

Far East Journal of Mathematical Sciences (FJMS) Volume 29, Issue 1, 2008, Pages 239-242 Published online: June 10, 2008 This paper is available online at http://www.pphmj.com © 2008 Pushpa Publishing House

ON LIOUVILLE'S TWELVE SQUARES THEOREM

KENNETH S. WILLIAMS

Centre for Research in Algebra and Number Theory School of Mathematics and Statistics Carleton University Ottawa, Ontario, Canada K1S 5B6 e-mail: kwilliam@connect.carleton.ca

Abstract

A simple proof is given of a formula for the number of representations of a positive integer as the sum of twelve squares.

1. Introduction

Let *q* be a complex variable with |q| < 1. Following [1, p. 6] we set

$$\varphi(q) \coloneqq \sum_{n = -\infty}^{\infty} q^{n^2}.$$
 (1.1)

Then, as in [1, p. 120], we set

$$x := 1 - \frac{\phi^4(-q)}{\phi^4(q)}, \quad z := \phi^2(q).$$
(1.2)

Let \mathbb{N} denote the set of positive integers. For $k, n \in \mathbb{N}$ we define

$$\sigma_k(n) = \sum_{\substack{d \in \mathbb{N} \\ d \mid n}} d^k.$$
(1.3)

Received January 26, 2008

²⁰⁰⁰ Mathematics Subject Classification: 11E25, 11F27.

Keywords and phrases: sums of twelve squares, Liouville's formula, theta functions.

Research of the author was supported by Natural Sciences and Engineering Research Council of Canada grant A-7233.

If $n \notin \mathbb{N}$ we set $\sigma_k(n) = 0$. The Eisenstein series $E_{2k}(q)$ is defined by

$$E_{2k}(q) \coloneqq 1 + \frac{2}{\zeta(1-2k)} \sum_{n=1}^{\infty} \sigma_{2k-1}(n) q^n, \tag{1.4}$$

where $\boldsymbol{\zeta}$ denotes the Riemann zeta function. For brevity we set

$$R(q) := E_6(q) = 1 - 504 \sum_{n=1}^{\infty} \sigma_5(n) q^n.$$
(1.5)

It is shown in [1, pp. 127, 128] that

$$R(q) = (1 - 33x - 33x^{2} + x^{3})z^{6}$$
(1.6)

and

240

$$R(q^4) = \left(1 - \frac{3}{2}x + \frac{15}{32}x^2 + \frac{1}{64}x^3\right)z^6.$$
 (1.7)

Ramanujan's discriminant function $\Delta(q)$ is defined by

$$\Delta(q) \coloneqq q \prod_{n=1}^{\infty} (1 - q^n)^{24}.$$
 (1.8)

From [4, eq. (26), p. 392], we have

$$\Delta(q^2) \coloneqq \frac{1}{256} x^2 (1-x)^2 z^{12}. \tag{1.9}$$

We define integers b(n) $(n \in \mathbb{N})$ by

$$\sum_{n=1}^{\infty} b(n)q^n = q \prod_{n=1}^{\infty} (1 - q^{2n})^{12}$$
(1.10)

so that

$$\sum_{n=1}^{\infty} b(n)q^n = \Delta(q^2)^{1/2} = \frac{1}{16}x(1-x)z^6.$$
(1.11)

We make use of (1.1), (1.2), (1.6), (1.7), (1.10) and (1.11) to determine a formula for the number $r_{12}(n)$ of representations of $n \ (n \in \mathbb{N})$ as a sum of twelve squares, that is, for the quantity

$$r_{12}(n) \coloneqq \operatorname{card}\{(x_1, ..., x_{12}) \in \mathbb{Z}^{12} | n = x_1^2 + \dots + x_{12}^2\},\$$

where $\,\mathbb{Z}\,$ denotes the set of all integers. We prove

Theorem. Let $n \in \mathbb{N}$. Then

$$r_{12}(n) = 8\sigma_5(n) - 512\sigma_5(n/4) + 16b(n).$$

2. Proof of Theorem

We have

$$\sum_{n=0}^{\infty} r_{12}(n)q^n = \varphi^{12}(q)$$

$$= z^6$$

$$= -\frac{1}{63}(1 - 33x - 33x^2 + x^3)z^6$$

$$+ \frac{64}{63}\left(1 - \frac{3}{2}x + \frac{15}{32}x^2 + \frac{1}{64}x^3\right)z^6 + x(1 - x)z^6$$

$$= -\frac{1}{63}R(q) + \frac{64}{63}R(q^4) + 16\sum_{n=1}^{\infty}b(n)q^n$$

$$= 1 + \sum_{n=1}^{\infty} (8\sigma_5(n) - 512\sigma_5(n/4) + 16b(n))q^n.$$

Equating coefficients of q^n $(n \in \mathbb{N})$, we obtain the asserted formula for $r_{12}(n)$.

From (1.10) we see that

$$b(n) = 0$$
, if $n \equiv 0 \pmod{2}$. (2.1)

Hence

$$r_{12}(n) = 8\sigma_5(n) - 512\sigma_5(n/4), \text{ if } n \equiv 0 \pmod{2}.$$
 (2.2)

This result was stated by Liouville [3] in a slightly different form. For other formulae for $r_{12}(n)$, see [2].

241

KENNETH S. WILLIAMS

References

- B. C. Berndt, Number Theory in the Spirit of Ramanujan, Amer. Math. Soc., Providence, RI, USA, 2006.
- [2] J. G. Huard and K. S. Williams, Sums of twelve squares, Acta Arith. 109 (2003), 195-204.
- [3] J. Liouville, Extrait d'une lettre adressée à M. Besge, J. Math. Pures Appl. 9 (1864), 296-298.
- [4] K. S. Williams, The convolution sum $\sum_{m < n/8} \sigma(m) \sigma(n 8m)$, Pacific J. Math. 228 (2006), 387-396.