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Conjoint Routing and Resource Allocation in

OFDMA-based D2D Wireless Networks
Rozita Rashtchi, Ramy H. Gohary, and Halim Yanikomeroglu

Abstract—In this paper, we develop a highly efficient two-
tier technique for jointly optimizing the routes, the subcarrier
schedules, the time-shares and the power allocations in device-
to-device communication networks with thousands of randomly
dropped wireless nodes. The network is first divided into a set
of non-overlapping sub-networks, each with its own regional
controller. The role of such a controller is to optimize the sub-
network within its region and to act as an interface between nodes
communicating across regions. The first tier of the proposed
technique uses a novel approach for splitting a set of highly
non-convex constraints into effectively two sets of convex ones
and optimization proceeds by using two loops: an outer loop
for iterating between the power allocations and the subcarrier
schedules, and an inner loop for iterating between the two sides
of the split constraints. In the second tier, a technique analogous
to the one used in the first tier is applied to the network composed
of the regional controllers. Optimization in this tier is performed
by a global controller. The proposed technique is capable of
efficiently optimizing networks with tens of thousands of nodes
and with significantly better performance than existing joint
design techniques, which can only optimize networks with a few
tens of nodes.

I. INTRODUCTION

The soon-to-be-standardized fifth-generation (5G) wireless

networks will support device-to-device (D2D) communications

in order to provide ubiquitous and reliable high-rate connec-

tivity between a massive number of wireless communication

devices [1], [2]. A key ingredient that will enable D2D

communication systems to make better use of the available

spectral resources, to increase system capacity, and to expand

coverage is to use either fixed or device relaying techniques.

Fixed relaying, which involves the deployment of low-power

base stations (BSs) to assist cellular communications, has been

extensively studied in the literature, e.g., [3], [4] and it has al-

ready been included in the fourth-generation (4G) Long Term

Evolution (LTE)-Advanced standard. As the number of devices

with higher demands increases in cellular networks, more

relays must be deployed. This makes the network denser and

hence increases the negative effects of interference. Several

techniques such as inter-cell interference coordination [5] and

coordinated beamforming [6] have been proposed to mitigate

interference in 4G networks. In contrast, in future 5G networks

it is desirable to exploit the network density to route data
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through a massive mesh network [7]. Such a potential is

offered by D2D communications, wherein two devices are

allowed to communicate in the licensed cellular bandwidth

possibly without the involvement of the BS [8], see Figure 1.

This is in contrast with conventional cellular architecture in

which nodes communicate only with their BSs.
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Fig. 1: A D2D communication scenario. Sources, destinations and
relays are identified by S, D and R, respectively.

Emerging D2D networks are envisioned to use orthogonal

frequency-division multiple access (OFDMA) as their air inter-

face. This is mainly due to its simplicity and immunity to inter-

symbol interference [9], in addition to its design flexibility and

ability to achieve high spectral efficiency by scheduling the

subcarriers based on the channel conditions of the users [10].

A main feature of D2D communications is the large number

of inexpensive low-power devices competing for a scarce pool

of radio resources. The number and versatility of services

offered by these devices renders efficient utilization of the

radio resources rather imperative, leaving little room for

wasteful designs that do not benefit from the topological and

propagation conditions of the network. In particular, efficient

utilization of resources must take into consideration the net-

work conditions when making decisions pertaining to routing,

scheduling and power allocations. Although optimizing these

aspects in isolation simplifies the design, it may result in

wasting valuable resources that could otherwise be used to

increase the network utility [11].

Joint optimization of routing, scheduling and power allo-

cations in networks with a large number of D2D devices

invokes several difficulties. For instance, the basic problem

of optimizing power allocations in OFDMA networks is NP-

hard [12] and even with fixed power allocations, the inherent

combinatorial nature of the scheduling problem often ren-

ders the problem intractable. As such, joint optimization of

scheduling and power allocation along with routing is usually

computationally prohibitive. Several attempts for performing
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joint optimization of various network aspects were made for

relatively small networks, e.g., in [13]–[15] for joint schedul-

ing and power allocation and in [16], [17] for joint scheduling,

power allocation and routing. The common assumption in

these attempts is that each subcarrier is used only once

across the network. This assumption results in interference-

free communication and facilitates implementation. However,

it deprives the network from proper exploitation of its available

resources. A better approach is to consider the possibility of

reusing each subcarrier by multiple links over different time

intervals. In this case, managing the interference resulting from

subcarrier reuse can pose significant difficulty in designing the

wireless network. An instance of managing this interference in

single carrier systems was considered in [18]. Another instance

in which interference is managed in relatively small multi-

carrier systems appears in [19]. In that work, routes, powers

and subcarrier schedules were jointly optimized by using an

iterative Geometric Programming (GP) approximation of the

original non-convex optimization problem. Simulation results

reported in [19] suggest that subcarrier reuse enables better

exploitation of resources and superior performance gains.

However, these gains come at the expense of complexity. In

particular, allowing each subcarrier to be used by all links

results in a design complexity that grows exponentially with

the size of the network. This renders the design approach de-

veloped in [19] overly complicated for usage in D2D networks.

Hence for such networks, it is desirable to develop joint design

approaches that provide close to optimal performance with a

reasonable computational cost. This is the main focus of the

first part of this paper.

In the second part, we focus mainly on resource allocation in

large networks, i.e., networks with 100+ nodes. In such cases,

joint optimization of routing, scheduling and power allocation

across the whole network is computationally prohibitive. One

approach to mitigate this difficulty is to cluster nodes into

smaller groups such that the resource allocation problem is de-

composed into smaller subproblems. This approach is widely

used in wireless sensor networks, see e.g. [20], [21]. However

in such networks, elaborate computations cannot be performed

without heavily infringing on the typicall small battery-life of

the sensors. Hence, in that work the resource allocation in each

cluster is fairly simple and does not involve joint optimization.

Another example for clustering is the study done for femto-

cells in [22]. In that paper, a semi-definite programming was

used to cluster nodes and then an exhaustive search was used

to find the best subcarrier scheduling and power allocation

combination in each cluster. While the overall network setup

resembles the one under consideration herein, the work in [22]

did not consider routing and subcarrier sharing among users,

which is the focus of the second part of this paper.

We consider an OFDMA-based D2D communication net-

work in which the nodes are capable of sending, receiving

and relaying data to other nodes [3]. Nodes acting as multihop

relays operate in the half-duplex mode, i.e., a node cannot send

and receive on the same subcarrier simultaneously. Nodes in

the system are assumed to be connected to the BS through

a control channel and the BS has access to the channel state

information (CSI) of the nodes. Each subcarrier can be reused

over multiple links. However, to simplify the design, at most

one interferer is allowed within a geographic proximity at any

time instant. This assumption is based on the fact that, in dense

areas, reusing one subcarrier on more than two links results

in severe interference and, subsequently, deteriorated perfor-

mance. In addition to determining the power allocated for

each transmission, resource-efficient communication between

source-destination pairs in D2D networks requires judicious

choice of the relaying nodes, the data routes, the subcarrier

schedules and the fraction of time during which a subcarrier

is assigned to a particular link. The problem of determining

such decisions is NP-hard [12], and hence finding the optimal

decisions is computationally infeasible for even small-to-

moderate size networks.

The goal of this paper is to develop a joint optimization

framework and a computationally efficient technique for de-

signing wireless D2D communication networks with poten-

tially tens of thousands of nodes. The optimization problem

considered herein resembles the joint routing, scheduling and

power allocation (JRSPA) considered in [19], but with a

significantly larger number of nodes; the networks considered

in [19] have tens of nodes, whereas the networks consid-

ered herein have thousands of nodes. This large number of

nodes required a fundamentally different approach in solving

the JRSPA optimization problem. In particular, whereas the

solution of the JRSPA problem in [19] relied on GP and

monomial approximations, which resulted in high complexity

and slow convergence, the solution proposed herein relies on

decomposing the JRSPA problem into two efficiently-solvable

sub-problems, one for scheduling and routing and the other

for power allocation. These sub-problems are solved in a

two-stage iterative fashion, whereby the output of one sub-

problem is used to obtain an initial point for the other sub-

problem in the subsequent iteration. In the first stage, the

power allocations are set to some fixed values and this causes

the joint optimization of subcarrier schedules and routes to

assume the form of an efficiently solvable linear program (LP).

