
KINEMATIC AND DYNAMIC ANALYSIS OF A
SPATIAL ONE-DOF FOLDABLE TENSEGRITY MECHANISM

M. A. Swartz1, M.J.D. Hayes2

1 Mechanical and Aerospace Engineering, Carleton University, mark.a.swartz@gmail.com

2Mechanical and Aerospace Engineering, Carleton University, jhayes@mae.carleton.ca

Abstract
This paper presents a mechanical analysis of a spatial 1-DOF tensegrity mechanism created by

connecting three planar tensegrity mechanisms to form a triangular prism. The subsequent inves-
tigation produces kinematic and dynamic models that allow the workspace-boundary singularities
and minimum energy configuration to be determined. The singularities are found to occur when the
mechanism is folded in the vertical [X, Y ] plane or in the horizontal [X,Z] plane. The minimum
energy configuration, formed by the angle between the horizontal plane and the actuated strut, is
found to be θ = π

4
. However, when the system is linearized to determine the analytic solution for

the dynamics, the minimum energy configuration becomes θ = 1 due to the inherent error pro-
duced when the system is linearized. The dynamic response of the mechanism to an initial small
displacement is determined for each case of a critically damped, overdamped, and underdamped
system.

Keywords: tensegrity; foldable mechanisms; deployable mechanisms; kinematic model; dy-
namic model.

ANALYSE MÉCANIQUE D’UN MÉCANISME PLIABLE SPATIAL DE 1-DOF
TENSEGRITY

Résumé Cet article présente une analyse mécanique d’un mécanisme spatial du tensegrity 1-
DOF créé en reliant trois mécanismes planaires de tensegrity pour former un prisme triangulaire.
La recherche suivante produit les modèles cinématiques et dynamiques qui permettent les singu-
larités de zone de travail-frontière et la configuration minimum d’énergie à déterminer. Les sin-
gularités s’avèrent pour se produire quand le mécanisme est plié dans [ X, Y ] l’avion vertical ou
dans le plan [ X,Z ] horizontal. La configuration minimum d’énergie s’avère θ = π

4
, qui est l’angle

entre le plan horizontal et la contrefiche actionnée. Cependant, quand le système est linéarisé pour
déterminer une solution analytique pour la dynamique, la configuration minimum d’énergie devient
θ = 1 dû à l’erreur inhérente dans la linéarisation du système. La réponse dynamique du système
à un premier déplacement est déterminée pour chaque cas en critique d’atténué, overdamped, ou
underdamped des systèmes.

Mots clés: tensegrity; mécanismes pliables; mécanismes déployables; modèle cinématique;
modèle dynamique.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carleton University's Institutional Repository

https://core.ac.uk/display/217624316?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 INTRODUCTION

The application of tensegrity structures to foldable, lightweight, and highly accurate controllable
mechanisms is a natural evolution of the almost fifty year old concept, evidenced by active re-
search projects worldwide [1],[2],[3],[4]. Tensegrity structures can be defined as self-equilibrating
structures based on a network of compressed struts and tensioned cables.

A foldable tensegrity mechanism can be designed by mechanically actuating one or more ele-
ments of the tensegrity network of cables and struts [5]. Deployable tensegrity mechanisms have
been applied to foldable arrays, antennas, booms [6], space structures [2], truss systems, and
tendon-driven robots arms [7],[8]. Future applications may even include aeronautical and med-
ical devices.

This paper presents a mechanical analysis of a spatial 1-DOF tensegrity mechanism created
by connecting three planar tensegrity mechanisms to form a triangular prism. The subsequent
investigation generates a simple kinematic and dynamic model which are used to determine the
workspace singularities of the system and the minimum energy configuration. The system response
to initial displacements is also investigated to verify the dynamic model.

2 TENSEGRITY MECHANISM KINEMATIC ARCHITECTURE

Figure 1: Planar (left) and spatial (right) tensegrity mechanisms.

