
Carleton University, Department of Systems and Computer Engineering September 2011
Technical Report SCE-11-02

 1

Combining Static and Dynamic Analyses to Reverse-
Engineer Scenario Diagrams

Yvan Labiche
Department of Systems and Computer Engineering

Carleton University
Ottawa, Canada

labiche@sce.carleton.ca

Bojana Kolbah
Department of Systems and Computer Engineering

Carleton University
Ottawa, Canada

kolbah@gmail.com

Abstract— This paper discusses reverse engineering source code
to produce UML sequence diagrams, with the aim to aid program
comprehension and other software life cycle activities (e.g.,
verification). As a first step we produce scenario diagrams using
the UML sequence diagram notation. We build on previous work,
now combining static and dynamic analyses of a Java software,
our objective being to obtain a lightweight instrumentation and
therefore disturb the software behaviour as little as possible. We
extract the control flow graph from the software source code and
obtain an execution trace by instrumenting and running the
software. Control flow and trace information is represented as
models and UML scenario diagram generation becomes a model
transformation problem. Our validation shows that we indeed
reduce the execution overhead inherent to dynamic analysis,
without losing in terms of the quality of the reverse-engineered
information, and therefore in terms of the usefulness of the
approach (e.g., for program comprehension).

Keywords-UML; Reverse engineering; Sequence diagram;
Scenario diagram; Static analysis; Dynamic analysis

I. INTRODUCTION
To fully understand an existing object-oriented system,

information regarding its structure and behavior is required.
When no complete and consistent design model is available,
one has to resort to reverse engineering to retrieve as much
information as possible through static and dynamic analyses.
For example, assuming one uses the Unified Modeling
Language (UML) notation [4], the class, sequence, and state
machine diagrams can be (partially) reverse-engineered.
Besides helping comprehension, reverse engineered diagrams
can help quality assurance [5, 6].

Reverse engineering the static structure (e.g., the class
diagram) of an object-oriented system is already available in
many UML CASE tools (e.g., Topcased, RSA, Together),
although issues such as identifying the different kinds of class
relationships are still considered difficult (e.g., [7]).

Reverse engineering and understanding the behavior of an
object-oriented system is a different challenge. One of the main
reasons is that, because of inheritance, polymorphism, and
dynamic binding, it is difficult, and sometimes even impossible
to know, using only the source code, the dynamic type of an
object reference, and thus which methods are going to be
executed. It is then difficult to follow program execution and

produce a dynamic model such as a UML sequence diagram.
Purely static techniques that only rely on an analysis of the
source code can at best produce a control flow graph of a
method, sometimes under the form of a UML sequence
diagram though a better formalism could be the UML activity
diagram notation. Other techniques, combining symbolic
execution and source code analysis [8], face different
challenges, such as identifying infeasible paths in inter-
procedural control flow graphs.

It then becomes clear that executing the system and
monitoring its execution is required if one wants to retrieve
meaningful information and reverse-engineer dynamic models,
such as UML sequence diagrams from large, complex systems
[1, 9, 10]. However, the accuracy of a reverse-engineered
dynamic model depends on how extensively one observes run-
time behaviour. Unfortunately, the more observations, by
means of instrumentation, the longer it takes to collect dynamic
information, the higher the risk of disturbing behaviour and
therefore the higher the risk of inaccuracies in the reverse
engineered information. On the other hand, though a static
analysis can present a complete picture of what could happen at
run-time, it does not necessarily show what actually happens. It
thus appears desirable to focus on a synergy between static and
dynamic analyses [9]. We therefore build on our previous work
[1, 3], which was purely dynamic, and present a new technique
that combines static and dynamic information. Our objective is
to reduce instrumentation as much as possible, to reduce
execution times and disturb behaviour as little as possible, and
compensate for the missing (dynamic) information by
collecting static information. We collect execution traces and
combine that information with control flow graph information
to generate UML sequence diagrams. We refer here to these
diagrams as scenario diagrams because they are incomplete
sequence diagrams modeling what happens in one particular
scenario instead of modeling all possible alternative scenarios
for a use case. As we discuss in [1], several scenario diagrams
should then be merged into a complete sequence diagram for a
given use case. This requires triggering as many varied
scenarios as possible through multiple executions of the system
(e.g., using black-box testing techniques), and merging them
into one sequence diagram. This issue is left to future work.

To formalize our approach and specify it from a logical
standpoint so that it can be analyzed and compared by future

Carleton University, Department of Systems and Computer Engineering September 2011
Technical Report SCE-11-02

 2

research works, we define two models (class diagrams): one for
traces and another for control flow graphs; and define mapping
rules between them using the Object Constraint Language
(OCL) [11]. These rules are then used as specifications to
implement a tool to instrument code so as to generate traces, to
analyze source code to create control flow graphs, and then
transform (thanks to a third party model transformation tool) an
instance of the trace model and instances of control flow graphs
(for several methods) into a scenario diagram, using the UML
2.1 sequence diagram notation.

The main contributions of this paper are: (1) a combination
of static and dynamic data for reverse-engineering behaviour (a
similar approach has been devised [10] concurrently to ours
[12], though for a different purpose); (2) a precise modeling of
the approach (with models and OCL mapping rules), based on
model transformations; (3) our approach is one of the rare
techniques that reverse engineer alternative and iterative
executions; (4) case studies showing, though on systems of
limited sizes (our objective here is not to address the problem
of manipulating and understanding large traces [10]), that the
proposed approach indeed significantly reduces
instrumentation and execution overhead while providing
accurate information.

This article is structured as follows. We discuss related
work in section II. Our approach is detailed in sections III to V.
We report on a case study in section VI. Conclusions and future
research directions are provided in section VII.

II. RELATED WORK
The area of program comprehension through dynamic

analysis is varied and vibrant as a 2008 systematic survey
suggests [13]. The authors systematically analyzed 176 papers
(out of 4,795 initially selected) published between July 1999
and June 2008 that rely on dynamic analysis to conduct
program comprehension activities. We identified1 that 19 of
those papers use some kind of dynamic analysis (e.g.,
debugger, instrumentation of source code) to reverse engineer
object collaborations, rendered under the form of a UML
sequence diagram (or a similar diagram). We focus on those 19
papers as they directly relate to our work. These works collect
execution information, specifically constructor, static/non static
method calls (or executions), to produce UML 1.x (or 2.x)
sequence diagrams (actually, scenario diagrams using the UML
notation), or some kind of scenario diagram. While some of
those approaches use both static and dynamic analyses, none of
them actually combines both types of analysis to produce
dynamic models: the static analysis is only used to generate
structural diagrams (e.g., class diagram) and the dynamic
analysis is only used to generate object collaborations. In some
rare cases, the static analysis is used to guide the user in
selecting elements of the source code to monitor during the
dynamic analysis (e.g., [14]). The vast majority of those works
do not reverse engineer information on alternative executions
(due to control flow statements) and generated diagrams do not
therefore indicate under which conditions or repetitions objects
send messages. Only one past work [15], beside our previous

1 References number 19, 21, 22, 23, 27, 29, 30, 33, 40, 90, 103, 116, 121, 123,
126, 129, 135, 141, 147 in [13].

work [1, 3], is closely related to ours, although approaches are
all only dynamic. While we instrumented the source code
(using aspects) to collect method executions and control flow
information [1], they rely on break points (for method and
control statements) being set with a debugger [15]. Other
related works indicate repetitions in generated diagrams.
However, they either use a simplistic heuristic to identify
repetitions [16] (specifically, contiguous repeated messages are
collapsed into repetitions, which does not produce an accurate
diagram in general) or recognize occurrences of known
interaction patterns that must be provided by the user [17, 18].

Since the 2008 systematic survey, additional related work
has been published. Once again, we focus on reverse
engineering object collaborations through dynamic and/or static
analysis, focusing on whether the techniques rely only on a
dynamic analysis, a static analysis or both. (Other
characteristics of the techniques are interesting, but they are
less relevant to our approach, and are therefore not discussed
here.) Some approaches attempt to generate sequence diagrams
using a static analysis of the source code [19], while others rely
on execution traces, though through dynamic analysis only and
without recovering alternatives or loops [20-22]. One recent
work, which we discuss below, combines both kinds of
analyses [10].

