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Abstract

Evolutionary trade-offs occur when selection on one trait has detrimental effects on other traits. In pathogenic microbes, it has

been hypothesized that antibiotic resistance trades off with fitness in the absence of antibiotic. Although studies of single

resistance mutations support this hypothesis, it is unclear whether trade-offs are maintained over time, due to compensatory

evolution and broader effects of genetic background. Here, we leverage natural variation in 39 extraintestinal clinical isolates of

Escherichia coli to assess trade-offs between growth rates and resistance to fluoroquinolone and cephalosporin antibiotics.

Whole-genome sequencing identifies a broad range of clinically relevant resistance determinants in these strains. We find

evidence for a negative correlation between growth rate and antibiotic resistance, consistent with a persistent trade-off between

resistance and growth. However, this relationship is sometimes weak and depends on the environment in which growth rates are

measured. Using in vitro selection experiments, we find that compensatory evolution in one environment does not guarantee

compensation in other environments. Thus, even in the face of compensatory evolution and other genetic background effects,

resistance may be broadly costly, supporting the use of drug restriction protocols to limit the spread of resistance. Furthermore,

our study demonstrates the power of using natural variation to study evolutionary trade-offs in microbes.
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Introduction

Trade-offs occur when an improvement in one trait is accom-

panied by deterioration in another. Evolutionary biologists

have had a long-standing interest in trade-offs, dating back

at least to Darwin, who recognized that directional selection

on a given trait would often have unforeseen, and frequently

detrimental, effects on other traits (Darwin 1859; Agrawal

et al. 2010). The negative correlations that result from

trade-offs are thought to be important drivers of both intra-

and interspecific diversity (Schluter 1996; Clark et al. 2007;

Ferenci 2016), and may limit the extent and pace of adapta-

tion (Futuyma and Moreno 1988; Agrawal and Stinchcombe

2009).

Fitness costs associated with antimicrobial resistance (AMR)

constitute a trade-off of particular importance to human

health. It is often assumed that AMR is accompanied by re-

duced fitness in the absence of antibiotic—AMR pathogens

may suffer from reduced competitive ability (Melnyk et al.

2015; Vogwill and MacLean 2015), growth rates (Bagel et al.

1999), and/or virulence (Alonso et al. 2004; Olivares et al.

2012). This assumption underlies public health efforts to re-

duce the prevalence of resistance by restriction of antibiotic

use (Enne 2010): costly resistance mutations should decrease

in frequency in the absence of drug. Consistent with this as-

sumption, laboratory studies on the fitness effects of individual

AMR elements (either chromosomal mutations or mobile ele-

ments) typically findcosts, althoughsome resistancemutations

appear to be cost-free (Andersson 2006; Melnyk et al. 2014;

Hughes and Andersson 2015; Vogwill and MacLean 2015). In

extreme cases, such as the antifungal drug amphotericin B,
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resistance is so costly as to prevent emergence of clinically rel-

evant resistance (Vincent et al. 2013).

Nonetheless, while individual resistance elements may im-

pose reduced fitness, these costs can be mitigated by genetic

background (reviewed in Wong 2017). In some cases, segre-

gating polymorphism can mitigate the costs of resistance. For

example, fitness of the quinolone resistant gyrA C257T mu-

tation in Campylobacter jejuni can vary drastically depending

on background. On one background, this mutation is costly

and is outcompeted by susceptible genotypes in a chicken

model of infection. On an alternative genetic background,

however, resistance is cost-free, and in fact the resistant mu-

tant outcompetes susceptible strains (Luo et al. 2005).

Similarly, background-specific costs have been documented

for other resistance mutations and for plasmid-mediated re-

sistance (Björkholm et al. 2001; Humphrey et al. 2012).

Even when a mutation is initially costly on a given back-

ground, fitness can be readily recovered in the lab by serially

passaging resistant populations in drug-free media for dozens

to hundreds of generations (Bouma and Lenski 1988;

Bjorkman et al. 2000; Dionisio et al. 2005; Kugelberg et al.

2005). Importantly, at least some degree of resistance is typ-

ically maintained following serial passage, indicating that fit-

ness recovery is not due to simple reversion of the original

resistance mutation. Thus, mutations elsewhere in the

genome—referred to as “compensatory mutations”—can

mitigate the costs of resistance, and may be either

presegregating, or arise following the acquisition of resistance.

Given considerations of genetic background and compen-

satory evolution, it is still unclear whether AMR is accompa-

nied by costs “in the wild”—that is, among microbes found in

clinical, environmental, and/or agricultural settings. Although

compensation is easily attainable in the lab, data are sparse

concerning its importance in clinical settings: there are strong

data to support compensation for costs of rifampicin resis-

tance in Mycobacterium tuberculosis (Brandis et al. 2012;

Cohen et al. 2015; Coscolla et al. 2015), but not in other

systems. The question thus remains as to whether AMR trades

off with other fitness components in natural populations.

