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1. Introduction 

       This paper introduces a minimum wage and hence involuntary unemployment into the 

Ramsey (1928)-Cass (1965)-Koopmans (1965) two-factor model of optimal growth over an 

infinite horizon, as extended by Srinivasan (1964) to the two-good case.1   To avoid an inherent 

problem of overdetermination, our minimum-wage model incorporates an endogenous rate of 

growth,2 fuelled by technological improvements due to learning by doing.  Within this 

framework, we investigate how a hike in the minimum wage affects employment, growth and 

welfare.   

       Contrary to conventional academic wisdom, our analysis shows that a minimum-wage hike 

can increase total employment, because of what may be called a backward-bending demand 

curve for labor.  Notably, this outcome is possible even though we consider a perfectly 

competitive economy, in which firms are wage takers (not setters).3  This result provides 

theoretical support for the controversial findings of Card and Krueger (1995), whose empirical 

                                                           
1 For an alternative approach to modelling growth with unemployment, see Cahuc and Michel 

(1996), who add a minimum wage to an overlapping-generations model with only one good 

(produced in two technologically different sectors) and three factors of production.   
2 As discussed below, the minimum wage fixes (via the conditions for profit maximization) the 

interest rate, which then determines the balanced-growth rate (from the household’s Euler 

equation).  For an alternative solution to the overdetermination problem in the absence of long-

run growth, see Brecher, Chen and Yu (2013). 
3 It is well known that with wage-setting firms, minimum wages may increase employment, as 

first established by Stigler (1946) in the case of a monopsonist.  Alternatively, if firms set wages 

optimally for efficiency-wage reasons, Manning (1995) shows that a minimum-wage hike may 

lead to a rise in employment.  Flinn (2006) obtains this same result when the wage is determined 

instead by bargaining in the presence of search and matching frictions. 



2 
 

evidence challenges the simple textbook prediction of a negative relationship between 

employment and the minimum wage.4 

       We further demonstrate that the long-run rate of labor-augmenting technical progress is 

always negatively related to the minimum wage.  This result is in consonance with Acemoglu 

(2010), who shows (among other things) how exogenous increases in the wage discourage 

innovation that raises the marginal product of labor.5   However, his model does not allow him to 

analyze our case in which a higher wage might be associated with more employment.  

       One might reasonably conjecture that lifetime utility could rise if a hike in the minimum 

wage causes employment to increase.  Our analysis, however, rejects this conjecture. Thus, any 

possible gain in employment must be outweighed by the definite contraction in the rate of 

growth, within the present representative-agent framework.6 

       Since the possibility of an employment-expanding hike in the minimum wage is our most 

surprising result, here is a brief preview of the underlying intuition.  The wage hike lowers both 

the rate of return on capital and the growth rate, and hence may reduce the rate of interest net of 

growth.  In this case, demand shifts from investment to consumption, thereby creating an excess 

demand for the consumption good and excess supply of the capital good.  If the former good is 

relatively labor intensive, employment must increase to restore equilibrium. 

                                                           
4 Empirical surveys by Schmitt (2013) and Neumark, Salas and Wascher (2014) are respectively 

favorable and unfavorable to the Card-Krueger position. 
5 Whereas our assumptions include learning by doing and optimal saving/investment, he assumes 

that firms choose technology optimally, and that the stock of capital (or supply curve for this 

factor) is exogenously fixed.  
6 Of course, this framework allows us to consider only efficiency, not equity.  As shown by 

Boadway and Cuff (2001) and Lee and Saez (2012), for example, a minimum wage might 

increase welfare for reasons related to interpersonal distribution. 
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       Section 2 sets up the basic model, whose implications are explored in Sections 3 and 4 under 

alternative assumptions about the source of learning by doing.  In section 5, we provide a 

numerical example to illustrate the possibility of a backward-bending demand curve for labor.  

Section 6 concludes with a summary of our main contributions.  