In the second stage, the output subcarrier schedules from the

first stage are fixed and the power allocations and routes are

optimized jointly. Unfortunately, the power allocation problem

is non-convex. To overcome this difficulty we develop a novel

iterative technique that we refer to as ‘constraint-splitting’.

This technique exhibits fast convergence and, in many cases,

yields close to optimal power allocations within a small

number of iterations. The philosophy of this technique is to

split a particular constraint into two parts, each of which can be

cast in a convex form. In particular, we observe that by fixing

the right-hand-side (RHS) of that constraint and defining an

appropriate lower bound, the problem can be cast as a GP,

which can be readily converted into a convex optimization

problem. We also observe that fixing the left-hand-side (LHS)

of that constraint makes the problem convex and hence,

efficiently solvable. We perform inner iterations over the fixed

values on both sides of the constraint until convergence and we

use the output in a steepest-descent outer iteration to update the

subcarrier schedules in the first stage. Outer iterations continue

until convergence. The two-stage algorithm exhibits a much

less computational cost, and numerical results suggest that its
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performance is significantly better than existing joint routing,

scheduling and power allocation techniques.

Despite the efficacy of the aformentioned two-stage algo-

rithm, it is only capable of designing networks with hundreds

of nodes. This is a substantial improvement over existing

algorithms [19] which can only be used to design networks

with at most ten nodes. However, with emerging smart ap-

plications, future wireless networks are envisioned to have

thousands of nodes, and even more powerful joint design

techniques are required. One such technique is proposed

herein. In this technique, we consider a two-tier framework

wherein the network is partitioned into several sub-networks.

Each sub-network is assumed to have only a few hundred

nodes and a gateway node, which can be one of the BSs in

the cellular network. This gateway acts as a controller and a

data aggregator. In the lower tier of the proposed framework,

the gateway uses the two-stage algorithm to perform the joint

optimization for nodes communicating within its own sub-

network. For nodes communicating across sub-networks, the

gateway aggregates the data that flows into and out of its sub-

network and also relays data between source and destination

gateways. The joint optimization of the network composed of

gateways constitute the upper tier of the proposed framework.

This optimization is performed by a global controller which

uses the two-stage algorithm but with the gateways that control

the sub-networks. Numerical examples confirm the superiority

of this framework over the currently available techniques for

designing large networks. In comparison with relevant work

in the literature including our previous work in [17], [19], the

main contributions of this work can be summarized as follows.

• We provide an iterative two-stage optimization approach

for performing conjoint routing and resource allocation

problems. This approach yields superior performance

over currently available methods and with much less

computational cost.

• We introduce a novel ‘constraint-splitting’ approach for

the resource allocation problem in which a set of non-

convex constraints is split into two sets of convex ones.

We develop an efficient technique for iterating between

formulations corresponding to the two sets of constraints.

• We develop a two-tier architecture, whereby the network

is considered as a set of distinct clusters, each of which

with a data aggregator that acts as a virtual source and/or

destination for nodes in other clusters.

• Using the new two-stage algorithm with the constraint-

splitting approach in the two-tier architecture enables

efficient and effective design of networks with 1000+

nodes.

The paper is organized as follows. The system model and

problem formulation are described in Section II. In Section III,

two sub-problems are discussed, one for subcarrier scheduling

when power allocations are fixed and one for power alloca-

tion when subcarrier schedules are fixed. In Section IV, the

technique developed in Section III-B is used to develop a

novel approach, which generates an approximate solution to

the original design problem. The computational complexity of

the proposed techniques is analyzed in Section V. The two-

tier framework for designing large networks is presented in

Section VI. In Section VII, simulation results are provided,

and Section VIII concludes the paper.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Performance of wireless communication networks depends

on the interplay between network functionalities including

end-to-end rate selection, data routing, time and frequency

scheduling and power allocation. A model representing these

interrelations is presented next.

A. System Model

We consider a communication network of N nodes, labelled

n = 1, . . . , N and L directed links, labelled ℓ = 1, . . . , L.

The sets of nodes and links are represented by N and L,

respectively. Each node has one transmit and one receive

antenna and is capable of sending, receiving and relaying data

to other nodes in the network. Data is communicated across

the network through potentially multi-hop routes. We identify

the data flows by their destinations. Let D , {1, . . . , D} be

the set of destination nodes, D ⊆ N . For destination d ∈ D,

we use s
(d)
n to denote the nonnegative end-to-end rate from

node n ∈ N to destination d ∈ D. Nodes are assumed to have

finite power budget, Pn, n = 1, . . . , N , and infinite buffering

capacity. We model the topology of this network by a directed

graph in which nodes and links are represented by vertices and

directed edges, respectively. We define L+(n) and L−(n) to

be the set of links that are outgoing from and incoming to node

n ∈ N , respectively. The connection between nodes and links

can be accounted for by the incidence matrix, A ∈ R
N×L,

the entries of which are anℓ = 1 if ℓ ∈ L+(n), anℓ = −1 if

ℓ ∈ L−(n) and zero otherwise. We consider the widely-used

multicommodity flow model for the routing of data packets

across the network, see, e.g., [11]. We assume that the data

flows are lossless across links, and that the traffic flow can be

split arbitrarily at nodes as long as the flow conservation law

is satisfied at each node.

Using an OFDMA-based air-interface, the available fre-

quency bandwidth, W , is divided into K narrowband sub-

carriers, each with a bandwidth of W0 = W
K

. The set of

the K subcarriers is denoted by K. Let h
(k)
ℓℓ′ represent the

channel coefficient, which includes the path loss, shadowing

and Rayleigh fading, on subcarrier k between the transmitter

of link ℓ′ and the receiver of link ℓ, ℓ, ℓ′ ∈ L, k ∈ K. The

network considered in this paper is quasi-static, which implies

that {h(k)ℓℓ′ } remain constant over the signalling interval. This

network can be represented by a graph in which each link has

K distinct sublinks. We use x
(d)
ℓk to denote the rate of data

carried over subcarrier k of link ℓ and intended for destination

node d, ℓ ∈ L, k ∈ K, d ∈ D. We also use pℓk to denote the

power used by the transmitter of link ℓ on subcarrier k.

To facilitate practical implementation, relaying nodes are

assumed to operate in the half-duplex mode, whereby a

node cannot simultaneously transmit and receive on the same

subcarrier at the same time. Furthermore, it is assumed that

a node cannot use the same subcarrier to broadcast different

information to multiple nodes. However, it can do so either
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on different subcarriers or at different time instances. As

such, only one of the links in L+(n), n ∈ N , k ∈ K, is

potentially non-zero. Finally, a node can receive data from

multiple nodes on the same subcarrier. In this case, it is

possible for the node to use maximum likelihood or successive

interference cancellation for joint detection, this approach is

overly complicated and will not be considered in this paper.

As such, we assume that receiving nodes use sequential

detection while treating signals coming from other nodes as

additive Gaussian noise. With this assumption, each link can

be regarded as a single-user Gaussian channel with Shannon

capacity W0 log(1 + ρℓk) where ρℓk is the received signal-to-

interference-plus noise ratio (SINR) at the receiver of link ℓ

on subcarrier k. This SINR is given by

ρℓk =
pℓk|h(k)ℓℓ |2

σ2 +
∑

ℓ′∈L\{ℓ} pℓ′k|h
(k)
ℓℓ′ |2

, ℓ ∈ L, k ∈ K, (1)

where \ represents the setminus operation and σ2 represents

the variance of the additive Gaussian noise at each receiving

node. For simplicity, we will use g
(k)
ℓℓ′ to denote

|h
(k)

ℓℓ′
|2

σ2 . A

distinguishing feature of the interference expression in (1) is

that it contains two parts: 1) the interference from other nodes

communicating with the same receiver on subcarrier k; and 2)

the interference from other nodes communicating with other

receivers on subcarrier k.

