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Abstract: Photonic crystal (PhC) geometry is typically characterized by its translational
symmetry. However, it can be treated based on the rotationally symmetry through the use of
Fourier–Bessel expansions about the center of rotation. Fourier–Bessel expansions of the
inverse dielectric of the structures and the transverse electric (TE) localized modes extract
the rotational symmetry that is present. The results show that in PhCs and photonic quasi-
crystals, the localized Hz field contains only the rotational orders that correspond to the
rotational order of the dielectric plus and minus the rotational order of the corresponding
perfect state. This relationship indicates the potential for simplification within the master
equation in cylindrical coordinates that will require further examination.

Index Terms: Photonic crystals, nanocavities, modeling.

1. Introduction
As photonic crystal (PhC) technology has matured, there have been many models and techniques
developed in order to analyze the resulting structures, these include scattering matrix solutions [1],
[2], the plane-wave expansion method (PWEM) [3], and the finite difference time domain (FDTD)
[4]–[6]. While the FDTD method is capable of handling any dielectric layout, in both 2-D and 3-D, its
use generally requires significant computational resources. The more efficient PWEM relies on the
existence of a unit cell with a translationally symmetric lattice to calculate the band structure of the
PhC. The difficulty arises in the use of PWEM when the PhC in question is disordered or is a
photonic quasi-crystal that possesses only rotational symmetry [7]–[9]. Rotational symmetry is not
unique to photonic quasi-crystals; within translationally symmetric structures, there are centers of
rotation, about which a number of repetitions or folds occur within 2�. By this definition of rotational
symmetry, the square and triangular lattices can be expressed as four- and six-fold rotational
structures, respectively. The shape of the localized modes within the PhCs will be dependent on the
rotational symmetry of the structure, as required by the wave equation.

Within the 2-D plane ðr ; �Þ of the cylindrical coordinate system, the Fourier–Bessel expansion is
used in the same manner as the Fourier expansion in Cartesian coordinates. Fourier–Bessel
expansions have found use in the scattering matrix models of PhCs in the expansion and
characterization of the scattered fields from cylindrical scatterers [1]. Fourier–Bessel analysis has
also been used in the study of patterns in a circular domain [10]. In this paper, the Fourier–Bessel
expansion will be used to examine the relationship between the rotational order of the dielectric
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layout of PhCs and the Hz component of the TE states present. The nature of the rotational
symmetry will be explored within the traditional four-fold (square) and six-fold (triangular) followed
by the eight-fold and 12-fold quasi-crystal structures (see Fig. 1). All four structures are 2-D, r , and �
and are considered invariant along the z axis. The first three structures contain centered defects in
the form of missing holes in order to introduced localized states. The 12-fold photonic quasi-crystal
contains localized modes without requiring defects [9]. The paper will be structured in the following
manner such that Section 2 will introduce the F–B expansion and its use in the decomposition of the
inverse dielectric of the structures under examination. Section 3 will examine the decomposition of
the localized states present within the photonic crystal and quasi-crystal structures. Section 4 will
explore the significance of the rotational order in the states in the context of the wave equation and
its potential simplification.

2. Fourier–Bessel Expansion and Rotational Symmetry
In the translationally symmetric PhCs, the dielectric, and field within the wave equation [11], (1),
shown below, can be expanded using Fourier analysis, which is the PWEM for PhCs
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For 2-D rotationally symmetric structures, it is reasonable to expand the curl in (1) in the cylindrical
coordinate system. The Hz field expansion for the TE polarized modes is
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where � ¼ 1=� is used to simplify the equation. While inverting the dielectric will affect the values
obtained for expansion coefficients, it will not change the symmetry as the location of features, i.e.,