In studying trade-offs associated with resistance, microbi-

ologists have focused on the costs imposed by specific AMR

mutations. An alternative approach has been widely used in

animal and plant systems, and to a lesser extent in microbes

(reviewed in Stearns 1989; Agrawal and Stinchcombe 2009;

Ferenci 2016). The underlying premise is straightforward. Two

traits, such as offspring number and offspring size, may both

be under directional selection for more extreme values. If

there is a trade-off between these traits—perhaps because

resources are limiting—then we expect to observe a negative

correlation between them; offspring may be large or numer-

ous, but they cannot be both. Trade-offs are widespread in

natural populations, for example, between survival and repro-

duction (Clutton-Brock et al. 1983), between insect perfor-

mance on alternate host plants (Via and Hawthorne 2002),

and between senescence and rapid reproduction (Partridge

1987).

Negative trait correlations have been used to infer trade-

offs in a number of cases in microbes (Ferenci 2016). Most

relevantly, Phan and Ferenci (2013) found a negative correla-

tion between competitive fitness and resistance to two anti-

microbials (the antibiotic chloramphenicol and the detergent

SDS) among natural isolates of Escherichia coli derived from a

range of animal and primarily healthy human sources. They

were able to attribute this tradeoff, at least in part, to natural

variation in membrane permeability, which governs the entry

of both the antimicrobials and nutrients into the cell.

However, to our knowledge, there has not been a natural-

variation based study of the trade-offs of clinically relevant

AMR in microbes.

Here, we address trade-offs between AMR and growth

rates in clinical isolates of E. coli. In keeping with the assump-

tions of trade-off theory, we expect both resistance and

growth rates to be under directional selection, at least some

of the time: resistance should be selected for when antibiotics

are present, and growth rates should be selected for during

infection and under nutrient-rich environmental conditions.

As such, if there is a trade-off between resistance and growth,

we predict a negative correlation between these two traits.

We go on to investigate mechanisms underlying the inferred

trade-offs, and suggest that mitigation of the costs of resis-

tance may be limited by the environmental specificity of com-

pensatory mutations.

Materials and Methods

Strains and Growth Conditions

Thirty-nine extraintestinal pathogenic E. coli (ExPEC; Dale and

Woodford 2015) isolates, collected as part of the CANWARD

survey of antibiotic resistant pathogens in Canada (Lagace-

Wiens et al. 2013; Zhanel et al. 2013), were obtained from

the Zhanel laboratory at the University of Manitoba. These

isolates were collected from patients at hospitals across

Canada, from a variety of nongastrointestinal infection types,

including urinary tract, blood, wound, and respiratory infec-

tions (supplementary table S1, Supplementary Material on-

line). These isolates represent a wide range of quinolone

and b-lactam sensitivities. Enterohemorrhagic (EHEC) strains

of intestinal origin were excluded since antibiotic use is contra-

indicated for these infections due to an increased risk of

haemolytic-uremic syndrome (Goldwater and Bettelheim

2012). Additional experiments were carried out using the E.

coli laboratory strain K-12 (MG1655), as well as two CipR

derivatives of MG1655, one carrying a gyrA D87G mutation,

and the other carrying a marR R94C mutation (Wong and

Seguin 2015).

Cultures were grown in lysogeny broth (LB; 10 g/l tryptone,

5 g/l yeast extract, 10 g/l NaCl), tryptic soy broth (TSB;

17 g/l tryptone, 3 g/l phytone, 5 g/l NaCl, 2.5 g/l K2HPO4,
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2.5 g/l glucose), or M9 minimal mediaþ glucose (M9; 1 g/l

NH4Cl, 3 g/l KH2PO4, 0.5 g/l NaCl, 6.8 g/l Na2HPO4; 15 mg/l

CaCl2 15 mg/l, 0.5 g/l MgSO4; 0.8% dextrose) overnight at

37�C with shaking at 150 rpm, unless otherwise indicated.

Phenotypic Assays

Antibiotic resistance was measured using minimum inhibitory

concentration (MIC) assays (Andrews 2001). MICs were mea-

sured for four drugs: the quinolone ciprofloxacin, and the b-

lactams ampicillin (a penicillin), meropenem (a carbapenem),

and ceftazidime (a third generation cephalosporin). The use of

these three b-lactams enabled us to distinguish between dif-

ferent types of b-lactamase, since only ESBLs will display high

level resistance to ceftazidime, and only carbapenemases will

confer resistance to meropenem. Overnight cultures of each

strain were inoculated at a 1:100 dilution into 150ll LB, with

a 2-fold dilution of ciprofloxacin, ampicillin, ceftazidime, and

meropenem ranging from 32 000 ng/ll to 7.8 ng/ll,

1,024lg/ml to 0.25lg/ml, 128lg/ml to 0.25lg/ml, and

16lg/ml to 0.25lg/ml, respectively. Following 18 h of

growth at 30�C with shaking at 150 rpm, optical density

(OD) was measured at 600 nm. The MIC was defined as the

concentration of antibiotic that visibly inhibited growth after

overnight culture.

