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Abstract

A simple proof is given of a formula for the number of representations of
a positive integer as the sum of twelve squares.

1. Introduction

Let ¢ be a complex variable with | g | < 1. Following [1, p. 6] we set

o(q) = Z 7. (1.1)

n=—w
Then, as in [1, p. 120], we set
4 —
x:=1- w, z = ¢2(q). (1.2)
¢ (q)
Let N denote the set of positive integers. For &, n € N we define
op,(n) = de. (1.3)
deN
d|n
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If n ¢ N we set 6,,(n) = 0. The Eisenstein series Eqj,(q) is defined by

_ 2 N n
Egr(q) =1+ m; oor-1(m)q",

where ( denotes the Riemann zeta function. For brevity we set

R(g) = Fy(g) =1-504 ) 05(n)q".

n=1

It is shown in [1, pp. 127, 128] that

R(q) = (1 - 33x — 33x? + x%)2°

and

R(g*) = (1 —éx +—=x +Lx3)26.

2 32 64

Ramanujan’s discriminant function A(g) is defined by

Ag) =g Ja-a"
n=1
From [4, eq. (26), p. 392], we have
2y._ 1 9. 212
Ag?) = 556~ 1-x)z=.
We define integers b(n) (n € N) by

i b(n)q" = q ﬁ 1 -q)?
n=1 n=1

so that

1

[Ms

16

Il
—

n

b(n)q" = A(g®)? = — x(1 - x)2°.

(1.4)

1.5)

(1.6)

1.7)

(1.8

1.9

(1.10)

(1.11)

We make use of (1.1), (1.2), (1.6), (1.7), (1.10) and (1.11) to determine a
formula for the number rj9(n) of representations of n (n € N) as a sum

of twelve squares, that is, for the quantity
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. 12 2
na(n) = card{(xy, ..., x19) € Z"“|n = x{ +--- + %3},
where Z denotes the set of all integers. We prove

Theorem. Let n € N. Then

na(n) = 8o5(n) — 51205(n/4) + 16b(n).
2. Proof of Theorem

We have

o0

D na(m)g" = 0'*(a)

n=0

—% (1 -33x — 33x% + x3)25

64 3 15 9 1 3).6 6
+63(1 gX¥t g +64sz +x(1-x)z

1 64 , 4 S n
63 R(q) + 3 R(g")+16 Zlb(n)q
n=

1+ Z (865(n) - 51205(n/4) + 16b(n))q".

n=1

Equating coefficients of ¢" (n € N), we obtain the asserted formula for
riz(n).
From (1.10) we see that
b(rn) =0, if n =0 (mod 2). 2.1)
Hence
na(n) = 8o5(n) — 51265(n/4), if n = 0 (mod 2). (2.2)

This result was stated by Liouville [3] in a slightly different form. For

other formulae for ri5(n), see [2].
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