Fig. 1. Structures under investigation (a) Square lattice (with a missing hole as the central lattice
defect), (b) triangular lattice (with central lattice defect), (c) eight-fold quasi-crystal (with central
defect), and (d) 12-fold quasi-crystal. All four structures are air holes (white, �r ¼ 1:00) in a silicon
(black, �r ¼ 12:1104) background.
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the holes, have not changed relative to the background. Following the example of Fourier analysis
in the PWEM, the field and inverse dielectric can be expressed in terms of Fourier–Bessel
expansions. The Fourier–Bessel expansion is an expression of a given function in both radial,
Bessel and angular, exponential components using

f ðr ; �Þ ¼
X1
m¼0

X1
n¼�1

cm;nJ�
zmr
b

� �
ejn� (3)

where cm;n are the expansion coefficients, � is the order of the Bessel function, and zm is the
mth zero of J�. The orthonormality and completeness of the Fourier–Bessel expansions allow for
the expression for the expansion coefficients to be given as [10]
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Using (4), the expansion for Hz and � can be expressed as
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b
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where the complete series requires that M ;N ;P; and Q be 1. In this fashion, the rotational order
of both Hz and � can be extracted through the indices of n and q, respectively. The structures
under examination (see Fig. 1) are 10 �m� 10 �m arrays of air holes �r ¼ 1:00 in a silicon
background �r ¼ 12:1104. The structures were discretized at 120 pts/�m in Cartesian coordinates.
The square and triangular lattices were chosen to have lattice constants a of 630 nm and an
r=a ¼ 0:43. These lattice parameters provide bandgaps and localized modes approximately
centered around the 1.55-�m range. During FDTD simulations, the structures were excited with a
noise source that was sufficiently random to excite the localized states [12]. The two photonic
quasi-crystals were generated using an algorithm reproducing the structures obtained through dual
beam holographic lithography [8]. The spacing between the planes in each exposure allow control
over the scaling of the pattern. The eight-fold photonic quasi-crystal design required a plane
spacing of 0.417 �m, while the 12-fold quasi-crystal required a plane spacing of 0.8 �m. The
scaling of the quasi-crystals was chosen to ensure that their bandgaps and localized modes, along
with the square and triangular lattices, were about the chosen wavelength range. When the inverse
dielectric and fields were to be expanded in cylindrical coordinates, they were discretized with
280 pts/�m along r and 720 pts/� along �. A four-point Taylor series was used to extract values
for ðr ; �Þ grid points that did not perfectly align with the ðx ; yÞ discretized FDTD grid.

Figs. 2–5 present the angular component of � of the expansions of the dielectric structures with
the inserts showing the � layout. The Fourier–Bessel expansions P ¼ 100 and Q ¼ 100 were
performed over a 9.5-�m diameter circle about the center of rotational symmetry. In order to focus
on the angular symmetry, the magnitude of the expansion coefficients are plotted such that all the
radial components are overlapped at their rotational order. Each order q has 100 points for the
100 radial components p used in the expansion. While not presented here, the expansion coef-
ficients were used in the Fourier–Bessel expressions to reconstruct the inverse dielectric profile to
verify the expansion. Convergence tests determined that a larger number of Fourier–Bessel terms
improved reconstruction accuracy but did not introduce terms that contradicted the symmetries
established when P and Q were set to 100.

The square lattice PhC is a four-fold structure; it is expected that there should be coefficients at
this rotational order q ¼ 4 in the expansion; see Fig. 2. While this is the case, there are additional

IEEE Photonics Journal PhCs and Their Localized Modes

Vol. 3, No. 6, December 2011 Page 1135



Fig. 3. Fourier–Bessel expansion of 9.5-�m diameter circle of the dielectric layout (inset) of the
triangular lattice showing the rotational symmetry in multiples of 6 present within the structure.

Fig. 4. Fourier–Bessel expansion of 9.5-�m diameter circle of the dielectric layout (inset) of the
eight-fold photonic quasi-crystal lattice showing the rotational symmetry in multiples of 8 present within
the structure.

