimization algorithm.

B. Chromosomes and genes

A chromosome is a solution to the optimization problem
[25], that is, in our context an entire test suite, which is a set of
test cases. The genes compose a chromosome (test suite), and
the length of a chromosome is its number of genes. A gene is
therefore a test case, that is, a sequence of transitions of the
state model (a.k.a. test path). One of the objectives of test suite
construction is to achieve a certain level of coverage according
to a selection criterion. Since different adequate (i.e., satisfying
a given criterion) test suites, with varying number of test cases,
usually exist for a given state model, our GA has chromosomes
of variable length, i.e., variable number of genes (i.e., variable
number of test cases).

Using a variable length chromosome can lead to a
phenomenon known as bloat [26], whereby chromosomes get
unreasonably bigger and bigger because small negligible

improvements in an objective value are obtained withlarger solutions. To control for bloat we have put a limit on
the total number of transitions in a test suite, similarly to others
[21]. Following a trial and error procedure: we ran the GA a
couple of times and observed the number of transitions in
adequate test suites. We specified a limit of twice the number
of transitions in the biggest adequate test suite. Also, recall that
one of our objectives is minimizing the cost (i.e. size) of a test
suite: all other things being equal, a chromosome with a larger
size will be penalized.

To encode a gene, i.e., a test path, we reuse a previously
published solution as it facilitates the random construction of
valid traversals of the graph representing the EFSM [14]. A test
path is a valid traversal of the EFSM in the sense that this is a
path in the graph representing the EFSM. This traversal may
however not be feasible, i.e., we may not be able to find inputs
to execute it. This is the reason why we use an objective
function to increase chances of feasibility (see below). Our
encoding of a chromosome is then a set of gene encodings.

C. Mutation Operator

Since in our context a chromosome has many
characteristics (e.g., number of genes, length of each gene/test
path, specifics of each gene/test path), a chromosome can be
mutated in many different ways. To identify possible mutation
operators, we systematically considered every single
characteristic of a chromosome and investigated ways to
mutate them.

We have defined seven different mutation operators, which
are all applied with equal probability:

(1) Adding a gene to a chromosome, i.e., a randomly
generated gene (i.e., test path) is added to the
chromosome (test suite). Random generation of a gene
(test path) proceeds as discussed by others [14] as this
ensures we obtain valid traversals of the graph
representing the EFSM, starting from the initial state.
During this random construction, we randomly select
the length of the test path to be constructed, between
one and twice the length of the shortest path that covers
all the states in the EFSM. If such a path does not exist,
i.e., it is not possible to tour all the states in one path
(i.e., the graph is disconnected), the length of the
shortest path that tours the maximum number of states
is considered. This is arguably a heuristic and it may
happen that no feasible path (i.e., one can find inputs to
execute it), even of that length can indeed feasibly
reach some state or transition. However, we believe
this leads to long enough newly randomly generated
paths that other mutation or crossover operators can
extend. We add this new gene (test path) to the
chromosome (test suite) being mutated. In case the
randomly generated gene is a duplicate of a gene
already in the chromosome, we repeatedly try to
generate a new one with the procedure above until the
new one is different from an existing one.

(2) Removing a gene from a chromosome, i.e., a randomly
selected gene (test path / test case) is removed from the
chromosome (test suite);

Carleton University, Technical Report SCE-13-05 October 2013

(3) Replacing a gene, i.e., a randomly selected gene is
replaced by a new randomly generated gene, following
the procedure we discussed above in (1);

(4) Altering a test path (gene), which proceeds as follows.
We randomly select a transition ti in a randomly
selected test path (gene) to be altered. This path can be
represented in the form prefix.si.ti.postfix, si being the
start state of ti. The operator is to randomly select a
different sequence of transitions, possibly empty, from
si, using the procedure discussed in (1) above. Once
again, if the resulting test path is identical to an
existing one, the operator is applied again until a new
entire path is created.

(5) Appending a transition to a test path (gene), i.e., a
randomly selected gene is mutated by randomly adding
a transition to its end, ensuring the entire path is valid.
If a path ends with a terminal state, from which there is
no outgoing transition, this operator does not apply and
another gene is selected for mutation.

(6) Changing a transition of a test path (gene), i.e., a
randomly selected gene is mutated by randomly
replacing one of its transitions with another one
between the same two states, if another such transition
exists, otherwise another gene is selected.

(7) Exchanging material between genes of the same
chromosome, i.e., exchanging randomly selected
sequences of transitions (sub-paths) between randomly
selected test paths from the same test suite
(chromosome), while ensuring that results are valid
traversals of the graph representing the EFSM. To
achieve this, we reuse a published procedure [14]
since, once again, because we reuse their encoding, we
obtain valid traversals. We note that when Kalaji et al.
used this operator they were searching (by means of a
GA) for a test case that reaches a specific transition. In
their context, this operator is a crossover operator since
the population manipulated by the GA is a population
of test paths: the crossover exchanges material between
chromosomes (test paths) of the population. In our
case, the test paths involved in this operator are the
genes of a chromosome. The operator therefore alters
only one chromosome, and we classify it as a mutation
operator in our context.

D. Crossover operator

Crossover creates two new chromosomes from two existing
(parent) chromosomes by exchanging some genetic
information, i.e., genes, from/between those parents. Once
again, we asked ourselves what information can be exchanged
between two (parent) chromosomes in our context. Our first
crossover operator is a two-point crossover [25] in which the
two points identify one gene in each parent instead of the more
general case where they identify a sequence of genes. Given
that we have variable length chromosome, we ensure the
crossover points are valid: e.g., if a parent has 5 genes and the
other parent has 10 genes, the crossover points identify one of
the first five genes in both parents. We randomly select two
parent chromosomes (test suites), p1 and p2, and one test path

(gene) from each of the parents (at the same index in the
sequence of genes of the parents). We remove the selected test
path from p1 and add it to p2, and similarly remove the selected
test path from p2 and add it to p1. As a chromosome represents
a test suite, the order of its test paths does not matter.
Therefore, we add the test path extracted from p1 (resp. p2) to
the end of p2 (resp. p1).

Secondly, we can exchange genetic information at a lower
level of details, specifically at the transition level between test
paths. We select two parent chromosomes, select one gene (test
path) in each of those parents, and exchange transition
sequence information between those two genes. This second
crossover operator works identically to the last mutation
operator we discussed, except that the two genes (test paths)
are selected from different chromosomes (test suites), whereas
for mutation purposes the two genes belonged to the same
chromosome.

