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We present a tradeoff between the expected time for two identical agents to rendez-vous on a
synchronous, anonymous, oriented ring and the memory requirements of the agents. In particular,

we show there exists a 2t state agent, which can achieve rendez-vous on an n node ring in expected

time O(n2/2t + 2t) and that any t/2 state agent requires expected time Ω(n2/2t). As a corollary
we observe that Θ(log log n) bits of memory are necessary and sufficient to achieve rendez-vous in

linear time.
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[Probability and Statistics]: —Probabilistic Algorithms
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1. INTRODUCTION

The problem of rendez-vous (the gathering of agents widely dispersed in some do-
main at a common place and time) has been studied under many guises and in
many settings [Alpern and Gal 2003; Marco et al. 2005; Das et al. 2008; Dessmark
et al. 2003; Dobrev et al. 2004; Flocchini et al. 2004; Flocchini et al. 2004; Gasieniec
et al. 2006; Kowalski and Pelc 2004; Kowalski and Malinowski 2006; Kranakis et al.
2003; Marco et al. 2006; Kranakis et al. 2006; Roy and Dudek 2001; Sawchuk 2004;
Suzuki and Yamashita 1999; Yu and Yung 1996]. (See Kranakis et al. 2006 for a
survey of recent results.) In this paper we consider the problem of autonomous
mobile software agents gathering in a distributed network. This is a fundamental
operation useful in such applications as web-crawling, distributed search, meet-
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ing scheduling, etc. In particular, we study the problem of two identical agents
attempting to rendez-vous on a synchronous anonymous ring.

1.1 The Model

Network rendez-vous problems have many different parameters, including the topol-
ogy of the underlying network, the agents’ knowledge (if any) of the network, la-
bellings (if any) of the edges and vertices of the network, the capabilities of the
agents (unlimited memory, access to random bits, the ability to clone, the ability
to leave messages at vertices), the types of agents (identical or not), the synchrony
of the agents, and the reliability of the agents.

We consider the standard model of a synchronous anonymous oriented n-node
ring [Santoro 2006]. The nodes are assumed to have no identities, the computation
proceeds in synchronous steps and the edges of the ring are labelled clockwise and
counterclockwise in a consistent fashion. We model the agents as identical prob-
abilistic finite automata A = 〈S, δ, s0〉 where S is the set of states of the automata
including s0 the initial state and the special state halt, and δ : S×C×P → S×M
where C = {H,T} represents a random coin flip, P = {present, notpresent}
represents a predicate indicating the presence of the other agent at a node, and
M = {−1, 0,+1} represents the potential moves the agent may make, +1 repre-
senting clockwise, −1 counterclockwise and 0 stay at the current node. During
each synchronous step, depending upon its current state, the answer to a query for
the presence of the other agent, and the value of an independent random coin flip
with probability of heads equal to 1/2, the agent uses δ in order to change its state
and either move across the edge labelled clockwise, move across the edge labelled
counterclockwise or stay at the current node. We assume that the agent halts
once it detects the presence of the other agent at a node. Rendezvous occurs when
both agents halt on the same node. The complexity measures we are interested in
are the expected time (the number of synchronous steps) to rendez-vous (where the
expectation is taken over all sequences of coin flips of the two agents) and the size
(|S|) or memory requirement (log2 |S|) of the agents.

We assume for simplicity that n, the size of the ring is an even number and that
the two agents start an even distance apart. This avoids the possibility that the two
agents simultaneously cross the same edge in opposite directions without achieving a
rendez-vous. This assumption does not significantly affect our (asymptotic) results.
We can achieve a similar rendez-vous time without this assumption by having agents
use a coin periodically to determine whether they should pause, for one unit of time,
at their currently location.

1.2 Related Work and New Results

A number of researchers have observed that using random walks one can design
O(1) state agents that will rendez-vous in polynomial O(n3) number steps on any
network [Coppersmith et al. 1993]. For the ring the expected time for two random
walks to meet is easily shown to be O(n2). (See Reference [Kranakis and Krizanc
2007] for an example proof of this fact.)

