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We demonstrate that the experimental strain-optic coefficients for strong guided modes are not consistent with the
accepted photoelastic theory. It is shown that for modes with significant nonparaxial components, such as modes
guided by strong refractive index differences or in waveguides with dimensions that are much larger than the wave-
lengths used, the photoelastic theory should be modified to include the effect of the longitudinal components of the
electromagnetic fields of the modes. Moreover, we highlight that the strain-optics coefficients depend on the state of
polarization of the mode and provide a formula to calculate the necessary corrections. © 2014 Optical Society of
America
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By definition, single-mode optical waveguides (and fi-
bers, used here interchangeably) allow only one electro-
magnetic mode to propagate along the waveguide axis.
Such waveguides are usually weakly guiding, which
means that the core-cladding refractive index difference
is small enough for the electric and magnetic fields of the
waveguide mode to be polarized essentially transversely
to the waveguide axis. Furthermore, in single-mode
waveguides with complete cylindrical symmetry (optical
fibers), modes of all polarizations are degenerate (i.e.,
they have the same electromagnetic fields, apart from
rotation around the waveguide axis, and the same phase
and group velocities). In recent years, strongly guided
structures for modes with non-negligible axial electric
fields have been increasingly used. Examples include
optical nanowires for sensing or increased nonlinearity,
or the large variety of cladding guiding devices for sens-
ing applications (including long period gratings, tilted
fiber Bragg gratings (TFBGs), and fiber multimode inter-
ference devices) [1–3]. Given that these devices can be
used to measure strain or might suffer from strain cross
sensitivity, a detailed investigation of the strain-optic
constants of nonparaxial guided modes is necessary.
The purpose of this Letter is to demonstrate that the

conventional theory for the effect of uniaxial strain on
the optical properties of waveguide modes does not ap-
ply to strongly guided modes with non-negligibly axial
components of their electric and magnetic fields (or non-
paraxial modes). The test case for our model is a strained
standard telecommunication optical fiber. Instead of the
weakly guided light in the core, we use a TFBG [3,4] to
excite nonparaxial modes guided by the glass–air inter-
face of the fiber cladding. TFBGs are introduced in the
fiber core by a photosensitive process that gives rise
to a refractive index modulation with grating planes
blazed by a certain angle with respect to the fiber axis,
as shown in Fig. 1. The transmission spectrum of TFBGs
exhibits several tens of resonances at different wave-
lengths. The peak resonance labeled λB is the result of
the coupling between the co- and contrapropagating core
modes. The other resonances arise from the coupling

between the core mode and a contrapropagating clad-
ding mode of the fiber [5]. The key here is that those res-
onances provide high-resolution probes of the mode
phase velocities for a wide range of mode parameters (in-
cluding field distributions and polarizations). In particu-
lar, it was reported [6] that the core and cladding mode
resonances of a TFBG shift differentially in response to
axial strain and that the sensitivity to strain decreases
with the cladding mode order. We now proceed to show
that unlike what was reported in [6] (mainly because
these prior measurements did not cover a wide enough
range of modes and were carried out using unpolarized
light), this differential response is not consistent with the
accepted photoelastic theory of optical fibers.

The wavelengths at which the discrete coupling be-
tween the jth cladding mode occurs λjclad are given by [5]

λjclad � �neff;core � nj
eff;clad�Λ; (1)

where neff;core and nj
eff;clad are, respectively, the effective

refractive index of the core and of the jth cladding mode
at λjclad and ΛG � Λ cos θ, with Λ the periodicity of the
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Fig. 1. Transmission spectrum of a 10° TFBG measured in air
and used for experiments and sketch of the light coupling
mechanism for TFBGs.
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index variation and θ the tilt angle of the grating planes.
The effective indices are related to the phase velocities of
the guided modes by vp � c∕neff . When mechanical
strain is applied on the fiber, the resonance wavelengths
shift because of changes in both the effective index of the
modes and the periodicity of the grating. The wavelength
shiftΔλjclad caused by an axial strain variation (Δs) can be
derived from Eq. (1) as [6,7]

Δλjclad � λjclad�1 − pjclad�Δs; (2)

where pjclad is the effective strain-optic coefficient for the
jth cladding mode. This coefficient is

pjclad � −1

�neff;core � nj
eff;clad�

∂�neff;core � nj
eff;clad�

∂s
: (3)

The effect of axial strain on the effective index comes
from the refractive index variation due to the photoelas-
tic effect and the change in diameter (D) of the optical
fiber. Therefore, ∂nj

eff;clad∕∂s can be expressed as

∂nj
eff;clad

∂s
� ∂nj

eff;clad

∂n
∂n
∂s

� ∂nj
eff;clad

∂D
∂D
∂s

: (4)