When crossover happens, with a specific probability (see
below), these two crossover operators have an equal
probability of occurrence.

E. Objective functions

As previously mentioned, we are considering four objective
functions: Feasibility, to be maximized; Similarity, to be
minimized; Coverage, to be maximized; and Cost, to be
minimized.

To determine the feasibility of a test path, we reuse
previous work that relies on an analysis of data flow
dependencies between the transitions of a test path [14].
Different types of data flow dependencies that might exist
between two transitions of a test path are assigned penalty
values based on their possible effect on feasibility. This
information is used to obtain a feasibility measure for each
gene (test path) in a chromosome (test suite) and then we
obtain a feasibility measure for the chromosome as the sum of
the feasibility values of its genes. Feasibility of a chromosome
ci, made of n genes, is then:(c) = ∑ ();

Where feasibility(gj) is the feasibility of gene gj and is
obtained by using the approach proposed by Kalaji and
colleagues [14].

It is important to note that feasibility(gi) is only an
estimation of the feasibility to find input values such that the
path defined by gi can actually be executed. Kalaji et.al. [14]
have shown that this measure is indeed a surrogate measure of
feasibility: one has more chances of finding inputs to execute
test paths that have low feasibility values. However, actually
trying to find inputs such that path gi executes is the only way
to identify whether gi is indeed feasible.

Our intuition, as well as others’ [2], is that test paths should
be as dissimilar as possible to increase fault detection. We are
therefore interested in computing the similarities between
pairs of test paths (genes) to obtain a similarity value for a test
suite (chromosome). Different similarity measures can be used
as objective function. One of the measures [2], which is not
limited to identical length sequences (we have variable length

Carleton University, Technical Report SCE-13-05 October 2013

chromosomes), is the Levenshtein distance [27]. Although not
the recommendation of Hemati et al. (recall section II) this is
the best measure of similarity they studied [2] that supports
variable length sequences. To change this distance measure
into a similarity measure, similar to Hemmati et al. [2], we
reward each match between two sequences by one point and
penalize mismatches and gaps by simply ignoring them (i.e.,
assigning no point). More sophisticated measures (e.g.
Needleman-Wunsch), which penalize mismatches and gaps,
can be used as well. To obtain a similarity measure for a test
suite (i.e., chromosome), we proceed similarly to Hemmati et
al. [2]. The similarity measure for a test suite (chromosome) is
the sum of similarity measures computed for each unordered
pair of test paths (genes) in that chromosome. The following
objective function needs to be minimized:() = ∑ (,)(,) .

We note that our measure of similarity is not the best one as
per the experiments reported by Hemmati et al. (recall section
II). We however selected it since they experimented with it,
showing it performs well, and more importantly (i) it allows us
to account for test paths of variables lengths and (ii) we believe
a sequence-based measure like the Levenshtein distance is
more appropriate in our context than set-based distances like
Gower-Legendre since we measure test cases that are paths
(sequence of states and transitions) in an EFSM. We plan to
experiment with different measurements of test cases and test
suite similarity in our future work.

Different coverage criteria can be used as objective
function. Although more demanding, but also more effective
(at finding faults) criteria exist [28], [29], we selected the all-
transitions criterion. The objective function is to minimize the
number of distinct transitions uncovered by a test suite
(chromosome), i.e., to maximize coverage.

The last objective is reducing the cost of a test suite as
much as possible. A usual surrogate measure of cost is the size
of a test suite [30]. The underlying assumption is that test cost
is proportional to the test suite size. The notion of cost in the
context of testing is complex as one may want to consider time
to market or computer time usage as part of the equation [31].
In our context, test set size can be simply measured by
counting the number of test sequences in a test set (e.g., [32]).
However, not all test sequences contain the same number of
transitions triggered. We could go further and say that not all
sequences take the same time to execute. But without going to
that level of detail, we could measure cost/size as the number
of transitions triggered in the test set, summing up the number
of transitions triggered in each test sequence. This objective
function is to be minimized.

F. Genetic algorithm parameters

There are a number of factors that affect the success of a
GA. We selected a population size of 200, which conforms to
what has been suggested in the literature [33]: i.e., a value in
range [30, 80] (we selected 50) multiplied by the number of
objective functions. Based on results from previous studies
[34] we selected a crossover rate of 0.7 and a mutation rate of
0.01. The Pareto Fraction parameter controls elitism in a multi-
objective GA since it limits the number of individuals in the

Pareto set (elite or tradeoff members). Based on a previous
study [35], which suggests to set the maximum size of the
Pareto set such that the ratio of the Pareto set over the entire
population is between ¼ and 4, we set the maximum size of the
Pareto set to 35% of the entire population. With respect to the
stopping criterion, we reuse the one of the toolbox we relied
on, and stopped the GA if the observed average change in any
objective function value over 10 generations was less than e-4.

The initial population is generated randomly, i.e. we start
with a set of 200 (our population size) randomly generated test
suites. Each test suite has a random number of randomly
generated valid traversals (of variable length) of the graph
representing the EFSM. When generating a test suite, we first
randomly select the number of transitions N this test suite will
have, between one and the maximum number of transitions we
defined earlier to control for bloat (section III.B). We then
incrementally create test paths as random traversals of the state
machine graph until the cumulative number of transitions in
those test paths reaches N. For the purpose of creating test
paths, we add a reset transition from each state to the start state.
When creating a test path we then iteratively, randomly and
uniformly select an outgoing transition (including the reset)
from the current state. Admittedly, this can encourage the
generation of short sequences, especially when states have a
small number of outgoing transitions. Our experiment results
show however this does not happen thanks to objectives which
favour diversity.

IV. EXPERIMENTAL EVALUATION

In an initial attempt to evaluate our test suite construction
technique, we used two case study EFSMs, modeling real
world applications, to answer the following questions:

RQ 1. Are there any benefits in terms of cost for instance, in
generating a whole test suite at once rather than test
paths separately in an incremental manner?

RQ 2. Since we use a surrogate measure of feasibility during
optimization, do we obtain actually feasible test suites?
In other words, can we find inputs such that test suites
in the Pareto front can actually execute?

RQ 3. Is our multi-objective GA successful, compared to
random generation for instance, in addressing our
optimization goals? In other words, is the search space
so large or complex that a random search is not
adequate and we have to resort to a GA?