B. Problem Formulation

We begin our analysis by considering the mathematical

formulation for the joint routing, scheduling and power al-

location problem developed in [19]. In this formulation, s
(d)
n ,

the data rate injected into the network at source node n ∈ N
and intended for destination d ∈ D, is assigned a prescribed

nonnegative priority weight w
(d)
n , which can be changed over

time to satisfy quality of service requirements. The collection

of such weights are normalized so that 1
ND

∑
n,d w

(d)
n = 1.

The scheduling variables are characterized by the entries of

the set Γ = {γ(k)ℓ1,ℓ2,...,ℓm
|m = 1, . . . , L, k = 1, . . . ,K}. These

entries represent the fraction of time over which a particular

subset of links utilizes the same subcarrier. For instance,

γ
(k)
ℓ1,...,ℓm

denotes the fraction of the signalling interval during

which links ℓ1, · · · , ℓm ∈ L are simultaneously ‘active’ on

subcarrier k ∈ K and the remaining L − m links in L are

‘silent’on this subcarrier.

Using these notations, the JRSPA design problem can be

cast in the following form:

max
{s

(d)
n },{x

(d)
ℓk

},{pℓk},{γ
(k)

ℓℓ′
}

∑

d∈D

∑

n∈N\{d}

w(d)
n s(d)n , (2a)

subject to Γ ≥ 0, elementwise, (2b)

s(d)n ≥ 0, n ∈ N \ d, d ∈ D, (2c)

x
(d)
ℓk ≥ 0, ℓ ∈ L, k ∈ K, d ∈ D, (2d)

pℓk ≥ 0, ℓ ∈ L, k ∈ K, (2e)
∑

ℓ∈L

∑

k∈K

anℓx
(d)
ℓk = s(d)n , n ∈ N \ d, d ∈ D, (2f)

L∑

m=1

∑

ℓ1···ℓm∈L

γ
(k)
ℓ1...ℓm

≤ 1, k ∈ K, (2g)

a+nℓ1a
−
nℓ2

(
γ
(k)
ℓ1ℓ2

+

L∑

m=3

∑

ℓ3···ℓm∈L

γ
(k)
ℓ1...ℓm

)
= 0,

ℓ1 ∈ L, ℓ2 ∈ L \ {ℓ1}, k ∈ K, (2h)

a+nℓ1a
+
nℓ2

(
γ
(k)
ℓ1ℓ2

+
L∑

m=3

∑

ℓ3···ℓm∈L

γ
(k)
ℓ1...ℓm

)
= 0,

ℓ1 ∈ L, ℓ2 ∈ L \ {ℓ1}, k ∈ K, (2i)

∑

k∈K

∑

ℓ1∈L+(n)

pℓ1k

(
γ
(k)
ℓ1

+

L∑

m=2

∑

ℓ2···ℓm∈L

γ
(k)
ℓ1...ℓm

)
≤Pn,

n ∈ N , (2j)
∑

d∈D

x
(d)
ℓ1k

≤ γ
(k)
ℓ1

log2(1 + pℓ1kg
(k)
ℓ1ℓ1

)

+

L∑

m=2

∑

ℓ2...ℓm∈L

γ
(k)
ℓ1...ℓm

log2

(
1 +

pℓ1kg
(k)
ℓ1ℓ1

1 +
∑m

i=2 pℓikg
(k)
ℓ1ℓi

)
,

ℓ1 ∈ L, k ∈ K. (2k)

The significance of the constraints in (2) was described

in detail in [19]; however, for completeness we now pro-

vide a brief explanation of each of these constraints. The

non-negativity constraints in (2b) and (2e) are obvious. The

constraint in (2f) ensures the flow conservation law at each

node, i.e., incoming and outgoing flows of each node must be

equal. The constraint in (2g) guarantees that the total usage

of subcarrier k does not exceed the normalized signalling

interval. The constraint in (2h) enforces the half-duplex op-

eration of the system, whereby an incoming and outgoing

links of node n ∈ N cannot be active at the same time on

subcarrier k ∈ K. In this equation a+nℓ1 and a−nℓ1 represent

incoming and outgoing links of node n, respectively. In other

words, a+nℓ1 = 1 when anℓ1 = 1 and a−nℓ1 = 1 when

anℓ1 = −1. In this constraint all the schedules that correspond

to simultaneous transmissions on consecutive links are set to

zero. Similar argument holds for the broadcasting constraint

in (2i), whereby of all the outgoing links of node n ∈ N
only one can be active at any time instant on subcarrier

k ∈ K. The constraint in (2j) enforces the energy budget

of a node and finally the constraint in (2k) guarantees that

the communication rate of each link does not exceed its

capacity. An observation that will prove pivotal in subsequent

developments relies on the fact that each term of the capacity

expression consists of two parts, the first part is related to

the time during which only one transmission is scheduled

on subcarrier k and the second part is related to the time

during which more than one transmission are scheduled on

that subcarrier.

The optimization problem in (2) is highly non-convex

because of the constraints in (2j) and (2k) and hence, gen-

erally difficult to solve. An attempt to solve this problem

was made in [19] which was based on GP. The iterative

algorithm proposed therein, although finds an approximate

solution with theoretically-proven polynomial complexity, its

practical complexity is high and its convergence is generally
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slow especially for medium-to-large networks. To circumvent

these difficulties, in this paper we propose a low complexity

algorithm that exhibits fast convergence even for large net-

works. Our approach is to decompose the optimization in (2)

into two smaller sub-problems, one for scheduling and one

for power allocation, with a partial coupling between them.

Before we describe these sub-problems, in the next section we

will introduce preliminary simplifications on the formulation

in (2). In particular, we will show how the constraints in (2h)

and (2i) can be eliminated from the problem. We also show

that imposing constraints on the maximum number of simul-

taneous transmissions on a subcarrier can reduce the number

of variables from being exponential in the number of nodes

to being polynomial in it.

C. Preliminary Simplifications

One of the key constituents that contribute to the high

complexity of solving (2) follows from the high cardinality

of Γ. To see that, we note that the number of entries in Γ that

are needed to characterize all possible transmission scheduling

combinations on each subcarrier is given by

L∑

i=1

(
L

i

)
= (2L − 1). (3)

The i-th term in the summation corresponds to the number of

ways a subcarrier can be allocated to i out of L possible links.

Despite being comprehensive of all possibilities, this number

results in overwhelming complexity for large networks.

To reduce the complexity of solving (2) for larger networks,

we note that the half-duplex and broadcasting constraints

depend only on the network graph, i.e., {anℓ}. Hence, ensuring

that these constraints are satisfied can be effected prior to

solving (2) . In fact, the constraints in (2h) and (2i) enforce

some entries of Γ to be zero and hence, can be removed from

the variable set. For instance, if ℓ1 and ℓ2 are incoming and

outgoing links of node n, respectively, then the half-duplex

constraint enforces all the entries of Γ involving ℓ1 and ℓ2,

e.g., γ
(k)
ℓ1ℓ2

and γ
(k)
ℓ1ℓ2ℓ3

for all ℓ3 ∈ L \ {ℓ1, ℓ2}, to be zero.

Hence, these two constraints can be enforced by pruning the

set Γ prior to solving (2). The pruning rule is as follows: for

each ℓ1 and ℓ2 ∈ L, if either a+nℓ1a
+
nℓ2

= 0 or a+nℓ1a
−
nℓ2

= 0,

the corresponding time-shares are removed from the set Γ.

To further reduce the number of effective entries in Γ, we

note that in D2D communications, which lies at the focus of

this paper, a subcarrier is less likely to be reused over a large

number of links. This is due to the severe interference that

such a reuse would result in. Hence, in D2D communications,

it is expected that most of the gain of frequency-reuse can be

mustered by considering only few simultaneous transmission

over a subcarrier; increasing the reuse factor is likely to yield

a marginal gain but with significantly higher complexity. For

simplicity, we will consider the case in which a subcarrier can

be used simultaneously by at most I = 2 links in some detail.