Fig. 2. Fourier–Bessel expansion of 9.5-�m diameter circle of the dielectric layout (inset) of the square
lattice showing the rotational symmetry in multiples of 6 present within the structure.
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nonzero coefficients. This lattice is not a pure four-fold structure; moving radially out, there are
regions containing rotational orders that are multiples of the fundamental four-fold symmetry (8, 12,
16, . . .). The Fourier–Bessel analysis introduces additional features into the expansion. As with
standard Fourier analysis, the coefficients for terms where the expansion is 1, e0 are used to
establish a background that is then modified by subsequent terms. This can be seen in Fig. 2 with
the presence of the Bp;0 coefficients. Another feature introduced through the Fourier analysis is the
presence of harmonics of the fundamental rotational order. As the structure to be expanded, in this
case a step function, deviates from a sinusoidal, harmonics are introduced, contributing to the
presence of coefficients at multiples of the fundamental rotational order. The final feature in the
expansion is the lack of one- or two-fold symmetry. These orders are suppressed due to their
destructive interaction with the sinusoidal component of the Fourier–Bessel expansion. It should
also be noted that the Bp;0 coefficients are the only ones affected by the absence of the central air
hole as this defect has no angular dependence. The six-fold triangular lattice (see Fig. 3) only has
nonzero coefficients at multiples of the six-fold rotational symmetry, matching the results shown
with the square lattice. Unlike the square lattice, the expansion of the triangular lattice contains
sidelobes to the principal orders of expansion. When the Taylor series is used to map the Cartesian
grid to cylindrical coordinates, it results in grid points having values of �o�r where the relative
dielectric constant �r is not �r ¼ 1 or 12.1104, grading the edges of the features. This rounding of the
step function that previously described the dielectric results in the sidelobes within the Fourier–
Bessel expansions. While both the square and triangular lattices have the same r=a, the triangular
lattice has a higher filling ratio [see Fig. 1(a) and (b)], resulting in smaller dielectric veins between
the holes. The smaller dielectric features enhance the effects of the grading resulting in larger
sidelobes. The resolutions used in this study are sufficient to correctly model the dielectric lattices
as the FDTD results were verified through convergence tests. While discretization of the dielectric
grid in cylindrical ðr ; �Þ coordinates removed the presence of sidelobes, the FDTD simulations,
which are results for localized modes, were in Cartesian coordinates. The dielectric was initially
discretized in Cartesian coordinates and then converted to cylindrical to remain consistent with the
procedure required for the expansions of the localized modes. A further extension of the use of the
Fourier–Bessel expansion is its application to the eight- and 12-fold photonic quasi-crystals, which
only possess rotational symmetry; see Figs. 4 and 5. Both of the quasi-crystal structures
demonstrate that the nonzero expansion coefficients occur when the rotational order q is a multiple
order of the fundamental symmetry. Both structures also show evidence of the average background
inverse dielectric expansions at Bp;0. The structures in this study show that if a given inverse
dielectric is expanded about its center of rotation with Fourier–Bessel expansions, then the

Fig. 5. Fourier–Bessel expansion of 9.5-�m diameter circle of the dielectric layout (inset) of the 12-fold
photonic quasi-crystal lattice showing the rotational symmetry in multiples of 12 present within the
structure.
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rotational orders present can be extracted. In this context, it is the rotational symmetry that is
common to both the traditional PhCs and the quasi-crystals examined here.

3. Rotational Symmetry Within Localized States
To proceed with the expansions of the localized states and their comparison with the inverse
dielectric results, it is necessary to ensure that the four structures have localized modes. The two
translational structures, as well as the eight-fold quasi-crystal, required defects in the form of the
center air hole missing; see Fig. 1. A lattice defect was not necessary with the 12-fold quasi-crystal
as the central localized modes are naturally present within this structure [9]. The field amplitudes
calculated through FDTD simulations were scaled to range from �1 to 1 prior to the Fourier–Bessel
expansion. The scaling was necessary to place the fields on relative scales as they are not equally
excited by the FDTD noise source.