Growth curves were measured in LB, TSB, and

M9þ glucose. Growth curves were collected from shaken

150ll cultures in 96-well plates at 37�C, inoculated at a

1:100 dilution from over-night cultures. OD600 was measured

every 37 min for 24 h, and lag phase, maximum growth rate,

and density at stationary phase were estimated using

GrowthCurves (Hall et al. 2014) with two replicates for

each strain. We validated the use of growth curves to assess

population density for a subset of strains (supplementary fig.

S1, Supplementary Material online).

Whole-Genome Sequencing and Assembly

For each clinical isolate, a single colony was picked and grown

overnight in drug-free LB. Genomic DNA was extracted using

the One-4-All Genomic DNA Mini-prep Kit (Bio Basic) as de-

scribed in the manufacturer’s manual. Following DNA purifi-

cation, DNA quantification was performed using the Quant-iT

PicoGreen dsDNA Assay Kit (Invitrogen). Library construction

was carried out using the Nextera XT kit (Illumina). Libraries

were then quantified by qPCR (KAPA Biosystems).

Sequencing was carried out on the Illumina Miseq platform

using paired-end, 300-bp reads. All raw sequence data have

been uploaded to the NCBI short read archive (accession

numbers SRP132562).

Quality control on the raw sequence files was performed

using Trimmomatic-0.32 (Bolger et al. 2014). Fifteen bases

from the beginning, and one base from the end, were re-

moved from each read. In addition, reads were trimmed using

a sliding window, with each read clipped once average

base-call quality score dropped <20 in a 4-bp window.

Reads of fewer than 36 bp were also removed. Effects of

quality control were visualized by FastQC, assuring that high

quality data were used in further analyses (https://www.bio-

informatics.babraham.ac.uk/projects/fastqc/).

Reference based alignment was carried out to identify sin-

gle nucleotide polymorphisms (SNPs) in known resistance

genes. E. coli K-12 (MG1655; NC_00913) was used as the

reference genome. Assembly was performed using Bowtie2

v2.1.0 (Langmead et al. 2009), and SNPs were called using

Samtools (Li et al. 2009). The quality of the alignment was

assessed using Qualimap, version 2.0.1 (Garcia-Alcalde et al.

2012) and custom Perl scripts were used to filter SNPs (cov-

erage >15, Phred-scale quality >20 and a frequency of 80%

or higher).

De novo assemblies were constructed for all strains in order

to conserve information regarding accessory genomes, which

can be lost in a reference-based approach. The accessory

genome contains strain-specific genes that are involved in

processes like niche adaptation, specialization, and host-

switching (Dobrindt and Hacker 2001; Didelot et al. 2009).

VelvetOptimiser-2.2.5 was used to determine the optimal

k-mer length for the data and de novo assemblies were con-

structed using Velvet-1.2.10 (Zerbino and Birney 2008).

Contigs shorter than 200 bp were removed to improve the

quality of the assemblies. QUAST-3.1 was used to assess the

assemblies (Gurevich et al. 2013). Genomes were annotated

using the toolkit provided by Rapid Annotation using

Subsytem Technology (RAST) for batch submission (Brettin

et al. 2015).

Multisequence Alignment, Phylogenetic Inference, and
Phylogenetic Correlations

Whole-genome alignment was carried out using our de novo

assemblies of 39 clinical isolates, along with the genomes of

E. coli K-12 (MG1655), E. coli 0157, and the outgroup species

E. fergusonii (GenBank accession numbers NC_00913,

BA000007.2, and NC_011740.1, respectively).

ProgressiveMauve-2.4.0 was used to align the genomes

with iterative refinement using default settings (Darling

et al. 2010). ProgressiveMauve is a multiple alignment tool

that identifies locally collinear blocks (LCBs), each being a ho-

mologous region of sequence shared between genomes.

LCBs shared among all 42 genomes were classified as the

“core genome,” whereas others were considered to be part

of the “accessory genome.” A core genome phylogeny was

constructed using Bayesian phylogenetic inference as imple-

mented by BEAST (Drummond et al. 2012), using a general

time-reversible model with gamma correction (GTRGAMMA

model). The Markov chain Monte Carlo (MCMC) chain was

run for 20 million generations with sampling every 1,000

generations. The phylogenetic tree was visualized using
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FigTree version 1.4.2 (http://tree.bio.ed.ac.uk/software/

figtree/).

BayesTrait 2.0 (Pagel et al. 2004) was used to infer

phylogenetically informed correlations between phenotypic

traits. The covarion model for trait evolution was enabled,

and we used a variant of the continuous-time Markov model

that allows for traits to vary their rates of evolution within and

between branches. The MCMC chain consisted of 101,000

iterations, of which the first 10,000 were discarded as burn-

in. The chain was sampled every 1,000 iterations, and 95%

credible intervals for parameter estimates were calculated as

the 2.5% and 97.5% quantiles. Inference of correlated evo-

lution was carried out by running two chains, one allowing

correlated evolution, and one disallowing correlated evolu-

tion. These two chains were compared using Bayes factors

(BF), which indicate the degree of support for the correlated

evolution model over the independent evolution model.