However, the forthcoming analysis can be readily generalized

to I = 2, · · · , L.

Using these simplifications, we now evaluate the number of

entries in Γ. To do that, we note that when the reuse factor

I=2, the entries of Γ can be arranged in the form of K, L×
L matrices, {Γ(k)}Kk=1. The ℓℓ′-th entry of Γ(k) is given by

γ
(k)
ℓℓ′ , that is, this entry represents the fraction of the signalling

interval over which subcarrier k is used on both links ℓ and

ℓ′. Since, by definition, γ
(k)
ℓℓ′ = γ

(k)
ℓ′ℓ , Γ(k) is symmetric. The

diagonal entries of this matrix represent the fraction of time

during which transmissions do not experience interference and

its off-diagonal entries represent the fraction of time during

which simultaneous transmissions interfere with each other.

For a fully connected graph, L = N(N − 1) and the

cardinality of Γ can be reduced to

|Γ| = K

(
N(N − 1) +

(
N(N − 1)

2

)
−N

(
N − 1

2

)

−N

(
N − 1

1

)2

+
N(N − 1)

2

)
(4)

= KN(N − 1)

(
1 +

(N − 2)2

2

)
, (5)

where the first and second terms in (4) represent the number

of diagonal and (distinct) off-diagonal entries of Γ. The third

term accounts for the variables that violate the half-duplex

constraint, and the last two terms represent the number of

variables that violate the broadcasting constraint. (The last

term compensates for the variables that are counted twice in

the preceding term.) Comparing (3) with (5), it can be seen

that the preliminary simplifications proposed in this section

reduces the cardinality of Γ from being exponential to being

polynomial in N . An exemplary network of 3 nodes and its

corresponding Γ(k) matrix is illustrated in Figure 2.

Node 1

Node 2 Node 3

Link 1

Link 2Link 3

Link 4

Link 5

Link 6

Γ(k) =




γ
(k)
1,1 × − − − γ

(k)
1,6

× γ
(k)
2,2 − γ

(k)
2,4 − −

− − γ
(k)
3,3 × γ

(k)
3,5 −

− γ
(k)
2,4 × γ

(k)
4,4 − −

− − γ
(k)
3,5 − γ

(k)
5,5 ×

γ
(k)
1,6 − − − × γ

(k)
6,6




,

× violates broadcast assumption,

− violates half-duplex assumption.

Fig. 2: The scheduling matrix for a 3-node network with L = 6

links.
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III. JOINT DESIGN SUB-PROBLEMS: SCHEDULING AND

POWER ALLOCATION

In this section, we decouple the optimization problem

in (2) into two parts, one for the scheduling when the power

allocations are fixed and one for the power allocations when

the schedules are fixed. After solving the two sub-problems,

we will develop in Section IV an iterative technique to

obtain a sub-optimal solution of the entire problem. For ease

of exposition, the sub-problems will be described without

invoking the simplifications in the previous section. However,

in the numerical examples, these simplifications will be used

to reduce the complexity of the design problem.

A. Scheduling With Fixed Power Allocations

In this section, we consider the problem of optimizing the

subcarrier schedules that maximize a weighted-sum rate of the

network when the power allocations are fixed. Let q̃
(k)
ℓk denote

the power allocations which are assumed to be fixed in this

phase. Careful examination of the optimization problem in (2)

reveals that with the power allocations fixed, this problem

becomes an LP and hence, its global maximum can be found

in polynomial time, cf. e.g., [16].

B. Power Allocation With Fixed Schedules

In this section, we consider a problem complementary to

the one presented in the previous section, i.e., the problem of

optimizing the power allocations that maximize a weighted-

sum rate of the network when the subcarrier schedules are

fixed. Let Γ̃ denote the schedules which are assumed to be

fixed in this phase. The problem in (2) with fixed schedules

reduces to a GP at high SINR regimes. In those regimes, the

solution can be found optimally [23]. However, the problem

with this approach is that the SINR are not known prior to

performing power allocation, and, in general, this problem

is non-convex and difficult to solve. In [23], an iterative

technique based on monomial approximation was used to find

a suboptimal solution. However, in [19] it was shown that

the convergence of this technique is relatively slow, for all

but the smallest of networks, which renders the approach

in [23] impractical for medium-to-large networks. To tackle

this problem, we develop a novel approach, which we refer

to as ‘constraint-splitting’. This approach will be shown in

Section V-C to exhibit significantly faster convergence.

We begin the development of the proposed approach by

expressing the capacity constraint in (2k) in a format that is

more amenable to prospective optimization. We will focuse on

the case of having at most two interferers, i.e., I = 2. However,

the forthcoming formulations can be readily extended to cover

cases with I > 2, but unfortunately, not without compromising

clarity of exposition.
∑

d∈D

x
(d)
ℓk ≤ γ

(k)
ℓℓ log(1 + pℓkg

(k)
ℓℓ )

+
∑

ℓ′∈L\{ℓ}

γ
(k)
ℓℓ′ log

(
1 +

pℓkg
(k)
ℓℓ

pℓ′kg
(k)
ℓℓ′

)
. (6)

The next step is to rewrite the capacity constraint in (6) in a

form that facilitates the optimization of the power allocations.

This constraint can be written as:

∑

d∈D

x
(d)
ℓk +

∑

ℓ′∈L\{ℓ}

γ
(k)
ℓℓ′ log

(
1 + pℓ′kg

(k)
ℓℓ′

)

︸ ︷︷ ︸
Interference part

≤

γ
(k)
ℓℓ log(1 + pℓkg

(k)
ℓℓ ) +

∑

ℓ′∈L

γ
(k)
ℓℓ′ log

(
1 + pℓ′kg

(k)
ℓℓ′

)

︸ ︷︷ ︸
Noisy-signal part

. (7)

We will refer to the second summation on the RHS of (7) as

the interference part because it contains the interference terms

only and the summation on the LHS of (7) as the noisy-signal

part because it contains both signal and interference terms.

Looking back into the optimization in (2) with fixed sched-

ules and (2k) being replaced with (7), we make the following

observation, which will later help us in proposing a fast-

converging technique to solve the power allocation problem.

The first observation is that, if we fix the noisy-signal part,

the optimization problem in (2) can be cast in a GP form

that can be easily converted into a convex problem [24].

The second observation is that, if we fix the interference

part, the optimization problem in (2) reduces to a convex

problem that can be efficiently solved using interior point

methods [25]. Taking advantage of these observations, in the

next two sections we will explain each of the aforementioned

problems and then we will develop an iterative technique that

exhibits fast convergence to a power allocation solution.

1) Interference Sub-Problem: In this section, we consider

the problem in (2) when (2k) is replaced with (7) and the

schedules are fixed. We will denote these schedules by {γ̃(k)ℓℓ′ }
which are, in fact, the entries of Γ̃. Suppose that the RHS

of (7) is fixed to some initial power allocation {p(0)ℓk } and let

us introduce a parameter α ≥ 1 which we will use to control

the search region for a proper power allocation around {p(0)ℓk }.