RQ 4. How do test suites created by our GA compare to test
suites created by existing approaches in terms of
effectiveness at detecting faults?

The first EFSM models a simple cruise control system,
which we have used in the past (e.g., [28], [35]) while the
second EFSM is a simplified model of a class II transport
protocol we obtained from others [14]. They are used to answer
our research questions as summarized in TABLE I.

TABLE I. ANSWERING RESEARCH QUESTIOONS WITH CASE STUDIES

RQ1 RQ2 RQ3 RQ4
Cruise Control   

Carleton University, Technical Report SCE-13-05 October 2013

Transport Protocol    

Section IV.A introduces the two case studies while section
IV.B discusses experimental design. Before answering research
questions in sections IV.D to IV.G, we perform a qualitative
analysis of some of the results we obtain with the Cruise
Control case study: section IV.C.

A. Case study systems

We selected a simple model of a Cruise Control as a first
case study because, although it does not have guards or actions
(Fig. 1) and therefore any traversal of the state machine graph
is a feasible test path (as a consequence we have really three
objective functions), it allowed us to check the correctness of
our approach and focus on the three other objective functions.
With only three objective functions we can furthermore plot
results and learn from those results in a qualitative analysis:
e.g., we can visually observe the result of the competition
between the objective functions. The state machine has four
states and 28 transitions (Fig. 1).

The second EFSM is a simplified model of a Class II
transport protocol [14], that models connection establishment,
data transfer, end-to-end flow control and segmentation. The
state machine has six states and 21 transitions (Fig. 2). The
reader interested in more technical details about this model is
referred to [14], where a complete description of the states,
transitions, guards and actions is available. We selected this
model because of two reasons: (i) There are guard conditions
and actions in the model so not every valid traversal of the state
graph is feasible; (ii) Despite guards and actions, we can
automatically find feasible test paths in this state machine [14].

Although these two case studies represent two typical cases
where a state machine is used to model behaviour, they are
admittedly small. However, similar behaviors are usually
modeled using state machines in UML-based development
[36], [37], and in industrial case studies reported in the
literature [38], [39]. Additionally, it is very uncommon in
practice to model subsystems or entire systems using state
machines, as this is far too complex in realistic cases. Last, the
second case study is a representative sample of a series of case
studies used by others [14].

B. Experimental design

1) Answering RQ 1
We simulated the construction of an all-transitions adequate

test suite for Cruise Control and Transport Protocol by
following a procedure similar to many existing approaches
(recall section II) whereby we created a test case for each
transition: each test case is made of a prefix followed by the
target transition, the prefix being a shortest path to reach that
transition. We intend to compare this test suite, which we refer
to as Ttrad, with adequate test suites produced by our GA in
terms of cost, similarity and effectiveness at finding faults.
Arguably, the test suite thus created may have redundant test
cases, as pointed out by others (e.g., [14]): e.g., a test path
targeting a transition may be a sub-path of a longer test path
targeting another transition. To make the comparison more
objective, we then removed the redundancy by iteratively
removing any test path ti that is a sub-path of another test path tj

in the test suite, until no further test path deletion is feasible.
We obtained a test suite we refer to as Tred.

2) Answering RQ 2
As discussed earlier, every traversal of the state graph of

the Cruise Control case study is feasible. So we only used the
Transport Protocol case study to answer RQ 2. Using this case
study, we investigated the feasibility of a sample of test suites
in the Pareto front we obtain with our GA by manually trying
to identify test inputs that would make their test paths to
execute. Future work will investigate ways to automate this
process, for instance by using a solution based on a genetic
algorithm [14].

Specifically, at the end of a typical run of our GA, we
ranked the test suites in the Pareto front in increasing order of
(lack of) coverage: the first ones we obtained were adequate
test suites. We then selected one sample test suite for each of
the first six values of (lack of) coverage: 0, 1, 2, 3, 4 and 5
(these are the numbers of un-covered transitions by the test
suites). For each of the six test suites, we tried to find input
values such that the test cases they contain can actually
execute.

3) Answering RQ3
We used the Transport Protocol case study only to answer

this research question, because the model has guard and
actions, and compare our test suite generation technique to a
randomly generated test suite. To have an as unbiased as

Fig. 1. EFSM for the cruise control system

Fig. 2. EFSM of a class II transport protocol

Carleton University, Technical Report SCE-13-05 October 2013

possible comparison we considered the following when
designing the random generation routine: (i) the random
generation should investigate as many solutions in the search
space as the number of solutions a typical GA run investigates;
(ii) the random generation should investigate solutions that are
comparable in terms of cost with solutions the GA investigates.
Without (i) we would favour one technique over the other since
one technique could easily perform better than the other simply
because it considers more solutions. Since increasing coverage,
diversity, and (likely) feasibility can be achieved by increasing
cost, we would also favour one technique over the other
without (ii).

To account for these two characteristics of the search, we
monitored a typical execution of our GA and collected the
following information: the number of new solutions being
constructed, the cost (cumulative number of transitions) of
each such new solution. With the latter we obtained the
distribution of the number of test suites of specific cost values.

We then randomly generated as many solutions (test suites)
as the number investigated by the GA and selected an overall
cost for each randomly created test suite by randomly sampling
the abovementioned distribution. Given an overall cost value,
we generated test paths in the test suite by following the same
procedure as the one we used to create an element of the initial
population of our GA.

4) Answering RQ4
Mutation analysis is a well known method commonly used

for the evaluation of testing strategies [40]. We used MAJOR
[41], a mutation analysis tool for Java, to seed faults and
perform the mutation analysis. We used all the mutation
operators available with MAJOR and created 198 mutants for
cruise control and 870 mutants for transport protocol. When
identifying whether a mutant is killed or alive, we need an
oracle for each test case. Our oracle is to check the value of
state variables after each transition has fired in each test case.

We created other test suites using existing testing
strategies, specifically: round trip path [42] because it has
been shown to be a good alternative between the transition
and transition pair selection criteria [29], a modified
version of round trip path that attempts to increase
diversity among test paths [28], a test suite manually
generated, and the approach that creates one test path at a
time to achieve transition coverage (recall RQ1). We
compared the generated test suites with test suites created
by our multi-objective GA in terms of effectiveness at
detecting faults as well as our four objectives (i.e. cost,
coverage, similarity and feasibility).