Several researchers reverse engineer sequence diagrams for
web applications [23-25] or distributed systems [26]. In [23]
traces are collected through purely dynamic means, and are
trimmed by rejecting any new trace that is identical to an
already discovered trace. The authors suggest a similar
trimming approach to recognize loops but defer it to future
work. A purely static analysis of the code is used in [24]. An
analysis of traces (only dynamic analysis) without recovery of
conditions or loops is used in [25]. In [26] the approach is to
observe network communications. Reiss and Renieris
compacting technique [27] is then used to aggregate several
scenarios thereby recognizing loops and alternatives. This
technique complements ours and is similar to our JAVA/RMI-
specific approach [2]: they look at the boundaries of interacting
applications while we look at the inside of the interacting
applications.

In [28] the authors discuss the issues of reverse engineering
FORTRAN legacy code, first being transformed into Java
code, though without providing technical details regarding the
reverse engineering of sequence diagrams. Cleve and Hainaut
[29] conduct dynamic analysis of SQL statements for Data-
Intensive applications.

A number of researchers have reported on ways to compact
traces or sequence diagrams generated from them by either
looking at the trace only (dynamic analysis only) or combining
static and dynamic analysis [10, 16, 27, 30, 31]. The objective
is for instance to recognize repeated (sub-)sequences of
calls/messages and therefore loops. These works assume traces
(or sequence diagrams) already exist. Instead we work on the
generation of such traces (or sequence diagrams), attempting to
minimize the overhead in terms of instrumentation and
execution. These works are therefore complementary to our
approach. Studying to what extent they can be combined is part

Carleton University, Department of Systems and Computer Engineering September 2011
Technical Report SCE-11-02

 3

of our future work. Other researchers suggest ways to dig into
large sequence diagrams [10, 32, 33].

Many (commercial) tools are capable of reverse
engineering sequence diagrams. (We omit the tools that limit
the reverse engineering to the class diagram, such as Topcased,
Poseidon, ModelMaker, Together, or MoDisco.) They either
rely on a purely static analysis of the source code (e.g.,
MagicDraw, Rational Software Architect), or trace method
executions/calls without collecting control flow information
(e.g. MaintainJ, reverseJava, JSonde, javaCallTracer, J2U,
TPTP’s UML2 trace interaction View, CodeLogic). Note that
Fujaba and related projects do not reverse engineer sequence
diagrams. Some Fujaba projects do manipulate traces though,
but for the purpose of detecting design patterns. With respect to
tool support for reverse-engineering sequence diagrams, some
authors discuss the right features such a tool should provide,
especially when dealing with large traces/diagrams [33].

To conclude, with one exception (see below), no sequence
diagram reverse engineering technique that we are aware of
specifically addresses the issue of reducing the amount of
collected runtime information and compensating this lack of
information with a static analysis, with the attempt to limit the
probe effect while still being able to show control flow
information in sequence (scenario) diagrams. To the best of our
knowledge, the approach we present in this paper, based on a
combination of static analysis and dynamic analysis, is unique.
Note however that our dynamic analysis, whereby we trace
method calls, is not unique: in fact this appears to be the most
widely used trace collecting technique. What is unique is our
combination of static and dynamic analyses to provide more
information in the generated sequence/scenario diagram.

As mentioned previously, Myers et al. [10] use both static
and dynamic information to reverse engineer sequence
diagrams. They collect the same information as we do in this
paper (sections III to V), specifically line number and signature
of invocations (static information) and invocations objects
make to one another (dynamic information). They however rely
on debug and source code analysis (static information) and
byte-code instrumentation (dynamic information), while we
only rely on source code analysis (for the static information)
and bytecode instrumentation (for the dynamic information).
Additionally, they have a different objective than ours:
showing how static and dynamic information allows a tool to
recognize loops; instead, we are interested in studying how
combining both techniques reduces instrumentation, while also
recognizing control flows.

Since we build on our previous work [1-3], it is worth
discussing some of its details here. In [1-3] we used aspects
(AspectJ [34]) to trace method entry and exit (around advice),
conditions, loops, distributed information (focusing on RMI),
and concurrency information (thread communications). In
order to trace control flow information we had to instrument
the source code in addition to use aspects since AspectJ did not
offer any mechanism (i.e., join point) to do that. This
limitation, in particular, prompted the current work: avoiding
the instrumentation of the course code (in addition to the use of
aspects), while still obtaining the same amount of information
in the generated sequence diagrams.

To summarize our past instrumentation strategy [1-3], the
dynamic analysis involves two calls to the trace logger for
every method execution and two additional calls for each
control flow structure (i.e., condition or loop), and requires the
instrumentation of the source code (not only the bytecode). We
consider this a heavy instrumentation approach: the execution
overhead is high. We believe there is room for improvements,
specifically in relation to the way synchronous messages (i.e.,
calls) and control flow structures are intercepted. Our approach
attempts to improve those aspects, leaving aside the reverse
engineering of concurrent and (RMI) distributed
communications for which our past work is deemed sufficient
[1-3]: our simplified instrumentation strategy (this paper) and
our strategy to capture RMI and thread interactions should be
easy to combine.

III. OVERALL DESCRIPTION OF THE APPROACH
Our approach is summarized in Figure 1. We attempt to

minimize instrumentation, using aspects (activity a1 in Figure
1) and execute the instrumented version of the software using
test cases (activity a2). In parallel, we reverse-engineer the
control flow graph of methods (activity a3). We then combine
the trace and control flow information in a model
transformation activity (a4) to generate scenario diagrams.

In this process, we created tool support to automate
activities a1, a3 and a4. Activity a2 can be automated, for
instance using a framework like JUnit.

Figure 1 Proposed approach (UML activity diagram)

Our previous work has a similar process as the one of
Figure 1. The main difference is the absence of activity a3 (and
the generated graphs). The two approaches are equally easy to
setup and use since the same activities are automated.

The remainder of the paper discusses the control flow and
trace information (i.e., the models for <<dataStores>>
Control flow graphs and Traces in Figure 1)—section IV,
and our tooling to automate activities a1, a3, and a4—section
V.

The main issues that drove the design of the trace model
and the control flow model are:

- Collecting the right information in traces to reduce byte-
code instrumentation to the minimum possible. The
result is that we only collect method calls (identification
of caller and callee objects, method signature, and line
number of call—all in one trace log);

Carleton University, Department of Systems and Computer Engineering September 2011
Technical Report SCE-11-02

 4

- Being able to uniquely identify interacting objects: we
devised a solution to this problem in our previous work,
but had to revise it because we changed the logging
strategy (specifically, we changed the aspects);

- Collecting the right information from the source code to
match trace information, specifically line number of
method calls, and to identify control flow structures:
note that this analysis is performed offline;

- Devise models, especially the trace model, to facilitate
model transformations: specifically, the trace model is
close to the UML 2.1 metamodel.

IV. CONTROL FLOW AND TRACE INFORMATION
We refer the reader to [35] for the UML 2.1 metamodel and

only discuss our trace model (section IV.A) and control flow
model (section IV.B).

A. Trace model
The trace model (Error! Reference source not found.)

presents execution trace data. It is designed to be very close in
structure to the UML 2.1 Superstructure’s Message
components to facilitate transformations. In particular, the trace
model’s elements Log, MessageLog,
MessageLogOccurrenceSpecification and
MessageSort map to the UML’s Interaction, Message,
MessageOccurrenceSpecification and MessageSort
respectively.