After fixing the RHS of (7) and introducing the parameter α,

the joint design problem can be written in the following form:

max
{s

(d)
n },{x

(d)
ℓk

},{pℓk}

∑

d∈D

∑

n∈N\{d}

w(d)
n s(d)n , (8a)

subject to s(d)n ≥ 0, n ∈ N \ d, d ∈ D, (8b)

x
(d)
ℓk ≥ 0, ℓ ∈ L, k ∈ K, d ∈ D, (8c)

pℓk ≥ 0, ℓ ∈ L, k ∈ K, (8d)
∑

ℓ∈L

∑

k∈K

anℓx
(d)
ℓk = s(d)n , n ∈ N \ d, d ∈ D, (8e)

∑

k∈K

∑

ℓ∈O(n)

pℓk
∑

ℓ′∈L

γ̃
(k)
ℓℓ′ ≤ Pn, n ∈ N , (8f)

∑

d∈D

x
(d)
ℓk +

∑

ℓ′∈L\{ℓ}

γ̃
(k)
ℓℓ′ log

(
1 + pℓ′kg

(k)
ℓℓ′

)
≤ αSℓk,

ℓ ∈ L, k ∈ K, (8g)

where Sℓk = γ̃
(k)
ℓ log(1 + p

(0)
ℓk g

(k)
ℓℓ ) +

∑
ℓ′∈L γ̃

(k)
ℓℓ′ log

(
1 +

p
(0)
ℓ′kg

(k)
ℓℓ′

)
is the fixed noisy-signal part.
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While the optimization problem in (2) is NP-hard, the one

in (8) is in the form of an efficiently solvable GP. There is

caveat though: solving (8) will result in maximizing the first

summation on the LHS of (8g) at the expense of the link power

{pℓ′k}, thereby pushing them towards zero. This undesirable

situation can be prevented by introducing the following lower

bounds on the powers:

Bℓk ≤
∑

ℓ′∈L\{ℓ}

γ̃
(k)
ℓℓ′ log

(
pℓ′kg

(k)
ℓℓ′

)
, ℓ ∈ L, k ∈ K, (9)

where Bℓk =
∑

ℓ′∈L\{ℓ} γ̃
(k)
ℓℓ′ log

(
pℓ′kg

(k)
ℓℓ′

)
, ℓ ∈ L, k ∈ K

are constants obtained from the link powers generated in the

preceding iteration. We note that one of the advantages of the

bound in (9) is that it complies with the GP framework and

hence can be readily incorporated in the framework in (8).

The resulting optimization problem in this case can now be

expressed as:

max
{s

(d)
n },{x

(d)
ℓk

},{pℓk}

∑

d∈D

∑

n∈N\{d}

w(d)
n s(d)n , (10a)

subject to Constraints (8b)–(8g) and (9). (10b)

The sub-problem in (10) can be cast in a convex form by

first using a logarithmic change of variables to write (10) in

a form that conforms to the GP framework [25], which, using

a standard exponential transformation, can be converted into

a convex optimization problem [24].

2) Noisy-Signal Sub-Problem: In this section, we consider

a case complementary to the one considered in the previous

section, i.e., the case when interference part on LHS of (7) is

fixed and the noisy-signal part is optimized. Again, we assume

that an initial power allocation, {p(0)ℓk }, is given. Analogous to

the discussion in the previous section, for the noisy-signal sub-

problem we introduce a parameter β ≤ 1 to control the search

region for the power allocation around the given initial point.

Given β, the noisy-signal sub-problem can be expresses as

max
{s

(d)
n },{x

(d)
ℓk

},{pℓk}

∑

d∈D

∑

n∈N\{d}

w(d)
n s(d)n , (11a)

subject to s(d)n ≥ 0, n ∈ N \ d, d ∈ D, (11b)

x
(d)
ℓk ≥ 0, ℓ ∈ L, k ∈ K, d ∈ D, (11c)

pℓk ≥ 0, ℓ ∈ L, k ∈ K, (11d)
∑

ℓ∈L

∑

k∈K

anℓx
(d)
ℓk = s(d)n , n ∈ N \ d, d ∈ D, (11e)

∑

k∈K

∑

ℓ∈O(n)

pℓk
∑

ℓ′∈L

γ̃
(k)
ℓℓ′ ≤ Pn, n ∈ N , (11f)

∑

d∈D

x
(d)
ℓk + βIℓk ≤ γ̃

(k)
ℓ log(1 + pℓkg

(k)
ℓℓ )

+
∑

ℓ′∈L

γ̃
(k)
ℓℓ′ log

(
1 + pℓ′kg

(k)
ℓℓ′

)
, ℓ ∈ L, k ∈ K, (11g)

where Iℓk =
∑

ℓ′∈L\{ℓ} γ̃
(k)
ℓℓ′ log

(
1 + p

(0)
ℓ′kg

(k)
ℓℓ′

)
is the fixed

interference part. This problem is convex and can hence

be readily solved with highly efficient interior-point method

solvers.

To summarize, we emphasize that the way in which the

constraint in (7) is split resulted in two convex optimization

problems, the GP-compatible one in (10) and the one in (11).

This is the key that will ensure efficient implementation of the

iterative technique described next.

3) Iterative Solution for Power Allocation Sub-problem:

We now develop an iterative technique that incorporates the

convex problems described in Section III-B to solve the

problem in (2) when the schedules are fixed.

Starting from a feasible initial power allocation, we first

solve the interference sub-problem in (10) for a value of

α > 1. The solution is then used as an initial point for the

signal sub-problem in (11) with a value of β < 1. The output

of this sub-problem is then used as an initial point for the sub-

sequent iteration. For this technique to converge, the feasible

region must be expanded less at each iteration in order for

the outputs of both the noisy-signal and the interference sub-

problems to converge. This goal can be achieved by adjusting

the parameters α and β at each iteration. In particular, for

convergence, the value of α and β at the i-th iteration, αi and

βi, respectively, must satisfy αi ≤ αi−1 and βi ≥ βi−1. At

convergence, we must have α∗ = β∗ = 1. It is worth noting

that the step size for adjusting α and β must be not too small,

to avoid slow convergence, and not too large to avoid crossing

over of the powers generated by the two sub-problems. This

algorithm is summarized in Algorithm 1.

Algorithm 1: Inner iteration: Constraint-splitting approach

Data: Subcarrier schedules, CSI, weights, initial power

allocation

Result: data rates, power allocations

Initialization: set α and β;

while α 6= β do

Solve the interference sub-problem (GP) in (10);

Set the solution as the initial power allocation;

Solve the noisy-signal sub-problem (Convex) in (11);

Update the parameters α and β;

end

IV. APPROXIMATED SOLUTION FOR JOINT DESIGN

PROBLEM

In the previous section, we considered the joint optimization

problem when either the schedules or the powers are fixed.

Using the techniques developed in Sections III-A and III-B, in

this section, we provide an efficient technique for generating

‘good’ solutions of the joint optimization problem in (2) in

its entirety. Our approach is composed of two stages, one

for solving the joint optimization problem with fixed powers,

and one for solving it with fixed schedules. Iterating between

these two stages yields an approximate solution for the joint

design problem in (2). It is worth noting that, in contrast

to the GP-based approach in [19], this algorithm has much

less computational complexity as it needs fewer iterations for

convergence, cf. Section V below.

In the algorithm presented herein, we begin from a feasible

initial point, for instance, equal distribution of the power bud-

get among outgoing links, i.e., p
(0)
ℓk = Pn

K|O(n)| , n = 1, · · · , N .

In the first stage, we fix the power allocation in (2) to {p(0)ℓk }.
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We then solve the resulting LP to find the optimal schedules,

{γ̃(k)ℓℓ′ }, corresponding to the initial power allocation. In the

second stage, we fix the schedules in (2) to {γ̃(k)ℓℓ′ }. We then use

Algorithm 1 to find the corresponding power allocations p̃ℓk.

These power allocations can be fed back into the first stage to

solve the problem iteratively. However, our numerical results

suggest that, in its current form, this outer iteration provides

negligible performance gain. The reason is that schedules and

powers are tightly coupled, i.e., if one of the powers is zero,

the corresponding schedules are also zero and vice versa.