The manually generated test suite, referred to as Tman,
was created by an engineer other than the authors of this
paper: the engineer was not given any other instructions
than to produce an adequate test suite; the result is an
adequate test suite that minimizes at the same time overall
cost and the number of test cases as well as their feasibility
(in the case of Transport Protocol).

We note that in the two round trip paths test suites (the
original one and the modified one) a couple of test cases
were unfeasible because of guards and actions. The test

cases systematically created by the generation algorithms were
slightly modified (appending a transition to two paths) to
ensure adequacy of the transition criterion.

5) Stochastic aspect of our GA
We also note that, since a GA is inherently a stochastic

process, we would ideally need to run our GA a number of
times on each case study and evaluate trends on a large number
of resulting adequate test suites. We ran our GA a number of
times on each case study and, although we do not report on
trends, we observed results were similar over multiple runs.
Due to space constraints, for each case study we therefore
report on only one representative run and defer reporting on
trends to a future publication.

C. Qualitative analysis of some results

Fig. 3 plots lack of coverage versus similarity for each test
suite belonging to the Pareto front at the end of one (typical)
run of our GA for the Cruise Control. This figure is a two-
dimensional projection of a three-dimensional plot. Numerical
values above each point represent the cost of the corresponding
test suites (the third objective function). Test suites (points)
right on the y-axis are all-transitions adequate.

Fig. 3 shows a test suite (point) with values (0, 0, 52) for
coverage, similarity, and cost, respectively. This is an all-
transitions adequate test suite with ideal (0) similarity value
between its test cases. We refer to this test suite as TSga1. The
other three adequate test suites in the Pareto front are referred
to as TSga2, TSga3, and TSga4, in increasing order of their
similarity value (2, 4, 6, respectively): e.g., TSga4 is (0, 6, 46).
These cost values are higher than for other all-transitions or
transition-tree adequate test suites we have created for this case
study (section IV.G and [29]): the cost values we obtained,
though not trying to obtain dissimilar test cases (which
increases cost), where 25 for the all-transitions adequate test
suites and 38 for the transition-tree adequate test suites.

Fig. 3. Sample Pareto front contents for the Cruise Control: each plot is an element
of the Pareto front showing lack of coverage (x-axis), similarity (y-axis), and cost
(value next to plot).

Carleton University, Technical Report SCE-13-05 October 2013

Allowing coverage or similarity objectives to get further
from their optimum value reduces cost. For example test suite
TSga2, i.e., (0, 2, 50), has more similar test cases than TSga1
(0, 0, 52) at a slightly smaller cost; test suite (1, 0, 41) is not
adequate (it misses one transition) but has a lower cost than
TSga1.

We note that since cost and dissimilarity are objectives to
be minimized and an empty test suite has ideal similarity, the
Pareto front contains an empty test suite (Fig. 3): (28, 0, 0).
Future work will look into avoiding such a solution.

When only using two objective functions, i.e., cost and
coverage, we obtain the Pareto front of Fig. 4. What is
noticeable is that the maximum cost is 39, whereas (Fig. 3) it is
52 when also accounting for similarity. This confirms one’s
intuition that improving coverage or improving dissimilarity
between test cases increases cost. Studying to what extent these
objective functions actually compete with one another will be
part of our future work.

The last two observations may suggest that we may need to
specify weights on our objective functions, to for instance
promote coverage. This will be part of our future work.

Similar observations about competing objectives can be
made for the Transport Protocol case study: see sample data in
TABLE II. : e.g., decreasing coverage (recall we measure lack
of coverage) decreases cost. Coverage level is gradually getting
further from its optimal value while the total feasibility penalty
of test suite is decreasing. This is due to the fact that not
covering some transitions (especially the ones that are difficult
to cover) increases the likelihood that test cases will be
feasible. Also, decreasing coverage while maintaining a similar
level of similarity decreases cost. We observed the same trade-
offs for the Cruise Control.

D. Results for RQ 1

Recall that RQ 1 is to study the benefits and drawbacks of
building an entire test suite at once rather than in a stepwise
manner, one test case at a time, each test case achieving only
one test objective (reaching one target transition), which we
answer by using the Cruise Control as discussed in section
IV.B.1).

Since, as mentioned previously, the Cruise Control EFSM
has 28 transitions, Ttrad is all-transitions adequate with 28 test
cases [43]. Its cost equals 70 and its similarity equals 348.
When reducing redundancy in Ttrad, we obtain an all-transitions
adequate test suite Tred with 23 test cases [43], a cost of 58 and
a similarity of 270. The manually generated adequate test suite
has two test cases [43] for a cost of 31 and a similarity of zero.
These are to be compared with all-transitions adequate test
suites generated by our GA (TSga1 to TSga4 on the y-axis in
Fig. 3): their cost ranges from 46 to 52; their similarity ranges
from 0 to 6 (Fig. 3). Without optimizing for similarity (i.e.,
with only coverage and cost as objective functions), the cost is
as low as 39 (Fig. 4).

We first discuss Ttrad, Tred and our GA solutions. A cost of
39 is almost half of the cost obtained with Ttrad and much less
than Tred. Comparing these makes sense since similarity is not
accounted for when creating Ttrad and Tred. Even when

accounting for test case similarities, which we know increases
costs, we obtain lower values (46 to 52 instead of 58 or 70).

With respect to similarity, we observe that the structure of
the EFSM graph demands that longer paths than those in Ttrad

or Tred be used to increase dissimilarity: this explains why our
GA performs much better in terms of similarity (0 to 6 instead
of 348 and 270 for Ttrad and Tred). For instance, test paths of
length two that cover transitions T8 or T14 all start with T5 and
to make them dissimilar one needs to take some loops on state
Inactive/Idle before going to state Active/Running through T5.
We therefore conjecture that, creating a test suite one test case
at a time (as in Ttrad) while ensuring we have dissimilar test
cases, would lead to a test suite that is much more expensive
than 70, thereby increasing the difference with our approach.
We therefore conclude that creating an adequate test suite one
test case at a time, each test case satisfying one test objective,
is sub-optimal.