Heuristically, BF< 2 indicates weak or no support for a corre-

lation, BF of 2–6 indicate positive support, and BF of 6–10

indicate strong support (Kass and Raftery 1995).

Serotyping and Resistance Gene Prediction

Serotype prediction of the strains was carried out using

SerotypeFinder 1.1, a publicly available web tool at the

Center for Genomic Epidemiology (CGE) (Joensen et al.

2015). E. coli serotypes are defined based on the O and H

antigens. The O antigen contains repeats of an oligosaccha-

ride unit, and is part of the lipopolysaccharides present in the

outer membrane of Gram-negative bacteria (Wang et al.

1998). The H antigen is the central, variable region of the

flagellin protein of E. coli (Wang et al. 2003). Serotypes

were characterized based on a threshold of 85% identity

and minimum length of 60%.

ResFinder 2.1, also available at CGE, was used to identify

genes associated with antibiotic resistance. Genes were iden-

tified based on a threshold of 98% identity and minimum

length of 60% (Zankari et al. 2012). Mutations in chromo-

somal genes contributing to quinolone resistance (e.g., gyrA,

gyrB, parC, and marR) were identified by manual inspection.

Here, a custom Perl script was used to extract SNP calls from

reference-based alignments, and multiple-alignments for

each gene of interest were visualized using MEGA 6

(Tamura et al. 2013).

Laboratory Selection and Competitive Fitness Assays

Compensatory evolution experiments were carried out using

12 replicate populations of the CipR mutants gyrA D87G and

marR R94C. Populations were grown in 200ll of drug-free

liquid LB in a 96-well plate, shaking at 150 rpm at 30�C. Every

24 h, 2ll of culture were transferred to fresh media for a

1:100 dilution. Selection was carried out for 15 days, for a

total of �100 generations of selection.

Single colony isolates from each evolved population, as

well as of the initial genotypes, were then subjected to com-

petitive fitness assays against a Lac� derivative of MG1655

(NCM520). Three to six replicate fitness assays were per-

formed in each of LB, TSB, and M9 minimal mediaþ glucose.

Equal volumes of NCM520 and a given mutant genotype

were inoculated at a 1:100 dilution in 200ll LB, followed

by an overnight incubation at 30�C in LB with shaking.

Relative frequencies of each genotype were estimated from

counts of blue (CipR) and white (CipS) colonies on LB

agarþ IPTGþX-gal at the beginning and end of the compe-

tition experiment. Relative fitness (in units of per generation)

was then calculated for each replicate using the following

equation:

w ¼ 1þ ðln ½whitefinal=whiteinitial�

� ½ln ½bluefinal=blueinitial�Þ=# generations:

Here, given the 1:100 dilution, the competition was

allowed to proceed for �6.6 generations.

Results and Discussion

Variation in Phenotypic Traits

We investigated tradeoffs associated with drug resistance us-

ing a collection of 39 clinical isolates of Escherichia coli. These

ExPEC strains were obtained from a variety of nongastrointes-

tinal infections, and fall into four broad classes of drug resis-

tance: drug susceptible; extended-spectrum b-lactamase

positive (ESBL, capable of degrading cephalosporins such as

ceftazidime); ciprofloxacin-resistant (CipR) but ESBL-negative;

and multidrug resistant CipR, ESBL-positive.

We measured a range of phenotypic characteristics in all

39 strains, and found substantial variation for most traits

tested (fig. 1). Resistance to ciprofloxacin and to ceftazidime

varied by 1,024- and 512-fold, respectively, as expected given

that we intentionally sampled both susceptible and resistant

isolates (fig. 1A and B). According to CLSI clinical resistance

breakpoints (Clinical and Laboratory Standards Institute

2018), 13 isolates show only ciprofloxacin resistance

(MIC�4lg/ml), 6 show only ceftazidime resistance

(MIC�16lg/ml), and 11 show resistance to both drugs.

Resistance to meropenem showed much less variation

(fig. 1C), indicating that none of these strains is carbapene-

mase positive (CLSI breakpoint: 4lg/ml). Variation was also

evident for growth rate (a proxy for fitness) in three different

laboratory media—lysogeny broth (LB), tryptic soy broth

(TSB), and M9 minimal mediumþ glucose (fig. 1D–F).