To circumvent this difficulty, in the proposed algorithm we

modify the power allocations in the outer iteration in order to

enable further exploration of the feasible region. To do that,

we use the gradient method [25] to find the gradient ascent

direction of the problem in (2). In particular, we use the log-

barrier method [25] to incorporate the inequality constraints

in (2) in the objective. In this method, the problem in (2) is

written in the following form:

max
∑

n,d

w(d)
n s(d)n +

1

t

(∑

n,d

log(s(d)n ) +
∑

ℓ,k,d

log(x
(d)
ℓk ) (12)

+
∑

ℓ,k

log(γ
(k)
ℓℓ′ ) +

∑

ℓ,k

log(pℓk)
)
+

1

t

∑

ℓ,k

log
(
ψ(ℓ, k)

)

+
1

t

∑

k

log(1−
∑

ℓ ℓ′∈L

γ
(k)
ℓℓ′ ) +

1

t

∑

n

log
(
φ(n)

)
,

subject to
∑

ℓ,k

anℓx
(d)
ℓk = s(d)n , n ∈ N \ d, d ∈ D,

where φ(n) , Pn − ∑
k,ℓ∈O(n) pℓk

∑
ℓ′ γ

(k)
ℓℓ′ , ψ(ℓ, k) ,

γ
(k)
ℓℓ log(1+pℓkg

(k)
ℓℓ )+

∑
ℓ′ γ

(k)
ℓℓ′ log

(
1+

pℓkg
(k)
ℓℓ

1+pℓ′kg
(k)

ℓℓ′

)
−∑d x

(d)
ℓk

represent the gap between the RHS and LHS of the constraints

in (2j) and (2k), respectively, and t represents the log-barrier

parameter. The gradient of the objective in (12) with respect

to pℓk can be readily shown to be given by

∇pℓk
=

1

t

(
1

pℓk
−
∑

ℓ∈L+(n),k,ℓ′ γℓℓ′

φ(n)

+

γ
(k)
ℓℓ

g
(k)
ℓℓ

1+pℓkg
(k)
ℓℓ

+
∑

ℓ′
γ
(k)

ℓℓ′
g
(k)
ℓℓ

(
1+g

(k)

ℓℓ′
(pℓ′k−pℓk)

)

(1+pℓ′kg
(k)

ℓℓ′
)2

ψ(ℓ, k)

)
. (13)

We set t = 1 in the first iteration and increase it in

subsequent ones. We use the gradient ascent direction in (13)

to update the output of the second stage and feed it back into

the first stage in the following iteration. In particular, we use

the following update rule:

p̃
(j+1)
ℓk = p̃

(j)
ℓk + µj∇p̃ℓk

, ℓ ∈ L, k ∈ K,
(14)

where j is the index of outer iterations and µj is a step

size. Iterations continue until a stopping criterion is satisfied,

e.g., no significant improvement in the objective is observed.

For guaranteed convergence [25], {µj} are chosen to form a

monotonically decreasing sequence that satisfies
∑

j γj = ∞.

Details are summarized in Algorithm 2 and illustrated in

Figure 3.

Algorithm 2: Outer iteration: Approximated solution for

JRSPA problem in (2)

Data: CSI, weights

Result: data rates, subcarrier schedules, power allocations

Initialization: set {p(0)ℓk } as the equal power assignment;

while ‖∇‖ > ǫ do
Stage 1: solve (2) with fixed powers to find

subcarrier schedules (LP);

Stage 2: run Algorithm 1 to obtain power allocation,

{p̃ℓk};

Update: use (14) to update the obtained powers;

end

Initialization

fixed power allocation

First stage:

Scheduling (LP)

Update power

gradient direction

Second stage:

Power Allocation

Interference problem

(GP)

Noisy Signal problem

(Convex)

Fig. 3: Block diagram of Algorithm 2.

It will be shown in Section VII that Algorithm 2 yields

solutions that perform significantly better than those yielded by

a fixed power allocation approaches. This algorithm will also

be compared to the GP-based approach in [19]. Furthermore,

it will be shown that this algorithm tends to yield a better

performance with significantly less computational cost.

In the next section, we will provide bounds on the computa-

tional complexity of the proposed techniques. In particular, we

will show that each stage of the algorithm has a polynomial

complexity and hence, the proposed algorithm for obtaining an

approximate solution to the joint optimization problem in (2)

also has a polynomial complexity.

V. COMPUTATIONAL COMPLEXITY

The approach proposed in the previous section is based on

iterating between two stages. In the first stage, we seek the

optimal schedules for a given power allocation, whereas in

the second stage, we find a suboptimal power allocation for

a given schedules. The complexity of each stage is discussed

next.

A. Computational Complexity of the First Stage

In the first stage of the approach proposed in the previous

section, the power allocations are fixed. In this case, the

problem in (2) reduces to an LP where the optimal solution,

i.e., optimal schedules, could be found efficiently using IPM-

based solvers. The number of Newton iterations required by

such solvers can be shown to be proportional to
√
m, where

m is the number of inequality constraints [25]. For the LP

problem, we have m = LK(D + 1) + D(N − 1) + N +

K + KN(N − 1)
(
1 + (N−2)2

2

)
. In addition, each Newton

step is known to have a cubic complexity [26]. Hence, in

the worst case scenario when the network is fully connected,

i.e., L = N(N − 1) and all the nodes are destination nodes,
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i.e., D = N , the computational complexity of solving the LP

problem is O( 12K
3.5N14).

B. Computational Complexity of the Second Stage

In the second stage, sub-optimal power allocations for

given schedules are obtained by solving a sequence of convex

problems. The complexity of each problem is discussed next.

1) Computational Complexity of the Interference Sub-

Problem: The interference sub-problem discussed in Sec-

tion III-B1 yields a GP which can be readily converted into a

convex problem using the exponential change of variables [24].

The computational complexity of solving such problems were

studied in [17], [19] by bounding each monomial term in the

GP with a new variable that serves as an upper bound. Using

this method, it can be shown that the complexity of solving

the GP problem in worst case scenario is O(4K3.5N14).
2) Computational Complexity of the Noisy-Signal Sub-

Problem: The noisy-signal sub-problem discussed in Sec-

tion III-B2 yields a convex optimization problem. Using a

discussion analogous to the one in Section V-A, it can be

shown that the number of inequality constraints is m =
LK(D + 2) + D(N − 1) + N . Hence, the complexity of

solving this problem in the worst case scenario using IPM-

based solvers is O(K3.5N10.5).

C. Computational Complexity of the Two-Stage Approach

We begin by recalling that the parameters α and β control

the search region for a power allocation solution. Let ǫ be

the step size with which the parameter α shrinks at each inner

iteration of the algorithm and let β = 1
α

. Since at convergence,

we must have α = 1, the number of iterations required for

convergence is α
ǫ

. Using the two-stage approach presented in

Section IV and the complexity discussions in Sections V-B1

and V-B2, it can be seen that the complexity of each outer

iteration of the proposed approach is bounded by

O
(
K3.5N10.5

(α
ǫ
(4N + 1)

)
+

1

2

)
. (15)

We conclude this section by noting that, when the reuse

factor, I , is restricted to be small, both the method proposed

herein and the one proposed in [19] have polynomial com-

plexity. However, the main difference between these methods

is that the typical number of iterations required for the method

proposed in [19] to converge is much larger than its counter-

part for the method proposed herein. For instance, using the

method proposed in [19] in a network with N = 4 nodes

required 180 iterations to converge. This is in contrast with

the method proposed herein, in which we are able to find a

sub-optimal solution within less than 10 iterations.

VI. JOINT DESIGN IN LARGE NETWORKS

The algorithm proposed in Section IV enables us to jointly

design the data routes, subcarrier schedules and power allo-

cations in networks of hundreds nodes. Although this is a

significant improvement compared to the algorithm in [19]

where the joint design is applicable to networks of up to ten

nodes, in practice, the size of data networks might be much

larger and it is desirable to solve the joint design problem for

such networks.

In this section we consider large networks with thousands of

nodes. From the complexity analysis presented in Section V-C,

it can be seen that, despite the efficacy of the joint design algo-

rithm presented in Section IV, using this algorithm to design

a network with thousands of nodes in one shot is computa-

tionally prohibitive. To circumvent this difficulty, we propose

a two-tier communication framework. We begin by assuming

that the network is composed of several disjoint clusters, which

are not necessarily far from each other in a geographical sense.

Each cluster has a local cluster controller (CC), which can be

either an entity outside the network or one of the nodes within

the cluster. Communications between CCs in the higher tier is

controlled by a central entity which we refer to it as the global

controller (GC). We assume that communication between CCs

is performed over a set of frequencies than are distinct from

the set used for communication between nodes in the network.