Log represents a single program execution and contains a
sequence of MessageLogs. A MessageLog represents a
message sent to the logger to signal the start of an execution,
i.e., between a sending object and a receiving object (the two
associations to MessageLogOccurenceSpecification).
The covered attribute is a String containing the ID of an
object (a unique identifier representing an object of a class), to
be eventually translated into a lifeline in the sequence diagram.
MessageLog’s attributes specify the kind of the message, i.e.,
a synchronous call or an object creation (messageSort maps
to the UML’s Message’s messageSort), the message’s
signature (in the form returntype
package.class.calledmethodname(arguments), i.e.,
the signature of the method being called), and the name of the
class whose instance executes the called method
(bindToClass). In the case of a static call, bindToClass
contains the class defining this static method. This way, the
transformation algorithm can determine the specific class and
method invoked by the method call.

MessageLog contains a SourceLocation, which
specifies the location (name of the class and lineNumber) in
the source code from where the logged method call has been
made. This, along with bindToClass allows us to match a
MessageLog from the trace to the right element of the control
flow model instance (i.e., the right methods in the caller and
callee classes).

B. Control flow model
The control flow model (Error! Reference source not

found.) captures a method’s code structure in terms of method
calls, possibly performed under conditions (alternatives, loops).
It allows us to accurately locate method calls from the source
code based on matching MessageLogs from the trace model
and then place them into the UML sequence diagram structure.
Knowledge of a method call’s host method and, if the method
call is inside a condition, its control flow structures, will allow
us to accurately construct the sequence of executions with
minimal dynamic (trace) data.

A Class whose behaviour is monitored contains Methods
which in turn contain sequences of CodeSections. A
CodeSection can be a MethodCall (we do not distinguish
constructors) or a ConditionalSection, possibly nested (a
ConditionalSection contains a sequence of
CodeSections). A ConditionalSection is either an Opt,
an Alt or a Loop. A Loop has a LoopType set to either
for, do or while. Attribute conditionDescription (class
ConditionalSection) specifies the actual condition. A
MethodCall has a lineNumber from where it lies in the
source file. isInMethod (class MethodCall) contains the
signature of the method this method call is in. For
MethodCalls outside a ConditionalSection,
method.signature (navigating the association between
MethodCall and Method, inherited from CodeSection, and
accessing attribute signature of the calling method) is the
same as isInMethod. However, MethodCalls inside a
ConditionalSection do not have direct access to this
association and therefore need to carry the isInMethod
attribute. Attribute isInClass contains the name of the Class
the MethodCall is in, and is needed for similar reasons as
isInMethod.

An Alt ConditionalSection does not contain
information about true/false branches because they are not
handled as such in this work. The distinction between Opt and
Alt is used in the mapping algorithm described in section V.C,
hence they are kept as separate entities here.

Figure 2. Trace model

Figure 3. Control flow model

Carleton University, Department of Systems and Computer Engineering September 2011
Technical Report SCE-11-02

 5

V. TOOLING
We discuss below the aspects we used to collect runtime

information (traces)—section V.A, the control flow model
construction—section V.B, and the model transformation—
section V.C. We only highlight the main principles due to
space constraints. More details are available in Appendices
(sections VIII and IX). An example illustrating the models and
the model transformation is discussed in section V.D.

A. Aspects
The premise of this work is to provide a lighter

instrumentation strategy than our previous work [1-3]. We
therefore want to (1) avoid instrumenting control flow
structures in the source code and (2) limit the impact of aspects,
i.e., reduce the number of instrumentation calls made during
execution.

To avoid instrumenting the source code, since AspectJ still
did not provide pointcuts for control flow structures, we turned
to static analysis, specifically a control flow graph created by
parsing the source code. Note that even if AspectJ were
providing such pointcuts, combining a static analysis with a
dynamic analysis would still be preferable, as this would limit
the probe effect (fewer aspects and pointcuts would be needed).

When combining the two kinds of analysis we need a way
to match static information to dynamic trace. For example, we
can do this by using the class name and method signature of
executing methods as collected from the trace. This is not
sufficient since we then do not know from where the call has
been performed. Instead of instrumenting method executions,
we therefore instrument method calls and capture the line
number and the source file name from where the method call
was made. Combined with a unique identification of executing
objects, this information will allow us to correctly link dynamic
and static data since this information (i.e., line numbers,
method and class names) is also in the control flow graphs.

Once we can associate a method call from the trace to the
location in the source code where that call is made (control
flow graph), the static analysis allows us to determine from
which method in which class the call was made and whether
this call is inside a condition or a loop. Having obtained this
location information statically, we no longer need to extract it
through the trace as in [1-3].

Furthermore, when using a call joinpoint, AspectJ can
provide information about both the source and destination
methods. This allows us to further reduce the number of log
statements compared to our previous work, an improvement we
expect to translate into significantly lower overhead and faster
execution time.

In the end, we have three aspects. The first one is to add to
classes whose instances are monitored the capability to count
and uniquely identify their instances. The second and third
aspects intercept calls to methods and constructors and collect
information before they are made: the join point is a call, the
advice is a before advice. We selected call join point rather
than execution join point since an execution join point is only
aware of the location in the code of the method being called
and not where the call is made from. Using a call join point, we

can access information about the caller and the callee. The
advice is a before advice rather than am after advice or an
around advice since an after advice would lead to collecting
messages in the reverse order, and an around advice is more
expensive (in terms of instrumentation) than a before advice.
The collected information includes: unique identifiers (or class
name in case of static methods) of interacting objects, the
signature of the method being called, and the line number
where the call is made. The exact aspects can be found in
Appendix VIII.

Transforming a trace into an instance of the trace model
does not pose any technical difficulty and is not further
discussed here.

B. Control Flow
We created a JavaCC (with JJTree) parser to generate

instances of the control flow model, using a simplified Java
grammar since we are only interested in class and method
definitions, method and constructor calls, and control flow
structures. Our parser can recognize class definitions, including
inner class definitions, methods and method calls (including
constructors), including method calls that are passed as
parameters to other method calls and method calls that are
inside condition statements; It handles if, else if and else, while
loop, for loop (including for-each) but not ?: and the do-while
loop (doing so is not a technical challenge). Note that when a
condition contains a method call, the method call will appear in
the control flow graph right ahead of the condition (outside of
the conditional control flow construct). This is to better match
the trace information, and the UML sequence diagram notation.
Control flow generation is not further discussed here since it
does not pose any technical difficulty.

C. Model transformation
We formalized the different steps of our transformation of

instances of the trace and control flow models into an instance
of the UML metamodel in terms of mapping rules between
these models, using the Object Constraint Language (OCL)
[11]. Creating an instance of the scenario diagram (using the
UML sequence diagram notation) from instances of the trace
and control flow models was then specified and performed with
a third party, imperative model transformation tool named MD
Workbench (http://www.mdworkbench.com/). The OCL rules
can be seen as a specification for the MD Workbench
transformation and were useful to identify whether our trace
and control flow models had the required information to
accurately perform transformations. The complete set of rules
is not discussed here due to space constraints. Examples are
available in Appendix IX.

D. Illustrating example
Let us now look at the example of Figure 4 to illustrate the

two models and the essence of the model transformation. It has
four parts: (I) an excerpt of code source showing the body of
method m() in class A, which performs calls to methods n()
and m() on an instance b that we assume to be of class B; (II)
an instance of the control flow model (excerpt), i.e., the one of
method m() in A; (III) a small excerpt of an instance of the
control flow model, i.e., the one of class B; (IV) an (excerpt of

Carleton University, Department of Systems and Computer Engineering September 2011
Technical Report SCE-11-02

 6

an) instance of the trace model showing part of the execution of
m() in A. The lineNumber attribute values in Figure 4, parts II
and IV correspond to the line numbers in Figure 4, part I. In
part IV, MessageLogOccurenceSpecification is simply
referred to as MLOS for short. In Figure 4, part II, we recognize
that m() contains an Opt alternative, which is itself made of a
sequence of a Loop (performing a method call to n() on b)
followed by a method call (to m() on b). The numbers 1 and 2
on the Loop and MethodCall sides of the links simply
indicate that the links between the Opt object, and the Loop
and MethodCall objects are ordered (as per the model in
Error! Reference source not found.). In Figure 4, part IV, we
assume that the execution of the program resulted in four initial
log messages, followed by log messages ML5, ML6, …, ML15.
Since the loop is executed nine times, there is a total of nine
structures similar to ML6 and its linked instances in the
sequence (recall Error! Reference source not found.) of
MessageLog instances linked to the Log instance. Instances of
objects executing methods are uniquely identified thanks to our
aspects, which is simply represented in part IV as strings
“A.1” and “B.10”, suggesting for example that the instance
of A executing m() is the first instance of A ever created in the
program, and that calls to n() and m() are performed on the
tenth instance of B created. In Figure 4, information not
relevant to this discussion of the example is indicated with
“…”.