Trade-Offs of Drug Resistance

Trade-off theory predicts negative correlations between traits

under directional selection, if both traits cannot be simulta-

neously optimized. Consistent with this prediction, we find
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evidence for tradeoffs between drug resistance and growth

rates in this set of clinical isolates. We find a strong negative

correlation between level of ceftazidime resistance and

growth rate in TSB (P¼ 0.005, fig. 2A), and negative but

nonsignificant relationships between other drug resistance

and growth rate pairs (fig. 2B–F). In order to provide a more

robust statistical analysis, we combined data from all three

environments using a linear regression model, with environ-

ment and drug as main effects. We find negative relationships

between drug resistance and growth rates, although the ef-

fect of ceftazidime resistance is nonsignificant (table 1). An

observed reduction in growth rates in minimal medium is

expected, since this defined medium represents a more

nutrient-limited environment. Notably, interaction effects be-

tween drug resistance and growth environment were non-

significant in all cases. This suggests that tradeoffs are broadly

consistent across growth conditions, although they may be

weak.

In phylogenetically structured data, correlations between

traits may be spuriously strengthened or weakened by shared

history (Felsenstein 1985; Velicer et al. 1999), since closely

related species are expected to exhibit similarity solely due

to ancestry. In order to correct for any potential bias due to

underlying phylogeny, we carried out phylogenetically in-

formed, Bayesian correlational analyses. Here, trait evolution

is explicitly modeled on a phylogenetic tree, so that the ap-

propriate null expectations can be generated. Following

whole-genome sequencing, a core-genome phylogeny was

constructed under a general-time reversible model, and was

used to infer phylogenetic-controlled correlations using

BayesTraits (Pagel et al. 2004; see Materials and Methods

for more details). We find strong evidence for trade-offs as-

sociated with antibiotic resistance (fig. 3). Resistances to both

ceftazidime and ciprofloxacin are negatively associated

with growth rate in TSB (fig. 3A; Bayes Factors of 6.78

and 9.18, respectively) and in LB (fig. 3B, BF¼ 4.17 and

3.40), although not in minimal medium (fig. 3C, BF¼ 0.05

and 0.10).

It is currently unclear whether phylogenetic or nonphylo-

genetic methods are more appropriate for measuring trait

correlations in bacteria. Recombination is common in many

bacterial species, including E. coli, such that different phylog-

enies underlie different regions of the genome. The presence

of recombination is known to confound various phylogenetic

approaches (Schierup and Hein 2000; Hedge and Wilson

2014). However, recombination tracts in E. coli are fairly short,

with estimates of average length ranging from 50 to 550 bp

(Touchon et al. 2009; Didelot et al. 2012). As such, large

portions of the genome can in fact share the same phylogeny

(Didelot and Wilson 2015; De Maio and Wilson 2017). Thus,

whether recombination will in fact confound phylogenetically

informed inferences of trait correlations is an open question.

Moreover, nonphylogenetic methods are expected to yield

spurious correlations when the data are phylogenetically
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FIG. 1.—Variation in phenotypic traits among 39 clinical isolates of Escherichia coli. Substantial variation is evident for resistance to ceftazidime (A; CLSI

resistance breakpoint: 16lg/ml) and ciprofloxacin (B; CLSI resistance breakpoint: 4lg/ml), but not for meropenem (C; CLSI resistance breakpoint: 4lg/ml).

Growth rates in TSB (D), LB (E), and M9 minimal mediumþglucose (F) also show wide variation.
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structured (Felsenstein 1985). Among the clinical strains stud-

ied here, negative correlations between growth rate and drug

resistance are suggested by both phylogenetic and nonphy-

logenetic methods, albeit weakly in the latter case. We inter-

pret this broad consistency between approaches as

compelling evidence for a trade-off between resistance and

fitness in the absence of drug.

Genetic Basis of Resistance

The most parsimonious explanation for a trade-off between

resistance and growth rates is that resistance determinants

are themselves costly. The major determinants of resistance

to fluoroquinolones and to cephalosporins are well docu-

mented. High-level fluoroquinolone resistance is typically con-

ferred by chromosomal mutations in genes encoding the
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FIG. 2.—Correlations between growth rates and drug resistance. Growth rates were measured in two rich media, TSB (A and B) and LB (C and D), and in

M9 minimal mediaþglucose (E and F). MIC assays were used to measure resistance toward ceftazidime (A, C, and E) and ciprofloxacin (B, D, and F). Linear

regression (solid line) of growth rate on log2(MIC) was used to assess the relationship between resistance and growth rate for each medium/antibiotic pair.
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topoisomerases targeted by these drugs, with gyrA and gyrB

encoding the subunits of DNA gyrase, and parC and parE

encoding the subunits of Topoisomerase IV. Resistance can

also be conferred by mutations affecting efflux and mem-

brane permeability, typically in the transcriptional regulator

marR or in the porin-encoding genes ompF and ompC

(reviewed in Redgrave et al. 2014). ESBL-activity, by contrast,

is conferred by plasmid-borne extended spectrum b-lacta-

mases, with the CTX-M-14 and CTX-M-15 ESBL variants

most prevalent (Canton et al. 2012).