2.  Basic Model 

       Firms use capital and labor to produce capital itself and consumable output, which are called 

goods 1 and 2, respectively.  The production function for each good is strictly quasi-concave, and 

exhibits constant returns to scale, with positive but diminishing marginal products.  Assuming 

that firms maximize profits under perfect competition, we obtain the usual first-order conditions 

equating the marginal product of labor (capital) to the real wage (rental) rate.  The two goods can 

be uniquely ranked according to their capital intensities per unit of labor, and there are no factor-

intensity reversals.  Although all variables (such as consumption, outputs, inputs, prices, assets, 

etc.) are functions of time, the time argument t is supressed for notational simplicity.   

       Along the production-possibility frontier, output of good i is given by 

( , , ) ( , , )i iQ p K L Q p K λ≡   for i = 1, 2; where p  stands for the relative price of good 1 in terms 

of 2; K  and   represent the economy’s inputs of capital and labor, respectively; λ  is the 

number of efficiency units per natural unit of labor; and L λ≡  .  Given constant returns to scale, 

function iQ  is first-degree homogeneous in K and L.  Thus, we can write, 

          ( , , ) ( , , ) ( , )i i iQ p K L q p k q p kλ λ≡ ≡ 


  ,     1, 2i = ,           (1) 

where /k K λ≡  and /k k≡  .   

      To focus on the interesting situation in our two-good model, assume that the economy 

remains diversified in production (with both 1 0Q >  and 2 0Q > ) throughout the analysis.  Then, 
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because a good’s output responds positively to a rise in its relative price, 1 2/ 0 /Q p Q p∂ ∂ > > ∂ ∂ .  

Consequently, (1) implies that 

          1 20p pq q> > , 1 20p pq q> >  , (2)            

where subscripts of functions indicate partial derivatives (e.g., 1 1 /pq q p≡ ∂ ∂  and 1 1 /kq q k≡ ∂ ∂   ).     

       By the Rybczynski (1955) Theorem, 1 20K KQ Q> >  and 1 20L LQ Q< <  if good 1 is more 

capital intensive (per unit of labor) than good 2, whereas the signs of these derivatives are 

reversed under the opposite factor-intensity ranking. Thus, in light of (1),          

          0 ji
k kq q> > , 0 ji

k kq q> >  , 0 jiq q< <




 iff / /i i j jK L K L> ,     , 1, 2i j = , (3) 

where 1K  and 2K  are the inputs of capital used by industries 1and 2, respectively, while 1L  and 

2L  are the corresponding inputs of labor in efficiency units. 

       We also have the following three well-known facts: 

          1 2 1 2 0p p p ppq q pq q+ = + =  , 1 2 1 2/ /k k k kq q p q q p r+ = + =  , 1 2pq q w+ =
 

,       (4) 

where w  is the real wage rate in terms of good 2 per efficiency unit of labor, and r  represents 

the interest rate, which equals the marginal product of capital in sector 1.  The first fact in (4) 

holds because the economy operates on the production-possibility frontier at the point where the 

marginal rate of transformation equals the product-price ratio. The remaining two facts stem 

from intersectoral equalization of each input’s marginal value product. 

       According to the Stolper-Samuelson (1941) Theorem, a rise in the relative price of a good is 

associated with a rise in the real return to the factor used intensively in this good, and a fall in the 

other factor’s real return.  Thus, 

            / 0dp dw , / 0dr dp  iff 1 1 2 2/ /K L K L .        (5) 
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       Consumer behavior is consistent with that of a representative household, which       

competitively maximizes the present discounted value of lifetime utility, subject to a budget 

constraint.  Specifically, this household maximizes  

          
0

lntV e Cdtρ∞ −≡ ∫ ,  (6) 

subject to 

          / /X rX w p C pλ= + −

 ,   (7) 

where ρ  is the constant rate of time preference; C  denotes total consumption (of good 2); the 

instantaneous utility function is ln C , for simplicity of exposition;7 X  stands for total wealth in 

terms of good 1; and dots over variables indicate time derivatives (e.g., d / dX X t≡ ). 

       The only control variable for this maximization problem is C  at each point in time.  