This expected time bound can be improved by considering the following strategy.
Repeat the following until rendez-vous is achieved: flip a fair coin and walk n/2
steps clockwise if the result is heads, n/2 steps counterclockwise if the result is
ACM Journal Name, Vol. V, No. N, Month 20YY.
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tails. If the two agents choose different directions (which they do with probability
1/2) then they will rendez-vous (at least in the case where they start at an even
distance apart). The expected time to rendez-vous in this case satisfies

T ≤ (1/2)(n/2) + (1/2)(n/2 + T )

and is therefore at most 3n/2. Alpern refers to this strategy as Coin Half Tour
and studies it in detail [Alpern 1995]. A variant of Coin Half Tour, in which each
agent either travels n−1 steps in the same direction or remains stationary for n−1
time units, was studied by Alpern et al. [Alpern et al. 1999]. When the agents have
uniformly distributed starting positions this strategy achieves an expected meeting
time, for odd n, of n−Θ(1). The case for even values of n is complicated by the fact
that the agents are more likely to pass each other without meeting. In this case, the
agents can still rendez-vous in 1.254122768n+O(1) expected time. A generalization
of the above strategy, in which each agent either searches exhaustively for 2n steps
or waits for 2n steps, allows two agents to rendez-vous in any n vertex graph in
expected time at most 4n [Alpern et al. 1999, Section 4].

Note that these strategies require the agent to count up to at least n/2 and thus
require Ω(n) states or Ω(log n) bits of memory. The main result of this paper is that
this memory requirement can be reduced to O(log log n) bits while still achieving
rendez-vous in O(n) expected time, and this is optimal.

Below we show a tradeoff between the (memory) size of the agents and the time
required for them to rendez-vous. We prove there exists a 2t state algorithm, which
can achieve rendez-vous on an n node ring in expected time O(n2/2t + 2t) and that
any t/2 state algorithm requires expected time Ω(n2/2t). As a corollary we observe
that Θ(log log n) bits of memory are necessary and sufficient to achieve rendez-vous
in linear time.

A preliminary version of these results was presented at the 8th Latin American
Theoretical Informatics Conference (LATIN 2008) [Kranakis et al. 2008]. Section 2
contains some preliminary results, Section 3 our upper bound and Section 4 the
lower bound.

2. PRELIMINARIES

2.1 Martingales, Stopping Times, and Wald’s Equations

In this section, we review some results on stochastic processes that are used several
times in our proofs. The material in this section is based on the presentation in
Ross’ textbook [Ross 2002, Chapter 6]. Let X = X1, X2, X3, . . . be a sequence of
random variables and let Q = Q1, Q2, Q3 . . . be a sequence of random variables in
which Qi is a function of X1, . . . , Xi. Then we say that Q is a martingale with
respect to X if, for all i, E[|Qi|] <∞ and E[Qi+1 | X1, . . . , Xi] = Qi.

A positive integer-valued random variable T is a stopping time for the sequence
X1, X2, X3, . . . if the event T = i is determined by the values X1, . . . , Xi. In
particular, the event T = i is independent of the values Xi+1, Xi+2, . . .. Some of
our results rely on the Martingale Stopping Theorem:

Theorem 1 Martingale Stopping Theorem. If Q1, Q2, Q3, . . . is a martin-
gale with respect to X1, X2, X3, . . . and T is a stopping time for X1, X2, X3, . . . then

E[QT ] = E[Q1]
ACM Journal Name, Vol. V, No. N, Month 20YY.
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provided that at least one of the following holds:

(1 ) Qi is uniformly bounded for all i ≤ T ,
(2 ) T is bounded, or
(3 ) E[T ] <∞ and there exists an M <∞ such that

E [|Qi+1 −Qi| | X1, . . . , Xi] < M .