We sequenced the genomes of all 39 clinical isolates to

identify determinants of fluoroquinolone- and b-lactam-resis-

tance. De novo assemblies were used for the detection of

accessory genome elements, such as plasmids, that contribute

to resistance. The average length of the de novo assemblies

was 5.1 Mb, with an average coverage of 35�. Average N50,

the size of the contig such that 50% of the genome assembly

is contained in contigs of this length or larger (Lin et al. 2011),

was 2,910,985 bp (supplementary table S1, Supplementary

Material online). Chromosomal point mutations were called

from reference-based assemblies using E. coli K-12 (MG1655)

as a reference.

We found a wide range of known fluoroquinolone- and b-

lactam-resistanceelements in thegenomesofthesestrains.Four

groups of b-lactamase producing genes were identified using

ResFinder (fig. 4 and supplementary table S1, Supplementary

Material online): TEM (-1B, -1C, 116-like), OXA (-1 and 36-like),

CTX-M (-14 and -15) and SHV (-2 and -12). Most of the

ESBL-positive strains sequenced here carry CTX-M genes. The

same strains harbor IncF-plasmids (supplementary table S1,

SupplementaryMaterialonline), consistentwithpreviousfind-

ings that CTX-M-14 and -15 are harbored on IncF plasmids

(Carattoli 2009; Li et al. 2015). However, CTX-M genes were

not found in three ESBL-positive isolates (pb27, pb31 and

pb38), suggesting that the OXA and/or SHV b-lactamases

carried by these strains are responsible for their resistance

to cephalosporins. Plasmid carriage could well contribute

to fitness reductions associated with ceftazidime resis-

tance, as plasmid carriage often—although not always—

confers a cost (reviewed in Vogwill and MacLean 2015;

Wong 2017).

Among the CipR isolates sequenced here, the majority

carry known resistance mutations in the quinolone

resistance-determining region (QRDR) of the gyrA gene. Out

of 24 strains classified as CipR according to CLSI breakpoints

(Clinical and Laboratory Standards Institute 2018), 16 carry

two canonical QRDR mutations, S83L and D87N, and a

17th carries only the S83L mutation. All 17 of these strains

also carry one or two mutations in the QRDR of parC (S80I

and/or E84G and/or E84V). The fitness effects of fluoroquin-

olone resistance mutations have been measured in a variety of

bacteria; most, but not all, target mutations are costly (Bagel

et al. 1999; Kugelberg et al. 2005; Balsalobre and de la

Campa 2008), and in some cases costs are dependent on

genetic background (Luo et al. 2005).

Plasmid-mediated quinolone resistance determinants were

also identified in our sample. Eight isolates carry predicted

aac(60)Ib-cr genes; this aminoglycoside-acetyltransferase vari-

ant has been shown to inactive fluoroquinolones by acetyla-

tion (Robicsek et al. 2006). Six of these aac(60)Ib-cr-bearing

strains also carry chromosomal resistance mutations, whereas

two do not. Finally, 5 isolates (pb12, pb14, pb19, pb28, and

pb34) carry neither gyrA nor parC mutations, nor aac(60)Ib-cr

genes. marR mutations are also absent from these strains, and

no plasmid-borne quinolone resistance (qnr) genes (Mart�ınez-

mart�ınez et al. 1998) were predicted for these strains. These

results suggest the presence of other, previously uncharacter-

ized, resistance determinants.

Environmentally Variable Compensatory Evolution

At first blush, the available data suggest that costs associated

with fluoroquinolone-resistance mutations, as well as with

plasmid carriage, may well underlie fitness trade-offs associ-

ated with antibiotic resistance (figs. 2 and 3). Nonetheless,

many studies have shown that the costs associated with

Table 1

Effects of Growth Environment and Drug Resistance on Growth Rates, As

Estimated by Linear Regression

Factor Estimate (SE) T P Value

Cip MIC �7.4�10�4 (3.6�10�4) �2.04 0.044

Cef MIC �9.8�10�4 (5.5�10�4) �1.80 0.075

Environment: min �0.037 (0.004) �9.28 1.55310215

Environment: TSB �0.003 (0.004) �0.65 0.518

NOTE.—Interaction terms were nonsignificant in all cases (i.e., costs of resistance
were similar across environments) and were dropped. Antibiotic resistance effects
were included in the model as log2-transformed MIC values. Bold indicates signifi-
cance at P < 0.05.
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resistance mutations can be easily and rapidly ameliorated via

serial passage in antibiotic-free medium (Andersson 2006;

Andersson and Hughes 2010; Wong 2017). Such compensa-

tory evolution occurs in as little as a few dozen generations,

and frequently leaves resistance intact. In the context of the

current study, the apparent frequency and ease of compen-

satory evolution is problematic: if compensatory evolution

were to occur so readily in clinical populations, then we would

not expect to observe negative correlations between resis-

tance and growth rates. In other words, why have the costs

of resistance not been erased by compensatory evolution?