Such a scenario arises naturally in heterogeneous networks

with one macro and multiple femto BSs. In these networks, the

femto BSs act as CCs that are responsible for accommodating

communications within their cells and the macro BS acts as

a GC that is responsible for communication between femto

cells [27].

An exemplary network of four clusters is illustrated in

Figure 4. In this figure, each cluster has multiple BSs but only

one of them is designated as a CC (marked in red). A fraction

of the nodes in this network wish to communicate with nodes

within their cluster (marked in green) and another fraction of

nodes wish to communicate with nodes outside their cluster

(marked in blue). The frequencies used for communications

between CCs (marked with dashed lines) are distinct from

those used for communication inside clusters (marked with

solid lines). The communication between CCs is controlled

by the GC through a control channel (dotted lines).

CC

CC

CC

CC

Cluster 1Cluster 2

Cluster 3Cluster 4

Source

Source

Source

Source

Source

Source

Destination

Destination

Destination

Destination

Destination

Destination

Global Controller (GC)

Fig. 4: An exemplary network of 4 clusters.
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A. Proposed Framework

We consider a network of M clusters, which form the

set M , {1, . . . ,M}. The sets of nodes and destinations

in cluster i ∈ M are denoted by Ni and Di, respectively.

At the beginning of each scheduling interval, source nodes

announce their intended destinations to their respective CCs.

Communication between nodes in the network falls in one of

two categories:

Intra-Cluster: This case arises when both the source and

destination nodes are located within the same cluster.

The CC of the cluster incorporates the parameters of

these nodes in the optimization framework of Sec-

tion IV. The schedules, routes and power allocations

output of this optimization are then passed by the

CC to the nodes within its cluster.

Inter-Cluster: This case arises when the source and destina-

tion nodes are located in different clusters. The CCs

of the source and destination clusters are responsible

for pulling data from the source node and pushing

it to the destination node, respectively. Communica-

tion between the CCs of the source and destination

clusters is handled by the GC. In particular, the

GC uses the framework of Section IV to find the

optimized schedules, routes and power allocations

for the communication over the network of CCs.

We now use these two categories to describe three phases

of the proposed framework.

1) First Phase (Intra-Cluster Design): In this phase, the

CCs perform three tasks: first, they perform the joint design

for the nodes that lie within their clusters; second, they act as

virtual destination nodes for any source whose actual intended

destination lies outside the cluster; and third, they act as virtual

source nodes for any destination within the cluster but whose

actual source lies outside the cluster. In the latter two tasks,

the CCs act as gateways for their respective clusters. Each CC

uses the algorithm in Section IV to jointly design the routes,

schedules and power allocations for the network formed by

the nodes within its cluster, including the CC itself.

To characterize the role of CCs as gateways for their

clusters, we begin by noting that, similar to other nodes in

the network, a CC can act both as a source and a destination

at the same time. Now, let Din
i be the set of destination

nodes whose source nodes lie inside cluster i, i ∈ M. Also,

let N out
i be the set of source nodes whose destination lies

outside cluster i and Dout
i be the set of nodes whose source

nodes lie outside cluster i. These three sets, i.e., Din
i , N out

i

and Dout
i , are illustrated in Figure 5. For n ∈ N out

i , CCi

acts as the destination node and for d ∈ Dout
i , it acts as the

source node. Hence, as before, we will use s
(CCi)
n to denote

the data rate from the source node n ∈ N out
i to its virtual

destination, CCi and s
(d)
CCi

to denote the data rate from the

virtual source node, CCi to its corresponding destination,

d ∈ Dout
i . Now, CCi performs the optimization in (2) to

find the routes, schedules and power allocations. In particular,

CCi solves the optimization in (2) with the modified objective∑
d∈Din

i

∑
n∈Ni

sdn +
∑

n∈Nout
i

sCCi
n +

∑
d∈Dout

i
s
(d)
CCi

. The

first part of this objective accounts for the communications

whose source and destination are located inside the cluster

i, the second part accounts for the communications whose

source and destination are inside and outside of cluster i,

respectively, and the last part accounts for the communications

whose source and destination are outside and inside cluster i,

respectively. The constraints in (2) can be readily modified

to define the feasible set of the new variables. To ensure

that CCi acts as a virtual source and destination node, the

variables {sdn|n ∈ N , d ∈ D} in (2) are replaced with{
sdn|n ∈ Ni ∪ {CCi}, d ∈ Di ∪ {CCi}

}
.

Cluster i, i ∈ M ∪j 6=i Cluster j, i, j ∈ M

Ni

Di

N out
i

Din
i Dout

i

Fig. 5: Three sets of nodes in Cluster i: 1) destination nodes whose
source is inside the cluster, Din

i in blue, 2) destination nodes whose
source is outside the cluster, Dout

i in red, and 3) source nodes whose
destination is outside the cluster, N out

i in green. Note that these sets
are not necessarily disjoint.

2) Second Phase (Inter-Cluster Design): Here we consider

the situation when the source and destination nodes lie in

distinct clusters. This situation was handled in part in the

previous phase. In particular, that phase is responsible for

establishing communication between the source node and its

CC, which acts as a virtual destination, and for establishing

communication between the CC, which acts as a virtual source,

and the destination node. Now, we consider the communication

between CCs that act as virtual sources and the CCs that act

as virtual destinations. This communication is coordinated by

the GC.

To characterize the current phase, let n ∈ Ni be a source

in cluster i and let d ∈ Dj be a destination node in cluster

j, i 6= j, i, j ∈ M. The goal in this phase is to establish

communication between CCi and CCj . Noting that CCi and

CCj serve as a proxy source and destination for the rate

s
(d)
n , it can be seen that, with the proposed scheme, the

data rate between the source n ∈ Ni and the destination

d ∈ Dj cannot exceed min{s(CCi)
n , s

(d)
CCj

}. Hence, we must

have s
(CCj)
CCi

≤ min{s(CCi)
n , s

(d)
CCj

}, where s
(CCi)
n and s

(d)
CCj

are obtained from solving the optimization in phase 1. Hence,

to establish communication between CCi and CCj , the GC

solves the following variation of (2) to obtain {s(CCj)
CCi

} along

with the respective schedules, routes and power allocations:

max
∑

i∈M

∑

j∈M\{i}

s
(CCj)
CCi

, (16a)

subject to

constraints in (2b)–(2k), (16b)

s
(CCj)
CCi

≤ min{s(CCi)
n , s

(d)
CCj

}, i ∈ M, j ∈ M \ {i}. (16c)

We now make two remarks regarding the formulation in (16).

First, we note that, in this formulation, we only considered
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the total throughput, rather than the weighted sum of rates.

This is because data flows passing through a CC may have

different weights, and combining these weights for inter-

cluster communications appears to be rather complicated.

Second, we note that because min{s(CCi)
n , s

(d)
CCj

} is obtained

from the solution of the first phase, the constraint in (16c) is

convex and hence, incorporating it in the formulation does not

reduce its solvability.

3) Third Phase (Update Intra-Cluster Design): After solv-

ing (16) in phase 2 for the rates {s(CCj)
CCi

}, these rates are

communicated to the CCs and the network design process can

be considered complete. However, we note that this design is

amenable to further refinement. In particular, the rates obtained

in phase 2, i.e., {s(CCj)
CCi

}, can be regarded as the end-to-end

rates, and hence, there is no benefit in having either s
(CCi)
n or

s
(d)
CCj

exceed s
(CCj)
CCi

. In other words, a refinement of the design

can be obtained by re-solving (2), but with s
(CCi)
n and s

(d)
CCj

bounded by s
(CCj)
CCi

, i.e., with following constraints included

in the formulation in (2):

s(CCi)
n ≤ s

(CCj)
CCi

, and, s
(d)
CCj

≤ s
(CCj)
CCi

.

Implicit in this phase is that if (16c) is satisfied with equality

in phase 2, only the design pertaining to cluster i or that

pertaining to cluster j will be amenable to refinement.

This framework is summarized in Figure 6. In Section VII

we will provide an instance in which this framework is used

to design a networks with 160 nodes.