The examination of the rotational order present within available localized states begins with the
square lattice. The lowest rotational order states, obtained through FDTD simulations, present in
this structure are the monopole, quadrupole, and a skewed hexapole; see the insets of Fig. 6(a)–(c),
respectively. The inserts are focused on the center 4:7 �m� 4:7 �m region of the fields. By its very
nature, the perfect monopole does not have an angular dependence. When expanded using
Fourier–Bessel, the coefficients would have angular orders nperfect ¼ 0 causing the exponential
terms in the expansion to equal 1. The expansion of the localized monopole-like state obtained with
the square lattice [see Fig. 6(a)] shows nonzero peaks at multiples of the fundamental order of the
dielectric. The rotational order of the monopole-like localized state takes on the rotational order
characteristic of the rotational order of the inverse dielectric.

When a perfect quadrupole is examined, the exponential terms would contain nperfect ¼ �2. The
expansion of the quadrupole-like state obtained with the square lattice shows nonzero coefficients
for rotational orders at n ¼ f2; 6; 10; 14; . . .g These particular Am;n coefficients are the multiples of
the fundamental rotational order of the inverse dielectric, i.e., q ¼ f4; 8; 12; . . .g, each offset by
nperfect ¼ �2, n ¼ f0� 2;4� 2; 8� 2; . . .g, as indicated in the figure. The third state is a skewed
hexapole-like state nperfect ¼ �3 with a slight dipole bias nperfect ¼ �1. Geometrically, a hexagonal
state should have its features distributed about a circle relative to the defect. Examination of the
state [see the insert in Fig. 6(c)] shows that while it does have the nperfect ¼ �3 order of a hexapole,
it is distributed about an oval. Based on the oval nature of the state and the expansion, the rotational
order of the mode could be described as either nperfect ¼ �3 or � 1, i.e., 4� 1 ¼ 0þ 3. The domi-
nant contribution to the expansion coefficients must come from the rotational orders corresponding

Fig. 6. Fourier–Bessel expansion of the three localized state in the square lattice. The states present are
the (a) monopole, (b) quadrupole, and (c) skewed hexapole. Field profiles are shown in contour plots in
insets. Decomposition is on a circle with a diameter of 9.5 �m about the center of the lattice.
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to �3 as the state profile is predominantly a hexagonal state. Based on the observation that the
dominant rotational orders are from the nperfect ¼ �3 coefficients, it should be noted that the n ¼ þ3
orders reach a higher maximum amplitude than the n ¼ �3 within a single rotational order of the
inverse dielectric, in this case 4. For example, the Am;3 coefficients have a higher maximum
amplitude than the Am;1 coefficients. The lowest rotational modes present within the triangular
lattice are the monopole ðnperfect ¼ �0Þ, dipole ðnperfect ¼ �1Þ, and the quadrupole ðnperfect ¼ �2Þ.
The expansions [see Fig. 7(a)–(c)] of the modes show the same behavior that was observed within
the square lattice. The rotational orders present within the localized states are the orders of the
inverse dielectric layout offset by the symmetry of the perfect state that corresponds to the given
localized state. The dipole [see Fig. 7(b)] and the quadrupole [see Fig. 7(c)] also demonstrate that
the Am;n components whose radial orders match the positive offset, i.e., Am;1 in the dipole, have a
higher maximum amplitude than the negative offsets Am;5 within a single rotational order of the
dielectric. With both the translationally symmetric crystals exhibiting the same trends within their
localized states, when expanded about their rotational centers, it would indicate that this behavior is
potentially based on the rotational symmetry within these structures and not the translational
symmetry. FDTD simulations show that there is a dipole ðnperfect ¼ �1Þ state localized within the
eight-fold structure. The Fourier–Bessel expansion of the dipole-like state contains nonzero
coefficients at fn ¼ 0� 1; 8� 1; . . .g (see Fig. 8) following the pattern established by the transla-
tionally symmetric PhCs. The monopole [see Fig. 9(a)] and hexapole [see Fig. 9(b)] of the 12-fold
quasi-crystal follow the results of the other primary states in the other structures, with the hexapole

Fig. 7. Fourier–Bessel expansion of the three localized state in the triangular lattice. The states present
are the (a) monopole, (b) dipole, and (c) quadrupole. Field profiles are shown in contour plots in insets.
Decomposition is on a circle with a diameter of 9.5 �m about the center of the lattice.