Let us now illustrate the essence of the model
transformation. The excerpt of the trace model instance shows
two instances: instance 1 of A and instance 10 of B. This allows
the model transformation to create two lifelines; one for each of
these instances. Instance ML5 shows the call to m() on instance
1 of class A: the receiveEvent MLOS linked to ML5. The
following MessageLog in the sequence from the Log instance,
specifically ML6, shows a call to n() on the tenth instance of B
(the receiveEvent MLOS linked to ML6) performed by the

first instance of A (the sendEvent MLOS
linked to ML6). Since there is no other
MessageLog between ML5 and ML6, and the
target of the first MessageLog is the source
of the second MessageLog (A.1), we can
conclude that the call to n() in ML6 is
performed by m() which has been called in
ML5. This allows the model transformation to
create an execution specification on each life
lines, showing the execution of m() on A.1
and n() on B.10, as well as a message from
the m() execution specification to the
beginning of the n()’s execution
specification. This also applies to the eight
other MessageLog instances similar to ML6,
as well as ML15. This results in the sequence
diagram of Figure 5 (a).

The model transformation algorithm can
also recognize that the call to n() on an
instance of B recorded by ML6 occurs at line 4
(attribute lineNumber of the ML6’s
SourceLocation instance), that this call is
performed in method A.m() (we already
discovered that), and that, from the control
flow model of method A.m(), the call to n()

on an instance of B at line 4 happens in a loop, which itself
happens in an alternative. Since this applies to all the ML6 to
ML14 objects, the model transformation can collapse the nine
messages labeled n() in Figure 5 (a) into one message in a
Loop combined fragment, itself inside an Opt combined
fragment. In addition, since ML15 is a call that happens in
A.m() at line 5 and that this call happens (control flow model)
in the alternative, after the loop, we can then obtain the
sequence diagram of Figure 5 (b).

(a)

(b)

Figure 5 Illustrating the model transformation

VI. CASE STUDY
We performed a case study with three research questions in

mind: Is the execution overhead, measured as execution time,
reduced when our approach is used compared to our previous
work? Are the resulting scenario diagrams correct? Are they
equivalent (we used UML 1.x and now use UML 2.x) to those
produced by our previous technique?

Figure 4 Illustrating example

Carleton University, Department of Systems and Computer Engineering September 2011
Technical Report SCE-11-02

 7

A. Experiment set up
To answer these questions, we relied on four different case

study systems (Table 1): The first one is a running Example we
specifically built to exercise and control many different
situations (e.g., nested loops and numerous iterations of loops).
Through parameter values we can for instance control the
amount of times method calls are performed, loops are
executed, thereby simulating larger program executions. The
code does not contain any computation, any GUI, any
interaction with IO devices (e.g., reading a file). This should
allow us to evaluate to what extent our new technique reduces
the overhead as the size of the software (simulated by
increasing the number of loops and calls) increases, without
actually using a software larger than the four we detail in Table
1. Note however, that we expect execution overhead results to
be worse with this example than with a real system exercising a
similar pattern of calls and control flows, since we only have
calls and control flow (e.g., no computation). In other words,
the percentage of increased execution time would be smaller
than what we report with this example; The second case study
system is a software, developed by the second author in the
context of a graduate course, implementing the Proof Carrying
Code (PCC) technique [36], a technique for safe execution of
untrusted code; The third system is a simple calculator, partly
generated by JavaCC that heavily relies on the Visitor design
pattern. We expect to see that pattern in the generated scenario
diagrams; Last we used the Library system (server side only)
from our previous work [1-3].

Our reverse engineering technique necessarily needs
executions, i.e., test cases. Each case study was first executed
with one test case that we selected to not produce too large
traces, since manipulating large traces is out of the scope of this
paper. We however used the same executions of the Library
system as in our previous work [1-3], to allow comparisons.
The Example system was also executed with varying parameter
values to trigger large amounts of method calls and loop
executions. We can then study the probe effect of our
instrumentation on execution time.

To analyze execution overhead (question 1), using the three
first systems (Table 1), we relied on three versions of each
system: one with no instrumentation (base), one with our (light)
instrumentation, and one with our (original) instrumentation.
Note that to avoid a bias in favour of the light instrumentation,
we removed the recording of node IDs and timestamps from
the original instrumentation, necessary in the original technique
to trace RMI and thread communications, thereby making the
two instrumentation techniques comparable.

To compare execution times, we executed test cases 100
times twice at two separate occasions. Each test case for the
three first systems is therefore executed 200 times. This is to
control for the possible impact of the Windows operating
system. (When possible, all other applications and services
running on the computer were turned off, and the network was
disconnected.) Between calls to the program under study, there
is a call to a timer to get start and end times of the execution (in
milliseconds). Note that this measure of time includes the start
of the JVM. However, since we intend to compare execution

times for the three versions, this should not have any impact on
our conclusions.

Table 1. Characteristics of the four case study systems
Case study name Classes Methods LOC Question(s)

Example 4 13 56 1
PPC Prover 8 59 1280 1
Calculator 16 130 1175 1, 2

Library (Server) 44 459 3280 2, 3

To facilitate comparisons in the case of the third question,
the test case used for the Library system is the one we used in
the past [1-3]. When comparing the sequence diagrams
generated by our two (original and light) techniques, we made
abstraction of the facts that the original diagram abstracts out
RMI and thread communication details and uses UML 1.x
(instead of UML 2.x).

B. Results—Correctness of generated diagram
After investigations and comparisons with the source code,

and available or expected diagrams (i.e., previous study using
the Library system, behaviour of the visitor design pattern), we
can conclude that the diagrams generated are accurate and
provide as much information as our previous approach [1-3].

To illustrate this, we selected the sequence diagram for the
AddCopy use case of the Library system, as available from the
design documentation of the Library system: Figure 6. Figure 7
shows the reverse-engineered diagram for that behaviour, using
our previous technique [1-3]. This illustrates the usefulness of
the approach since for instance discrepancies with Figure 6 are
clearly visible [1-3]. Some discrepancies are only due to the
fact that we reverse engineer one scenario instead of complete
sequence diagrams: e.g., not having in Figure 7 counterparts for
messages in the alt combined fragment in Figure 6 (in the
executed scenario there is no reservation on the title whose
copy is added). Other discrepancies pertain to parameter types
(e.g., addCopy(), Copy’s constructor). This example
illustrates how using reverse engineered scenario diagrams can
inform us about implementation choices. See [1-3] for a more
detailed discussion.

Using the new approach we discussed in this paper, we
obtain Figure 8. Note that we processed only the trace file of
the server part of the Library System, explaining why the first
lifeline of Figure 7 is not in Figure 8, and removed trace details
such as server initialization and user logging to obtain
comparable diagrams. The trace was processed by our
prototype tool and the UML XMI file produced.

While looking at both Figure 7 and Figure 8, one can see
that the same information is displayed: same messages, same
ordering of messages. Two main differences are: we used UML
2.x, which allowed us to specify a combined fragment, whereas
only UML 1.x was available at the time we created Figure 7;
The message and lifeline labels have a different format in
Figure 7 and Figure 8. These are stylistic differences due to our
algorithm: i.e., the same information is available in the model.
Furthermore, our algorithm does not handle RMI, so notions
such as Node 0 and Node 1 (Figure 7) are not applicable.

Another example illustrating that the expected scenario
diagram is generated can be found in the Appendix (section X):

Carleton University, Department of Systems and Computer Engineering September 2011
Technical Report SCE-11-02

 8

we executed a simple calculator that
implements the visitor design pattern
and clearly observed object interactions
dues to the pattern in the reverse-
engineered scenario diagram.