When comparing Tman with our GA solutions, we observe
striking differences in terms of cost and similarity. We tried to
understand why our GA is not able to find such a good solution
by itself and we therefore determined the size of the search
space. We limited the study of the search space to solutions
similar to Tman in terms of number of test cases (two) and
lengths of test cases (15 and 16). Given that each state of the
EFSM has seven outgoing transitions, there exist 715 (resp. 716)
different traversals of the EFSM of length 15 (resp. 16). There
exist therefore 731 different test suites with the same number of
test cases and the same test case lengths as Tman in the search
space. Considering that these represent a tiny subset of the
search space, it is not entirely surprising that our GA does not
find such a good solution. We note however that TSga1 is
close to Tman: (0, 0, 52) instead of (0, 0, 31). Nevertheless,
future work will look into better ways to lead the GA to even
better solutions than TSga1…TSga4, by for instance revisiting
crossover and mutation operators and their probability of
occurrence, or by using other objective functions (e.g., a cost
measure that accounts for driver/stub/oracle construction might
promote a smaller number of test cases, like in Tman). We
conclude that a human can still do better than our GA, though
our GA is very close to a human-generated solution.

Fig. 4. Cruise control: contents of Pareto front when only optimizing for
cost and coverage

Carleton University, Technical Report SCE-13-05 October 2013

We followed the same procedure for Transport Protocol
and obtained similar results when comparing our GA solutions
to Ttrad, Tred and Tman in terms of cost, feasibility and similarity.

E. Results for RQ 2

We verified whether a subset of the test suites in the pareto
front for Transport Protocol are indeed feasible: TABLE II. .
We managed to manually find parameter values that make each
of the test paths in those test suites feasible. Therefore, all the
test suites were indeed feasible, despite the seemingly high
feasibility values. We may conclude that a high value of our
feasibility measure does not necessarily mean that the
corresponding test suite is infeasible. Our future work will
attempt to identify (possibly rough) thresholds for our
feasibility measure which would indicate feasibility is unlikely.

TABLE II. SELECTED TEST SUITES FROM THE PARETO FRONT FOR THE
TRANSPORT PROTOCOL CASE STUDY (PATHS IN [43])

Objective
Function

Point1 Point2 Point3 Point4 Point5 Point6

Lack of Coverage 0 1 2 3 4 5
Similarity (Levenshtein) 3 4 4 3 2 0
Cost 37 38 34 24 22 20
Feasibility 270 246 198 156 120 108

As an example, referring to the first path of the test suite
corresponding to point 1, i.e., Path1: < T1, T3, T15, T8, T17, T19,
T2>, we observe that guard conditions, directly or indirectly,
depend on parameter and context variable values. When
triggering T3 we need to select a value for its first parameter
that is smaller than the second parameter of T1 (opt_ind <
prop_opt) and set its second parameter to an integer greater
than zero (cr > 0). This is because when T1 is executed the
value of its second parameter is assigned to the context
variable opt which should be greater than the first parameter
of T3 based on the guard condition of T3. Restrictions on the
second parameter are caused by the guard condition of T8

(S_credit > 0). S_credit is a context variable and the last
time it is assigned a value before T8 is executed in the given
path is when T3 is triggered (S_credit=cr). The other
conditions are on the parameters of T15. The first parameter
should be greater than zero (XpSsq > 0) and the sum of the
two parameters should be either greater than 143 (XpSsq +
cr > 143) or less than 128 (XpSsq + cr < 128). The last
two conditions are caused by the guard condition of T15 (TSsq
< XpSsq & [cr + XpSsq – TSsq – 128 < 0 V cr +
XpSsq – TSsq – 128 > 15]). TSsq is a context variable
and the last time it is assigned a value, before T15 in the given
path, is when T3 is executed (TSsq=0).

It is possible to satisfy all the conditions above and make
Path1 feasible (executable). For example, < T1(3,10), T3(9,4),
T15(10,100), T8(4,6), T17(), T19(), T2(10,8,2)> is a feasible path.
A complete list of guard conditions, input declarations and
transition operations of the Class II transport protocol EFSM
can be found in [14].

F. Results for RQ 3

We compared results of our approach with the random test
suite generation described in section IV.B.3) in terms of
adequacy and feasibility (cost is by design the same as in our

GA solutions). We used a typical execution of our GA, which
stopped after 151 generations and evaluated 21,350 test suites.
We randomly generated the same number of test suites, with
the same distribution of overall cost: section IV.B.3).

Among those two series of test suites, the GA generated
series and the randomly generated series, we selected the all-
transitions adequate ones, and further selected the ones that
have a chance of being feasible. In other words, we discarded
test suites that are either inadequate or definitely infeasible.
The data flow analysis of Kalaji et al. [14] can identify if a test
path in definitely infeasible when for instance the path assigns
a constant to a variable and a following guard condition
requires the variable to equal another constant. In such a case,
the penalty assigned to the path is a very large (simulating
infinity) value. Given our feasibility metric, if a test suite has a
feasibility value greater than this very large value, we know it
contains a test path that is definitely infeasible.

The total number of adequate and not absolutely infeasible
test suites generated by the GA was 1,495 while the random
generation could only generate 44 such test suites. This means
there is a very low chance of achieving our optimization
objectives by randomly generating test suites.

Fig. 5 plots the number of adequate not absolutely
infeasible test suites found by the GA and the random
generation at each iteration of the construction process: random
and GA generations occurred concurrently. During the first few
iterations, the two procedures are close to each other but in
later iterations the number of (adequate, not definitely
infeasible) test suites generated by the GA is dramatically
higher than the ones randomly generated. This is due to the fact
that in early generations, the GA considers costly test suites,
and a higher overall cost gives more chances to the random
generation to obtain adequate, likely feasible test suites.

G. Results for RQ 4

We selected a couple of adequate test suites generated by
our GA and compared them with test suites created by using
other testing strategies. For Cruise Control we selected TSga1
and TSga4 (section IV.C) and compared them with four other
test suites. We have already explained how Tman and Tred are
created (section IV.D). As mentioned in section IV.B.4) we
also used two test suites, using two versions of the round trip
path strategy. All the test suites are transition adequate.
Mutation score is almost the same for all the test suites:
TABLE III. In addition to test suite similarity values with the
Levenshtein distance (used by the GA) we also report on the
Gower-Legendre measure of similarity since it was suggested
as the best measure by others [2]. Our data show a strong

Fig. 5. Number of adequate not absolutely infeasible test paths found at
each iteration

Carleton University, Technical Report SCE-13-05 October 2013

positive relationship between the two: Pearson’s r coefficient
of .99. Every test suite, except Tman, has higher values of
similarity and cost compared to ones created by our GA. Tman,
can be considered as the optimum the GA is searching for.
Different types of variability that we have in our encoding
(variable number of test cases in test suites as well as variable
length test paths) have made it very difficult for the GA to
reach that point. However, it has reached points that are much
closer to this optimum compared to other approaches.