If X1, X2, X3, . . . is a sequence of i.i.d. random variables with expected value
E[X] < ∞ and variance var(X) < ∞ then the sequence Qi =

∑i
j=1(Xj − E[X])

is a Martingale and the assumption that var(X) < ∞ implies that this sequence
satisfies Condition 3 of Theorem 1, so we obtain Wald’s Equation for expectation:

E

[
T∑

i=1

Xi

]
= E[T ] · E[X] (1)

whenever T is a stopping time for X1, X2, X3, . . . Similarly, we can derive a version
of Wald’s Equation for variance by considering the martingale

Qi =

 i∑
j=1

(Xj − E[X]

2

− i · var(X)

to obtain

var

(
T∑

i=1

Xi

)
= E

( T∑
i=1

(Xi − E[Xi])

)2
 = E[T ] · var(X) . (2)

2.2 A Lemma on Random Walks

Let X1, X2, X3, . . . ∈ {−1,+1} be independent random variables with

Pr{Xi = −1} = Pr{Xi = +1} = 1/2

and let Si =
∑i

j=1Xj . The sequence S1, S2, S3, . . . is a simple random walk on the
line, where each Xi represents a step to the left (Xi = −1) or a step to the right
(Xi = +1). Define the hitting time hm as

hm = min {i : |Si| = m} ,

which is the number of steps in a simple random walk before it travels a distance
of m from its starting location. The following result is well-known (see, e.g., Ref-
erence [Mitzenmacher and Upfal 2005]):

Lemma 1. E[hm] = m2.

Applying Markov’s Inequality with Lemma 1 yields the following useful corollary

Corollary 1. Pr{max{|Si| : i ∈ {1, . . . , 2m2}} ≥ m} ≥ 1/2 .

In other words, Corollary 1 says that, at least half the time, at some point during
the first 2m2 steps of a simple random walk, the walk is at distance m from its
starting location.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Let Y1, . . . , Ym be i.i.d. non-negative random variables with finite expectation
r = E[Yi], independent of X1, . . . , Xm, and with the property that

Pr{Yi ≥ αr} ≥ 1/2

for some constant α > 0. The following lemma considers a modified random walk
in which the ith step is of length Yi:

Lemma 2. Let X1, . . . , Xm and Y1, . . . , Ym be defined as above. Then there exists
constants β, κ > 0 such that

Pr

max


∣∣∣∣∣∣

m′∑
i=1

XiYi

∣∣∣∣∣∣ : m′ ∈ {1, . . . ,m}

 ≥ βr√m
 ≥ κ .

Proof. We will define 3 events E1, E2, E3 such that Pr{E1 ∩ E2 ∩ E3} ≥ 1/8
and, if E1, E2, and E3 all occur, then there exists a value m′ ∈ {1, . . . ,m} such that∣∣∣∑m′

i=1XiYi

∣∣∣ ≥ αr√m/23/2. This will prove the lemma for κ = 1/8 and β = α/23/2.
Let E1 be the event that there exists a value m′ ∈ {1, . . . ,m} such that∣∣∣∣∣∣

m′∑
i=1

Xi

∣∣∣∣∣∣ ≥√m/2 .

By Corollary 1, Pr{E1} ≥ 1/2. Assume E1 occurs and, without loss of generality,
assume

∑m′

i=1Xi > 0.
Let I+ = {i ∈ {1, . . . ,m′} : Xi = +1} and I− = {1, . . . ,m′} \ I+. We further

partition I+ into two sets I+
1 and I+

2 where I+
1 contains the smallest |I−| elements

of I+ and I+
2 contains the remaining elements. Note that, with these definitions,

|I+
1 | = |I−| and that |I+

2 | =
∑m′

i=1Xi. Let E2 be the event that∑
i∈I+

1

XiYi +
∑
i∈I−

XiYi ≥ 0

which is equivalent to
∑

i∈I+
1
Yi ≥

∑
i∈I− Yi and observe that, by symmetry,

Pr{E2|E1} ≥ 1/2.
Finally, let E3 be the event ∑

i∈I+
2

XiYi ≥ αr|I+
2 |/2

To bound Pr{E3|E1∩E2}, let T =
∣∣{i ∈ I+

2 : Yi ≥ αr}
∣∣ and observe that T ≥ |I+

2 |/2
implies E3. Now, T is a binomial(|I+

2 |, p) random variable for p ≥ 1/2 so its median
value is at least p|I+

2 | ≥ |I
+
2 |/2 and therefore Pr{E3|E1 ∩E2} ≥ Pr{T ≥ |I+

2 |/2} ≥
1/2.