C. Results--Overhead
Table 2 reports on the number of

calls executed in the three versions of
the three first case study systems. The
first column reports on the calls
executed in the non-instrumented
versions whereas the other two
columns indicate the overhead, i.e.,
additional calls (in fact calls to the
logger), due to instrumentation
strategies: e.g., tests executed 113 calls
of the non-instrumented Calculator,
whereas 131 additional calls are
executed in the light instrumentation
(for a total of 244 calls). Variations
from system to system are due to
differences in instrumentation techniques (e.g., we used an
around advice in our previous work and now use a less
demanding before advice) and the characteristics of the systems
(e.g., amount of loops or if statements, amounts of calls to
monitor). A general trend is that the original instrumentation is
at least twice more expensive than the light one in terms of
added calls. The differences between light and original is due
to the fact that for the light instrumentation, the count is the
sum of the number of method and constructor calls whereas for
the original instrumentation, the count is the sum of twice
(because of the around advice) the number of method and
constructor calls and twice the number of conditions and loops
encountered. Therefore, removing instrumentation of control
flow structures helped reduce the probe effect, but our new
aspects (before advice) also helped.

Table 2. Method calls counts

 No instrumentation “Light” “Original”
Calculator 113 131 305
PCC Prover 1138 1277 2334
Example 10000 10003 32000

Execution times are reported in Figure 10: box plots
indicate minimal and maximal execution time values (opposing
ends of the vertical line) as well as first and third quartile lines
encompassing time range achieved by half of the total
executions. While we tried to control other operating system
activities, there is still a large variation in the execution times
obtained. However, compared to the differences between
minimum and maximum execution times, most execution times
lie within a narrow range (so we can discard the outliers).
Notice that the largest number of points for each variation is
found at or near the minimum execution time. This is likely due
to the fact that most of the time there were very few other
processes running on the computer. The higher points probably
occurred during times that the processor was handling other
expensive system events we were not able to control. On
average, the light instrumentation approach causes the program
to execute slower than it would without instrumentation but

much faster than with the original instrumentation approach,
especially as the number of method calls grows, i.e., the size of
the instrumented program grows: Example requires more calls
than PCC Prover, which requires more calls than Calculator
(Table 2).

We compared the samples of execution times obtained with
the Light and Original versions and with the Original and Base
versions, for all three systems: we used a one-tailed t-test and
confirmed the results with the corresponding non-parametric

Figure 7 AddCopy scenario diagram from [1-3]

SrLibrarian

<<boundary>>
:UserInterface

<<control>>
:EmployeeControl

<<boundary>>
:DBMSInterface

<<entity>>
co:Copy

<<entity>>
t:Title

<<entity>>
r:Reservation

<<boundary>>
:PrinterInterface

addCopy(t)
<<create>>

addCopy(t)

<<create>> (t,b)

addCopy(co)

r = getOldestPendingReservation()

fillReservation(co)

fillReservation(r)

saveReservation(r)

printBarCode(b)

saveCopy(co)

saveTitle(t)

<<destroy>>

ref b = generateBarCode()

r<>nullalt

Figure 6 AddCopy sequence diagram from design document

Carleton University, Department of Systems and Computer Engineering September 2011
Technical Report SCE-11-02

 9

Wilcoxon signed-rank test. All comparisons are
statistically significant (p-value threshold at
0.05), with all the p-values smaller than 0.0001,
except one (p-value=0.004) obtained when
comparing Light and Original for Calculator.
The light instrumentation statistically leads to
less overhead than the original instrumentation.

The variation between the fastest time and
the median is noticeable for Calculator light,
PCC Prover original and Example original. We
attribute this to the instrumentation making
system calls to write to a log file. Because these
calls are external to the java execution, they
may be more susceptible to external processes.
A file needs to be created and written to
repeatedly, which are execution-heavy tasks
(much heavier than any instrumentation-related
behaviour added to the programs). We will
investigate other logging mechanisms than
writing to a file in the future. For Calculator, the
light version is more negatively affected by the
instrumentation than the original despite a lower
number of instrumentation calls. This could be
because the amount of characters written into a
file for our light instrumentation is higher than
for original. For example, the first trace entry
for Calculator light was 249 characters long,
versus 175 for original. Light instrumentation is
therefore not “lighter” than original for executions small
enough not to be negatively affected by large number of
instrumentation calls. Indeed, even though the original
instrumentation writes to a file at least twice as often as our
light instrumentation, the number of times the file is written to
is small so the difference is not important. We suspect that the
overhead when the program is small mostly comes from
creation of the trace file.

We also simulated the instrumentation impact on execution
time for larger systems thanks to Example, which allows us to
control the number of method calls being executed thanks to an
input argument. We executed 10^2, 10^3, 10^4, 10^5, 10^6,
10^7, and 10^8 calls, 100 times each. Figure 9 shows the
results, using a logarithmic scale. Again, the light
instrumentation approach causes the program to execute slower
than it would without instrumentation but much faster than
with the original instrumentation approach: data show that the
light instrumentation is 2 times faster than the light one for
10^5 executions and above. The figure also shows that
additional work is required to further reduce the impact of
instrumentation: a different tracing mechanism can be used as
we have already mentioned; one may also consider
instrumenting only parts of a large program to reverse engineer.

VII. CONCLUSION
In this paper, we built on our previous work towards the

automated generation of scenario diagrams by reverse
engineering the source code. Our objective was to combine a
dynamic analysis of program executions (traces) with a static
analysis of the source code to (1) obtain scenario diagrams that
are equivalent to what our previous technique can generate

(i.e., sequences of messages with information on conditions
and loops triggering those messages, represented under the
form of the UML sequence diagram), while (2) reducing the
amount of instrumentation of the bytecode and avoiding
instrumenting the source code. The latter is particularly
important as we do not want the instrumentation to affect the
program behaviour, with the risk of not observing the right
behaviour when executing the instrumented program.

We therefore first tried to reduce the impact of our aspects
for trace generation (e.g., we trace calls rather than executions,
with a before advice rather than an around advice). In parallel
we generated control flow graphs of the methods to be
instrumented: we were only interested in method definitions,
the method calls they trigger and the conditions under which
those calls are triggered. We represented both sets of
information using UML class diagrams. Generating a UML
scenario diagram then became a model transformation problem
from an instance of the trace model and instances of control
flow models to an instance of the UML metamodel.

We performed several case studies that indicate that we
achieved our goals: (1) the generated diagrams were equivalent
to the ones generated by our previous technique; (2) we
reduced the probe effect due to instrumentation.

There is room for future work. First, we intend to combine
our new instrumentation strategy with our past technique to
monitor RMI and thread communications. Second, our
experimental results show we can still reduce execution time
overhead by for instance considering other mechanisms than a
file to collect trace information. We also intend to perform
more extensive experimentations to more precisely understand
what aspects of the approach hurts the most in terms of probe

Figure 8 AddCopy scenario diagram generated by the new technique

Carleton University, Department of Systems and Computer Engineering September 2011
Technical Report SCE-11-02

 10

effect, given characteristics of the program being monitored.
We also intend to combine our technique with existing trace
minimization techniques (e.g., [10, 16, 27, 30, 31]). Last, the
next challenge will be to combine several scenario diagrams
and create accurate, complete sequence diagrams. There is
work in the literature we can get ideas from [13].

REFERENCES
[1] L. C. Briand, Y. Labiche, and J. Leduc, "Towards the Reverse

Engineering of UML Sequence Diagrams for Distributed Java Software,"
IEEE TSE, vol. 32, pp. 642-663, 2006.

[2] L. C. Briand, Y. Labiche, and J. Leduc, "Towards the Reverse
Engineering of UML Sequence Diagrams for Distributed, Multithreaded
Java software," Carleton University, TR SCE-04-04, September 2004.

[3] L. C. Briand, Y. Labiche, and J. Leduc, "Tracing Distributed Systems
Executions Using AspectJ," in IEEE ICSM, 2005, pp. 81-90.