For Transport Protocol we compared a GA generated
adequate test suite (point 1 in TABLE II) to three other test
suites: two versions of the round trip path strategy, and one test
suite created manually (Tman): TABLE IV. The two measures
of similarity are once again highly correlated: Pearson’s r
coefficient of .99. The GA test suite had the highest mutation
score. Although Tman has the lowest cost it is killing fewer
mutants compared to other test suites: TABLE IV. Results of
mutation analysis confirmed our intuition about relationship
between diversity in a test suite and its cost-effectiveness
(TABLE III. and TABLE IV.).

TABLE III. RESULTS OF MUTATION ANALYSIS (CRUISE CONTROL)

TSga1 TSga4 Tman Tred RTP RTP (Modified)
Levenshtein 0 6 1 270 296 44
Gower-Legendre 2.74 2.95 0.38 62.85 85.65 10.36
Mutation score 40% 40% 40% 38.38% 38.38% 40%
Cost 52 46 31 58 64 41

TABLE IV. RESULTS OF MUTATION ANALYSIS (TRANSPORT PROTOCOL)

GA (point 1) RTP RTP Modified Tman

Gower-Legendre 1.9347 129.6714 5.6314 1.1833
Levenshtein 3 394 36 5
Mutation score 46.48 40.84 43.38 41.83
Cost 37 89 37 25

V. THREATS TO VALIDITY

Regarding external validity [44], which relates to the extent
to which the results of our study can be generalized to other
situations, there are two points to consider. First, as mentioned
in section IV.B.5), a GA is a stochastic process. Typically,
during research, a GA is run a number of times and trends in
the results are observed. We ran our GA a number of times on
each case study and, although we do not report on trends, we
observed results were similar over multiple runs. Therefore, for
each case study we report on only one representative run and
defer study of trends to the future.

The other external threat is the size and number of case
studies. As mentioned in section IV.A we report on two case
studies which are admittedly small. But, we believe they are
good representatives of what needs to be dealt with in state-
based testing. First, similar size state machines are used in
UML-based development, and in industrial case studies
reported in the literature (section IV.A). Second, it is very
uncommon in practice to model an entire system using a single
large state machine. Third, these state machines are test models
which usually represent a single test purpose [15]. Last, the
second case study is a representative sample of a series of case

studies used by others [14]. We are currently experimenting
with other case study systems.

Internal validity relates to how well we have conducted the
studies. Regarding internal validity, feasibility and similarity
measures we have used and to what extent they represent
feasibility of a test path or diversity in a test suite can be
considered as a threat. However, others before us have used
exactly the same measures [2], [14] and achieved convincing
results. Also as mentioned in section IV.E test paths found by
our GA are indeed feasible. We also plan to use other
similarity measures in the future.

VI. CONCLUSION AND FUTURE WORK

We proposed a search based technique that generates test
suites from an EFSM using a multi-objective genetic
algorithm. The goal of our GA is to find test suites that achieve
a maximum level of coverage, ideally reaching adequacy (we
used the all-transitions selection criterion), have a high chance
of being feasible (we use a surrogate measure of feasibility),
minimize cost (i.e., cumulative number of triggered transitions
in all test cases), and minimize the similarity between the test
paths that constitute the test suites since this has been shown to
relate to the effectiveness of test cases at finding faults. We
provided a detailed description of our algorithm and justified
the decisions we made at different steps.

To the best of our knowledge, this is the first time in the
state-based testing literature that these objectives are used
together. Additionally, our solution creates an entire adequate
test suite in one search step instead of creating test cases one
after the other for satisfying test objectives (in our case
covering transitions) separately in an incremental manner. We
argued, and experimentally confirmed, that proceeding
incrementally is a sub-optimal procedure for the task, and that
this can be compared to a greedy algorithm. Instead, we rely on
a meta-heuristic search, specifically a genetic algorithm.

We used two different models to validate our approach.
Results confirmed our intuition that generating an entire test
suite rather than doing so incrementally results in
improvements in terms of cost and dissimilarity, while not
hurting with respect to (expected) feasibility and adequacy.
Also, we confirmed that when a test suite is expected to be
feasible, using a surrogate measure of feasibility, it is indeed
possible to find test inputs such that test paths can actually
execute, even in the presence of other optimization goals. Also
by using diversity as an objective function we managed to find
test suites that are less expensive, without scarifying
effectiveness at detecting faults.

There is plenty of room to better understand our new
technology such as: (a) Investigating different ways of
improving the GA itself (e.g., using different probabilities of
occurrence of our mutation operators); (b) studying other
possible measures to compute coverage (e.g., transition pairs),
similarity (see [2]) or cost of a test suite; (c) considering
weights for our objective functions, for instance favouring
coverage in order to have (hopefully) a larger number of
adequate test suites in the Pareto front. The identification of
weights is however a difficult problem, and experiments [19]
show that a solution with weights does not necessarily perform

Carleton University, Technical Report SCE-13-05 October 2013

better than a real multi-objective solution; (d) trying different
strategies for creating the initial population; (e) using other
EFSMs (e.g., [14]) to improve external validity; (f) studying
the impact of our mutation and crossover operators to improve
internal validity.

VII. ACKNOWLEDGMENT

This work was performed under the umbrella of a NSERC-
CRD grant, with support from NSERC, CRIAQ, CAE, CMC
Electronics, and Mannarino Systems & Software.

REFERENCES

[1] A. Y. Dual and M. U. Uyar, "A method enabling feasible conformance
test sequence generation for EFSM models," IEEE Transactions on
Computers, vol. 53, no. 5, pp. 614-627, 2004.

[2] H. Hemmati, A. Arcuri and L. Briand, “Achieving scalable model-based
testing through test case diversity,” ACM TOSEM, vol. 22, no. 1, 2013.

[3] M. Harman and B. F.Jones, "Search-based software engineering,"
Information and software engineering, pp. 833-839, 2001.

[4] M. Harman, P. McMinn, J. Teixeira de Souza and S. Yoo, "Search based
software engineering: techniques, taxonomy, tutorial," Empirical
Software Engineering and Verification, vol. 7007, pp. 1-59, 2012.