We have just shown that Pr{E1 ∩ E2 ∩ E3} ≥ 1/8. To complete the proof we
observe that, if E1, E2 and E3 occur then

m′∑
i=1

XiYi =
∑
i∈I+

1

XiYi +
∑
i∈I−

XiYi +
∑
i∈I+

2

XiYi

ACM Journal Name, Vol. V, No. N, Month 20YY.
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≥
∑
i∈I+

2

XiYi

≥ αr|I+
2 |/2

≥ αr
√
m/23/2 .

2.3 An Approximate Counter

In the previous section we have shown that, if we can generate random variables Yi

that are frequently large, then we can speed up the rate at which a random walk
moves away from its starting location. In this section we consider how to generate
these frequently-large random variables. Consider a random variable Y generated
by the following algorithm:
BigRand(t)

1: Y ← C ← 0
2: while C < t do
3: Y ← Y + 1
4: if a coin toss comes up heads then
5: C ← C + 1
6: else
7: C ← 0
8: end if
9: end while

10: return Y

Lemma 3. Let Y be the output of Algorithm BigRand(t). Then

(1 ) E[Y ] = 2t(2− 1/2t−1) and
(2 ) var(Y ) ≤ 2t+1 <∞
(3 ) Pr{Y ≥ E[Y ]/2} ≥ 1/2.

Proof. To compute the expected value of Y we observe that the algorithm
begins by tossing a sequence of i − 1 heads and then either (a) returning to the
initial state if the ith coin toss is a tail or (b) terminating if i = 2t. The first case
occurs with probability 1/2i and the second case occurs with probability 1/2t. Call
the interval between consecutive visits to the initial state a round. The number
of rounds, T , is a geometric(1/2t) random variable and therefore E[T ] = 2t. The
length Xi of the ith round is dominated1 by a geometric(1/2) random variable and
its expectation and variance are easily shown to satisfy E[Xi] = 2 − 1/2t−1 and
var(Xi) ≤ 2. Therefore, Parts 1 and 2 of the lemma follow from Wald’s Equations
for expectation and variance of Y =

∑T
i=1Xi, respectively.

To prove the second part of the lemma, consider only the random variable T
that counts the number of rounds. Since T is a geometric(1/2t) random variable,
its median is d− log 2/ log(1− 1/2t)e and is therefore at least 2t, for t ≥ 1. Since
the value of T is a lower bound on the value of Y , this completes the proof.

1A random variable X dominates a random variable Y if Pr{X > x} ≥ Pr{Y > x} for all x ∈ R.

ACM Journal Name, Vol. V, No. N, Month 20YY.
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3. THE RENDEZ-VOUS ALGORITHM

Consider the following algorithm used by an agent to make a random walk on
a ring. The agent repeatedly performs the following steps: (1) toss a coin to
determine a direction d ∈ {clockwise, counterclockwise} then (2) run algorithm
BigRand(t) replacing each increment of the variable Y with a step in direction d.
By using t states for a clockwise counter and t states for a counterclockwise counter
this algorithm can be implemented by a 2t state finite automata. (Or using one
bit to remember the direction d and log t bits to keep track of the counter C in the
BigRand algorithm, it can be implemented by an agent having only 1 + log2 t bits
of memory.)