This is where the conventional photoelastic theory of
optical fiber modes starts to become restricted to weakly
guided, essentially transverse optical modes, because
∂n∕∂s is taken to be the variation of the component of
the refractive index tensor that lies in the direction trans-
verse to the waveguide axis (or z axis, along which the
strain is applied). The second term in Eq. (4) represents
the effect of the change in waveguide dimensions due to
axial strain, given by ΔD � νsD where ν is Poisson ratio
(0.16) [8]. The photoelastic term ∂n∕∂s, for the variation
of refractive index along the transverse direction for an
axial strain along z, can be calculated from [8]

∂n
∂s

� −

1
2
n3�p12 − ν�p11 � p12�� � −0.296; (5)

where n refers to the core or cladding refractive index
(ncore � 1.4499, nclad � 1.4440 for wavelengths near
1550 nm), and p11 and p12 are the components of the
strain-optic tensor (p11 � 0.11, p12 � 0.252 for a typical
single-mode fiber [SMF] [7], Corning SMF-28 in this case).
The calculation of the modal strain-optic coefficients

[Eq. (3)] is carried out by simulation (using FIMMWAVE,
by Photon Design). A set of effective indices is calculated
for the unstrained fiber and another set for a modified
fiber where the refractive indices of both core and clad-
ding are modified according to Eq. (5) (for the strains
considered here the change in effective index due to
diameter change is under 10−5 and negligible compared
with the photoelastic terms). Comparing the two mode
sets provides the necessary values for ∂neff∕∂s. These
results will be presented below in comparison with
experimental values.
One-centimeter-long TFBGs manufactured into hydro-

gen-loaded SMFs using a 248 nm excimer pulsed laser and
the phase mask technique were strained. The internal tilt

angle was set to 10°. The setup used to collect the TFBG
amplitude spectrum is made up of a JDSU optical vector
analyzer (SWS OMNI 2 System). Different axial strain
values were applied with calibrated weights (between
10 and 180 g) hung on the optical fiber. The strain was de-
rived from theweight through the use of Hooke’s lawwith
a Young’s modulus of 73 GPa for the fiber [8]. For each
strain, we measure the cladding mode resonance wave-
lengths, with a repeatability of �3 pm.

Figure 2 shows the relative wavelength shifts of the
core and selected cladding modes with longitudinal
strain (in a range 0–1970 μϵ corresponding to 0–180 g).
The relative evolutions are obtained through the differ-
ence between the data measured at a given axial strain
and the reference data measured in the absence of strain.
The cladding mode resonances shift differentially (with
the cladding mode order) and always slightly less than
the Bragg wavelength in response to axial strain. We ob-
tain a sensitivity of 1.27 pm∕μϵ for the Bragg mode and
1.04 pm∕μϵ for the cladding mode at ∼1522 nm (one of
the highest-order modes that we are able to record in
the amplitude spectrum). A further refinement of the
measurement takes into account the fact that high-order
cladding modes come in nearly degenerate pairs com-
posed from two polarized mode families: each mode pair
is made up of one azimuthal (HEmn or TE0n) and radial
(EHmn or TM0n) mode [3]. Input light linearly polarized in
the plane of the tilt (P-polarization) couples to radially
polarized modes, while light polarized perpendicularly
to it (S-polarization) couples to azimuthal modes. The
swept wavelength system provides the individual S- and
P-polarized spectra. We then observe distinctly both res-
onances that compose each cladding mode pair in the
amplitude spectrum so as to measure the impact of
the axial strain as a function of the state of polarization
(SOP) and mode order. Figure 3 depicts a zoom around a
pair of high-order cladding mode resonances for two dif-
ferent axial strain states, at 0 and 1970 μϵ.

Figure 4 compares the strain sensitivity (Δλj∕Δs) for a
cladding mode pair with resonance wavelengths near
1522 nm and demonstrates that the radial mode reso-
nance lags behind that of the azimuthal mode. For the
cladding modes around 1522 nm, the sensitivity is
1.02 pm∕μϵ for the azimuthally polarized mode and
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Fig. 2. Relative wavelength variations as a function of the
axial strain for core mode and some cladding modes.
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1.04 pm∕μϵ for the radially polarized mode. The differ-
ence of the wavelength variation for radial and azimuthal
modes increases linearly with strain. Figure 5 shows ex-
perimental results expressed in terms of strain-optic co-
efficients of all the modes considered. The mode spacing
at wavelengths shorter than 1575 nm calculated from
data by Eq. (2) becomes too small to effectively extract
accurate mode resonance wavelengths, but there is a
clear linear trend in the strain-optic coefficients all the
way from the core mode to the highest-order cladding
modes that we could measure, as well as a very signifi-
cant difference between the two mode families that is
also increasing linearly. From these experimental results,
we can deduce that the strain-optic coefficients pjclad
increase with mode order and are higher for radially po-
larized modes than for azimuthally polarized modes.
Figure 5 compares the values of experimental and exact
analytical strain-optic coefficients [Eqs. (3)–(5)]. It is
clear that while the model describes the core mode co-
efficient accurately, it fails by increasingly large amounts
for higher-order modes. Indeed, the difference between
theoretical and experimental values for the core mode is
about 3%, while it reaches 50% for the cladding mode at
1520 nm. This clearly indicates that the accepted theory
does not take into account some physical effect related
to cladding modes only. An error in the evaluation of the
strain can be ruled out because our result and theory for
the core mode are consistent with the accepted value for
this kind of fiber, that is, near 0.22 [7].