[4] T. Pender, UML Bible: Wiley, 2003.
[5] D.-P. Nguyen, C.-T. Luu, A.-H. Truong, and N. Radics, "Verifying

Implementation of UML Sequence Diagrams Using Java PathFinder," in
Knowledge and Systems Engineering, 2010, pp. 194-200.

[6] Z. Zhou, L. Wang, Z. Cui, X. Chen, and J. Zhao, "Jasmine: A Tool for
Model-Driven Runtime Verification with UML Behavioral Models," in
IEEE High Assurance Systems Engineering, 2008, pp. 487-490.

[7] Y.-G. Guéhéneuc, "A reverse engineering tool for precise class
diagrams," in conference of the Centre for Advanced Studies on
Collaborative research, 2004, pp. 28-41.

[8] B. Beizer, Software Testing Techniques, 2nd ed. Van Nostrand Reinhold,
1990.

[9] Y.-G. Guéhéneuc and T. Ziadi, "Automated Reverse-engineering of UML
v2.0 Dynamic Models," in ECOOP Workshop on Object-Oriented
Reengineering, 2005.

[10] D. Myers, M.-A. Storey, and M. Salois, "Utilizing Debug Information to
Compact Loops in Large Program Traces," in CSMR, 2010, pp. 41-50.

[11] J. Warmer and A. Kleppe, The Object Constraint Language, 2nd ed.:
Addison Wesley, 2003.

[12] B. Kolbah, "Reverse Engineering of Java Programs through Static and
Dynamic Analysis to generate Scenario Diagrams," Masters of Applied
Science Thesis, Carleton University, Ottawa, January, 2011.

[13] B. Cornelissen, A. Zaidman, A. Van Deursen, L. Moonen, and R.
Koschke, "A Systematic Survey of Program Comprehension through
Dynamic Analysis," IEEE TSE, vol. 35, pp. 684-702, 2009.

[14] B. A. Malloy and J. F. Power, "Exploiting UML Dynamic Object
Modeling for the Visualization of C++ Programs," in ACM Symposium on
Software Visualization, 2005, pp. 105-114.

[15] T. Systa, K. Koskimies, and H. Muller, "Shimba - An Environment for
Reverse Engineering Java Software Systems," SPE, vol. 31, pp. 371-394,
2001.

[16] A. Hamou-Lhadj and T. C. Lethbridge, "Summarizing the Content of
Large Traces to Facilitate the Understanding of the Behaviour of a
Software System," in IEEE ICPC, 2006, pp. 181-190.

[17] K. Koskimies, "Scene: Using Scenario Diagrams and Active Text for
Illustrating Object-Oriented Programs," in IEEE ICSE, 1996, pp. 366-375.

[18] J. Koskinen, M. Kettunen, and T. Systa, "Profile-Based Approach to
Support Comprehension of Software Behavior," in ICPC, 2006, pp. 212-
224.

[19] F. Q. Wang, H. J. Ke, and J. B. Liu, "Towards the Reverse Engineer of
UML2.0 Sequence Diagram for Procedure Blueprint," in World Congress
on Software Engineering, 2009, pp. 118-122.

[20] S. Munakata, T. Ishio, and K. Inoue, "OGAN: visualizing object
interaction scenarios based on dynamic interaction context," in IEEE
ICPC, 2009, pp. 283-284.

[21] T. Ishio, Y. Watanabe, and K. Inoue, "AMIDA: a sequence diagram
extraction toolkit supporting automatic phase detection," in Companion of
the 30th ICSE, 2008.

[22] O. Pilskalns, S. Wallace, and F. Ilas, "Runtime debugging using reverse-
engineered UML," in Models, 2007, pp. 605-619.

[23] M. H. Alalfi, J. R. Cordy, and D. Thomas, "Automated reverse
engineering of UML sequence diagrams for dynamic web applications,"
in IEEE ICST Workshops, 2009, pp. 287-294.

[24] Y. Imazeki and S. Takada, "Reverse engineering of sequence diagrams
from framework based web applications," in IASTED International
Conference on Soft. Engineering and Applications, 2009, pp. 202-209.

[25] A. Serebrenik, S. Roubtsov, E. Roubtsova, and M. van den Brand,
"Reverse engineering sequence diagrams for Enterprise JavaBeans with
business method interceptors," in WCRE, 2009, pp. 269-273.

[26] C. Ackermann, M. Lindvall, and R. Cleaveland, "Recovering views of
inter-system interaction behaviors," in WCRE, 2009, pp. 53-61.

[27] S. P. Reiss and M. Renieris, "Encoding Program Executions," in ICSE,
2001, pp. 221-230.

[28] S. R. H. Hoole and T. Arudchelvam, "Reverse engineering as a means of
improving and adapting legacy finite element code," in International
Conference on Industrial and Information Systems, 2009, pp. 227-232.

[29] A. Cleve and J.-L. Hainaut, "Dynamic Analysis of SQL Statements for
Data-Intensive Applications Reverse Engineering," in WCRE, 2008.

[30] A. Hamou-Lhadj, "Techniques to Simplify the Analysis of Execution
Traces for Program Comprehension," Ph.D., University of Ottawa, 2006.

[31] P. Dugerdil and J. Repond, "Automatic generation of abstract views for
legacy software comprehension," in ACM India software engineering
conference, 2010, pp. 23--32.

[32] K. Noda, T. Kobayashi, K. Agusa, and S. Yamamoto, "Sequence Diagram
Slicing," in Asia-Pacific Soft. Eng. Conference, 2009, pp. 291-298.

[33] C. Bennett, D. Myers, M.-A. Storey, D. M. German, D. Ouellet, M.
Salois, and P. Charland, "A survey and evaluation of tool features for
understanding reverse-engineered sequence diagrams," Software
Maintenance and Evolution, vol. 20, pp. 291-315, 2008.

[34] J. D. Gradecki and N. Lesiecki, Mastering AspectJ - Aspect-Oriented
Programming in Java: Wiley, 2003.

[35] OMG, "UML 2.0 Superstructure Specification," Object Management
Group, Final Adopted Specification ptc/2007-11-02, 2007.

[36] G. C. Necula, "Proof-carrying code," in ACM SIGPLAN-SIGACT
Symposium on Principles of Prog. Languages, 1997, pp. 106--119.

Figure 10. Execution times for different instrumentations

Figure 9. Median execution times while increasing the number of method calls

Carleton University, Department of Systems and Computer Engineering September 2011
Technical Report SCE-11-02

 11

VIII. APPENDIX—ASPECTS

A. Logger
Class Logger implements the logging functionality and is a

simplified version of the one we used in [1-3] since tracing
multithreading and RMI is outside of scope for this paper.
Specifically, unlike our previous Logger, we do not need to
retain a timestamp of the trace statement, node on the network
or thread identifications.

The Logger implements the singleton design pattern. All
trace statements generated by our aspects (see following
sections) are written into a single file, Trace.txt by calling
method instrument(List <String> record) of the
Logger. The Logger needs to be generated for every project
to be instrumented but this can be done automatically.

B. Object identification
Interacting objects need to be uniquely identified to draw

lifelines in the generated sequence diagram. An aspect (Figure
11) and the ObjectID interface are used to correctly set and
make available to other aspects a unique identifier and class
name for objects whose behavior is to be monitored/traced. The
ObjectID interface simply specifies one method called
getObjectID() that returns an integer: a unique identifier for
the instance of the class on which it is called. Two instances of
the same class cannot have the same identifier (this is ensured
by the aspect), while instances of different classes can have the
same identifier. Instances of a class are therefore uniquely
identified using their identifier, while instances in the system,
possibly from different classes, are uniquely identified using
the unique pair (class name, identifier). Setting an object’s
identifier happens during construction of the object.

The aspect in Figure 11 is specific to one class called
MyClass, to make the discussion more concrete and easier to
follow. Creating a similar aspect for each class to be monitored
at runtime is straightforward. This aspect adds an attribute of
type int, named objectID to the instrumented class (line 1).
It also specifies that the MyClass class implements a new
interface, specifically ObjectID (line 13), and adds an
implementation to the method declared in this interface,
specifically getObjectID() (lines 14-19).