We call m iterations of the above algorithm a round. Together, Lemma 2 and
Lemma 3 imply that, during a round, with probability at least κ, an agent will
travel a distance of at least β2t

√
m from its starting location. Set

m =
⌈

n2

β222t

⌉
and consider what happens when two agents A and B both execute this rendez-
vous algorithm. During the first round of A’s execution, with probability at least κ,
agent A will have visited agent B’s starting location. Furthermore, with probability
at least 1/2 agent B will not have moved away from A when this occurs, so the
paths of agents A and B will cross, and a rendez-vous will occur, with probability
at least κ/2. If we define T as the round in which agents A and B rendez-vous, we
therefore have E[T ] ≤ 2/κ.

By Lemma 3, the expected number of steps taken for A to execute the ith round
is at most

E[Mi] ≤ m2t(2− 1/2t−1)

and

var(Mi) ≤ m2t+1

The variables M1,M2, · · · are independent and the algorithm terminates when A
and B rendez-vous. The time for two agents to rendez-vous is bounded by

T∑
i=1

Mi .

Note that the event T = j is independent of Mj+1,Mj+2, . . . so T is a stopping time
for the sequence M1,M2, . . .. Furthermore, var(Mi) < ∞, so by Wald’s Equation
for the expectation

E

[
T∑

i=1

Mi

]
= E[T ] · E[M1] ≤ 2

κ
·m2t(2− 1/2t−1) .

This completes the proof of our first theorem.

Theorem 2. There exists a rendez-vous algorithm in which each agent has at
most 2t states and whose expected rendez-vous time is O(n2/2t + 2t).

ACM Journal Name, Vol. V, No. N, Month 20YY.
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4. THE LOWER BOUND

Next we show that the algorithm in Section 3 is optimal.
The model of computation for the lower bound represents a rendez-vous algorithm

A as a probablistic finite automata having t states. Each vertex of the automata
has two outgoing edges representing the two possible results of a coin toss and each
edge e is labelled with a real number `(e) ∈ [−1,+1]. The edge label of e represents
a step of length |`(e)| with this step being counterclockwise if `(e) < 0 and clockwise
if `(e) > 0. As before, both agents use identical automata and start in the same
state. The rendez-vous process is complete once the distance between the two
agents is at most 1. This model is stronger than the model used for upper bound
of Theorem 2 since the edge labels are no longer restricted to be in the discrete set
{−1, 0,+1} and the definition of a rendez-vous has been slightly relaxed.

4.1 Well-Behaved Algorithms and Reset Times

We say that an algorithm is well-behaved if the directed graph of its state machine
has only one strongly connected component that contains all nodes. We are par-
ticularly interested in intervals between consecutive visits to the start state, which
we will call rounds.

Lemma 4. Let R be the number of steps during a round. Then E[R] ≤ 2t and
E[R2] ≤ 2 · 22t.

Proof. For each state v of A’s automata fix a shortest path (a sequence of
edges) leading from v to the start state. For an automata that is currently at v
we say that the next step is a success if it traverses the first edge of this path,
otherwise we say that the next step is a failure.

Each round can be further refined into phases, where every phase consists of
0 or more successes followed by either a failure or by reaching the start vertex.
Let Xi denote the length of the ith phase and note that Xi is dominated by a
geometric(1/2) random variable X ′i, so E[Xi] ≤ E[X ′i] = 2. On the other hand, if a
phase lasts t− 1 steps then the start vertex is reached. Therefore, the probability
of reaching the start vertex during any particular phase is at least 1/2t−1 and the
number T of phases is dominated by a geometric(1/2t−1) random variable T ′, so
E[T ] ≤ E[T ′] ≤ 2t−1. Therefore, by Wald’s Equation

E[R] = E

[
T∑

i=1

Xi

]
≤ E

 T ′∑
i=1

X ′i

 = E[T ′] · E[X ′1] = 2t .

For the second part of the lemma, we can apply Wald’s Equation for the variance
(2) to obtain

E[R2] = E

( T∑
i=1

Xi

)2


≤ E


 T ′∑

i=1

X ′i

2
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= var

 T ′∑
i=1

X ′i

+ (E[T ′] · E[X ′1])2

= E[T ′] · var(X1) + (E[T ′] · E[X ′1])2

≤ 2t−1 · 2 + 22t

≤ 2 · 22t

as required.