One possible answer to this question is that compensatory

evolution may be environment specific (MacLean and Vogwill

2014): mutations conferring fitness benefits to the resistant

mutant in one environment may be neutral or deleterious in

other environments. As such, even if compensatory mutations

have occurred in some clinically relevant setting (e.g., the

blood stream or urinary tract), those mutations may not con-

fer a benefit in other locales (e.g., the TSB, LB, and minimal

medium used in this study). Previous findings on this topic are

mixed: a few experiments suggest that mutations that are

compensatory in one environment are also compensatory in

other environments (Bjorkman et al. 2000; Nagaev et al.

2001). For example, fusidic acid resistance mutations in the

EF-G gene in S. aureus are costly in both laboratory medium

and in a rat model of infection, whereas compensatory

mutations evolved in the lab were also compensatory in

rats. Interestingly, the reverse was also true: the most com-

mon compensatory mutation in rats, EF-G A67V, was also

compensatory in the lab. The generality of this result remains

unclear, however, as another common rat-compensatory mu-

tation, EF-G V475L, did not provide a fitness increase in lab-

oratory medium (Nagaev et al. 2001).

In order to further test the environmental specificity of

compensatory mutations, we evolved replicate populations

of two CipR mutants of E. coli, gyrA D87G and marR R94C,

in drug-free LB for 100 generations. Both genotypes initially

suffered a cost in the absence of drug, with relative fitness

estimates of 0.73 (SE: 0.035) and 0.88 (SE: 0.062), respec-

tively. Following compensatory evolution, competitive fitness

assays were carried out on a single clone isolated from each

population. Substantial fitness gains were observed for pop-

ulations evolved from the gyrA D87G ancestor (fig. 5A; one-

tailed t-test P¼ 3.1 �10�9). Fitness increases in the marR

R94C mutant were more modest, with a nonsignificant aver-

age increase in fitness (P¼ 0.17). When fitness was measured

in TSB, another rich medium, significant increases in fitness

were observed for genotypes evolved from both gyrA

D87G (P¼ 0.009) and marR R94C (P¼ 0.013). This in-

crease in fitness is perhaps not surprising, given that

both LB and TSB are rich media, and so the same muta-

tions might confer an advantage under both conditions. In

FIG. 4.—Phylogeny and drug resistance mechanisms for the sequenced clinical isolates. Presence/absence of gyrase mutations and beta-lactamases are

given on the right-hand side of the figure. Strain names are color-coded according to their resistance profile (CipR or CipS, and ESBL-negative or positive).
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minimal mediumþ glucose, neither initial resistance mu-

tation conferred a cost, with relative fitness estimates of

0.91 (SE: 0.08) and 1.02 (SE: 0.04). Genotypes that

evolved in LB did not increase fitness in minimal medium

for populations derived from either ancestor (fig. 6C;

P¼ 0.19 and P¼ 0.98, respectively), but this may simply

reflect the absence of initial fitness costs.

Overall, responses to selection (i.e., the change in fitness

over the course of the selection experiment) were uncorre-

lated between TSB and LB, or between M9 minimal medium

and LB (fig. 6). That is, the magnitude of the fitness gain in LB

did not predict fitness changes in either alternative

environment. This is true even in TSB (fig. 6A)—although

fitness increased overall in TSB, the sizes of the fitness

increases were uncorrelated. Correspondingly, ANOVA indi-

cates significant effects of genotype, environment, and

genotype � environment interactions on the response to

selection (table 2).

We therefore propose that compensatory evolution may

be limited by environmental context—whereas fitness gains

may be achieved in specific settings, those improvements may

be inconsistent in alternative environments (fig. 6). By con-

trast, the fitness costs imposed by resistance mutations do

appear to be fairly (although not entirely) consistent across

environments (MacLean and Vogwill 2014). Thus, we expect

that resistance will sometimes trade off with fitness, even in

the face of compensatory evolution.

Implications for the Control of AMR

Restriction protocols, whereby a drug or drug class is withheld

in hopes of reducing the prevalence of resistance, have been
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FIG. 5.—Direct and indirect responses to selection in the absence of antibiotic. Ancestral fitness is given by the black bar, and mean (6SE) fitness for 12

evolved populations is given in gray. Compensatory evolution in LB resulted in a significant increase in fitness in LB for gyrA D87G-derived populations (A),

and for populations derived from both mutant ancestors in TSB (B). No increase in fitness was observed in M9 minimal mediumþglucose (C), although

neither resistance mutation imposed a significant decrease in fitness.
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moderately successful in both human and animal populations

(Enne 2010). For example, ciprofloxacin resistance in E. coli

dropped from 12–14% to 9% following restricted use of

quinolones in Israel over a 7-month period (Gottesman

et al. 2009). Similarly, wholesale restriction of veterinary anti-

biotic use in the Netherlands has been accompanied by wide-

spread reductions in AMR in animal isolates (Speksnijder et al.

2015). The success of restriction protocols is broadly consis-

tent with the assumption that AMR is costly; our data indicate

that this assumption is largely well founded, with a negative

association between resistance and growth rates in both

phylogeny-independent (fig. 2 and table 1) and phylogenet-

ically controlled (fig. 3) analyses.