Although the supply of labor is perfectly inelastic (with no disutility of effort), the household 

takes   as given, because of involuntary unemployment due to a binding minimum-wage 

constraint that fixes the value of w . This value then determines p and hence r, via Samuelson’s 

(1949) one-to-one correspondence between product and factor prices. Since the endowment of 

labor is normalized to equal 1 by choice of units, the rate of unemployment is 1−  .   

       Defining /x X λ≡  and /c C λ≡ , we can restate the household’s problem as maximizing      

          
0 0

ln lnt tV e cdt e dtρ ρ λ
∞ ∞− −≡ +∫ ∫ , (8) 

                                                           
7 Our main results hold qualitatively for any utility function of the isoelastic form 

1( 1) / (1 )C θ θ− − − ; where the constant θ  is greater than zero, and equals the elasticity of the 

marginal utility of consumption, as well as the intertemporal elasticity of substitution.  As 1θ → , 

this function approaches ln C , which is the case that we adopt to simplify the exposition.  For 

reasons explained by Barro and Sala-i-Martin (1995, p. 64), an isoelastic type of utility function 

is commonly assumed for consistency with a balanced-growth path. 



6 
 

 subject to  

          ( ) / /x r g x w p c p= − + −
 ; (9) 

where /g λ λ≡  , which is the economy’s rate of growth due to technical progress of the labor-

augmenting (Harrod-neutral) variety.  The current-value Hamilton for this maximization problem 

is given by 

          ln ln [( ) / / ]H c r g x w p c pλ µ= + + − + − ,    (10) 

where the co-state variable µ  can be interpreted as the shadow price of assets.  The necessary 

conditions for a maximum include the following equations: 

          / 1/ / 0H c c pµ∂ ∂ = − = , (11) 

          / ( )H x g rµ ρµ µ ρ= −∂ ∂ = + − ,                          (12) 

in addition to the x  constraint (9), as well as the usual initial and transversality conditions. 

       Since output of good 2 is fully consumed,  

          2 2( , , ) ( , )c q p k q p k= ≡ 


  .   (13) 

From this equation and (11),  

           ( , , )Z p k µ= , 2 2(1/ ) /p pZ q qµ= −


, 2 2/k kZ q q= −


, 2 2/Z p qµ µ= −


.       (14) 

       We also have  

          1( , , )K q p kλ=  ,  (15) 

because all output of good 1 adds to the stock of capital.  Then, differentiating ( / )k K λ≡  with 

respect to time (while recalling that /g λ λ≡  ), use (15) to obtain 

          1( , , )k q p k gk= −

 . (16) 
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       Assume that output-based learning by doing occurs in one industry, and spreads 

automatically to the other industry, thereby causing (the economy-wide) λ  to increase over time.  

Specifically, λ  equals either 1( , , )q p kλ   or 2 ( , , )q p kλ  , as learning occurs in the capital- or 

consumption-good sector, respectively.  The first case is equivalent to learning by investing, an 

idea expounded originally by Arrow (1962).  The second case could be called learning by 

consuming, in the spirit of Leibenstein’s (1957) hypothesis that a worker’s productivity depends 

on consumption for nutritional reasons.  We now consider each of these two possibilities in turn. 

3.  Learning by Producing the Capital Good 

       If learning by doing occurs in the capital-good industry, 1( , , )q p kλ λ=   and thus 

          1 1( , , ) ( , )g q p k q p k= = 


  . (17) 

This assumption about the growth rate allows us to rewrite (12) as 

          ( )1[ , , ]q p k rµ µ ρ= + −
 , (18) 

and (16) as 

          1( , , )(1 )k q p k k= −

 . (19) 

       In steady-state equilibrium, 0kµ = = . Then, (18) and (19) imply the following two 

equations, respectively: 

          1( , , )r q p kρ= +  , (20) 

and (given 1 0q >  under our above assumption about diversified production)  

          1k = .       (21) 

       To determine the relationship between the minimum wage and national employment, 

substitute (21) into (20), and differentiate the resulting equation totally with respect to p, thereby 
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yielding 

          1 1/ [ / ( ,1, )] / ( ,1, )pd dp dr dp q p q p= −


   . (22) 

Multiply both sides of (22) by /dp dw , and use (3) with (5) to derive  

          / 0d dw >  iff 1/ ( ,1, )pdr dp q p>  .       (23) 

In other words, we have the following result. 