4.2 Unbiasing Algorithms

Note that E[R] can be expressed another way: For an edge e of the state machine,
let f(e) be the expected number of times the edge e is traversed during a round.
The reset time of algorithm A is then defined as

reset(A) =
∑

e

f(e) = E[R] .

The bias of a well-behaved algorithm A is defined as

bias(A) =
∑

e

f(e) · `(e) ,

which is the expected sum of the edge labels encoutered during a round. We say
that A is unbiased if bias(A) = 0, otherwise we say that A is biased.

Biased algorithms are somewhat more difficult to study. However, observe that,
for any algorithm A we can replace every edge label `(e) with the value `(e) − x
for any real number x and obtain an equivalent algorithm in the sense that, if two
agents A and B execute the modified algorithm following the same sequence of
state transitions then A and B will rendez-vous after exactly the same number of
steps. In particular, if we replace each edge label `(e) with the value

`′(e) = `(e)− bias(A)
reset(A)

then we obtain an algorithm A′ with bias(A′) = 0. Furthermore, since |bias(A)| ≤
reset(A), every edge label `′(e) has −2 ≤ `′(e) ≤ 2. This gives the following relation
between biased and unbiased algorithms:

Lemma 5. Let A be a well-behaved t-state algorithm with expected rendez-vous
time R. Then there exists a well-behaved unbiased t-state algorithm A′ with expected
rendez-vous time at most 2R.

4.3 The Lower Bound for Well-Behaved Algorithms

We now have all the tools in place to prove the lower bound for the case of well-
behaved algorithms.

Lemma 6. Let A be a well-behaved t-state algorithm. Then the expected rendez-
vous time of A is Ω(n2/2t).

Proof. Suppose the agents are placed at antipodal locations on a ring of size n,
so that the distance between them is n/2. We will show that there exists constants
c > 0 and p > 0 such that, after cn2/2t steps, with probability at least p neither

ACM Journal Name, Vol. V, No. N, Month 20YY.
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agent will have travelled a distance greater than n/4 from their starting location.
Thus, the expected rendez-vous time is at least pcn2/2t = Ω(n2/2t).

By Lemma 5 we can assume that A is unbiased. Consider the actions of a
single agent starting at location 0. The actions of the agent proceed in rounds
where, during the ith round, the agent takes Ri steps and the sum of edge labels
encountered during these steps is Xi. Note that the random variables X1, X2, . . .
are i.i.d. with expectation E[X] = 0 and variance E[X2]. Since the absolute value
of Xi is bounded from above by Ri, we have the inequalities E[|Xi|] ≤ E[Ri] and
E[X2

i ] ≤ E[R2
i ].

Let Si =
∣∣∣∑i

j=1Xj

∣∣∣, for i = 0, 1, 2 . . . be the agent’s distance from their starting

location at the end of the ith round. Let Qi = S2
i − iE[X2] and observe that the

sequence Q1, Q2, . . . is a martingale with respect to the sequence X1, X2, . . . [Ross
2002, Example 6.1d]. Define

T = min{i : Si ≥ m} ,

and observe that this is equivalent to

T = min{i : Qi ≥ m2 − iE[X2]} .

The random variable T is a stopping time for the martingale Q1, Q2, . . .. Further-
more,

E[|Qi+1 −Qi| | X1, . . . , Xi] = E
[∣∣S2

i+1 − (i+ 1)E[X2]− S2
i + iE[X2]

∣∣ | X1, . . . , Xi

]
= E

[∣∣S2
i+1 − S2

i − E[X2]
∣∣ | X1, . . . , Xi

]
= E


∣∣∣∣∣∣∣
i+1∑

j=1

Xj

2

−

 i∑
j=1

Xj

2

− E[X2]

∣∣∣∣∣∣∣ | X1, . . . , Xi


= E

∣∣∣∣∣∣
i+1∑
j=1

Xi+1Xj − E[X2]

∣∣∣∣∣∣ | X1, . . . , Xi


= E

[∣∣X2
i+1 − E[X2]

∣∣ | X1, . . . , Xi

]
= E

[∣∣X2
i+1 − E[X2]

∣∣]
≤ E[X2] ≤ E[R2] <∞ .