The spatial 1-DOF tensegrity mechanism shown in Figure 1 is composed of three planar tenseg-
rity mechanisms (left) connected together to form a prism (right). The top and bottom face of the
prism form an equilateral triangle and therefore each of the side faces are separated by 60◦. At each
of the prism corners two struts join together forming a node. Thus, there are six nodes altogether.
Using the Chebyshev-Grübler-Kutzback (CGK) formula, the joint configuration at each node is
selected to ensure that the total number of degrees of freedom (DOF) for the mechanism is one.
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2.1 Mechanism Design Parameters

The 1-DOF spatial tensegrity mechanism is shown in Figure 1 and consists of six struts of length L
assembled into three planar mechanisms. Each planar mechanism consists of two struts connected
by a revolute joint at length L/2. The three planar mechanisms are joined at six nodes labeled
[0b, 1b, 2b] for the bottom face of the prism and [0t, 1t, 2t] for the top face. Between each node along
the base (b), side (s), and top (t) an elastic element is placed of length l0kp and linear stiffness Kkp

where k ∈ {1, 2, 3} and p ∈ {b, s, t}. For the following analysis, it will be assumed that l0 = l0kp

∀ [k, p], K = Kkp ∀ [k], where p ∈ {b, t}. For the elastic elements on the sides, 2K = Kks ∀ [k].
Mechanism damping will be modeled for each of the three revolute joints with linear damping
coefficient C. All other joints are assumed frictionless.

Since the system possesses 1-DOF, actuating the mechanism could be accomplished by replac-
ing any of the elastic elements with an inextensible cord that could be coiled and uncoiled. The
resulting contraction between any two nodes would be mimicked throughout the mechanism caus-
ing it to expand or contract. Alternatively, an actuator could vary the angle θ as measured from
the horizontal plane at the base to one of the struts, resulting in the same mechanism expansion-
contraction response. The following analysis will be performed on the unactuated mechanism.
It will focus on the [X,Y ] plane by placing an inertial coordinate system at the fixed base joint
labeled node 0b, with the Y -axis extending from node 0b to 0t and the x-axis from 0b to 1b.

2.2 Mobility Analysis

The planar tensegrity mechanism shown in Figure 1 is constrained to move in the [X, Y ] plane and
thus the axis of rotation for each joint must be normal to that plane. When three planar mechanisms
are connected together to create the spatial system, the normal revolute axis for each neighbouring
strut is separated by an angle of 60◦ and thus the joints at each of the six nodes must allow rotation
about these two axes so that the planar faces remain planar. Therefore, the joint at each node is a
universal joint, J2, since four constraints are imposed.

It was demonstrated by Arsenault and Gosselin that a similar planar mechanism could have up
to 2-DOF provided that the struts were permitted to slide relative to one another [3], [9]. Therefore,
to remove this DOF, a J1 revolute joint was placed at the centre of each strut.

Using the CGK formula, the DOF of the tensegrity mechanism can be verified:

DOF = d(n− 1)−
j∑

i=1

Ui −m (1)

where d is the dimension of the motion space for each unconstrained link, j is the total number
of joints, m is the number of idle DOF, n is the number of links (struts), and Ui is the number of
constraints for the ith joint.

Setting the following values in the CGK formula yields the mechanisms mobility: d = 6,
J1 = 3, J2 = 6, m = 0, and n = 7 (6 struts and the ground). The CGK formula yields −3 which
signifies an indeterminant structure. To achieve the 1-DOF required, four of the universal joints
will be replaced by spherical J3 joints. The final joint configuration is shown in Figure 2.

For the tensegrity mechanism shown in Figure 2, d = 6, J1 = 3, J2 = 2, J3 = 4, thus j = 9.
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Figure 2: Spatial 1-DOF tensegrity mechanism and associated joints.

There are no idle DOF so m = 0. The links include six struts and the ground, therefore n = 7 (since
there is no interaction between the springs at the joints they can be neglected). Finally, the revolute
joints impose five constraints, the universal joints impose four constraints, and the spherical joints
impose three constraints. Thus Ui is five, four, and three for each of the corresponding ith links.
The CGK formula yields

DOF = 6(7− 1)− 5J1 − 4J2 − 3J3 = 1. (2)

3 KINEMATIC MODEL

The kinematic model can be easily determined from the geometry of the mechanism. As the
mechanism is 1-DOF, only one of the three identical planar faces need be considered. Using the
[X, Y ] plane previously described, the analysis of the kinematics will provide the Jacobian which
will be used to determine the singular configurations of the mechanism.

3.1 Geometric Analysis

From Figure 1 it is clear that the total displacements along the X and Y axes are related to the
angular displacement, θ, by

x = Lcosθ, y = Lsinθ. (3)

Combining the above expressions yields the output displacement, y, in terms of the input displace-
ment, x:

y =
√

L2 − x2. (4)
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The plot of Equation (4) shown in Figure 3 (left) produces the mechanism workspace. Differenti-
ating Equation(4) twice more yields the velocity and acceleration equations

ẏ =
−x√

L2 − x2
ẋ = Jẋ, (5)

ÿ =
−1√

L2 − x2

(
ẍ +

(
1 +

x2

L2 − x

)
ẋ2

x

)
. (6)

Equation (5) is a function of the mechanisms 1×1 Jacobian, J, which transforms the input velocity
along the X-axis, ẋ, to the output velocity along the Y -axis, ẏ.