Fig. 8. Fourier–Bessel expansion of the dipole localized state in the eight-fold photonic quasi-crystal
lattice. Field profiles are shown in contour plots in insets. Decomposition is on a circle with a diameter of
9.5 �m about the center of the lattice.

IEEE Photonics Journal PhCs and Their Localized Modes

Vol. 3, No. 6, December 2011 Page 1139



showing minor contributions from a 12-fold ðnperfect ¼ �6Þ state. The more complex modes of the
12-fold structure [see Fig. 9(c) and (d)] are of the same nature as the hexapole-like mode within the
square lattice. The difference with these states is that they possess multiple rotational orders such
as the nperfect ¼ �4 and nperfect ¼ �10; see Fig. 9(c). These states also exhibit the behavior related
to the maximum amplitudes of the expansion coefficients seen in the localized states within the
translationally symmetric structures.

4. Discussion
The Fourier–Bessel expansions show that the rotational order of the Hz field of a localized state
possesses a mixing of the rotational symmetry of the inverse dielectric and the corresponding perfect
state. As an example, the field of the quadrupole-like state ðnperfect ¼ �2Þ in the triangular lattice
ðq ¼ 0;�6; . . .Þ contains rotational orders of n ¼ f�1;�4;�8;�10;�14; . . .g or n ¼ q � nperfect. All
other rotational orders have expansion coefficients of 0.

This knowledge can potentially be used to simplify the process of solving the master equation for
the field of a localized state, i.e., Hz in a cylindrical coordinate system. A Fourier–Bessel based
solution of the master equation would involve a matrix expression containing the Fourier–Bessel
expansions of the inverse dielectric and the field. In the solution for the field of a localized state with
a specific profile within a given dielectric layout, the rotational orders that are present for the inverse
dielectric q and the field n would be known. The expansion coefficient Am;n is only nonzero when n
is a multiple of the fundamental symmetry of the structure, and the expansion coefficient Bp;q is only
nonzero when n ¼ q � nperfect, where nperfect is the rotational order of the perfect state correspond-
ing to the state of interest. Terms with expansion coefficients equal to zero can be left out of the
expansions, which will cause matrix elements to be simplified and the order of the matrices to be
reduced. These simplifications to the matrix expressions will minimize the number of computations

Fig. 9. Fourier–Bessel expansion of the five localized states in the 12-fold photonic quasi-crystal lattice.
The states present are the (a) monopole, (b) hexapole and the three states with compound rotational
symmetries (c)–(e). Field profiles are shown in contour plots in insets. Decomposition is on a circle with
a diameter of 9.5 �m about the center of the lattice.
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required to obtain the solution, resulting in lower computation requirements. With reduced compu-
tational resources, results could be obtained for a higher resolution or for a larger domain.

5. Conclusion
Through the use of Fourier–Bessel expansions, this paper has shown that the rotational order within
the Hz field of the localized modes is the result of a mix between that of the rotational orders of the
corresponding perfect state and the dielectric. This interaction has been verified in translationally
symmetric structures, square and triangular lattice PhCs, structures lacking translational symmetry,
and eight- and 12-fold photonic quasi-crystal. Through these results, it has been shown that in
cylindrical coordinates, PhCs with rotational symmetry should be treated the same as rotationally
symmetric photonic quasi-crystals. A method of analysis based on the rotational symmetry should
prove to be valid for a larger range of crystal structures.

The master equation has also been expressed in cylindrical coordinate to illustrate how it may be
simplified through the use of rotational order within the localized modes studied. As these modes
have known nonzero expansion coefficients, there is the potential to reduce the number of terms
that will need to be evaluated within any potential matrix solution.

Two aspects of this work will require further research and examination. The first is to explore the
nature of the role of the rotational order of the dielectric on that of the localized states. The second is
the computational solution of the master equation within the cylindrical coordinates in terms of the
Fourier–Bessel expansions. This computational technique, when complete, should result in a
method that can be used to determine the presence of localized modes in rotationally symmetric
photonic lattices, regardless of their translational symmetry.
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