PROPOSITION 1:  A hike in the minimum wage increases the steady-state level of employment 

if and only if a rise in the relative price of the capital good (ceteris paribus) has a smaller impact 

on this good’s output than on the rental rate.     

       The necessary and sufficient condition in (23) may be satisfied if good 1 is capital 

intensive, since (2) and (5) imply that 1
pq  and /dr dp   are both greater than zero in this case.8  

However, under the opposite factor-intensity ranking, /dr dp  is less than zero, in which case the 

(necessary and sufficient) condition in (23) cannot be satisfied.  Thus, Proposition 1 describes a 

scenario that is possible only if the capital good is capital intensive.  

       For an intuitive understanding of Proposition 1, suppose that good 1 is relatively intensive in 

capital.  Then, a minimum-wage hike lowers p, leading to a fall in r and—at the initial level of 

employment—a drop in 1[ ( ,1, )]g q p=  .  If r falls more than g, there is a reduction in the net rate 

of return r g−  on capital per efficiency unit.9  This reduction tends to discourage saving and 

hence encourage consumption.  In fact, with employment held constant temporarily, c rises more 

                                                           
8 As the elasticity of technical substitution (along an isoquant) approaches zero for both goods, 

so does 1
pq , but not /dr dp .   

9 Since a rise in λ  tends to lower ( / )k K λ≡ , we can interpret ( / )g λ λ≡   as a depreciation rate, 

and hence r g−  as the net rate of interest.    
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than 2( ,1, )q p  , creating an excess demand for good 2.10  To clear this excess demand for the 

labor-intensive good, employment must rise. 

       To determine the relationship between w and c, begin by using (12) and (16) with (1), while 

setting 0kµ = =  to obtain 1( , ) ( )q p k r kρ= − 

 .  Then, differentiate this equation totally with 

respect to p, thereby yielding 1 1/ ( / ) / ( )p kdk dp q kdr dp g q= − − 

  .  Thus, differentiating 2( , )q p k  

totally with respect to p—while using (4), (17) and (20)—confirm that 

2 1 2 1/ ( / ) / ( )p k kdq dp pq kq dr dp g qρ= − −

    . 

       The numerator of this expression is positive because 1 0pq >  by (2), while (3) and (5) imply 

that 2
kq  and /dr dp  are always opposite in sign, no matter what the factor-intensity ranking of 

the two goods.  The denominator is positive or negative if good 1 is intensive in labor or capital, 

respectively.11  Thus, from the sign of /dp dw  in (5), it is clear that  

          2 / 0dq dw > .   (24) 

This condition and (13) imply the following result relating /dc dw  and /d dw . 

PROPOSITION 2:  If (but not only if) a hike in the minimum wage raises the steady-state level 

of employment, there is a corresponding rise in consumption per efficiency unit. 
                                                           
10 More formally, as r g ρ− −  falls below 0, we have 0µ >  by (12), hence 0c <  by (11), and 

thus 0x <  because (by well-known reasoning) consumption depends positively on wealth.  With 

0x < ,  1/ ( )X x xg qλ = + <

  (since 1g q=  and initially 1x k= = ), implying 1X Q< .  In light of 

this inequality and the instantaneous budget constraint ( 1 2pX C pQ Q+ = + ), clearly 2C Q> , 

indicating an excess demand for good 2. 
11 In the former case, 1 0kq <  by (3).  In the latter case, set 0µ =  in (12) and use (4), to yield 

1 2 /k kq r q p r g gρ= − > = + >  ; where the first inequality follows from the fact that now 2 0kq < .  
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       To see the minimum wage’s impact on the rate of growth, set 0µ =  in (12) and use this 

equation to obtain / 0dg dw < , since / ( / ) / 0dr dw dr dp dp dw= <  by (5).  In other words, we 

have the following result. 