The aspect also adds to the class (static attribute
currentObjectID and method objectIDgenerator()) the
capability to count its instances, which is the mechanism used
to set a unique identifier to those instances. Attribute
objectID is obtained for each object of the instrumented class
during its creation by calling static method
objectIDgenerator(objectID). This method initializes
attribute objectID by incrementing static attribute
currentObjectID (line 7). At this time, a call is made to the
Logger to record that this object has just been created (lines 8-
9), since the first time this method is called is during
construction. The Logger then records a lifeline to match the
UML terminology: an object executing a method will
eventually be represented as a lifeline in the sequence diagram.
During the lifetime of this object, its unique ID, e.g.,

“MyClass_12” (lines 8, 18), is accessed by calling method
getObjectID(), specified by the ObjectID interface.

If the object created is of a class that has parent classes and
those classes have a behavior that is also intercepted, the
objectIDGenerator method will be called for each parent
and then for the child, following the order in which
constructors in an inheritance hierarchy are called in Java. This
will cause the Logger’s instrument() method to be called
for each of these constructors in sequence from parent to child.
If the parent class has a constructor, it will be called before the
child’s objectID attribute is set by objectIDGenerator().
If then the parent’s constructor contains method calls, the
child’s objectID could be read by the aspect before it is
initialized to its final value, as specified in
objectIDgenerator(). The trace file would then have
incorrect information pertaining to the ID of the object: calls in
the parent constructor to methods overridden in the child would
lead to log entries with the wrong object identifier. To avoid
this, whenever getObjectID() is called, a check is made
whether the objectID attribute has been initialized (line 15).
If the initialization has not happened, initialization is performed
before getObjectID() returns (line 16). To avoid overwriting
this value at actual initialization, the objectIDgenerator()
verifies (line 5) whether the objectID has already been
initialized and does not modify it if this is the case. Since
objectIDgenerator() is static, it cannot access the
objectID attribute of the instance. This information therefore
has to be passed as a parameter: lines 16 and 1.

As a result, if classes A, B, and C are monitored, A being a
parent for B and B being a parent for C, creating an instance of
C results in executing line 8 of Figure 11 three times: once for
A, once for B, and once for C, in that order. The trace will
contain log statements like (class names would be fully
qualified):

<lifeline className="A" name="A_1"/>
<lifeline className="B" name="B_1"/>
<lifeline className="C" name="C_1"/>

These indicate that instances of classes A, B, and C have been
created and they all have unique ID 1 (within their class).
Obviously, no instance of A and B has been created really.
Those statements are simply a byproduct of our procedure to
collect information. The two first statements can simply be
1 private int MyClass.objectID =

MyClass.objectIDgenerator(objectID);
2 private static int MyClass.currentObjectID = 1;
3 private static int MyClass.objectIDgenerator(int i) {
4 int id = i;
5 if (i < 1){
6 LinkedList <String> log=new LinkedList <String> ();
7 id = MyClass.currentObjectID++;
8 log.add("<lifeline className=\"example.MyClass\"

name=\"MyClass_" + id + "\"/>");
9 Logger.getLoggingClient().instrument(log);
10 }
11 return id;
12 }
13 declare parents : MyClass implements ObjectID;
14 public String MyClass.getObjectID() {
15 if (objectID < 1){
16 objectID = MyClass.objectIDgenerator(objectID);
17 }
18 return "MyClass_" + objectID;
19 }

Figure 11. Identifier aspect for class MyClass

Carleton University, Department of Systems and Computer Engineering September 2011
Technical Report SCE-11-02

 12

removed from the log file, in a post-processing phase without
any impact on the accuracy of the result.

We investigated alternatives to avoid this (very simple)
post-processing but they all resulted in additional instru-
mentation, which goes against our objective to limit the probe
effect. The instrumentation of parents (to generate IDs) adds a
slight overhead; however, we judged it to be small enough to
use this approach until a significantly better one is available.

C. Method/Constructor call interception
Figure 12 shows our pointcuts to intercept method calls

(either to instance or static methods). Pointcut callMethod
specifies all method calls (line 1), i.e., with any method name
and any list of parameters, except for static method calls (line
2) and calls made to the IdentifierAspect, the Logger or
ObjectID classes/aspects (lines 3-5). The pointcut for
intercepting calls to static methods is similar (line 6-10).
Finally, pointcut callConstructor specifies calls to
constructors (line 11), omitting calls to constructors in the
instrumentation infrastructure (line 12), assumed to be in an
example package (we opted for simplicity, a different package
name can easily be used).

Advices for these pointcuts are all executed before calls,
rather than around executions [1-3] as we want to know the
location of calls in the source code to match intercepted calls
with control flow information. An execution join point is only
aware of the location in the code of the method being called
and not where the call is made from. We can deduce the source
code location of the executed method through static analysis by
matching its signature, given that we know the type of the
object executing the method, hence we do not need another join
point that would provide such information. We use a before
rather than an after advice because we want to obtain the
sequence in which method calls are made: an after advice
would provide the reverse order (e.g., log entry for the callee
before a log entry for the caller).

The aspect code executed at the pointcut obtains the
information specified earlier. Figure 13 presents the code,
executed right before a callMethod pointcut, thereby
obtaining information about a call to a method of an object, and
sending that information to the Logger. Local variable
thisID (line 2) records the ID of the object making the call.
Line 3 defines a local variable to store log information before
sending it to the Logger (line 19). Lines 4-9 retrieve the
identity of the object performing the call: either an object

whose behavior is instrumented and implements the ObjectID
interface, and then we retrieve the object identifier (line 5), or
the calling context is static (e.g., the main method of the
program), or is a class that has not been instrumented (line 8).
Class file names are formatted by getStaticClassName(…).

Next, the advice retrieves the unique identifier of the object
being called (line 11): thisJoinPoint.getTarget(); and
stores it in local variable targetID. Then the aspect retrieves
details on the method being called: class name (line 12, thanks
to getBindToClassName), method signature (line 12, thanks
to getMethodSignature), line number where the call is
located (line 17, thanks to getLineNumber).

Currently the case of an instrumented class making a call to
an object of an un-instrumented class is not supported.
Modifying the aspect to handle such a case does not pose any
technical difficulty.

The aspect for pointcut callStaticMethod is very
similar and is therefore not shown here. The main difference is
that we do not have any target object identifier to report on.
Instead the trace indicates the name of the class defining the
static method being called.

The aspect to report on calls to constructors, i.e.,
callConstructor, is also very similar. It starts with the
identification of the identity of the object performing the call
(lines 4-9 of Figure 13), and ends with the formatting of the
trace message (similarly to lines 12-18 of Figure 13). There are
two important differences though, due to the fact that the object
creation has not yet finished at the point where the advice is
executed (i.e., right before the call to the constructor). First, the
target is not an object with an ID (yet): lines 10-11 of Figure 13
are therefore removed. Second, line 16 of Figure 13 cannot
refer to targetID. Instead, we use a keyword, specifically
nothing, in place of this ID.

As a result, assuming class C inherits from B, which inherits
from A, and an instance of C is created, the log will contain the
following statements:

<messageLog bindToClass="C"
messageSort="createMessage"
signature="new C(int)">

<sendEvent covered="C_static"/>
<receiveEvent covered="nothing"/>
<sentFrom lineNumber="6" name="C.java"/>
</messageLog>
<lifeline className="A" name="A_1"/>
<lifeline className="B" name="B_1"/>
<lifeline className="C" name="C_1"/>

A statement for any intercepted call performed by the
constructors of A, B, and C would follow. As discussed earlier,
the <lifeline… statements for classes A and B should be
removed. Then, in a post-processing step, it becomes easy to
recognize that the created object of class C in the first
<messageLog… (so far identified as nothing) is in fact the
object with ID C_1 (from the last <lifeline… statement). We
considered alternatives to avoid this very simple post-
processing step, but they all resulted in additional
instrumentation.