3.2 Singularity Analysis

In general, the Jacobian is a multidimensional form of the derivative for which singularities occur
when it is no longer invertible [10]. This condition occurs when the determinant det(J) = 0 or
det(J) → ∞. Since the Jacobian of the tensegrity mechanism is a 1 × 1 matrix, its determinant
is itself and the singular configurations are easily determined from Equation (5) as x = 0 and
x = L. These values for x correspond to θ = 0 and θ = π

2
via Equation (3). Using these results in

Equation(4) yields the resulting value for y. For x = 0 and x = L these are, respectively

Case 1 : x = 0 or θ = 0; y = L,
Case 2 : x = L or θ = π

2
; y = 0.

(7)

These singularities are workspace-boundary singularities since they occur when the tensegrity
is fully extended in the X and Y directions as shown in Figure 3. In these configurations the struts
overlap. In Case 1, the struts are folded vertically resulting in the gain of an instantaneous DOF
causing the mechanism to tip over at the fixed base joint. Momentarily considering an actuator

Figure 3: Tensegrity mechanism workspace (left) and singular configurations (right) with L = 1.
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placed along the X-axis, it would only have to provide an infinitesimal amount work to expand
the mechanism, and as well, it could not resist any perturbation causing the mechanism to expand
along the X-axis. For Case 2, the mechanism is folded horizontally resulting in the instantaneous
loss of a DOF and transforming the mechanism into a structure. The actuator would have to provide
an infinite amount of work along the X-axis in order to expand the tensegrity vertically.

From Figure 3, the equilibrium position can be determined from the intersection of the curves.
This point is the configuration where the input and output displacements are equal,

y = x =

√
2

2
, (8)

which requires that J = 1 in Equation (5). This corresponds to a strut angle of θ = π
4
.

4 DYNAMIC MODEL

In the following section, the dynamic model of the tensegrity mechanism will be developed using
the Lagrange formulation. It has been shown that this system has 1-DOF and therefore has a single
generalized coordinate, θ, that defines the motion. The generalized coordinate also defines the
three spatial coordinates as follows:

x = Lcosθ, y = Lsinθ, z = −Lcosθcos30◦. (9)

4.1 The Equation of Motion

The well known Lagrange equation of motion is formulated in terms of the derivatives of the
kinetic and potential energy of the system with respect to the generalized coordinates, qi.

d

dt

(
δ

δq̇i

T

)
− δ

δqi

T +
δ

δqi

V = Qi. (10)

where T , V , and , Qi are the kinetic, potential, and generalized forces of the system and i is the
number of generalized coordinates. For the 1-DOF tensegrity mechanism, i = 1, and thus only
one generalized coordinate is required: q1 = θ.

The total kinetic energy, T , for all n = 6 translating and rotating struts of mass mj and moment
of inertia Ioj , where m = mj and Io = Ioj ∀ j, is the sum of kinetic energy for each strut, j;

T =
1

2

n∑
j=1

Ioj θ̇j
2
+ mjv

2
j . (11)

The total potential energy, V , and its gravitational and elastic components, Ω and U , are given
respectively by

V = Ω + U, Ω =
∑n

j=1 mjgρ, U = 1
2

∑
p

∑3
k=1 Kkp(ρ− l0kp)

2. (12)

For the above equations recall the index for the base (b), side (s), and top (t) elastic elements, where
p ∈ {b, s, t}. For the top and bottom elastic elements K = Kkp and for the sides, 2K = Kkp. The
parameter ρ = x or ρ = y depending upon whether the X- or Y -direction is being analyzed.
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Neglecting non-linear terms, the kinetic energy of the struts is determined to be

T = mL2θ̇2. (13)

The total potential energy is

V = 3mgLsinθ + 3K(Lcosθ − l0)
2 + 3K(Lsinθ − l0)

2. (14)

The generalized force, Q1, associated with the virtual work arises from the damping modeled at
the revolute joint of each strut intersection and is defined as

Q1 = −3Cθ̇. (15)

Using Lagrange, Equation (10), the non-linear second-order differential equation of motion for the
1-DOF tensegrity mechanism is generated.