PROPOSITION 3:  A hike in the minimum wage unambiguously lowers the steady-state rate of 

growth. 

       To show that steady-state equilibrium is saddle-path stable, consider Figure 1, which is 

the phase diagram for the dynamic system of (18) and (19).  For the sake of concreteness, 

suppose that the capital good is capital intensive, although the stability analysis would be 

essentially the same under the opposite factor-intensity ranking.    

       The schedule for 0k =  is a horizontal line at a height equal to 1, because of (21).  The 

vertical arrows of motion point toward this line, to reflect the fact that 0k
>

<
=  as 1k

<

>
= , in 

accordance with (19).  By the following argument, the (generally non-linear) schedule for 0µ =  

is negatively sloped, and is associated with horizontal arrows that point away from it.   

       To determine the sign of this schedule’s slope, differentiate (20) totally with respect to µ  

(holding p  and hence r  constant) while using (14) to obtain  

1 2 2 1 1 2 2/ ( / ) / ( / )k kdk d pq q q q q qµ µ= −
   

.  With this equation, use (4) to find that 

1 1 1 1 2 2/ ( ) / ( ) 0kdk d w pq pq wq rpq qµ µ= − − <
   

; where this inequality follows from the signs of 

the Rybczynski derivatives in (3).  In other words the schedule for 0µ =  is negatively sloped. 

       Starting from any point on this schedule, an increase in µ  (at constant k ) would lower   by 

(14) and (3), thus raising output of capital-intensive good 1.  The resulting increase in 1q  would 
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make 0µ > , in accordance with (18).  Therefore, the horizontal arrows point away from the 

schedule for 0µ = . 

       Beginning at any arbitrary point in Figure 1, µ  jumps instantaneously at time 0 to reach the 

saddle path, represented by the dashed curve (generally non-linear).  Then, the economy moves 

continuously along this path toward the steady-state equilibrium, which corresponds to point S at 

which the schedules for 0k =  and  0µ =  intersect each other. 

       Let the schedules in Figure 1 correspond to the situation after a hike in the minimum wage.  

Suppose also that the pre-hike economy is in steady-state equilibrium at point A, which must be 

on the 0k =  schedule, whose position (at the constant height of 1k = ) is independent of w.  

Then, the wage hike causes the economy to jump (via an instant change in µ ) to the new 

equilibrium at point S.  We therefore have the following result. 

Proposition 4:  A hike in the minimum wage causes the economy to jump immediately from the 

initial to the new steady-state equilibrium.   

Thus, the corresponding changes in total employment, aggregate consumption and economic 

growth (as described by Propositions 1, 2 and 3, respectively) all occur simultaneously with the 

wage hike, without any transitional dynamics.    

       A possible rise in c (by Proposition 2) and definite fall in g (by Proposition 3) would affect 

lifetime utility positively and negatively, respectively, since (8) can be rewritten as 

           2
0 00 0

ln ln( ) ln / ln / /t t gtV e cdt e e dt c gρ ρ λ λ ρ ρ ρ
∞ ∞− −≡ + = + +∫ ∫ , (25) 

where c and g remain constant at their steady-state levels, while 0λ  represents the value of λ  at 

the instant when the wage hike occurs.  However, regardless of whether the decrease in g  is 
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accompanied by a fall or rise in c , the Appendix shows that / 0dV dw <  unambiguously.  We 

thus have the following result. 

PROPOSITION 5:  A hike in the minimum wage definitely lowers the level of lifetime utility.       

4.  Learning by Producing the Consumption Good. 

       For this case, replace (17) by 

          2 2( , , ) ( , )g q p k q p k= = 


  .  (26) 

Proposition 3 and condition (24) still hold, because they are derived without the use of (17). 

Thus, a minimum-wage hike lowers   by (26) and reduces c by (13), contrary to Propositions 1 

and 2, respectively. 