There are nonetheless important exceptions to the success

of restriction protocols, wherein drug limitation has not been

followed by a drop in the prevalence of resistance. Restriction

of clinical trimethoprim use in Sweden (Sundqvist et al. 2010),

and of sulphonamide use in the United Kingdom (Enne et al.

2001), failed to reduce the prevalence of resistance to these

two drugs. Furthermore, reduction of veterinary antibiotic use

in the Netherlands has had no effect on the prevalence of the

zoonotic pathogen MRSA ST398 (Dierikx et al. 2016), even

though other AMR strains have dropped in frequency. There

are a number of possible explanations for these failures of

drug restriction, including coselection (whereby AMR ele-

ments are linked), the existence of AMR genotypes that do

not suffer a cost, and the influence of genetic background

(Melnyk et al. 2014; Vogwill and MacLean 2015; Wong

2017).

Our findings suggest a role for genetic background in mit-

igating the costs of resistance. This is most clear in the case of

quinolone resistance. Most of the CipR strains studied here

carry the same gyrA S83L D87N haplotype, but the growth

rates of these strains in TSB vary by >4-fold (supplementary

table S1, Supplementary Material online). This variation in

growth rates among strains bearing the same resistance allele

may be due to epistasis, whereby the costs of resistance are

dependent on genetic background. Alternatively, the varia-

tion in growth rates may be independent of resistance, such

that CipS derivatives of these strains would show similar differ-

ences in growth rates. In either case, however, there are

highly CipR genotypes that show similar growth rates to

CipS genotypes. Assuming that growth rate is a reasonable

proxy for fitness, these CipR genotypes would therefore be

expected to persist in the absence of drug.

Natural Variation and Tradeoffs

Microbial studies of tradeoffs have largely focused on the

effects of single mutations, such as AMR mutations (reviewed

in Melnyk et al. 2014; Vogwill and MacLean 2015), or on

experimentally evolved populations differing by a handful of

mutations (Bohannan et al. 2002; Schick et al. 2015). In such

studies, fitness tradeoffs can be attributed to specific muta-

tions, guaranteeing that tradeoffs are in fact due to antago-

nistic pleiotropy rather than the presence of linked mutations

that are deleterious in some environments but not others.

Moreover, knowledge of the specific mutations underlying

tradeoffs allows for greater mechanistic understanding.

There are nonetheless compelling reasons to adopt the

complementary approach, that of measuring trait correlations

among natural microbial isolates. Importantly, the fitness
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Table 2

Effects of Genotype and Environment on the Response to Selection

Factor F P Value

Genotype 21.05 2.33�10�5

Environment 26.56 5.46�10�9

Genotype�environment 8.92 4.1�10�4

NOTE.—Populations were evolved in drug-free LB for 100 generations, and fit-
ness was measured in LB, TSB, and minimal medium.
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effect of a mutation can vary depending on genetic back-

ground (Wong 2017)—a given mutation may be beneficial,

neutral, or deleterious, depending on the presence of other

mutations in the genome. Laboratory studies of trade-offs

tend to be restricted to a single genetic background, which

potentially limits the generalizability of their findings. Thus, by

using natural variation to detect tradeoffs, we can take the

effects of genetic background into account.

Although widespread in multicellular organisms, natural

variation-based studies of trade-offs are relatively rare in

microbes (reviewed in Ferenci 2016). Nonetheless, it is clear

that trade-offs are widespread, and that they contribute to

ecological specialization and to the maintenance of diversity.

For example, Clark et al. (2015) measured a range of pheno-

typic traits among Pseudomonas aeruginosa isolates from an

adult with cystic fibrosis (Clark et al. 2015). They found neg-

ative correlations between traits involved in virulence, and

those involved in chronic infection, indicative of a trade-off

between long-term survival and virulence (see also

Workentine et al. 2013). Similarly, Phan et al. identified a

trade-off between survival and nutritional competence, likely

mediated by membrane permeability (Phan and Ferenci

2013).

Our finding of a negative relationship between growth

rates and drug resistance (figs. 2 and 3; table 1) similarly

suggests that E. coli must trade-off between growth and sur-

vival. However, this trade-off is not absolute, since no rela-

tionship between resistance and growth was observed in

minimal media. The mechanistic underpinning of this relation-

ship is unclear, although it may reflect slower growth in min-

imal medium; slow growth may be accompanied by reduced

metabolic demands and a greater tolerance for reduced

enzymatic function. More broadly, we highlight the impor-

tance of measuring a wide range of traits, in order to gain

a more complete appreciation of the various trade-offs (or

lack thereof) that may contribute to the maintenance of

diversity.

Given the ease of bacterial genome sequencing, and the

relative ease of phenotypic measurement in bacteria, there is

much promise in using bacterial systems to measure, quantify,

and understand trade-offs. Such efforts may in turn help to

understand the considerable diversity of bacteria.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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