[5] P. MacMinn, “Search-based software testing: Past, Present and Future,”
in IEEE ICST, Berlin, Germany, 2011.

[6] A. P. Mathur, Foundations of Softwre Testing, Pearson, 2008.

[7] G. Luo, G. Bochmann and A. Petrenko, "Test selection based on
communicating nondeterministic finite-state machines using a
generalized Wp-method," IEEE TSE, vol. 20, pp. 149-162, 1994.

[8] J. Li and W. Wong, "Automatic test generation from communicating
extended finite state machine (CEFSM)-based models.," in IEEE Int.
Symp. on Real-Time Distributed Computing, 2002.

[9] X. Jin, G. Ciardo, T.-H. Kim and Y. Zhao, "Symbolic verification and
test generation for a network of communicating FSMs," in International
conference on Automated technology for verification and analysis, 2011.

[10] "Conformiq Software Ltd.," [Online]. Available:
http://www.verifysoft.com/ttcn-3_qtronic_sip.pdf.

[11] Q. Guo, R. Hierons, M. Harman and K. Derderian, "Computing Unique
Input/Output Sequences Using Genetic Algorithms. In: FATES, pp. 164-
177 (2004)," in FATES, 2004.

[12] J. Tretmans, "Model based testing with labelled transition systems," in
FATES, 2008.

[13] K. Larsen, M. Mikucionis, B. Nielsen and A. Skou, "Testing real-time
embedded software using UPPAAL-TRON: an industrial case study.," in
In: ACM EMSOFT, 2005.

[14] A. S. Kalaji, R. M. Hierons and S. Swift, "An integrated search-based
approach for automatic testing from extended finite state machine
(EFSM) models," Information and Software Technology, vol. 53, no. 12,
pp. 1297-1318, 2011.

[15] M. Utting and B. Legeard, Practical Model-based Testing, Morgan
Kaufmann.

[16] C. Schwarzl and B. Peischl, "Test Sequence Generation from
Communicating UML State Charts: An Industrial Application of
Symbolic Transition Systems," in QSIC, 2010.

[17] D. Lee and M. Yannakakis, "Principles and methods of testing finite
state machines - A survey," Proceedings of IEEE, vol. 84, no. 8, pp.
1090-1123, 1996.

[18] J. Wegener, A. Baresel and H. Sthamer, "Evolutionary test environment
for automatic structural testing," Information and Software Technology,
vol. 43, no. 14, pp. 841-854, 2001.

[19] M. Harman, K. Lakhotia and P. McMinn, "A Multi–Objective Approach
To Search–Based Test Data Generation," in GECCO, London, England,

United Kingdom, 2007.

[20] C. C.Michael, G. McGraw and M. A.Schatz, "Generating Software Test
Data by Evolution," IEEE TSE, vol. 27, no. 12, pp. 1085-1110, 2001.

[21] G. Fraser and A. Arcuri, " Whole test suite generation," IEEE
Transactionaction on Software Engineering, vol. 39, no. 2, pp. 276-291,
2013.

[22] "Global Optimization Toolbox," Mathworks, [Online]. Available:
http://www.mathworks.com/products/global-optimization/. [Accessed 25
April 2013].

[23] C. Coello Coello, D. Van Veldhuizen and G. Lamont, Evolutionary
Algorithms for Solving MultiObjective Problems, 2nd ed., Springer,
2007.

[24] J. Horn, N. Nafpliotis and D. Goldberg, "A Niched Pareto Genetic
Algorithm for Multiobjective Optimization," in First IEEE Conference
on Evolutionary Computation, 1994.

[25] D. Goldberg, Genetic Algorithms in Search, Optimization and machine
learning, Boston: Addison Wesley, 1989.

[26] S. Silva and E. Costa, "Dynamic Limits for Bloat Control in Genetic
Programming and a Review of Past and Current Bloat Theories," Genetic
Programming and Evolvable Machines,, vol. 10, no. 2, pp. 141-179,
2009.

[27] D. Gusfield, Algorithms on Strings, Trees and Sequences: Computer
Sience and Computational Biology, Cambridge: Cambridge University
Press, 1997.

[28] M. Khalil and Y. Labiche, " On the Round Trip Path Testing Strategy,"
in IEEE International Symposium on Software Reliability Engineering,
2010.

[29] L. Briand, Y. Labiche and Y. Wang, "Using Simulation to Empirically
Investigate Test Coverage Criteria," IEEE/ACM International
Conference on Software Engineering, 2004.

[30] M. Hutchins, H. Froster, T. Goradia and T. Ostrand, "Experiments on the
Effectiveness of Dataflow and Controlflow-Based Test Adequacy
Criteria," in IEEE/ACM International Conference on Software
Engineering, 1994.

[31] E. Weyuker, N. Stewart, S. N. Weiss and D. Hamlet, "Comparison of
Program Testing Strategies," in ACM International Symposium in
Software Testing and Analysis, 1991.

[32] P. G. Frankl and S. N. Weiss, "An Experimental Comparison of the
Effectiveness of Branch Testing and Data Flow Testing," IEEE
Transactions on Software Engineering, vol. 19, no. 8, pp. 774-787, 1993.

[33] M. Laumanns and E. T. L. Zitzler, "On The Effects of Archiving,
Elitism, an Density Based Selection in Evolutionary Multi-objective
Optimization," in International Conference on Evolutionary Multi-
Criterion Optimization, 2001.

[34] R. L. Haupt and S. E. Haupt, Practical Genetic Algorithms, Wiley, 1998.

[35] S. Mouchawrab, L. Briand, Y. Labiche and M. Di Penta, " Assessing,
Comparing, and Combining State Machine-Based Testing and Structural
Testing: A Series of Experiments," IEEE TSE, vol. 37, no. 2, pp. 161-
187, 2011.

[36] B. Bruegge and A. H. Dutoit, Object-Oriented Software Engineering
Using UML, Patterns, and Java, Prentice Hall, 2004.

[37] H. Gomaa, Designing Concurrent, Distributed, and Real-Time
Applications with UML, Object Technology, Addison Wesley, 2000.

[38] P. Chevalley and P. Thévenod-Fosse, "Automated Generation of
Statistical Test Cases from UML State Diagrams," in International
Computer Software and Applications Conference, 2001.