        Despite the replacement of (17) by (26), it is straightforward to show that steady-state 

equilibrium remains saddle-path stable, although the schedules for 0k =  and 0µ =  become 

negatively sloped and vertically linear, respectively.  These schedule modifications imply that a 

hike in the minimum wage changes the steady-state level of k .  Thus, rather than switching 

instantly between steady-state equilibria, the economy first jumps from the initial equilibrium to 

the new saddle path, and then follows this path over time toward the new equilibrium.   

       In view of this dynamic process of adjustment, Proposition 4 no longer holds.  Nevertheless, 

it is possible (but tedious) to verify that Proposition 5 remains valid if the wage hike is small.  

Whether this proposition similarly extends for a large hike is a technically challenging question 

for future research. The challenge arises from the facts that the transition between steady states is 

not instant in the present (unlike the previous) case, and the precise shape of the saddle path is 

difficult (or impossible) to characterize outside the neighborhood of steady-state equilibrium.          
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5. Numerical Analysis 

       This section provides a numerical example of the case in which a minimum-wage hike 

increases the level of employment, assuming (for reasons suggested above) that technological 

progress occurs through learning by doing in the capital-good sector, and that the consumption 

good is relatively labor intensive.  An important by-product of this exercise is to demonstrate the 

existence of a unique steady-state equilibrium in our model, for each value of the wage within a 

specified range.  Starting from a position of full employment in the present example, successive 

hikes in the minimum wage first decrease but then increase employment, illustrating what we 

call a backward-bending demand curve for labor.12             

      To construct our example, we adopt a CES type of production function for each industry.  

More specifically, suppose that  

          ( ) 1/ 1/  1 ) ]( 1[ ( )i ii i i
i i i i i ii i iY a kK a a aσ σσ σ σλλ == + − + −

  ,     1, 2i = ,                (27) 

where iY  and ( / )i iL λ≡ , respectively, denote output produced and  (natural units of) labor 

employed by sector i; /i i ik K λ≡  ; ia  and iσ  are constants; and 1/ (1 )iσ−  is the elasticity of 

substitution between capital and labor in production of good i.   

       Given constant returns to scale and perfect competition, we can think of a representative 

firm in each industry.  Subject to (27), this firm chooses iK  and i  to maximize profits, given by 

          i i i i iYp rKπ ωλ= − − ,     1, 2i = , (28) 

 

 

 

                                                           
12 Of course, this curve is a general-equilibrium (rather than Marshallian) one.   
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where /w pω ≡ ,which represents the real wage in terms of good 1;13 ip  is the nominal price of 

good i; and 1 1p ≡  by choice of units (implying that ω  and r, respectively, are also equal to the 

wage and rental rates in nominal terms).  The first-order conditions for profit maximization are 

          1 1/ 1      1     ( )  i i i
i i i ii ip a k a k a rσ σ σ− −+ − =  ,     1, 2i = ,      (29) 

          1/ 1(1 ) (    )  1 i i
i i i iip a a k aσ σ ω−− + − = ,     1, 2i = . (30) 

       Using (29) and (30) for sector 1 (while recalling that 1 1p ≡  by normalization), obtain the 

following two equations, respectively:  

          ( ) 1 11/ 1
1 1 1 1         1[ ]/r a a a kσ σ −= + −  , (31) 

          1 1 1/(1 )
1 1 11 {[ / (1 )] (1 /    )}a ak aσ σ σω − − −= − .   (32) 

Combining (29) and (30) for sector 2, verify that 

          21/(1
2

)
2 2  [( / ) 1/  ( )]k r a a σω −= − . (33) 

In light of (31) – (33), the rental rate and capital/labor ratios in both sectors are each a function of 

ω . 