1 pointcut callMethod() : call (* *.*.*(..))
2 && !call (static * *.*.*(..))
3 && !call (* example.IdentifierAspect.*(..))
4 && !call (* example.Logger.*(..))
5 && !call (* example.ObjectID.*(..));

6 pointcut callStaticMethod() : call (static * *.*.*(..))
7 && !call (* example.MethodAspect.*(..))
8 && !call (* example.IdentifierAspect.*(..))
9 && !call (* *.*.objectIDgenerator(..))
10 && !call (* example.Logger.*(..));

11 pointcut callConstructor() : call (*.*.new(..))
12 && !call (example.Logger.new(..));

Figure 12. Pointcut definitions

Carleton University, Department of Systems and Computer Engineering September 2011
Technical Report SCE-11-02

 13

The aspects for intercepting calls to instance methods, static
methods and constructors are all generic and can be
automatically generated from a list of classes whose behaviour
needs to be monitored.

1 before(): callMethod () {
2 String thisID = new String ();
3 LinkedList <String> log = new LinkedList <String> ();
4 if (thisJoinPoint.getThis() != null) {
5 thisID = String.valueOf(((ObjectID)

thisJoinPoint.getThis()).getObjectID());
6 }
7 else {
8 thisID = getStaticClassName(thisJoinPointStaticPart.
 getSourceLocation().toString());
9 }
10 String targetID = new String ();
11 targetID = String.valueOf(((ObjectID)
thisJoinPoint.getTarget()).getObjectID());
12 log.add("<messageLog bindToClass=\""

+ MethodAspect.getBindToClassName(
thisJoinPoint.getTarget().toString())

+ "\" messageSort=\"synchCall\" signature=\""
+ MethodAspect.getMethodSignature(thisJoinPoint.toString())
+ "\">");

15 log.add("<sendEvent covered=\""+ thisID + "\"/>");
16 log.add("<receiveEvent covered=\""+ targetID + "\"/>");
17 log.add("<sentFrom lineNumber=\""

+ MethodAspect.getLineNumber(
thisJoinPointStaticPart.getSourceLocation().toString())

+ "\" name=\"" + MethodAspect.getFileName(
thisJoinPointStaticPart.getSourceLocation().toString())

+ "\"/>");
18 log.add("</messageLog>");
19 Logger.getLoggingClient().instrument(log);
20 }

Figure 13. Code executed before pointcut callMethod

Carleton University, Department of Systems and Computer Engineering September 2011
Technical Report SCE-11-02

 14

IX. APPENDIX—MODEL TRANSFORMATION RULES
Mapping rules are defined in the context of a specific class,

which we named Matching. This allows us to formally specify
the rules without having to modify any of the three models
(which are considered as data only): trace model, control flow
model, and more so the UML metamodel.

First we link each log of a method call (MessageLog in the
trace model) to a method call in the source code (MethodCall
in the control flow model), by matching their respective
signatures, sending classes and line numbers.
Matching :: matchMessageLogToMethodCall(MessageLog

ml) : MethodCall
post :
 result=MethodCall->allInstances->select(mc|
 ml.signature=mc.signature
 and ml.sentFrom.name=mc.isInClass
 and ml.sentFrom.lineNumber=mc.lineNumber)

Next, there are elements in the sequence diagram that are
specific to every MessageLog of the trace model and are not
shared with another MessageLog’s elements. If MessageLog
is of sort createMessage or synchCall, these unique
elements are two Messages (one for the call and one for the
return), four MessageOccurrenceSpecifications (two for
the call message and two for the return message), two
SendOperationEvents, two ReceiveOperationEvents
and a BehaviourExecutionSpecification. Other
elements related to the MessageLog may be shared with other
MessageLogs and are created for a MessageLog only if the
matching ones do not yet exist in the model. These elements
include: one or two Lifelines, and the Property
representing these Lifelines, an Actor for the initial
Lifeline corresponding to the first MessageLog in the trace
and Classes for the remaining Lifelines, Connectors, and
ConnectorEnds, Operations as well as elements
representing control flow, namely: CombinedFragment,
InteractionOperand, InteractionConstraint, and
OpaqueExpression.

For instance, the OCL expression below characterizes the
unique elements of messages that are derived from a log, using
operations mapSendMessage(), mapReplyMessage(), and
mapToBES() which, in a nutshell, identify whether the log
message sort is the UML message sort, the UML message
connectors belong to lifelines that correspond to the caller and
callee identified in the log (class name, object identifier), the
UML message has the right comment attached to it. For each
message log ml (line 1), there must be a message m_s (line 5)
in interaction i (line 3) and a return message m_r (line 7)
whose characteristics (e.g., caller and callee objects) map ml’s
characteristics. Lines 10-11 also map ml’s characteristics to a
behaviour execution specification in interaction i.
1 Matching::SDElementsForMessageLog(MessageLog ml)
2 post :
3 Interaction.allInstances->exists(i |
4 i.message->exists(m_s : Message |
5 Matching.mapSendMessage(m_s, ml))
6 and
7 i.message->exists(m_r : Message |
8 Matching.mapReplyMessage(m_r, ml))

9 and
10 i.fragment->select(oclIsKindOf

(BehaviourExecutionSpecification)
11 ->exists(bes|Matching.mapToBES(bes, ml))

Combined fragments represent control flow structures that
are enclosing messages (i.e., method calls). If a methodCall is
inside a conditionalSection, then the corresponding
Message in the sequence diagram will be inside a
CombinedFragment. If the conditionalSection is nested
inside another conditionalSection, then the resulting
CombinedFragment will be inside another
CombinedFragment.

More than one MessageLog can be associated with a
CombinedFragment, i.e., a conditional section in the code can
contain several method calls, so a new CombinedFragment
will only be created once the algorithm determines that an
existing combined fragment with appropriate settings does not
already exist in the Model.

Calls made from a loop may execute widely different paths.
Because in our work each “loop” combined fragment
represents a single transversal of the loop, there will never be a
case where if and else sections are found inside a single “alt”
combined fragment as they would be in manually generated
diagrams. Our approach does not yet recognize repeated
iterations of a loop as one combined fragment. The problem of
combining several scenario diagrams into one sequence
diagram, thereby merging alternative and repeated executions
(sub-traces) is deferred to future work. Instead, a new
combined fragment is added to the sequence diagram for each
iteration of a loop.

Although they are not necessary in a complete sequence
diagram, our transformation also adds Comments to Messages,
Operations and CombinedFragments, indicating their
relationship to the source code such as class name and line
number where the related method calls are found.

Carleton University, Department of Systems and Computer Engineering September 2011
Technical Report SCE-11-02

 15

X. APPENDIX—SCENARIO DIAGRAM CORRECTNESS
To answer the question whether the scenario diagram

obtained by our tool is correct, we also considered the scenario
diagram resulting from the execution of a Calculator. The
Calculator implements the Visitor design pattern, which should
allow us to visually identify whether the generated diagrams
are correct or not (the Visitor design pattern involves very
specific object interactions). From the documentation and
source code we know that the Calculator is an implementation
of a Visitor pattern and that it traverses the math question (in
our case “1+1”) in the form of an abstract syntax tree (AST).

We have obtained the trace by running the Calculator.
Because for our purpose we are not interested in how the tree is
built, but only how it interacts with the visitor during an
evaluation (here, “1+1”), we deleted all trace statements prior
to the SumVisitor constructor call from the trace file. The
tool was run and the results displayed in Figure 14 and Figure

15.

The AST is clearly visible in the scenario diagram.
ASTExpression (1+1) has one child, ASTOperator (+) who
has two children, two ASTOperands (1). The visitor pattern is
likewise clearly visible. After the SumVisitor object is
created (first message in Figure 14), the accept() method is
invoked on ASTExpression and the Visitor object is passed
as parameter.

Figure 14 Reverse engineered scenario diagram for the Calculator (part I)

Carleton University, Department of Systems and Computer Engineering September 2011
Technical Report SCE-11-02

 16

Figure 15 Reverse engineered scenario diagram for the Calculator (part II)