For each source whose destination is outside its cluster: Replace the destination with the CC

For each destination whose source is outside its cluster: Replace the source with the CC

Use the JRSPA algorithm inside each cluster

Use the JRSPA algorithm for inter-cluster designwith the following constraint:

s
(CCj)
CCi

≤ min{s(CCi)
n , s

(d)
CCj

}

s
(CCj)
CCi

< min{s(CCi)
n , s

(d)
CCj

} s
(CCi)
n > s

(d)
CCj

s
(CCi)
n < s

(d)
CCj

Update phase 1 in the source and destination clusters

Update phase 1 in the source cluster

Update phase 1 in the destination cluster

Yes
YesYes

No NoNo

End

Start

Initialization

Phase 1

Phase 2

Phase 3

Fig. 6: Flowchart of the proposed framework for joint design of large
clustered networks.

VII. SIMULATIONS

In this section, we assess the performance of the iterative al-

gorithm and the proposed framework presented in Sections IV

and VI. The optimization problems in this section are solved

using the software package CVX [28] with an underlying

MOSEK solver [29].

We consider a standard communication channel model

with quasi-static frequency-flat Rayleigh fading subcarriers,
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Fig. 7: Network topology

log-normal shadowing, and path loss components. As such,

the complex subcarrier gains can be expressed as hℓk =√
η(ℓ)λℓrℓk, where η(·) is the path loss function. Shadowing

is represented by λℓ, which is log-normal distributed with 0

dB mean and standard deviation σs dB. Fading is represented

by rℓk, which is complex Gaussian distributed with zero

mean and unit variance. To simulate practical communica-

tion scenarios, we selected the distance values and the log-

normal shadowing and path loss parameters corresponding

to the urban macro-cell (UMa) scenario of IMT-Advanced

document [30]. For that scenario, σs = 6 dB and the noise

power, σ2 = −174 dBm/Hz. Setting the carrier frequency to

2 GHz and the elevation of each device to 1.5 m, the path

loss of the nonline-of-sight channel in this model is given by

η(ℓ) = 10−18.66−40.32 log10(dℓ), where dℓ is the length of link

ℓ in meters.

A. Performance Evaluation of the Proposed Scheme

In this section, we evaluate the performance of the scheme

proposed in Section IV for a network instance with N = 50
nodes that are randomly distributed within a cell with a radius

of 500 m. To maintain manageable computational cost, we

allow two nodes to communicate only if the distance between

them is smaller than 150 m. For the considered instance, the

number of available links is L = 208, which are illustrated in

Figure 7. Among the 50 nodes, 5 are randomly selected to act

both as source and destination nodes, which are labelled as D1

to D5. The nodes are assumed to have identical power budgets,

i.e, Pn = P, n = 1, · · · , 50, and the available bandwidth

is assumed to be 10 MHz, which is divided into 16 OFDM

subcarriers.

The average sum rates yielded by the algorithm in Sec-

tion IV for the values of P ranging from 0 to 30 dBm is

depicted in Figure 8. For comparison, two baseline schemes

are considered in this figure. The first is the joint optimization

without power allocation, i.e., the output of the first stage in

Algorithm 2 with fixed powers, and the second is the joint

optimization without frequency-reuse in [17].

As can be seen from Figure 8, the sum rate yielded by the

proposed scheme significantly outperforms the two baseline

designs in which either frequency-reuse or power allocation is

not considered. For instance, at P = 15 dBm, the proposed
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Fig. 9: Performance comparison

scheme yields a sum-rate advantage of 73% over the two

baseline schemes.

B. Performance Comparison With the GP-Based Approach

In this section, we compare the performance of the al-

gorithm proposed in Section IV with the one based on GP

monomial approximation proposed in [19] for the network

depicted in Figure 2. For this network, there are N = 3 nodes,

L = 6 links and K = 4 subcarriers, each with a bandwidth of

W0 = 200 KHz. Two of the nodes wish to communicate with

each other, with the third node potentially acting as a relay.

For the network considered in this example, we used the

algorithm described in Section IV and the GP-based algorithm

described in [19] to obtain the routes, schedules and power

allocations and the average sum rates. The latter are depicted

in Figure 9 for P ranging from 0 to 30 dBm.

From this figure, it can be seen that the proposed two-

stage algorithm yields rates that are typically higher than

those yielded by it GP-based counterpart. For instance at

P = 20 dBm, the algorithm proposed herein yields an average

sum rate 60% higher than that yielded by the GP-based

algorithm. This phenomenon can be attributed to the ability

of the algorithm proposed herein to use the gradient ascent

approach to explore the feasible region for a good initial point,

which contrasts the random initialization used in the scheme

proposed in [19].

For convergence, we note that although the algorithm in [19]

converges to a Karush-Kuhn-Tucker solution, it exhibits rel-

atively slow convergence. In particular, for this network that
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Fig. 10: Network topology and available links for communications
(a) within clusters, (b) between CCs.

algorithm converges within 180 iterations, which renders it

impractical for designing larger networks. In contrast, the

algorithm proposed herein converges within 10 iterations only.

C. Performance Evaluation of the Proposed Framework

In this section we evaluate the performance of the two-

tier framework presented in Section VI. We considered an

area of 2 Km2 which is divided into 64 clusters as shown

in Figures 10(a) and 10(b). Each cluster has 20 users whose

locations are randomly chosen from the uniform distribution

and there is a cluster controller at the center of each cluster.

Hence, the total number of nodes in this network is 1344.

In this network we assume that there are K = 8 subcarriers

and 100 randomly chosen source-destination pairs (Si, Di),
i = 1, . . . , 100. To facilitate the design, we ignore intra-

cluster and inter-cluster links greater than 100 and 400 meters,

respectively. The remaining links available for communication

are depicted in Figure 10(a) for communication between nodes

within the clusters and in Figure 10(b) for communication

between the CCs in the network. There are, on average, 176

links available for communication within each cluster.

To investigate the performance of the two-tier framework of

Section VI in this network, we compare the average sum rate

that it yields by optimizing the routes, schedules and power

allocations with the average sum rate yielded when the nodes

are restricted to have equal powers. In both cases the CCs are

assumed to have identical power budgets of P = 30 dBm.

For this case, the average sum rates yielded by the two-tier
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Fig. 11: Performance comparison of the proposed framework.

algorithm are depicted in Figure 11 for node budgets ranging

from 5 to 30 dBm.

From Figure 11, it can be seen that the performance of the

two-tier framework is significantly superior to the one with

fixed power allocations. For instance, for an average sum rate

of 400 bits/s/Hz, the two-tier approach has a power advantage

of 5 dBm, and this advantage is larger for higher rates.

It is worth emphasizing that while the complexity of the

algorithms in [19] allow the joint design of networks with

up to 10 nodes, the two-tier algorithm in Section VI allows

the joint design of significantly larger networks. In fact, our

numerical evaluations suggest that this algorithm can be used

to design networks with tens of thousands of nodes.

VIII. CONCLUSION

In this paper we considered the joint optimization of the

routes, subcarrier schedules, time-shares and power allocations

in large scale D2D communication networks. We made two

main contributions. In the first contribution, we developed an

iterative approach in which the design problem is decomposed

into two sub-problems: one for scheduling and the other for

power allocation. The latter is non-convex and to deal with

it, we developed a constraint splitting approach, whereby the

problem is further split into effectively two convex problems.

The approach proceeds by performing inner iterations over

the convex problems and outer iterations over the scheduling

and power allocation sub-problems. This iterative approach is

capable of jointly designing networks with up to 100 nodes.

In the second contribution, we developed a two-tier approach

whereby the network is divided into a set of non-overlapping

clusters, each with a controller that acts as a gateway for

managing inter-cluster communications. The first tier of this

approach deals with intra-cluster communications, whereas

the second tier deals with inter-cluster communications, both

using the iterative algorithm developed in the first contribution.

In comparison with existing algorithms, the ones developed

herein yield better performance and can be used to design

larger networks with significantly lower computational com-

plexity.
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