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Abstract 

A simple proof is given of a formula for the number of representations of 
a positive integer as the sum of twelve squares. 

1. Introduction 

Let q be a complex variable with .1<q  Following [1, p. 6] we set 
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Then, as in [1, p. 120], we set 

 ( )
( )

( ).:,1: 2
4

4
qz

q

qx ϕ=
ϕ

−ϕ−=  (1.2) 

Let N  denote the set of positive integers. For N∈nk,  we define 
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If N∉n  we set ( ) .0=σ nk  The Eisenstein series ( )qE k2  is defined by 
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where ζ denotes the Riemann zeta function. For brevity we set 
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It is shown in [1, pp. 127, 128] that 
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and 
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Ramanujan’s discriminant function ( )q∆  is defined by 
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From [4, eq. (26), p. 392], we have 
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We define integers ( ) ( )N∈nnb  by 
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so that 
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We make use of (1.1), (1.2), (1.6), (1.7), (1.10) and (1.11) to determine a 
formula for the number ( )nr12  of representations of ( )N∈nn  as a sum 

of twelve squares, that is, for the quantity 
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where Z  denotes the set of all integers. We prove 

Theorem. Let .N∈n  Then 

( ) ( ) ( ) ( ).1645128 5512 nbnnnr +σ−σ=  

2. Proof of Theorem 

We have 
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Equating coefficients of ( ),N∈nqn  we obtain the asserted formula for 

( ).12 nr  

From (1.10) we see that 

 ( ) ( ).2mod0if,0 ≡= nnb  (2.1) 

Hence 

 ( ) ( ) ( ) ( ).2mod0if,45128 5512 ≡σ−σ= nnnnr  (2.2) 

This result was stated by Liouville [3] in a slightly different form. For 
other formulae for ( ),12 nr  see [2]. 
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