       From growth definition (17), Euler equation (20) and production function (27) for sector 1, 

this sector’s employment is 

          ( ) 1 11/
1 1 11      /   1 )(  r a k aσ σρ= − + −

 ,  (34) 

which is a function of ω  (via r and 1k ).  Then, ω  also determines each of the remaining 

                                                           
13 Although it is natural to specify the minimum wage in terms of the consumption good (as in 

previous sections), here both factor rewards (ω  and r) are expressed in terms of the same 

(capital-good) units, for expositional convenience.  Since the Stolper-Samuelson Theorem 

implies that / 0d dwω > , ω  can be used as a proxy for w, without loss of generality. 
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variables: 1 1 1 1/k K kλ≡ =   ; 2 2 1/ 1k K kλ≡ = − , given (21); 2 2 2/k k= 

 ; and 1 2= +   . 

Thus, for any value of ω , steady-state equilibrium (if it exists) is unique. 

       Figure 2 illustrates the wage-employment relationship for the following parameter values:

0.04ρ = , 1 0.6a = , 2 0.2a = , 1 1.5σ = −  and 2 25σ = − .14  As this illustration confirms, a 

backward-bending demand curve for labor is indeed possible.15  Along the positively sloped 

portion of this curve, a hike in the minimum wage leads to an increase in employment for the 

economy as a whole.          

6. Conclusion     

       Our main contribution is a new mechanism whereby a minimum-wage hike can stimulate 

total employment and hence reduce involuntary unemployment.  This mechanism operates 

within a standard two-sector model of optimal saving/investment, with endogenous growth due 

to learning by doing.  In this model, a hike in the minimum wage may reduce the net rate of 

interest adjusted for growth, thereby creating an excess demand for the consumption good.  If 

this good is relatively labor intensive, total employment must rise to restore equilibrium, along a 

backward-bending demand curve for labor.  Regardless of what actually happens to employment, 
                                                           
14 These particular values are chosen for diagrammatic clarity only, without full-blown 

calibration, which is beyond the scope of the present paper. 

15 Below this curve’s lower bound (where 1= ),  the minimum wage is not a binding constraint.  

Above the curve’s upper bound, the interest rate would be less than the rate of time preference, 

implying (absurdly) a negative output of good 1 in (20).  Although Minhas (1962) shows that 

factor-intensity reversal must occur at some wage/rental ratio when constant elasticities of 

technical substitution differ between industries, the first good in the present example is always 

more capital intensive than the second between the above-mentioned bounds.    
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we also show that the minimum-wage hike has negative implications for both the growth rate 

and lifetime utility. 
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Appendix 

       From (25), 

          2/ ( / ) / ( / ) /dV dp dc dp c dg dpρ ρ= + . (A1) 

After differentiating (13) totally with respect to p, use (4), (21) and (22) to obtain 

          2 1 1/ ( / ) /pdc dp q dr dp wq q= −
 

. (A2) 

From (17) and (20), 

          / /dg dp dr dp= .  (A3) 

Substituting (A2) and (A3) into (A1) yields 

          2 1 2 1 1 2/ [( / 1/ ) / / ] /pdV dp q q q dr dp wq q qρ ρ= + −
  

, (A4) 

after using (13). 

       Note that 

          2 1 2 1
2 1/ ( / ) / ( / )q q q k q k=

 

,   (A5) 

because the ratio of Rybczynski derivatives for labor equals the ratio of average products for 

capital.16  Since capital is fully utilized, (21) can be rewritten as 

          1 2 1k k+ = .  (A6) 

Substitute (A5) and (A6) into (A4), multiply both sides of the resulting equation by /dp dw , and 

use (20) to verify that 

          1 1 1 1 2
2/ {[1 / ( / )]( / ) / ( / ) / } /pdV dw r q k dr dw k wq dp dw q qρ ρ= − −



. (A7) 

       Since the average product of each factor exceeds its marginal product, 

                                                           
16 See Brecher’s (1974) discussion of the slope of the well-known Rybczynski line, introduced 

earlier by Mundell (1957). 
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          1 1/q k r> .   (A8) 

From (5), 

          / 0dr dw < .       (A9) 

It is also true that 

          1 / 0q dp dw >


, (A10) 

from (3) and (5).   

       Using (A7) - (A10) and (2), we see that 

          / 0dV dw < . (A11) 

This confirms Proposition 5. 
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