θ̈ +
3

2

C

mL2
θ̇ +

3

2

g

L
cosθ +

3Kl0
mL

(sinθ − cosθ) = 0. (16)

Using Equation (9) the following relationships can be derived to rewrite the equation of motion in
terms of the spatial coordinates x and y.

θ̇ = − 1
y
ẋ,

θ̈ = − 1
y
ẍ + x

y2 ẋ.
(17)

Thus the equation of motion becomes

ẍ +

(
3

2

C

mL2
− x

y

)
ẋ− 3

2

g

L2
xy − 3Kl0

mL2
(y − x)y = 0. (18)

4.2 Equilibrium Position

The equation of motion can be used to determine the minimum energy configuration of the tenseg-
rity mechanism. This configuration is the equilibrium position which arises when θ̈ = θ̇ = 0 in
Equation (16) and all external forces are set to zero. Given these assumptions, only the potential
energy of the system contributes to the equilibrium position. Equation (16) reduces to(

2Kl0
mL

)
sinθ −

(
2Kl0
mL

− g

L

)
cosθ = 0. (19)

In a system where the stiffness dominates, that is, where K is large, the gravitational component
of the potential energy can be neglected, and Equation (19) reduces to

sinθ − cosθ = 0, (20)

which is satisfied when θ = π
4
. Similarly, by setting ẍ = ẋ = 0 in Equation (18), the equilibrium

in terms of the spatial coordinates can be found;
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y =

(
1− gm

2Kl0

)
x. (21)

As before, if the stiffness dominates, the gravitational term can be neglected which reduces the
above to y = x. This corresponds to the previous result obtained in Equation (20). A more rigorous
exploration of the equilibrium condition of tensegrity structures is provided by Williamson et al.
[11].

4.3 Linearization of the Equation of Motion

In order to find an analytic solution for Equation (16) it must first be linearized by assuming small
mechanism deflections and approximating the non-linear terms. This is accomplished by setting
cosθ = 1 and sinθ = θ. The linear second-order differential equation is then

θ̈ +
3

2

C

mL2
θ̇ +

3Kl0
mL

θ =
3

2L

(
2Kl0
m

− g

)
. (22)

4.4 The Steady-State Solution

Using the linear differential equation of motion, the steady-state, or particular solution, can be
derived. The time-invariance of the right-hand side term of Equation (22) indicates that the steady-
state solution is a constant value to which the transient solution will converge. Taking this steady-
state value to be θs,

θ̇s = θ̈s = 0. (23)

Substituting this result back into the linear differential equation produces the steady-state solution.

θs = 1− mg

2Kl0
. (24)

This result represents the equilibrium condition to which the system would converge when θ̈ =
θ̇ = 0. The expression is similar to the result obtained in Equation (21) where the system was
shown to have an equilibrium at π

4
rads. However, because the differential equation was linearized,

the system will converge instead to θs = 1 rad, or 57.3◦, assuming that the stiffness is large.

4.5 The Transient Solution

The solution to the homogeneous equation represents the transient response of the system to an
initial displacement. The homogeneous equation is

θ̈ +
3

2

C

mL2
θ̇ +

3Kl0
mL

θ = 0. (25)

Using the following standard substitution, θ = Aept, in terms of some constant, A, determined
from initial conditions, and p determined from the systems physical parameters, Equation (25) can
be expressed in terms of the systems natural frequency, ωn, and damping coefficient, ζ:
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p2 + 2ζωnp + ω2
n = 0, (26)

where
ω2

n = 3Kl0
mL

, ζ = C
Ccr

= C√
16
3

KmL3l0
. (27)

The solution to Equation (26) is obtained using the quadratic formula,

p1 = −ζωn + ωn

√
ζ2 − 1, p2 = −ζωn − ωn

√
ζ2 − 1. (28)

Three classes of solution of Equation (26) exist depending on the value of ζ . These are the
critically damped, overdamped, and underdamped cases corresponding to ζ = 1, ζ > 1, and ζ < 1
respectively. The homogenous solution for each case is as follows:

θCDh
= A1e

−ωnt + A2te
−ωnt,

θODh
= B1e

−ωnt + B2e
−ωnt,

θUDh
= e−ζωnt

(
C1cosωn

√
1− ζ2t + C2sinωn

√
1− ζ2t

)
.