Therefore, by the Theorem 1

E[QT ] = E[Q1] = E[(X1)2 − E[X2]] = 0 . (3)

However, by definition QT ≥ m2 − T · E[X2], so

E[QT ] ≥ E[m2 − T · E[X2]] = m2 − E[T ] · E[X2] . (4)

Equating the right hand sides of (3) and (4) gives

E[T ] ≥ m2

E[X2]
.

Furthermore, the expected number of steps taken by the agent during these T
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rounds is, by Wald’s Equation,

E

[
T∑

i=1

Ri

]
= E[T ] · E[R1] ≥ m2E[R]

E[X2]
≥ m2E[R]

E[R2]
≥ m2E[R]

c22t
≥ m2

c22t
, (5)

where the last two inequalities follow from Lemma 4 and the fact that R ≥ 1.

4.4 Badly-Behaved Algorithms

Finally, we consider the case where the algorithm A is not well-behaved. In this
case, A’s automata contains a set of terminal components. These are disjoint sets
of vertices of the automata that are strongly connected and that have no outgoing
edges (edges with source in the component and target outside the component).
From each terminal component, select an arbitrary vertex and call it the terminal
start state for that terminal component. An argument similar to that given in
Lemma 4 proves:

Lemma 7. The expected time to reach some terminal start state is at most 2t.

Observe that each terminal component defines a well-behaved algorithm. Let
c be the number of terminal components and let t1, . . . , tc be the sizes of these
terminal components. When two agents execute the same algorithm A, Lemma 7
and Markov’s Inequality imply that the probability that both agents reach the same
terminal component after at most 2t+2 steps is at least 1/2c. By applying Lemma 6
to each component, we can therefore lower bound the expected rendez-vous time
by

1
2c

Ω(n2/2t−c) ≥ Ω(n2/22t) .

Substituting t′ = t/2 into the above completes the proof of our second theorem:

Theorem 3. Any t/2-state rendez-vous algorithm has expected rendez-vous time
Ω(n2/2t).

4.5 Linear Time Rendez-vous

We observe that Theorems 2 and 3 immediately imply:

Theorem 4. Θ(log log n) bits of memory are necessary and sufficient to achieve
rendez-vous in linear time on an n node ring.

5. CONCLUSIONS

We have given upper and lower bounds on the expected rendez-vous time for two
identical agents to rendez-vous on a ring as a function of the ring size n and the
the memory available to the agents. In particular, we have shown that O(log log n)
bits of memory are necessary and sufficient for two agents to rendez-vous in O(n)
expected time.

A gap remains in our upper and lower bounds. When expressed in terms of the
number of states t available to the agents, our upper and lower bounds differ by a
factor of 4. We believe that the upper bound is tight and this gap is an artifact of
the lower bound proof. Closing the gap remains an open problem.
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The current paper studies symmetric rendez-vous with limited memory when the
underlying graph is a ring. Another possibility is to consider rendez-vous with lim-
ited memory in other graphs. Possibilities include rendez-vous an on n-vertex torus
or, more generally, on any n-vertex vertex-transitive graph.2 With complete knowl-
edge of the underlying graph and unlimited memory, rendezvous can be achieved
in O(n) expected time for any graph [Alpern and Gal 2003, Section 15.2]. On the
other hand, if both agents take a random walk (which requires no memory and no
knowledge of the underlying graph) then their expected meeting time is O(n3) and
this is tight for some graphs [Coppersmith et al. 1993].

Another possibility is to consider the effects of memory limitations on randomized
algorithms for the rendezvous of multiple (greater than two) agents on an n node
ring. In particular, what is the expected time required for k identical agents, each
having t states, to achieve rendez-vous on a synchronous, anonymous, oriented n
node ring?
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