We postulate that the nonparaxiality of the cladding
modes can explain this difference. In recent years the
contribution of longitudinal field components in strongly
guiding structures (such as optical fiber and silicon wave-
guide microwires) has been brought forward to explain
some experimental discrepancies in nonlinear optic
phenomena [9]. The cladding of a fiber in air certainly
qualifies as a strongly guiding structure, and cladding
modes of increasing order have correspondingly increas-
ing longitudinal (z) field components.

Over the range of modes studied here, the equivalent
angle of inclination of the mode ray vectors relative to the
fiber axis varies linearly from 3° to 27°, and from the
electromagnetic theory point of view, the main conse-
quence of nonparaxial propagation is that the mode fields
are not transverse (i.e., confined to the x–y plane), as is
the case for weakly guiding structures (such as the core-
cladding system). Therefore, in addition to Eq. (5), which
expresses the effect of the longitudinal strain on the x
and y components of the refractive index, the photoelas-
tic factors in Eq. (4) must be modified to include the
effect of the strain on nz, the refractive index for the frac-
tion of the light with an electric field vector polarized
along z [8]:

∂nz

∂s
� −n3

z

2
�p11 − 2νp12� � −0.044: (6)

This additional term will impact only radial modes, that
is, the only ones with an Ez component, and increase
pclad for these modes. This contribution cannot solely ac-
count for the large increase in the photoelastic coeffi-
cients because it is equal to zero for azimuthal modes
but is likely the source of the difference between the ra-
dial and azimuthal pclad values observed experimentally.
Quantitatively, the contribution of nontransverse fields
can be accounted for by using the following formula [10]:

neff �
c
P
�WT −WZ�; (7)

∂neff

∂s
� c

P

�
∂WT

∂s
−

∂WZ

∂s

�
; (8)
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where WT and WZ are the total transverse and longi-
tudinal energy densities per unit length, P is the magni-
tude of the Poynting vector, and c the speed of light in
vacuum. WT and WZ are, respectively, defined by

WT �
ZZ �

1
2
ϵ0n2

xE2
T � 1

2
μ0H2

T

�
dxdy; (9)

WZ �
ZZ �

1
2
ϵ0n2

ZE
2
Z � 1

2
μ0H2

Z

�
dxdy; (10)

where ϵ0 and μ0 are the permittivity and permeability in
vacuum. ET�Z� and HT�Z� define the transverse and longi-
tudinal components of the electric and magnetic fields.
It turns out that WT and WZ both change linearly with

effective index over the range studied: a contribution
from the axial energy density has the correct sign and
order (linear) to explain the experimental observations.
The difference between radial and azimuthal modes can
be further explained by the fact that for radial modes the
axial energy density is entirely due to electric fields (WE

Z),
while for azimuthal modes the axial energy is magnetic
(WH

Z ). Therefore we propose the following expression to
replace Eq. (4):

∂neff

∂s
� c

P

�
2
nx

WE
T
∂nx

∂s
− aWE

Z − bWH
Z

�
; (11)

where the first term on the right-hand side corresponds
to the standard photoelastic formulation [it is equivalent
to Eq. (4)] and the next two terms to the contributions of
the axial fields. The model represented by Eq. (11) is
used instead of Eq. (4) and plotted on Fig. 4, using a �
2.05 and b � 1.40 with mode energy densities calculated
from Eqs. (9) and (10).
In conclusion, the effective strain-optic constants of

the cladding modes of standard SMF were measured
and found to be in strong disagreement with the accepted

model based on photoelasticity theory. While this model
correctly predicts the effect of strain on the effective in-
dex and polarization of the weakly guided core mode, the
results presented here clearly show that for cladding
modes of increasing order, the theory and measurement
diverge linearly with mode effective index, reaching a dif-
ference of 50% for modes with effective indices near 1.3
(i.e., strain-optic coefficients of 0.32 [TE-HE] and 0.33
[TM-EH] instead of 0.206). These results are consistent
with a hypothesis where the effect of axial strain on
the permittivity tensor of the fiber and its subsequent
coupling to the mode effective indices is linearly depen-
dent on the axial components of the mode profiles for
strains between 0 and 2000 μϵ and mode effective indices
between 1.3 and 1.45. An empirical model is proposed to
improve the calculation of the photoelastic coefficients
by including terms dependent on the axial mode field
components.
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