(29)

The complete solution is obtained from the sum of the homogeneous and steady-state solutions.
Defining the initial conditions to be θ(0) = θ0 and θ̇(0) = 0, the complete solution for the critically
damped, θCD(t), overdamped, θOD(t), and underdamped, θUD(t), cases are, respectively

θCD(t) = (θ0 − θs)e
−ωnt + ωn(θ0 − θs)te

−ωnt + θs, (30)

θOD(t) =

(
θs − θ0

2ωn

√
ζ2 − 1

)
p2e

−ωnt + (θ0 − θs)

(
1 +

p2

2ωn

√
ζ2 − 1

)
e−ωnt + θs, (31)

θUD(t) = e−ζωnt

(
(θ0− θs)cosωn

√
1− ζ2t+(θ0− θs)

(
ζ√

1− ζ2

)
sinωn

√
1− ζ2t

)
+ θs. (32)

4.6 Model Verification

The dynamic model for the critically damped, overdamped, and underdamped cases are illustrated
in Figures 4, 5, and 6. The system values were set to L = 1, l0 = 0.5, and m = 0.05, with an
initial angular displacement of θ0 = π

6
. For each case the stiffness of the system was varied through

K = [1 10 100 1000].
At each value of K the natural frequency, ωn, and critical damping coefficient, Ccr, were de-

termined using Equation (27). The damping ratio was selected to satisfy the critical-, over-, and
underdamped cases, ζ = [1 1.6 0.4]. From these values the mechanism damping, C, could be
determined. The calculated model parameters are presented in Tables 1, 2, and 3.

The dynamic model clearly demonstrates that at low stiffness, i.e. K = 1, the tensegrity mech-
anism tends to sag under its own weight. After release, it returns to an equilibrium position just
below the initial displacement value. This arises in the steady-state solution where a low stiffness
will cause the gravity term to dominate. Conversely, at higher stiffness values, the equilibrium
position shifts closer to 1 or 57.3◦, which was determined for the infinitely stiff linearized system.
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Figure 4: Critically damped: L = 1, l0 = 0.5, m = 0.05, θ0 = π
6

.

Table 1: Calculated Parameters for Critically Damped Case.

Parameter Model 1 Model 2 Model 3 Model 4

K 1 10 100 1000

Ccr 0.365 1.155 3.652 11.547

C 0.365 1.155 3.652 11.547

ζ 1 1 1 1

ωn 5.477 17.321 54.772 173.205

Figure 5: Overdamped: L = 1, l0 = 0.5, m = 0.05, θ0 = π
6

.

Table 2: Calculated Parameters for Overdamped Case.

Parameter Model 1 Model 2 Model 3 Model 4

K 1 10 100 1000

Ccr 0.365 1.155 3.652 11.547

C 0.584 1.848 5.842 18.475

ζ 1.6 1.6 1.6 1.6

ωn 5.477 17.321 54.772 173.205

10



Figure 6: Underdamped: L = 1, l0 = 0.5, m = 0.05, θ0 = π
6

.

Table 3: Calculated Parameters for Underdamped Case.

Parameter Model 1 Model 2 Model 3 Model 4

K 1 10 100 1000

Ccr 0.365 1.155 3.652 11.547

C 0.146 0.462 1.461 4.619

ζ 0.4 0.4 0.4 0.4

ωn 5.477 17.321 54.772 173.205

5 CONCLUSIONS

The concept for a 1-DOF spatial tensegrity mechanism was introduced in this paper and the kine-
matic and dynamic models for small displacements were developed. The first part of the analysis
showed that the mechanism possessed a single DOF using the CGK formula. Then the kinematic
model was developed which provided insight into the workspace-boundary singularities. These
occurred in the [X, Z] plane when x = L and y = 0, and in the [X,Y ] plane when x = 0 and
y = L. The kinematic model also provided insight as to the location of the equilibrium position.
At the condition of J = 1, the input was related to the output via y = x, which consequently
resulted in θ = π

4
.

The systems dynamic model was developed using Lagrange’s formulation resulting in a non-
linear second-order differential equation. For the non-linear system the equilibrium position was
determined to be θ = π

4
. After linearizing the differential equation, a critically damped, over-

damped, and underdamped dynamic model was analyzed. All models converged to the mechanism
equilibrium or steady-state solution, θs = 1, as predicted for a stiff mechanism. This amounts to a
12.3◦ discrepancy between the linear and non-linear models. Thus, since the model was linearized
in order to solve the differential equation, it could not be used to provide accurate control over an
actuated tensegrity mechanism.
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