[39] N. E. Holt, B. C. D. Anda, K. Asskildt, L. C. Briand, J. Endresen and S.
Frøystein, "Experiences with Precise State Modeling in an Industrial
Safety Critical System," in CSDUML, 2006.

[40] J. H. Andrews, L. Briand, Y. Labiche and A. Namin, "- Using Mutation
Analysis for Assessing and Comparing Testing Coverage Criteria,"
IEEE-TSE, vol. 32, no. 8, pp. 608-624, 2006.

[41] R. Just, F. Schweiggert and G. M. Kapfhammer, “MAJOR: An efficient
and extensible tool for mutation analysis in a Java compiler,” in ASE,

Carleton University, Technical Report SCE-13-05 October 2013

Lawrence, KS, USA, 2011.

[42] R. Binder, Testing Object Oriented Systems, Addison-Wesley, 2000.

[43] N. Asoudeh and Y. Labiche, "Multi-objective construction of an entire
adequate test suite for an EFSM," Carleton University, SCE-13-05, 2013.

[44] D. Campbell and D. Stanely, Experimental and Quasi-Experimental
Designs for Research, Boston, MA: Houghton Mifflin Company, 1963.

Carleton University, Technical Report SCE-13-05 October 2013

VIII. APPENDIX

A. Adequate Test-suites in Error! Reference source not
found.

TSga1:
Path1: < T3, T1, T6, T6, T4, T5, T12, T13, T14, T19, T23, T27, T17, T18,

T20>
Path2: < T2, T4, T5, T14, T21, T25, T26, T24, T28, T15>
Path3: < T5, T9, T11, T10, T9, T8, T1, T7, T5, T11, T14, T16, T18, T15,

T4, T5>
Path4: < T4, T5, T14, T21, T25, T26, T24, T26, T22>
Path5 :< T1, T3>

TSga2:
Path1: < T6, T4, T5, T12, T13, T14, T19, T23, T27, T17, T18, T20>
Path2 :< T3>
Path3: < T2, T4, T5, T14, T21, T25, T26, T24, T28, T15>
Path4: < T5, T9, T11, T10, T9, T8, T1, T7, T5, T11, T14, T16, T18, T15,

T4, T5>
Path5: < T4, T5, T14, T21, T25, T26, T24, T26, T22>
Path6 :< T1, T3>

TSga3:
Path1 :< T3>
Path2: < T6, T4, T5, T12, T13, T14, T19, T23, T27, T17, T18, T20>
Path3: < T2, T4, T5, T14, T21, T25, T26, T24, T26, T22>
Path4: < T5, T10, T13, T12, T14, T21, T28, T15, T7>
Path5: < T5, T9, T11, T10, T9, T8, T1, T7, T5, T11, T14, T16, T18, T15,

T4, T5>
Path6 :< T7>

TSga4:
Path1: < T4, T5, T11, T13, T12, T14, T21, T28, T15, T7>
Path2: < T5, T9, T8, T7>
Path3: < T2, T4, T5, T14, T21, T25, T26, T24, T26, T22>
Path4: < T5, T13, T10, T12, T10, T14, T16, T19>
Path5: < T5, T13, T14, T19, T23, T27, T17, T18, T20>
Path6 :< T1, T3>

B. Test-suites Corresponding to Points in Error! Reference
source not found.

Point1: adequate test suite
Path1: < T1, T3, T15, T8, T17, T19, T2>
Path2: < T2, T6, T14, T18, T21, T1, T5, T2, T7, T21>
Path3: < T1, T5, T2, T6, T13, T16, T10, T17, T20, T1, T4, T19, T2, T7,

T21>
Path4: < T2, T6, T11, T12, T9 >

Point2:T9 is not covered
Path1:< T2, T7, T21, T1, T3, T12, T18>
Path2: < T1, T3, T11, T15, T8, T17, T19, T2, T7, T21, T1>
Path3:< T2, T6, T14, T18, T21, T1, T5>

Path4: < T1, T5, T2, T6, T13, T16, T10, T17, T20, T1, T4, T19>
Path5:< T1>

Point3: T9 and T12 are not covered
Path1: < T1, T3, T11, T15, T8, T17, T19, T2>
Path2:< T2, T6, T14, T18, T21, T1, T5, T2, T7, T21>
Path3 :< T1>
Path4: <T1, T5, T2, T6, T13, T16, T10, T17, T20, T1, T4, T19, T2, T7,

T21>

Point4: T9, T12 and T14 are not covered
Path1:< T2, T6, T15, T18, T21, T1, T5, T3, T8, T11>
Path2: < T2, T6, T13, T16, T10, T17, T20, T1, T4, T19, T2, T7, T21>

Point5: T8, T9, T12 and T15 are not covered
Path1:< T1, T3, T18>
Path2:< T1, T3, T14, T11>
Path3: < T1, T5, T2, T6, T13, T16, T10, T17, T20, T1, T4, T19, T2, T7,

T21>

Point6: T3, T8, T12, T14 and T15 are not covered
Path1:< T2, T6, T11, T9, T18>
Path2: < T1, T5, T2, T6, T13, T16, T10, T17, T20, T1, T4, T19, T2, T7,

T21>

C. Test suites used to answer RQ 1

1) Ttrad

T1
T2
T3
T4
T5
T6
T7
T5-T8
T5-T9
T5-T10

T5-T11
T5-T12
T5-T13
T5-T14
T5-T14-T15
T5-T14-T16
T5-T14-T17
T5-T14-T18
T5-T14-T19

T5-T14-T20
T5-T14-T21
T5-T14-T19-T22
T5-T14-T20-T23
T5-T14-T21-T24
T5-T14-T19-T25
T5-T14-T20-T26
T5-T14-T21-T27
T5-T14-T19-T28

2) Tred

T1
T2
T3
T4
T6
T7
T5-T8
T5-T9

T5-T10
T5-T11
T5-T12
T5-T13
T5-T14-T15
T5-T14-T16
T5-T14-T17
T5-T14-T18

T5-T14-T19-T22
T5-T14-T20-T23
T5-T14-T21-T24
T5-T14-T19-T25
T5-T14-T20-T26
T5-T14-T21-T27
T5-T14-T19-T28

3) TMan

T1-T2-T3-T4-T6-T7-T5-T8-T5-T9-T10-T11-T12-T13-T14-T15
T5-T14-T16-T17-T18-T19-T23-T28-T20-T26-T27-T21-T25-T24-

T22

